Hindawi

Journal of Function Spaces

Volume 2021, Article ID 8475863, 14 pages
https://doi.org/10.1155/2021/8475863

Research Article

Hindawi

Solution of Linear and Quadratic Equations Based on Triangular
Linear Diophantine Fuzzy Numbers

Naveed Khan,' Naveed Yaqoob ,! Mudassir Shams®," Yaé Ulrich Gaba®,>>*

and Muhammad Riaz ©°

'Department of Mathematics and Statistics, Riphah International University, I-14 Islamabad, Pakistan

ZQuantum Leap Africa (QLA), AIMS Rwanda Centre, Remera Sector KN 3, Kigali, Rwanda

*Institut de Mathematiques et de Sciences Physiques (IMSP/UAC), Laboratoire de Topologie Fondamentale, Computationnelle et
leurs Applications (Lab-ToFoCApp), BP 613, Porto-Novo, Benin

*African Center for Advanced Studies, P.O. Box 4477, Yaounde, Cameroon

*Department of Mathematics, University of the Punjab, Lahore 54590, Pakistan

Correspondence should be addressed to Yaé Ulrich Gaba; yaeulrich.gaba@gmail.com

Received 10 August 2021; Revised 9 September 2021; Accepted 28 September 2021; Published 27 October 2021

Academic Editor: Sarfraz Nawaz Malik

Copyright © 2021 Naveed Khan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper is introducing a new concept of triangular linear Diophantine fuzzy numbers (TLDFNs) in a generic way. We first
introduce the concept of TLDFNs and then study the arithmetic operations on these numbers. We find a method for the
ranking of these TLDFNs. At the end, we formulate the linear and quadratic equations of the types A+ X=B,A-X+B=C,
and A- X%+ B-X + C=D where the elements A, B, C, and D are TLDFNs. We provide a procedure for the solution of these

equations using ({s, t), (u, v))-cut and also provide the examples.

1. Introduction

In 1965, Zadeh [1] introduced a new notion of fuzzy set the-
ory. Fuzzy set (FS) theory has been widely acclaimed as
offering greater richness in applications than ordinary set
theory. Zadeh popularized the concept of fuzzy sets for the
first time. There is an area of FS theory, in which the arith-
metic operations on FNs play an essential part known as
fuzzy equations (FEQs). Fuzzy equations were studied by
Sanchez [2], by using extended operations. Accordingly, a
profuse number of researchers like Biacino and Lettieri [3],
Buckley [4], and Wasowski [5] have studied several
approaches to solve FEQs. In [6-9], Buckley and Qu intro-
duced several techniques to evaluate the fuzzy equations of
the type A-X+B=C and A-X*+ B-X + C=D, where A,
B, C, D, and X are fuzzy numbers (FNs). Jiang [10] studied
an approach to solve simultaneous linear equations that
coeflicients are fuzzy numbers.

Intuitionistic fuzzy sets [11, 12], neutrosophic sets [13,
14], and bipolar fuzzy sets [15] are the generalizations of

the fuzzy sets. There are several mathematicians who solved
linear and quadratic equations based on intuitionistic fuzzy
sets, neutrosophic sets, and bipolar fuzzy sets. Banerjee and
Roy [16] studied the intuitionistic fuzzy linear and quadratic
equations, Chakraborty et al. [17] studied arithmetic opera-
tions on generalized intuitionistic fuzzy number and its
applications to transportation problem, Rahaman et al.
[18] introduced the solution techniques for linear and qua-
dratic equations with coefficients as Cauchy neutrosophic
numbers, and Akram et al. [19-23] introduced some
methods for solving the bipolar fuzzy system of linear equa-
tions, also see [24-26].

Linear Diophantine fuzzy set [27] is a new generalization
of fuzzy set, intuitionistic fuzzy set, neutrosophic set, and
bipolar fuzzy set which was introduced by Riaz and Hashmi
in 2019. After the introduction of this concept, several math-
ematicians were attracted towards this concept and worked
in this area. Riaz and others studied the decision-making
problems related to linear Diophantine fuzzy Einstein aggre-
gation operators [28], spherical linear Diophantine fuzzy
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sets [29], and linear Diophantine fuzzy relations [30]. Alma-
grabi et al. [31] introduced a new approach to g-linear Dio-
phantine fuzzy emergency decision support system for
COVID-19. Kamac [32] studied linear Diophantine fuzzy
algebraic structures.

Motivated by the work of Buckley and Qu [7], we solve
the linear and quadratic equations with more generalized
fuzzy numbers. As the linear Diophantine fuzzy set, [27] is
the more generalized form of fuzzy sets so we studied the
linear and quadratic equations based on linear Diophantine
fuzzy numbers. In linear Diophantine fuzzy sets, we use the
reference parameters, which allow us to choose the grades
without any limitation; this helps us in obtaining better
results.

