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In this research paper, the authors present a new mixed Euler-Lagrange σ-cubic-quartic functional equation. For this introduced
mixed type functional equation, the authors obtain general solution and investigate the various stabilities related to the Ulam
problem in Felbin’s type of fuzzy normed linear space (f-NLS) with suitable counterexamples. This approach leads us to
approximate the Euler-Lagrange σ-cubic-quartic functional equation with better estimation.

1. Introduction

One of the famous questions concerning the stability of
homomorphisms was raised by Ulam [1] in 1940. The author
Hyers [2] provided a partial answer to Ulam’s question in
1941, and then, a generalized solution to Ulam’s question
was given by Rassias [3] in 1978, which is called Hyers-
Ulam-Rassias stability or generalized Hyers-Ulam stability.
The generalization of Hyers stability result by Rassias [4] is
called Ulam-Gavruta-Rassias stability. Later, Ravi et al. [5]
investigated the stability using mixed powers of norms which
is called Rassias stability.

Definition 1 (see [6]). A fuzzy subset ξ on ℝ is said to be a
fuzzy real number when it satisfies two axioms:

(N1)There exists τ0 ∈ℝ such that ξðτ0Þ = 1
(N2)For each γ ∈ ð0, 1�, ½ξ�γ = ½ξ−γ , ξ+γ �, where −∞ < ξ−γ ≤

ξ+γ < +∞
Note that ½ξ�γ = fτ : ξðτÞ ≥ γg is γ-level set. We show the

set of all fuzzy real numbers by ΛðℝÞ. Also, ξ is said to be a

nonnegative fuzzy real number when ξ ∈ΛðℝÞ and ξðτÞ = 0
for τ < 0. We show the set of all nonnegative fuzzy real num-
bers by Λ∗ðℝÞ.

We define �0 as

�0 τð Þ =
1, τ = 0,
0, τ ≠ 0:

(
ð1Þ

Definition 2 (see [6]). We define ⊕ , ⊖ , ⊗ , ⊘ onΛðℝÞ ×ΛðℝÞ
as

(i) ðξ ⊗ ΞÞðτÞ = sup
q∈ℝ

fξðqÞ ∧ Ξðτ − qÞg, τ ∈ℝ

(ii) ðξ ⊖ ΞÞðτÞ = sup
q∈ℝ

fξðqÞ ∧ Ξðq − τÞg, τ ∈ℝ

(iii) ðξ ⊗ ΞÞðτÞ = sup
q∈ℝ,q≠0

fξðsÞ ∧ Ξðτ/qÞg, τ ∈ℝ

(iv) ðξ⊘ΞÞðτÞ = sup
q∈ℝ

fξðqτÞ ∧ ΞðqÞg, τ ∈ℝ
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�0, �1 ∈ΛðℝÞ are additive and multiplicative identities,
respectively. We also define ⊖ ξ as �0 − ξ; so, ξ ⊖ Ξ = ξ ⊕ ð⊖ ξÞ.

Definition 3 (see [6]). For l ∈ℝ/0, the notation l ⊙ ξ shows
fuzzy scalar multiplication and defied as ðl ⊙ ξÞðτÞ = ξðτ/lÞ
and 0 ⊙ ξ = �0.

Definition 4 (see [7]). Consider the vector space S and the left
and right norms L, R : ½0, 1�2 ⟶ ½0, 1� which are symmetric
and nondecreasing functions satisfying Lð0, 0Þ = 0, Rð1, 1Þ
= 1 . So, ∥·∥ : S⟶Λ∗ðRÞ is said to be a fuzzy norm and
ðS,∥ · ∥,L, RÞ is a fuzzy normed linear space (in short f-
NLS) if

(N1)∥s∥ = �0 if and only if s = 0
(N2)∥λs∥ = j�λj ⊙ ∥s∥ for all s ∈ S and λ ∈ ð−∞,∞Þ
(N3)for all t, s ∈ S:
(N3L)if q ≤ ∥s∥−1 , τ ≤ ∥t∥−1 and q + τ ≤ ∥t + s∥−1 , then ∥s + t

