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The generalized time-fractional, one-dimensional, nonlinear Burgers equation with time-variable coefficients is numerically
investigated. The classical Burgers equation is generalized by considering the generalized Atangana-Baleanu time-fractional
derivative. The studied model contains as particular cases the Burgers equation with Atangana-Baleanu, Caputo-Fabrizio, and
Caputo time-fractional derivatives. A numerical scheme, based on the finite-difference approximations and some integral
representations of the two-parameter Mittag-Leffler functions, has been developed. Numerical solutions of a particular problem
with initial and boundary values are determined by employing the proposed method. The numerical results are plotted to
compare solutions corresponding to the problems with time-fractional derivatives with different kernels.

1. Introduction

The nonlinear convective–diffusive partial differential equa-
tions describe various mathematical models in important
fields such as heat and mass transfer, fluid mechanics, and
engineering. During the last years, various solution methods
of ordinary differential equations and partial differential
equations have been elaborated.

Burgers’ equation is one of the most important equations
involving both nonlinear propagation effects and diffusive
effects. A particular form of Burgers’ equation describes the
nonlinear wave propagation (the inviscid Burgers’ equation).

Burgers’ equation is a suitable tool for analysis in various
fields such as turbulent flows, gas dynamics, shock wave the-
ory, nonlinear wave propagation, longitudinal elastic waves
in isotropic solids, sedimentation of polydispersive suspen-
sions and colloids, growth of molecular interfaces, traffic
flow, and cosmology [1].

By studying Burgers’ equation with random initial con-
ditions or random forcing, Bec and Khanin [2] explained

Burgers’ turbulence. The study of random Lagrangian sys-
tems, stochastic partial differential equations, the applica-
tions of field theory to the understanding of dissipative
anomalies, and of multiscaling in hydrodynamic turbulence
are some fields that have significantly benefited from the
progress in Burgers’ turbulence. Yu [3] analytically studied
the stability and density waves for traffic flow using the per-
turbation method and shown that the triangular shock
waves, soliton wave, and kink wave appear for the density
waves.

In the last years, researchers have proved that many phe-
nomena in engineering, bioengineering, physics, and chem-
istry can be successfully described by mathematical models
that use mathematical tools from fractional calculus, i.e.,
the theory of derivatives and integrals of noninteger order.

Models of viscoelastic materials, Caputo and Mainardi
[4]; the signal processing, Marks and Hall [5]; diffusion
problems, Olmstead and Handelsman [6]; viscoplastic mate-
rials modeling, Diethelm and Freed [7]; mechanical systems
subject to damping, Gaul et al. [8]; relaxation and reaction
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kinetics of polymers, Glockle and Nonnenmacher [9]; and
heat conduction, Hristov [10, 11] are some of the important
problems modeled with the help of fractional differential
operators.

A very useful collection of numerical algorithms for
Caputo-type derivatives, Riemann-Liouville integral opera-
tor, and Mittag-Leffler functions is that of Diethelm et al.
[12].

In the literature, there are articles in which solutions of
Burgers’ equation with different time-fractional derivatives
have been determined. We recall some of them. The effects
of fractional-order of derivatives on the wave solutions of
the generalized Zakharov-Kuznetsov-Burgers equation have
been investigated by Faraz et al. [13]. The analytical approx-
imate wave solutions are obtained using the homotopy anal-
ysis method and the time-fractional Caputo’s derivative,
while exact solutions are determined with the help of the
first integral method and the fractional derivative in Jum-
arie’s modified Riemann–Liouville sense. Bira et al. [14]
studied a nonlinear time-fractional system of Boussinesq-
Burgers equations. Using Lie group analysis, the authors
derived the infinitesimal groups of transformations, the sys-
tem of optimal algebras for the symmetry group of transfor-
mations, and the similarity variables that reduce the system
of fractional partial differential equations to a system of frac-
tional ordinary differential equations. The exact solutions
and the physical significance of the solutions are obtained
under the invariance condition. Saad et al. [15] have
extended the model of the Burgers equation to generalized
models based on Liouville-Caputo, Caputo-Fabrizio, and
Mittag-Leffler time-fractional derivatives. Using the homo-
topy analysis transform method, the authors obtained
approximate solutions of the newly proposed models.
Baleanu and Shiri [16] numerically solved a system of frac-
tional differential equations involving nonsingular Mittag-
Leffler kernel using the collocation methods on discontinu-
ous piecewise polynomial space. The existence and regular-
ity of solutions and convergence of the introduced
methods are derived.