In Section 2, we provided the fundamental definitions
related to fuzzy sets and linear Diophantine fuzzy sets. In
Section 3, we define linear Diophantine fuzzy numbers, in
particular, triangular linear Diophantine fuzzy number. Also
defined some basic operations on LDF numbers. In Section
4, we provide the ranking of LDF numbers, and in Section
5, we solved linear and quadratic equations based on LDF
numbers.

2. Preliminaries and Basic Definitions

This section is devoted to review some indispensable con-
cepts, which are very beneficial to develop the understanding
of the prevalent model.

Definition 1 (see [1]). Let X be a classical set, gy, be a func-
tion from X to [0,1]. The MF (membership function) pigy, (9)
of a FS (fuzzy set) I is defined by

M= {(5, pan(9)) 1 9 € Xand gy (9) €0, 1]} (1)

Definition 2 (see [33]). Let I be a fuzzy subset of universal
set X . Then, M is called convex FS if Vr,s€ X and A € [0, 1]
we have

pan(Ar + (1= A)s) = min {pg (1), i ()} (2)

Definition 3 (see [1]). A fuzzy set I is said to be normalized if
h(M) = 1.

Definition 4. An « -level set of a FS I is defined as
IMM* ={9eX : ugy (9) >a} foreacha € (0, 1]. (3)

Definition 5 (see [33]). A fuzzy subset I defined on a set R
(of real numbers) is said to be a FN (fuzzy number) if I sat-
isfies the following axioms:

(a) M is continuous: pgy(t) is a continuous function
from R — [0, 1]

(b) M is normalized: there exists ¢ € R such that pgy (1)
=1

(c) Convexity of IM: ie., VL, u,w e R, if t <u<w, then
pap (1) > min {pign (1), pay (w) }
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(d) Boundness of support: ie., 3S€ R and V¢ € R, if [¢ |
=S, then pgy (t) =0

We denote the set of all FNs by F, (RR).
Now, we study the idea of LDFSs (linear Diophantine
fuzzy sets) and their fundamental operations.

Definition 6 (see [27]). Let X be the universe. A LDFS £ on
X is defined as follows:

£y ={(9 (M (9), Ny (9)), (a(9), B(9))): 9 X} (4)

where Mg (9), Nk (9), a(9), B(9) € [0, 1] such that

0<a(9)My(9) + BIONKR) <1, VIeX, 5
0<a(d)+pW) <L ®)

The hesitation part can be written as
& = 1= (a(9) My (9) + B9)Nx (9)), (6)

where £ is the reference parameter.
We write in short £5 = ((My, N5), (&, B)) or £5 = ((
5 M) (@ B)) for

£x = {(9 (M (9), NR (9), (2(9), B(9))): 9e X} (7)

Definition 7 (see [27]). An absolute LDFS on X can be written
as

Yem = {(9, (1,0), (1,0)): 9e X}, (8)
and empty or null LDFS can be expressed as
%5 ={(9,(0,1), (0, 1)): Y€ X}. (9)

Definition 8 (see [27]). Let £y = ((My, Ny), (a, B)) and
£y = (M, Niy), (v, 6)) be two LDESs on the reference set
X and 9 e X . Then,

(D) £ = (Mg, My), (B, «))
(i) £y = £ © My = MG,y = N0 = =6
(i) £; £y MG (9) < MG (9).95(8) = M (9),
a(9) <y(9),8(9) = 8(9)
(iv) £ ULy = (M Nipop)» (@Vy: BAS))
(V) £g Ny = (Mg, Rip)s (@AY, BVS))

where
Mz (9) = M (9) VNG (9), Mg (9) = M3z (9) A IMG(9),

nnp (9) = N (9) A Ny (9), Niguy (9) = Neg (9) VA (9).
(10)



Journal of Function Spaces

0.9
0.8
0.7
0.6
0.5
0.4 4
0.3 1
0.2 1
0.1

Ficure 1: The figure of (9,,9,,9;,9,, 9s).

Definition 9 (see [27]). Let £ = {(9, (M (9), Nk (9)), (a(9
), B(9))): 9eX} be an LDFS. For any constants s,tu
W €[0,1] such that 0<su+tv<1 with 0<u+v<1, define
the ((s,t), (u, v)) -cut of £y as follows:

(E) oy = {9 € X : M5 (9) 25, My (9) <t, a(9) 2w, B(9)) < v}
(11)

3. Triangular LDF Numbers

Here, in this section, we provide definitions and arithmetic
operations on LDF numbers (LDFNs).