∥ðq + τÞ ≥ Lð∥s∥ðqÞ,∥t∥ðτÞÞ
(N3R)if q ≥ ∥s∥−1 , τ ≥ ∥t∥−1 and q + τ ≥ ∥s + t∥−1 , then ∥s + t

∥ðq + τÞ ≤ Rð∥s∥ðqÞ,∥t∥ðτÞÞ,where ½∥s∥�α = ½∥s∥−α ,∥s∥+α � for s ∈ S
and α ∈ ð0 ; 1�.

Lemma 5 (see [8]). Consider f-NLS ðS, k·k, L, RÞ, and let
(R1)Rðc, dÞ ≤max ðc, dÞ
(R2)∀γ ∈ ð0, 1�, ∃ζð0, γ� in which Rðζ, hÞ ≤ γ for every h

∈ ð0, γÞ
(R3)limc→0+Rðc, cÞ = 0
So, ðR1Þ⇒ ðR2Þ⇒ ðR3Þ. The converse is not true.

Lemma 6 (see [8]). Consider f-NLS ðS, k·k, L, RÞ. Then,

(1) if Rðc, dÞ ≤max ðc, dÞ, then for all γ ∈ ð0, 1�, ∥s + t∥+γ
≤ ∥s∥+γ + ∥t∥+γ for all s, t ∈ S

(2) ðR2Þ implies that, for every γ ∈ ð0, 1�, there exists ζ ∈
ð0, γ� such that ∥s + t∥+γ ≤ ∥s∥+ζ + ∥t∥+γ for every s, t ∈ S

(3) limc→0+Rðc, cÞ = 0, implies that for every γ ∈ ð0, 1�,
there exists ζ ∈ ð0, γ� such that ∥s + t∥+γ ≤ ∥s∥+ζ + ∥t∥+ζ
for every s, t ∈ S

Lemma 7. Consider f-NLS ðS, k·k, L, RÞ and let
(L1)Lðc, dÞ ≥min ðc, dÞ
(L2)∀γ ∈ ð0, 1�, ∃ζðγ, 1� such that Lðζ, ηÞ ≥ γ for all η ∈

ðγ, 1Þ
(L3)limd→1−Lðd, dÞ = 1
So, ðL1Þ⇒ ðL2Þ⇒ ðL3Þ, but not conversely.

Lemma 8. Consider f-NLS ðS, k·k, L, RÞ, then

(1) Lðc, dÞ ≥min ðc, dÞ, implying that ∀γ ∈ ð0, 1�, ∥s + t
∥−α ≤ ∥s∥−γ + ∥t∥−γ for every s, t ∈ S

(2) ðL2Þ implies that for every γ ∈ ð0, 1�, there exists ζ ∈
ðγ, 1� such that ∥s + t∥−γ ≤ ∥s∥−ζ + ∥t∥−γ for every s, t ∈ S

(3) limc→1−Lðc, cÞ = 1, implying that for every γ ∈ ð0, 1�,
there exists ζ ∈ ðγ, 1� such that ∥s + t∥−γ ≤ ∥s∥−ζ + ∥t∥−ζ
for every s, t ∈ S

Lemma 9 (see [7]). Consider f-NLS ðS, k·k, L, RÞ. Then,

(1) Rðc, dÞ ≥max ðc, dÞ and for all γ ∈ ð0, 1�, implying
that ∥s + t∥+γ ≤ ∥s∥+γ + ∥t∥+γ for all s, t ∈ S, then (N3R)

(2) Lðc, dÞ ≤min ðc, dÞ and for all γ ∈ ð0, 1�, implying that
∥s + t∥−γ ≤ ∥s∥−γ + ∥t∥−γ for all s, t ∈ S, so (N3L)

Definition 10 (see [7]). Consider f-NLS ðS, k·k, L, RÞ and let
limc→0+Rðc, cÞ = 0. A sequence fsmg∞m=1 ⊆ S converges to s ∈
S, denoted by limm→∞sm = s , if limm→∞∥sm − s∥+γ = 0 for
every γ ∈ ð0, 1�, and is called a Cauchy sequence if limm,n→∞

∥sm − sn∥
+
γ = 0 for every γ ∈ ð0, 1�. A subset E ⊆ S is said to

be complete if every Cauchy sequence in E converges in E.
A f-NLS is called a fuzzy Banach space (f-BS) if it is complete.