Recently, Vieru et al. [17] have generalized the time-
fractional Atangana-Baleanu derivative. The newly proposed
definition contains as particular cases the time-fractional
Caputo, Caputo-Fabrizio, and Atangana-Baleanu
derivatives.

It is important to note that the operators of fractional
derivatives are nonlocal in time and therefore have the
advantage of modeling phenomena with memory. Caputo
fractional derivatives are nonlocal operators but their kernel
is singular. This weakness could have a negative effect when
modeling real-world problems.

The fractional derivative operators with the Mittag-
Leffler kernel have all the benefits of Caputo operators; in
addition, the kernel is nonsingular. Also, their fractional
integral operators are the fractional average of the Rie-
mann–Liouville fractional integral of the given function
and the function itself. Caputo derivative was conceived for
a description of linear short time elastic responses of
deformed solids. It was consequently applied to the field of
linear viscoelasticity where the Riemann-Liouville derivative

was already applied to describe viscoelastic effects. It is
known that the asymptotic behaviors of derivative operators
with Mittag-Leffler kernel match the power-law behavior.
The new fractional operators based on Mittag-Leffler func-
tions have stronger and complex memories allowing captur-
ing behaviors combining simultaneously (crossover)
classical diffusion and anomalous behavior. Therefore, to
model more complex and nonlinear phenomena, the new
operators could be useful tools [11].

In this paper, a nonlinear, one-dimensional, generalized
Burgers equation with time-variable coefficients is numeri-
cally studied. The generalization consists of considering the
fractional differential Burgers’ equation with the generalized
time-fractional Atangana-Baleanu fractional derivative with
Mittag-Leffler kernel.

A numerical scheme, based on the finite-difference
approximations and some integral representations of the
two-parameter Mittag-Leffler functions, has been developed
along with the consistency, stability, and convergence of the
proposed method.

It is important to point out that the studied generalized
model can be customized to generate solutions to the prob-
lems described by the time-fractional Atangana-Baleanu,
Caputo-Fabrizio, and Caputo fractional derivatives.

Numerical solutions of a particular problem with initial
and boundary values are determined by employing the pro-
posed method. The numerical results are plotted to compare
solutions corresponding to the problems with time-
fractional derivatives with different kernels.

2. Preliminary Mathematics

In this section, we present the basic mathematical elements
regarding the two-parametric Mittag-Leffler functions and
the generalized time-fractional Atangana-Baleanu deriva-
tives. These mathematical notions are necessary for the next
sections of this paper.

2.1. One-Parametric and Two-Parametric Mittag-Leffler
Functions. The classical one-parametric Mittag-Leffler func-
tion is defined as [18, 19]

Eα zð Þ = 〠
∞

j=0

zj

Γ αj + 1ð Þ , α > 0, ð1Þ

where ΓðςÞ = Ð∞0 e−ττς−1dτ, Re ðςÞ > 0 is the Euler integral of
the second kind.

The two-parametric Mittag-Leffler function generalizes
the function EαðzÞ and is defined by

Eα,β zð Þ = 〠
∞

j=0

zj

Γ αj + βð Þ , α > 0, β ∈ℂ: ð2Þ

It is easy to notice that function (1) is a particular case of
function (2), so we have

Eα zð Þ = Eα,1 zð Þ: ð3Þ
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Let us recall some properties of Mittag-Leffler functions.