Definition 10. A LDF number £y is

(i) a LDF fuzzy subset of the real line R

(ii) normal, i.e., there is any 9, € R such that Mg (9,)
= 1,9t (9) = 0.a(9y) = 1,(9) =0

(ili) convex for the membership functions Mg and «a,
ie.,

MG (A9, + (1 -1)9,) = min {My(9,), MK(9,)} V9,9, R, Ae[0,1],
a(A9) + (1 -21)9,) =2min {a(9)),a(9,)} V9,9, €R,A€][0,1]

(12)

(iv) concave for the nonmembership functions 93 and

B ie,

NP A9, + (1-1)9,) < max {My(9,), My (%)} V9,9, e R, A€ 0,1],
BA9, + (1-1)9,) <max {B(9,), B(%,)} V9,9, e R,A€0,1].

(13)

We now provide the 4 types of triangular LDF numbers.

Definition 11. Let £5 be a LDFS on R with the following
membership functions (Mg and «) and nonmembership
functions (N and §)

x—-9
, 9 <x<9;,
93 — 91 1 X 3
gi(x): 95—)(7 93<x<9
> = = Vs>
5 — U5
0, otherwise,
9, —x
, 9,<x<9,,
93 — ‘92 2 X 3
w(x¥)=q x—9,
> 9 < < 9 >
94 — 93 3 X 4
0, otherwise,
_9
S R EPELA
‘93 - 92
a(x)=<¢ 9' -
) B yenes,
‘94_ 93
0, otherwise,
9 —x
S, 9 <x<9,
'93 - '91
x) = -9 14
'95_ '93
0, otherwise,

where 9] < 9, < 9, < 9, < 9. for all x € R. Then, £y is called
(i) a triangular LDFN of type-1 if 9;=9; and 9, <9,
<9;<9,<9;

(ii) a triangular LDEN of type-2 if 9; # 93, and 9, <9,
<9;<9,<9;
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FIGURE 2: The figure of (9], 9}, 95, 9}, 95).
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FiGure 3: The figure of £Rmm

(iii) a triangular LDEN of type-3 if 9, =9; and 9, <9,
<9;<9;<9,

(iv) a triangular LDFN of type-4 if 9;# 9; and 9, <9,
<9;<9; <9,

Throughout the paper, we consider only triangular
LDEN of type-1 and we write this type as triangular LDFN
(TLDEN). This TLDFN is denoted by

] (91,92,9,,9,,9),
ER e = { (5,559.9,9.). (15)

The figure of (9;,9,,9,,9,,9;) is shown in Figure 1.
The figure of (9;, 9;, 95, 94'1, 9;) is shown in Figure 2.
The figure of £x_ is shown in Figure 3.

Remark 12. If we take 9;=9,=9, =9, and 9,=9,=9, =9,
then both type-1 and type-3 become the same.

(9,,9,,9,9,,9)

Definition 13. Consider a TLDFN £y = { (990,99
2 1>V2>V35Vy5V5

Then,

£, ={xeX:My(x)=s)= | My(s) ,mg}(s)]

£ ={xeX:My(x)<t) =[N0 ,ng(t)}

(i) s-cut set of £y is a crisp subset of R, which is
TLDEN
defined as follows:

mTLDFN

=[9; + (95— 9), 95 —s(95 = ;)]

(16)

(ii) t-cut set of £y . 18 acrisp subset of R, which is
defined as follows:

FRTLDFN

=[95 —t(9; = 9,), 95 + (I, - 9s)

(iii) u-cut set of £y is a crisp subset of R, which is
TLDFN
defined as follows:
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£u9‘mm ={xeX:a(x)2u}= {M, a(u)}

= [S5+u(9 - %), 9 u(9i-9, ).

(iv) v-cut set of £
defined as follows:

is a crisp subset of R, which is

£ =1 E€X  B(x) <V

= [95-v(9,-90).9, +v—<9—

We can denote the ((s,t),(u,v))-cut of £y =

(91> 95, 95, 9y, 95) b
(91, 93, 95, 9, 95)

o=
<o
w
~_ —
[E—

(20)

We denote the set of all TLDFN on Rby £, (R). The

arithmetic operations based on extension principle are
defined as follows.

Definition 14. Let £g = ({ Ny)» (o, B)) and £ = ((Myy
, M), (v, 6)) be two TLDEN on R . Then,
() i+ = (0D 1, min {90} (1), MG (1)} .

{max (9250, 95} ) sup i {a). ()}
inf {max {B(x),5()}}

(i) £~ = {SUp. 1, {min (MG, (x), M ()} inf.
{max {95 (x), ()} sup {min {a(x), ()} }

t=x-y

inf {max {B(x),5()}}

() £ X = {SUP. (-osy {min {3, (x), M ()}, inf.
{ma 925, 501} sup {min (). 701}
inf {max {(x), 60} }

(1) £+ £ = (S0P rovsy {min (D (x), M)} inf.