Lemma 11. Consider f-NLS ðS, k·k, L, RÞ which satisfies ðR2Þ.
Then,

(1) ∥·∥+γ is continuous from U into ℝ at s ∈ S for every γ

∈ ð0, 1�
(2) For every m ∈ℤ+ and fsjgmj=1, we have ∀γ ∈ ð0, 1�, ∃ζ

∈ ð0, γ� ; ∥∑m
j=1sj∥

+
γ ≤∑m

j=1∥sj∥
+
ζ

Recently, the stability problems of several functional equa-
tions (FEs) have been extensively investigated by a number of
authors [4, 9–20] in Felbin type f-NLS. Our method helps to
solve some new problems of stability and approximation of
functional equations [21–28] in Felbin type f-NLS.

Motivated from the above historical developments in the
field of FEs, the authors introduce a new mixed Euler-
Lagrange σ-cubic-quartic functional equation (FE)

π t + σsð Þ + π σt + sð Þ + π t − σsð Þ + π s − σtð Þ
= σ2 2π t + sð Þ + π t − sð Þ + π s − tð Þf g

− 2 σ4 − 1
� �

π tð Þ + π sð Þf g + 1
4
σ2 σ2 − 1
� �

π 2tð Þ + π 2sð Þf g,
ð2Þ

where σ ∈ℝ − f0,±1g. For this mixed type FE, authors obtain
the general solution and investigate the various stabilities
related to Ulam problem [1] in Felbin’s type f-NLS with suit-
able counterexamples.

2. General Solution of Euler-Lagrange σ-Cubic-
Quartic FE

Theorem 12. Consider π satisfies (2) and odd that is πð−tÞ
= −πðtÞ, then a mapping π : T ⟶ S is cubic.
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Proof. Assume π satisfies (2). Putting t = s = 0 in (2), we get
πð0Þ = 0. Setting ðt, sÞ by ðt, 0Þ in (2), we obtain

2π tð Þ + π σtð Þ + π −σtð Þ = σ2 3π tð Þ + π −tð Þð Þ − 2 σ4 − 1
� �

π tð Þ
+ 1
4σ

2 σ2 − 1
� �

π 2tð Þ,
ð3Þ

for all t ∈ T , σ ∈ℝ − f0,±1g and by assuming πð−tÞ = −πðtÞ
in (3) which leads

π 2tð Þ = 8π tð Þ, ∀t ∈ T: ð4Þ

Thus, π is cubic.

Theorem 13. If π satisfies (2) and even that is πð−tÞ = πðtÞ,
then a mapping π : T ⟶ S is quartic.

Proof. Assume π holds (2). Putting t = s = 0 in (2), we get
πð0Þ = 0. Setting ðt, sÞ by ðt, 0Þ in (2), we arrive

2π σtð Þ + 2π tð Þ = 4σ2π tð Þ − 2 σ4 − 1
� �

π tð Þ
+ 1
4σ

2 σ2 − 1
� �

π 2tð Þ, ∀t ∈ T:
ð5Þ

Allowing σ = 2 in (5), we arrive πð2tÞ = 16πðtÞ. Using
πð−tÞ = πðtÞ and πð2tÞ = 16πðtÞ in (5), we get

π σtð Þ = σ4π tð Þ, ð6Þ

for all t ∈ T , σ ∈ℝ − f0,±1g. Thus, π is quartic.