Ny (y)}} sup {min {a(x), y(y)}}

{max {9y (x),
t=x+y

Jnf {max {B(x),5(7)}}

(91> 95, 95, 9y, 9s)

(93, 93, 95, 9, 9%)
to be positive if and only if 9, >0 and 9, > 0.

Definition 15. A TLDFN £y = { is said

(91> 9, 95, 9y, 95)

Definition 16. Two TLDFNs £ =
Rpen { (91) 9;, 93, 94/}) Sé)
(61,98,,05,0,,05)

and & =

Fron {(5{ 8.,0,,8,,0)
and only if 9,=08,,9, =89 =083,9,=0,,95 =059, =6,
9, =08,,9,=0,, and 9. = 5.,

are said to be equal if

We now define the arithmetic operations on TLDFNs
using the concept of interval arithmetic.

Definition 17. Consider two positive TLDFNs £y = {

(9,,9,:95,9,,95) (8,,0,,03,8,,05)
(91,9955 N4 EYRTLDFN_{ (81,61,6,0), 5) > then,
. o (9,4681,9,+0,,9;4+85,9,+6,,9;+85)
(i) £2RTLDFN +E§RTLDFN _{ 91+07,95+85,9,+85,9,+8,9:+67)

—085,9,-0,,9;-05,9,-6,,95,-9,)
—&n

(i) £y —00,9,-81,9,-83,9)—85,9.-87)

TLDEN TLDEN {

(111) £§RTLDFN X EmTLDFN 9 6 9 6 NN 9 8 9 5 )
(91/85),(9,184),(95185),(94/,),(95/8,))

(

(

®,

]

(9181,9,8,9,8:,9,84,9505)

L

. . («

() £xtry ¥ Eotruome = L (105D (9150 (041000013 (200

(
{(k9 K9, ,J9,,K9,,k9;)
(k9. k9% k93 k9, k9L)
{(kS K, k9, K9, k9,
(k9L k9, k9, k9, k9!

ifk>0

(V) k X £§RTLDFN =
ifk<0

4. Ranking Function of TLDFNs

There are many methods for defuzzification such as the cen-
troid method, mean of interval method, and removal area
method. In this paper, we have used the concept of the mean
of interval method to find the value of the membership and
nonmembership function of TLDFN.

Consider a TLDFN

— ) (91:9,,9:,9,,9),
£§RTLDFN - { (9;,92,93,\9‘;,9;) (21)
The ((s,

t), (u,v))-cut of £ is

() oy = {9 € X - MG (9) =5, Ny (9) <1, «(9) 2, B(9)) <},
(22)

where



6
w(s) =9 +s(9;-9,),
MG (s) =95 —s(95 — 93),
n(t) =9, —1(9; - 9,),
() =95 +(9, - 9,),
a(u) =9+ u(93 - 9;), (23)

Now, by the mean of ({s, t), (4, v)) -cut method, the rep-
resentation of membership functions is

1 T T
Rm&@mmw):ij(m%@)+W%@Dds
1
=5J(&+sw3—%)+%—sw5—%»ds
1 1 1
:5[‘91+§(93_91)+95_5(95_93)}
9, +29;+ 9
=
1! _
R, (£9‘mm) = EL <0¢(u) + a(u))ds
1 ! ! ! ! !
Ej (92+u<93—92) +94—u<94—93>>du »
! 1 !
[9+ (9 9)+m—z<m—%ﬂ
3 9)+29; + 9,
I

Now, by the mean of ({s, ¢), (4, v)) -cut method, the rep-
resentation of nonmembership functions is

Rog Bty ) = 5 [ (00 + 250

1
= lj (95 —t(95=9,) + 95 + t(9, — 95))dt
0

2

1 1 1
=3 [293_ 5(93_92)"' 5(94_'93)]
9429+ 9,

>

4
Rs(Em,) = 5 [ (B0 + 0 )
:%Jd(es—v<93-90-+93+v<9;-%)>’dv
:%P%—%@fﬁg+%@;%ﬂ

_9+295+9;
R

(25)
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Now,

R(n,, )= (E o) * R ) + Rty (Eypn) + R (Emnp)
o) = 1

(9, +29, +9,)/4) + ((9;+ 29, + 9;>/4) +((9,+29,+9,)/4) + ((9; +29, +9;)/4)
- 1

:%+91+SZ+S4+95+9{+9;+9;+9;
2 16 ’

(26)