3. Generalized Hyers-Ulam-Rassias Stability of a
Euler-Lagrange σ-Cubic-Quartic FE

Consider the following abbreviation

Gπ t, sð Þ = π t + σsð Þ + π σt + sð Þ + π t − σsð Þ + π s − σtð Þ
− σ2 2π t + sð Þ + π t − sð Þ + π s − tð Þf g
+ 2 σ4 − 1

� �
π tð Þ + π sð Þf g

−
1
4σ

2 σ2 − 1
� �

π 2tð Þ + π 2sð Þf g, ∀t, s ∈ T ,

ð7Þ

and the integer σ ≠ 0, ±1.

Theorem 14. Consider the odd mapping π : T ⟶ S for
which we can find Φ : T × T ⟶Λ∗ðℝÞ for a linear space T
and a fuzzy Banach space (f-BS) S where

〠
∞

i=0

Φ 2it, 2is
� �� �+

γ

23i
<∞, ∀t, s ∈ T , ð8Þ

∥Gπ t, sð Þ∥ ≤Φ t, sð Þ, ∀t, s ∈ T: ð9Þ
So, we can find a unique cubic function Θ : T ⟶ S

such that

π tð Þ −Θ tð Þk k+γ ≤
4

8σ2 σ2 − 1ð Þ〠
∞

i=0

Φ 2it, 0
� �� �+

ζ

23i
, ∀t ∈ T ,

ð10Þ

for all γ ∈ ð0, 1�, ζ ∈ ð0, γ�, where

Θ tð Þ≔ lim
σ→∞

π 2σtð Þ
23σ

: ð11Þ

Proof. Putting s = 0 in (9) implies that

2σ2 σ2 − 1
� �

π tð Þ − 1
4σ

2 σ2 − 1
� �

π 2tð Þ
����

���� ≤Φ t, 0ð Þ, ∀t ∈ T:

ð12Þ

Multiply both sides of equation (12) by 4/σ2ðσ2 − 1Þ,
so we get

π 2tð Þ − 8π tð Þk k ≤ 4
σ2 σ2 − 1ð Þ ⊙Φ t, 0ð Þ, ∀t ∈ T: ð13Þ

Again multiplying (13) by 1/23σ+3 and replacing t by
2σt, we obtain

π 2σ+1t
� �
23 σ+1ð Þ −

π 2σtð Þ
23σ

����
���� ≤

4
8σ2 σ2 − 1ð Þ

1
23σ ⊙Φ 2σt, 0ð Þ, ∀t ∈ T ,

ð14Þ

and it leads to

π 2σ+1t
� �
23 σ+1ð Þ −

π 2lt
� �
23l

�����
�����
+

γ

≤
4

8σ2 σ2 − 1ð Þ〠
σ

i=l

1
23i Φ 2it, 0

� �� �+
ζ
,

ð15Þ

∀t ∈ T with σ ≥ l, nonnegative integers. Now, (8) and (15)
imply that the sequence fπð2σtÞ/23σg is fuzzy Cauchy in S.
So, the sequence fπð2σtÞ/23σg converges, which let us to
define the mapping Θ : T ⟶ S by

Θ tð Þ≔ lim
σ→∞

π 2σtð Þ
23σ , ∀t ∈ T: ð16Þ

Considering l = 0 and allowing σ⟶∞ in (15), we
obtain

π tð Þ −Θ tð Þk k+γ ≤
4

8σ2 σ2 − 1ð Þ〠
∞

i=0

Φ 2it, 0
� �� �+

ζ

23i , ∀t ∈ T ,

ð17Þ
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and it gives (10). Using (8) and (9), we have

Θ t + σsð Þ +Θ σt + sð Þ +Θ t − σsð Þ +Θ s − σtð Þk
− σ2 2Θ t + sð Þ +Θ t − sð Þ +Θ s − tð Þf g
+ 2 σ4 − 1

� �
Θ tð Þ +Θ sð Þf g − 1

4σ
2 σ2 − 1
� �

Θ 2tð Þ +Θ 2sð Þf gk
+

γ

≤ lim
σ→∞

Φ 2σt, 2σsð Þð Þ+γ
23σ = 0, ∀t, s ∈ T ,

ð18Þ

which implies that Θ : T ⟶ S is cubic. Suppose that
Θ′ : T ⟶ S is a cubic mapping satisfying (10) and
implies

Θ tð Þ −Θ′ tð Þ�� �� ≤ lim
σ→∞

1
23σ

4
σ2 σ2 − 1ð Þ〠

∞

i=0

Φ 2i2σt, 0
� �� �+

ζ

23i

≤ lim
σ→∞

4
σ2 σ2 − 1ð Þ〠

∞

i=σ

Φ 2it, 0
� �� �+

ζ

23i = 0, ∀t ∈ T ,

ð19Þ

Θ =Θ′, which shows the uniqueness of Θ.

Theorem 15. Consider π : T ⟶ S and let there exist a func-
tion Φ : T × S⟶Λ∗ðℝÞ such that

〠
∞

i=1
23i Φ

t

2i
, s

2i

� �� �+

γ

<∞,

Gπ t, sð Þk k ≤Φ t, sð Þ, ∀t, s ∈ T ,
ð20Þ

for a linear space T and a fuzzy Banach space (f-BS) S. So, we
can find a unique cubic mapping Θ : T ⟶ S, such that

π tð Þ −Θ tð Þk k+γ ≤
4

σ2 σ2 − 1ð Þ〠
∞

i=1
23i Φ

t

2i
, 0

� �� �+

ζ

, ∀t ∈ T ,

ð21Þ

where

Θ tð Þ≔ lim
σ→∞

23σπ
t
2σ

� �� �
: ð22Þ

The following corollary gives the Hyers-Ulam, Hyers-
Ulam-Rassias, and Rassias stabilities of (2).

Corollary 16. Consider π : T ⟶ S and let there be real num-
bers δ and ρ such that

Gπ t, sð Þk k+γ≺
δ,
δ ⊗ tk kρ ⊕ sk kρf g, ρ ≠ 3,
δ ⊗ tk kρ ⊗ sk kρ + tk k2ρ ⊕ sk k2ρ	 
	 


, 2ρ ≠ 3,∀t, s ∈ T ,

8>><
>>:

ð23Þ

then there is a unique cubic mapping Q : T ⟶ S such that

π tð Þ −Q tð Þk k+γ≺

4δ+ζ
7σ2 σ2 − 1ð Þ ,

4δ+ζ tk kρð Þ+ζ
σ2 σ2 − 1ð Þ ∣ 23 − 2ρ ∣

,

4δ+ζ tk k2ρ� �+
ζ

σ2 σ2 − 1ð Þ ∣ 23 − 22ρ ∣
,∀t ∈ T:

8>>>>>>>>>><
>>>>>>>>>>:

ð24Þ

In the next example, we consider the unstability of FE (2)
for p = 3 in Corollary 16.

Example 17. Define the mapping Φ : T × T ⟶Λ∗ðℝÞ as

Φ tð Þ = δ ⊗ t3, if ∣t∣ < 1,
δ, o:w:,

(
ð25Þ

in which δ > 0 is a fuzzy real number. Define π : T ⟶ S as

π tð Þ = 〠
∞

σ=0

Φ 2σtð Þ
23
� �σ , ∀t ∈ T: ð26Þ

So,

∣π t + σsð Þ + π σt + sð Þ + π t − σsð Þ + π s − σtð Þ
− σ2 2π t + sð Þ + π t − sð Þ + π s − tð Þf g
+ 2 σ4 − 1

� �
π tð Þ + π sð Þf g − 1

4σ
2 σ2 − 1
� �

π 2tð Þ + π 2sð Þf g∣
≤ 32 σ2 − 1

� �
δ tj j3 + sj j3� �

, ∀t, s ∈ T:
ð27Þ

As a result, there does not exist a cubic mapping
Θ : T ⟶ S and a constant ζ > 0 such that

π tð Þ −Θ tð Þj j ≤ ζ ⊗ tj j3, ∀t ∈ T: ð28Þ

Proof. The below inequality

π tð Þj j ≤ 〠
∞

σ=0

Φ 2σtð Þj j
23σ
�� �� = 〠

∞

σ=0

δ

23σ = 23δ
23 − 1 , ð29Þ

showing the boundedness of π. Now, we show that π
satisfies (27).