Consider ~ two  positive ~ TLDFNs £y =
(912 9,,9,,9,.95) (6116,165,6,,65)

1yl Il and EZRILD!-N = ] oo’ then
(91,95, 95, 9, 95) (81, 85,835,645 85)

(1) £y < Sy 1 R(Ew ) <R(Eg, o 0)
(1) £g,, e > Sy 1 R(ER ) > R(Esr )
(ii) £ = Sy T R(E ) =R(Ex, )

5. Solution of LDF Equations
5.1. Solution of A+ X =B by Using the Method of ({(s,t), (u

,v))-Cut. Let A,B, and X be the LDFNs and let A=

9,,9,,9:,9,,9 6,,0,,04,04,0
( 1 2> Y3> Y4 5) andB: ( 1 f 3 4 f).Then,
(9}, 9}.9,,8},80) (8],8),6,, 6. 8)

A+X=B (27)

is a LDF equation (LDFE). Let X = (xl,xz,x3,x4,x5).
(%15 X %3, X, X5)
Then, X =B — A in general is not the solution of Equation
(27).
Let

[wmm] [ X(). Ny t>})

(
x()»ox(w)] |Bx() Bx(v)] )

represent the ((s, t), (u, v))-cuts of A, B, and X, respectively,
in the given (27). Substituting these into Equation (27), we
get

5

(s,t) (st) _ pist)
A< v +X<w> —B<W>. (29)



Journal of Function Spaces

By comparing the ({s,
get

t), (u,v)) -cuts of A, B, and X, we

g
2
—
<
§~|
—
NP
[
+
=
<A
—
17
NP
Sl
—
(%)
N
| S
=
~
—
NP
£y
—
1%}
Nt
.,

(30)
Now,
M (s) = Mp(s) — ML (s) , M5 (s) = Mp(s) — M (),
Ny (1) =Ny(1) — Ny (1), Ny (1) = N () = Ny(1),
ay(u) =ag(u) ‘“A(”)>"‘X_( u) = Z u) - A_(”)’
Bx(v) =Bp(v) = Bs(v)» ﬁxzv) = /337(") - ﬁAZV)'
(31)

Then, the solution of the equation A + X = B exists iff
(1) M5 (s) is monotonically increasing in 0 <s<1
(2) ML (s) is monotonically decreasing in 0 <s< 1
3) w is monotonically decreasing in 0<#<1

(4) MNY(t) is monotonically increasing in 0 <t <1

(5) ay(u) is monotonically increasing in 0 <u <1

(6) ax(u) is monotonically decreasing in 0 <u <1

x (1)
(7) Bx(v) is monotonically decreasing in 0 <v <1
v)

8) By(v
9) M(1) =
“X(l) =

is monotonically increasing in 0<v <1

() Ny (0) =Ny (0)

Bx(0) = By (0).

=ay(l) =

Example 1. Consider the equation A + X = B, where

{ (3,5,7,10,15),

(2,6,7,8,11),
(32)

(1,6,11,15,24),
(3,9,11,13,22).

7
The ({s, t), (u, v))-cuts of A, B, and X are
oo [ (Bras15-85,[7-267 430,
“ ) (164 18— 1), [7 - 5v, 7 + 4v]),
e _ [ (14105242134, [11 - 56,11+ 41),
“ (9 +2u,13 - Zu] [11-8v,11+11v]),  (33)
| (s ] s )
([an) ,ax<u>}, [Bx(v) . Bs)]),
respectively. The ({s, £}, (u, v))-cut equation is
R
AR X050 =Bl (34)

By comparing the ({s,
get

t), (u, v))-cuts of A, B, and X, we

(35)

ax(u) , and By (v) are

)»and By(v) are decreas-

It is easy to see that MM (s) My (1),
increasing and I (s), My (£) oty (u
ingin 0<s,t,u,v<1. Also,

’ O =D

This shows that the solution of A+ X =B exists with
({s, t), (u, v)) -cut. The solution is

[ (-21459),
X= { (13,4,5,11). (37)

The solution in continuous form is

2+x
5 -2<x<4,
T —_— —
Mg (x) = 95—x, 4<x<9,
0, otherwise,
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4 —x
_ 1<x<4,
. 3
(%) = —4+x, 4<x<5,
0, otherwise,
-3+x, 3<x<4,
a(x)=< 5-x, 4<x<5,
0, otherwise,
4-x
_ 1<x<4,
3
=¢ -4+
B(x) X 4cx<ll (38)
7
0, otherwise.

The graph of the solution is given in Figure 4.

5.2. Solution of A-X + B=C by Using the Method of ({s, t)

,{u, v))-Cut. Let A, B,C, and X be the LDFNs and let A =

(91,9, 93,9, 95) (61,0,,683,0,,65)
= /BN AN and C=
(9], 95,95, 9,,90) (61,65, 83,68, 85)
{(’7 My 3> Mgs 1) . Then,
(’71> ’72’ 3 ’74’ ’75)
A-X+B=C (39)

(%15 X3, X3, X4, X5)

1o I
(%> X3, X3, X3, Xs)

(C—B)/A in general is not the solution of Equa-

is a LDF equation (LDFE). Let Xx{

Then, X =
tion (39).

Let
o [ (e, m350), [0, wi0]),
Ay =9 ¢ )

(_ocA(u) o (u)l, [ }
[ ([ i H(t),m;(t)}),
Biuw=9y i

(FORRCIN ™)), (40)
[ ([ M), [ 2. 950 ),
Clumy = ] B

([act). ] [ectr). pe0)])
(51 ([, 50 [ X0, 95(1)] ),
Xy = ) B o

([mz9). me)]. [200). 250 )

represent the ({s,t), (u,v))-cuts of A, B,C, and X, respec-
tively, in the given (39). Substituting these into Equation
(39), we get

A(”) _X<S’t> +B<S)t> — C(”)

(u,v) (uv) (uv) = T (uv)* (41)

By comparing the ({s, t), (u, v))-cuts of A, B, C, and X,
we get

[205(5), ME(9)] - [M5(), ME(9)] + [ME(5), M5(9)] = [ME(s), ME(S)]
(0] - [ e >]+{m§<t> m”(t)] [ wm]
+ {a3<u> o (w)] = [ac(w) ac(w)],
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Now,

(43)

Then, the solution of the equation A - X + B = C exists iff
(1) M (s) is monotonically increasing in 0 <s<1

(2) M (s) is monotonically decreasing in 0 <s< 1

(3) Jy(t) is monotonically decreasing in 0<t<1

(4) MY(t) is monotonically increasing in 0 << 1

(5) ay(u) is monotonically increasing in 0 <u <1

(6) ay(u) is monotonically decreasing in 0<u <1

x (1)
(7) Bx(v) is monotonically decreasing in 0 <v <1
(8) By(v) is monotonically increasing in 0 < v< 1

=ay(1) :“le) ﬁXZO)-

(44)

=px(0) =

Example 2. Consider the equation A -X + B = C, where

_ [ (1257,10),
A= { (1,3,5,6,11),

[ (468,10,15),
B= { (4,5,8,11,19), (45)

C= { (14183865,
9 (1,5,18,29,85).

The ({s, t), (u, v))-cuts of A, B, C, and X are

st) ([1+45,10-55],[5-31,5+21)),

3+2u6 u, [ 5 4v,5+6V]),

st) ([4+4s,15-75],[8-2t,8+2t]),
uv) 5+3u11 3u] [8—4v,8+11v]),
(u v) [5+13u,29~ llu [18 17v,18+67v]),

M(s)] [ 2y (0) 73 ()] ).
e ()] [ B () Br()] ).

(S f)

{ ([1+175,65-47s),[18—-14t,18+20t]), (46)

respectively. The ({s, £}, (u, v))-cut equation is

(56 ylst) |, plst) _ (st
Al X0 + Bl = CltL (47)

By comparing the ({s, t), (4, v))-cuts of A, B,C, and X,
we get

1+17s)-(4+4 -3+13
e (g = (LF179) = (4o ds) _ 3
1+4s 1+4s
- 65—-47s) - (15-7 10-8
i (= G479 =(15-79) _10-85
10— 5s 2-s5s
18 — 14¢t) — (8 — 2t 10— 12¢
(o) = )-(8-2t) _ |
5-—3t 5—-3t
~ 18 +20t) — (8 + 2t 10 + 18¢
(o) = )-(8+28) _ |
5+ 2t 5+2t (48)
(5+13u) - (5+3u) 10u
(XX( = 3 = N
+2u 3+4+2u
- (29-11u) - (11 -3u) 18-8u
ay(u) = — =z
6—u 6—u
(18-17v) - (8—-4v) 10-13v
(V) = — T e ’
5-4y 5-4y
B - (18 +67v) — (8 +11v) 10+ 56v
V) = = .
x(v) 5+6v 5+ 6v

It is easy to see that M5 (s) , Ny (1)
increasing and IN% (s),9% (¢)
ingin 0<s, t,u,v<1. Also,

(1), and By (v) are

(1), and By (v) are decreas-

(49)

This shows that the solution of A - X + B = C exists with
({s,t), {(u, v)) -cut. The solution is

(-3,-1,2,4,5),
X= {( 30,23.6). (50)
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The solution in continuous form is

3+x
_ 3<x<2,
13 —4x
T —_— p—
My (x) = 10+2x) <x<5,
-8 +x
0, otherwise,
—-10 + 5x
—, -1<x<2,
—-12 + 3x
v -_— —
My(x)=q —10+5c
18 — 2x
0, otherwise,
(51)
3x
_ <x<2,
10 — 2x
a(x) =< —18+6x <x<3
-8+x -7
0, otherwise,
—10 + 5x
_— 3<x<2,
—-13 +4x
B(x)=< —10+5x Py
56 — 6x -
0, otherwise.