Let t = s = 0, then (27) is trivial. If jtj3 + jsj3 ≥ 1/m3, then
the left-hand side of (27) is less than ðð28ðσ2 − 1Þ/7ÞδÞ.
If 0 < jtj3 + jsj3 < 1/m3. So, we can find a positive integer
r such that

1
23
� �r+1 ≤ tj j3 + sj j3 < 1

23
� �r , ð30Þ
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so that

23
� �r−1

t3 < 1
23 ,

23
� �r−1

s3 < 1
23 ,

ð31Þ

and therefore, for each σ = 0, 1,⋯, r − 1, we have

2σ t + σsð Þ, 2σ σt + sð Þ, 2σ t − σsð Þ, 2σ s − σtð Þ, 2σ t + sð Þ, 2σ t − sð Þ,
mσ s − tð Þ,mσ tð Þ,mσ sð Þ,mσ 2tð Þ,mσ 2sð Þ ∈ −1, 1ð Þ,

Φ 2σ t + σsð Þð Þ +Φ 2σ σt + sð Þð Þ +Φ 2σ t − σsð Þð Þ +Φ 2σ s − σtð Þð Þ
− σ2 2Φ 2σ t + sð Þð Þ +Φ 2σ t − sð Þð Þ +Φ 2σ s − tð Þð Þf g
+ 2 σ4 − 1

� �
Φ 2σ tð Þð Þ +Φ 2σ sð Þð Þf g

−
1
4σ

2 σ2 − 1
� �

Φ 2σ 2tð Þð Þ +Φ 2σ 2sð Þð Þf g,
ð32Þ

for σ = 0, 1,⋯, r − 1. From (26) and (30), we have

∣π t + σsð Þ + π σt + sð Þ + π t − σsð Þ + π s − σtð Þ
− σ2 2π t + sð Þ + π t − sð Þ + π s − tð Þf g
+ 2 σ4 − 1

� �
π tð Þ + π sð Þf g − 1

4σ
2 σ2 − 1
� �

π 2tð Þ + π 2sð Þf g∣

≤ 〠
∞

σ=r

1
23σ ∣Φ 2σ t + σsð Þð Þ +Φ 2σ σt + sð Þð Þ +Φ 2σ t − σsð Þð Þ

+Φ 2σ s − σtð Þð Þ − σ2 2Φ 2σ t + sð Þð Þ +Φ 2σ t − sð Þð Þf
+Φ 2σ s − tð Þð Þg + 2 σ4 − 1

� �
Φ 2σ tð Þð Þ +Φ 2σ sð Þð Þf g

−
1
4σ

2 σ2 − 1
� �

Φ 2σ 2tð Þð Þ +Φ 2σ 2sð Þð Þf g∣
= 32 σ2 − 1

� �
δ tj j3 + sj j3� �

:

ð33Þ

Thus, π satisfies (27) for all t, s ∈ T with 0 < jtj3 + jsj3
< 1/23. Corollary 16 shows ΘðtÞ = rt3 for any t in T ,
and so,

π tð Þj j ≤ ζ ⊕ rj jð Þ ⊗ tj j3: ð34Þ

But we can choose a positive integer l with lδ > ζ ⊕ jrj. If
t ∈ ð0, 1/2l−1Þ, then 2σt ∈ ð0, 1Þ for all σ = 0, 1,⋯, l − 1.
For this t, we have

π tð Þ = 〠
∞

σ=0

Φ 2σtð Þ
23σ ≥ 〠

l−1

σ=0

δ 2σtð Þ3
23σ = lδt3 > ζ ⊕ rj jð Þ ⊗ t3, ð35Þ

which contradicts (34). Therefore, the functional equation
(2) is not stable in the sense of Ulam, Hyers, and Rassias
if ρ = 3.

Theorem 18. Consider the even mapping π : T ⟶ S for
which we can find Φ : T × T ⟶Λ∗ðℝÞ such that

〠
∞

i=0

Φ σit, σis
� �� �+

γ

σ4i
<∞, ∀t, s ∈ T , ð36Þ

Gπ t, sð Þk k ≤Φ t, sð Þ, ∀t, s ∈ T , ð37Þ
and all γ ∈ ð0, 1�. So, we can find a unique quartic mapping
Q : T ⟶ S and ∀γ ∈ ð0, 1�, ∃ζ ∈ ð0, γ�, such that

π tð Þ −Q tð Þk k+γ ≤
1
2σ4

〠
∞

i=0

Φ σit, 0
� �� �+

ζ

σ4i
, ∀t, ∈ T , ð38Þ

where

Q tð Þ≔ lim
m→∞

π σmtð Þ
σ4m

: ð39Þ

Proof. Putting s = 0 in (37), we get

2 π σtð Þ − σ4π tð Þ� ��� �� ≤Φ t, 0ð Þ, ∀t ∈ T: ð40Þ

Multiply (40) by 1/2, we obtain

π σtð Þ − σ4π tð Þ�� �� ≤ 1
2 ⊙Φ t, 0ð Þ, ∀t ∈ T: ð41Þ

Replacing t by σmt and multiplying (41) by 1/σ4m+4, we
obtain

π σm+1t
� �
σ4 m+1ð Þ −

π σmtð Þ
σ4m

����
���� ≤

1
2σ4

1
σ4m

eΦ σmt, 0ð Þ, ∀t ∈ T:

ð42Þ

Therefore, for all γ ∈ ð0, 1�, there is ζ ∈ ð0, γ� such that

π σm+1t
� �
σ4 m+1ð Þ −

π σlt
� �
σ4l

�����
�����
+

γ

≤
1
2σ4 〠

m

i=l

1
σ4i Φ σit, 0

� �� �+
ζ
, ∀t ∈ T ,

ð43Þ

with m ≥ l. From (36) and (43) and because S is a f-BS, we
have the sequence fπðσmtÞ/σ4mg which is a fuzzy Cauchy
in S and converges ∀t ∈ T . Now, we define Q : T ⟶ S by

Q tð Þ≔ lim
m→∞

π σmtð Þ
σ4m

, ∀t ∈ T: ð44Þ

Assuming l = 0 and allowing the limit as m⟶∞ in
(43), we have

π tð Þ −Q tð Þk k+γ ≤
1
2σ4 〠

∞

i=0

Φ σit, 0
� �� �+

ζ

σ4i , ∀t ∈ T: ð45Þ
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Therefore, we obtain (38). From (36) and (37), we have

Q t + σsð Þ +Q σt + sð Þ +Q t − σsð Þ +Q s − σtð Þk
− σ2 2Q t + sð Þ +Q t − sð Þ +Q s − tð Þf g
+ 2 σ4 − 1

� �
Q tð Þ +Q sð Þf g − 1

4σ
2 σ2 − 1
� �

Q 2tð Þ +Q 2sð Þf gk
+

γ

≤ lim
m→∞

Φ σmt, kmsð Þð Þ+γ
σ4m = 0, ∀t, s ∈ T ,

ð46Þ

and hence, the mapping Q : T ⟶ S is quartic. Letting
Q′ : T ⟶ S be a quartic mapping fulfills (38), and we have

Q tð Þ −Q′ tð Þ�� �� ≤ lim
σ→∞

1
σ4m

1
2σ4 〠

∞

i=0

Φ σiσmt, 0
� �� �+

ζ

σ4i

≤ lim
m→∞

1
2σ4 〠

∞

i=m

Φ σit, 0
� �� �+

ζ

σ4i
= 0,

ð47Þ

for all t ∈ T ,Q =Q′, and hence, Q is unique.