The graph of the solution is given in Figure 5.

5.3. Solution of A - X? + B- X + C = D by Using the Method of
a-Cut. Let A, B, C, D, and X be the LDFNs and let

(9,9, 95,9,,9),
91,92,93,94, 9.),

81,62,63,84,8 ),
(61) 6;; 83) 64a8 >

(52)
(> 1> 13> Mg M5 )»
(’7 ”72’ 713”74’ ’75 >
(€502 055 €0 Gs)s
RI@ARA)
Then,
A-X*+B-X+C=D (53)

X1 X3, X35 Xy Xs)

is a LDF equation (LDFE). Let X = { ( , . Let

(x> X3, X3, X, X5)

Journal of Function Spaces

'fmz<s>,w>}[ 20, 95(1)]),
esv)040]. [301. )
Mi(s), M), [ HORHOIE

(
o e si)

ap(u) > ap

(54)

=}
A
“
S
~
—
3
5=
=
S|
S
=
| S
\:/

]
S

=
&

N 7 N 7N 7N /N N /N /N N/
T T 1T 1 1T ! r
1S
9}
—
=

(
ax(w)], |Bx() - B ()] )

:“X(“> >

represent the ({s, t), (u, v))-cuts of A, B, C, D, and X, respec-
tively, in the given (53). Substituting these into Equation
(53), we get

)2 £ B x4 ol - i)

(u,v) (u,v) (uv)y = Tuv) " (55)

By comparing the ({s, t), (&, v)) -cuts of A, B, C, D, and

X, we get

{ [z, m36)] - (500, w6+ [m3ce), 3o
[ M(s) ME(5)] = [Mp(), ME(9)) + [ME(s), ME(S)),

{800 B.0] - [0 B:09] + [B). 51

[B) . B )] = [Bo) . Bo()] + [Be) . Belv)]-
(56)
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FiGure 5: The graph of the solution obtained in Example 2.
Now, TaBLE 1: (s, t)-cuts of A, B, C, D, and X.
(s, t)-cuts X A B C D C-D
e (s) i\/zmg(s)z—zx(fm ())(W() mlf)(s)) 9 +5(9,-9)) Mi(s) 4+3s 2+3s 1+43s 1+55 25
My (s) = 2 (5) o 95-s(95-95) Mi(s) 10-3s 8-3s 7-3s 12-65 —5+3s
9 -t(9;,-9,) Nx(H) 7-2t 5-t 4-2t 6-3t -2+t
- -IM: \/émr _4<2}th:( )) (fmé( )—W?E(S)) 95 +1(9,-95) MY(t) 7+2t S5+t 4+t 6+2t -2t
A

"l = 29071 |
I HORNEHORSI GO CHOREHO)
0= ! ) |
—ap(u) + fag(u)® —4(a,(u) ) (ac(u) -ap(u)
R e N )
() fa () — 4 () () — ap(w)
() = 2%[( ) )
a0 =B 4(8,0)) (B B0
Fx(r) ZﬁA ’
510 P +1/By(v) ~4(B() (Bo(v) - By ()
x 26,4(v) '

(57)

Then, the solution of the equation A-X*+B-X+C=D

exists iff
(1) M%(s) is monotonically increasing in 0 <s <1

(2) ML (s) is monotonically decreasing in 0 <s <1

(3) My (t) is monotonically decreasing in 0<t<1

(4) MY (t) is monotonically increasing in 0 <t <1

(5) ax(u) is monotonically increasing in 0 <u<1

(6) ay(u) is monotonically decreasing in 0 <u <1

(7) Bx(v)

(8) By(v) is monotonically increasing in 0 <v < 1

(9) M (1) =M (1) = Ny (0) = ay (1)
ax(1) = By(0) =B (0)

v) is monotonically decreasing in 0<v<1

=% (0)

Example 3. Consider the equation A-X*+B-X+C=D,
where

(4,5,7,9,10),
A=
(2,6,7,8,13),
(2,4,5,6,8),
B=
(4,4,5,6,7), -
58
(1,2,4,5,7),
C=
(1,3,4,5,7),
(1,3,6,8,12),
D=
(1,4,6,8,11).

The (s, t)-cuts of A, B, C, D, and X are given in Table 1.
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T
0 0.05 0.1 0.15 0.2

T T
0.25 0.3 0.35 0.4 0.45

FiGuRrE 6: Solution by (s, t)-cut.

By comparing the (s, t)-cuts of A, B, C, D, and X, we get

—(2+3s) + \/(2 +35)% — 4(4 + 3s) (-2s)
x(9) = 2(4+39) ’

—(8-3s)+ \/(8 —3s)% —4(10 — 35)(=5 + 3s)

>

2(10 - 3s)

R R R V(I SR Ut e )
Mlt) = 2(7-21) ’
- —(5+t)+\/(5+t)2—4(7+2t)(—2—t)
()= 2(7 +2t) '

(59)

The graph obtained by (s, f)-cut is shown in Figure 6.
The (u, v)-cuts of A, B, C, D, and X are given in Table 2.
By comparing the (u, v)-cuts of A, B, C, D, and X, we get

—(4+u)+ \/(4+u)2—4(6+u)(—1 - u)

o) = 206+ u) ’
—(6-u)+ \/(6—u)2 — 4(8 - u)(=3 + u)
a(u)= 28— u) >
-(5-v)+ \/(5 — V)2 —4(7 - 5v)(-2+2v)
) = 2(7 - 5v) :
B = -(5+2v)+ \/(5 +2v)* = 4(7 + 6v)(-2-2v) .

2(7+6v)
(60)

The graph obtained by (u, v)-cut is shown in Figure 7.

It is easy to see that MM (s) , My (t),ay(u) , and By (v) are

increasing and IN% (s),My(t) ,ax (), and By (v) are decreas-

ingin 0<s,t,u,v<1. Also,

TABLE 2: (u, v)-cuts of A, B,C, D, and X.

(u, v)-cuts X A B C D C-D
92+u<93—9£ a(w) 6+u 4+u 3+u 4+2u -1-u
9 -u(9,-9) «(u) 8-u 6-u 5-u 8-2u -3+u

4-3v 6-5v -2+2

B(v) 7+6v 5+2v 4+3v 6+5v -2-2v

(61)

This shows that the solution of A-X*+B-X+C=D
exists with ({s, £), (&, v)) -cut. The solution is

X (04234= [ (0,0.2,0.2857,0.3333,0.4124),
- (0 ~2+1/10 2 =3+/33 —7+¢757) ) (0,0.1937,0.2857,0.3431,0.3474).
6 7 8 > 26

(62)

The solution in continuous form is

2x(2x+1)
—-———* 0<x<0.2857,
3x2 +3x -2
T(x)={ 10x* +8x—5
m(¥) = L0 H8x=5 o ey < x<0.4124,
3(x2+x-1)
0, otherwise,
7x—2
—_— 0.2<x<0.2857,
2x—1
v = 7x—2
R(¥) =9 _7¥72 o857 < x<0.3333,
2x -1
0, otherwise,
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FiGuRre 7: Solution by (u, v)-cut.
1
0.9 1
0.8 1
0.7 1
0.6 -
0.5 1
0.4 4
0.3 1
0.2 4
0.1 1
0 T T T T T T T T
0 005 01 015 02 025 03 035 04 045
F1Gure 8: The graph of the solution obtained in Example 3.
({s, t), (u, v))-cut. In LDF sets, there is no limitation to take
—6x%2—4x+1 e e .
0.1937 < x < 0.2857 the grades like in intuitionistic fuzzy sets, Pythagorean fuzzy
K +x-1 sets, and g-rung orthopair fuzzy sets. The linear Diophantine
a(x)={ 8x2+6x-3 fuzzy numbers may have several applications, like in linear
ol 0.2857 <x<0.3431, programming, transportation problems, assignment prob-
) lems, and shortest route problems. Our future work may
0, otherwise, be on the following topics:
7x% +5x ~2 0 < x < 02857 (i) LDF linear programming problems
5x2+x-2 oo o . ;
x X X (ii) LDF assignment problems and transportation
=¢ —7x°=5x+2 63
Blj=q T7x =542 - a5y ex<03474, O problems
2(3x2+x-1)
(iii) LDF shortest path problems
0, otherwise.

The graph of the solution is given in Figure 8.

6. Conclusion

In this paper, we have defined the linear Diophantine fuzzy
numbers, in particular triangular linear Diophantine fuzzy
number, and present some properties related to them. After
finding the ranking function of triangular linear Diophan-
tine fuzzy number, our study has focussed on the linear
Diophantine fuzzy equations. We used the more general
approach to solve LDF equations that is the method of

(iv) Numerical solutions of linear and nonlinear LDF
equations
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