Theorem 19. Consider π : T ⟶ S for which we can find a
mapping Φ : T × T ⟶Λ∗ðℝÞ such that

〠
∞

i=1
σ4i Φ

t
σi
, s
σi

� �� �+

γ

<∞, ∀t, s ∈ T ,

Gπ t, sð Þk k ≤Φ t, sð Þ, ∀t, s ∈ T ,
ð48Þ

and all γ ∈ ð0, 1�. So, we can find a unique quartic mapping
π : T ⟶ S and ∀γ ∈ ð0, 1�, ∃ζ ∈ ð0, γ�, such that

π tð Þ −Q tð Þk k+γ ≤
1
2σ4

〠
∞

i=1
σ4i Φ

t
σi
, 0

� �� �+

ζ

, ∀t ∈ T , ð49Þ

where

Q tð Þ≔ lim
m→∞

σ3mπ
t
σm

� �� �
: ð50Þ

Corollary 20. Consider π : T ⟶ S and let there be real num-
bers δ and ρ such that

Gπ t, sð Þk k+γ≺
δ,
δ ⊗ tk kρ ⊕ sk kρf g, ρ ≠ 4,
δ ⊗ tk kρ ⊗ sk kρ + tk k2ρ ⊕ sk k2ρ	 
	 


, ρ ≠ 2,∀t, s ∈ T ,

8>><
>>:

ð51Þ

so we can find a unique quartic mappingQ : T ⟶ S satisfying

π tð Þ −Q tð Þk k+γ≺

δ+ζ
2 σ4 − 1j j ,

δ+ζ tk kρð Þ+ζ
σ4 − σρj j ,

δ+ζ tk k2ρ� �+
ζ

2 σ4 − σ2ρj j ,∀t ∈ T:

8>>>>>>>>>><
>>>>>>>>>>:

ð52Þ

In the next example, we show that the FE (2) is not stable
for ρ = 4 in Corollary 20.

Example 21. Letting Φ : T × T ⟶Λ∗ðℝÞ be a mapping
defined by

Φ tð Þ = δ ⊗ t4, if ∣t∣ < 1,
δ, o:w:,

(
ð53Þ

where δ > 0 is a fuzzy real number and π : T ⟶ S is defined
by

π tð Þ = 〠
∞

σ=0

Φ σmtð Þ
σ4ð Þm , ∀t ∈ T , ð54Þ

a linear space T and a fuzzy Banach space (f-BS) S. Then π
fulfills the functional inequality

π t + σsð Þ + π σt + sð Þ + π t − σsð Þ + π s − σtð Þj
− σ2 2π t + sð Þ + π t − sð Þ + π s − tð Þf g
+ 2 σ4 − 1

� �
π tð Þ + π sð Þf g − 1

4σ
2 σ2 − 1
� �

π 2tð Þ + π 2sð Þf gj

≤
7σ10 + 9σ12
2 σ4 − 1ð Þ δ tj j4 + sj j4� �

, ∀t, s ∈ T:

ð55Þ

So, we cannot find a quartic mapping Q : T ⟶ S and a
constant ζ > 0 such that

π tð Þ −Q tð Þj j ≤ ζ ⊗ tj j4, ∀t ∈ T: ð56Þ

4. Conclusion

In our work, we have obtained the general solution of a new
generalized mixed Euler-Lagrange σ-cubic-quartic func-
tional equation and studied its generalized Hyers-Ulam-Ras-
sias, Hyers-Ulam, Hyers-Ulam-Rassias, and Rassias
stabilities in fuzzy normed linear space using Felbin’s con-
cept. Moreover, some counterexamples show both stability
and unstability of FE (2) in f-BS.
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