Eα,β zð Þ = zEα,α+β zð Þ + 1/Γ βð Þ,

Eα,β zð Þ = βEα,1+β zð Þ + αz
d
dz

Eα,1+β zð Þ,
ð4Þ

tγE1,1+γ atð Þ = tγ 〠
∞

j=0

atð Þj
Γ j + 1 + γð Þ = Et γ, að Þ − theMiller − Ross function,

ð5Þ

tγE1+γ,1+γ at1+γ
� �

= tγ 〠
∞

j=0

ajt 1+γð Þj

Γ 1 + γð Þ 1 + jð Þ½ � = Rt γ, að Þ − the Robotnov function,

ð6Þ
ðz
0
tβ−1Eα,β btαð Þdt = zβEα,β+1 bzαð Þ, β > 0,ðz

0
tβ−1 z − tð Þγ−1Eα,β btαð Þdt = zβ+γ−1Eα,β+γ bzαð ÞΓ αð Þ, β > 0, γ > 0,ðz

0
z − tð Þβ−1ebtdt = zβE1,β+1 bzð ÞΓ βð Þ, β > 0:

ð7Þ

The following special form of the one-parametric
Mittag-Leffler function [12]:

G t − τð Þ = Eα −
t − τ

γ

� �α� �
, α ∈ 0, 1ð Þ, γ > 0, τ ∈ 0, t½ �, ð8Þ

along with its derivative:

M t − τð Þ = ∂G t − τð Þ
∂τ

= −1
t − τ

Eα,0 −
t − τ

γ

� �α� �
, α ∈ 0, 1ð Þ, γ > 0, τ ∈ 0, t½ Þ,

ð9Þ

has applications in the theory of fractional-order viscoelas-
ticity and in some problems described by fractional differen-
tial equations with constant coefficients.

Some numerical algorithms for determining numerical
values of the Mittag-Leffler functions have been presented
in the reference [12]. These algorithms are based on the inte-
gral representations of the Mittag-Leffler functions. We will
use in this paper the following integral representations:

If α ∈ ð0, 1�, β ∈ℝ, 0 < ρ < jzj, jarg zj > απ, z ≠ 0, then

Eα,β zð Þ =
ð∞
ρ

K α, β, x, zð Þdx +
ðαπ
−απ

P α, β, ρ, y, zð Þdy,

K α, β, x, zð Þ = 1
πα

x
1−β
α exp −x1/α

� � x sin π 1 − βð Þð Þ − z sin π 1 − β + αð Þð Þ
x2 − 2xz cos παð Þ + z2

,

P α, β, ρ, y, zð Þ = ρ1+ 1−βð Þ/α

2πα
exp ρ1/α cos y/αð Þ� �

exp iφð Þ
ρ exp iyð Þ − z

,

φ = ρ1/α sin y/αð Þ + y 1 + 1 − βð Þ/αð Þ:
ð10Þ

The integral representation

ð∞
0
e−st tmαE mð Þ

α ±btαð Þdt = m!sα−1

sα ∓ bð Þm+1 , Re sð Þ > 0, Re αð Þ > 0,m ∈ℕ,

ð11Þ

along with the definition of the Laplace transform of a func-
tion ϑðtÞ, LfϑðtÞg = Ð∞0 ϑðtÞ exp ð−stÞdt give the following
relationship:

L tmαE mð Þ
α ±btαð Þ

n o
= m!sα−1

sα ∓ bð Þm+1 , Re sð Þ > 0, Re αð Þ > 0,m ∈ℕ:

ð12Þ

In the particular case m = 0, Equation (12) becomes

L Eα ±btαð Þf g = sα−1

sα ∓ b
: ð13Þ

2.2. Generalized Atangana-Baleanu Time-Fractional
Derivative. The function

φ t, α, βð Þ = 1
1 − α

Eβ

−α
1 − α

tβ
� 	

, t ≥ 0, α ∈ 0, 1ð Þ, β > 0, ð14Þ

is called the generalized Atangana-Baleanu kernel.
The Laplace transform of the kernel (14) is given by

L φ t, α, βð Þf g = sβ−1

1 − αð Þsβ + α
: ð15Þ

Using the Laplace transform, the following properties of
the generalized Atangana-Baleanu kernel (14) are found:

lim
α⟶0

L φ t, α, βð Þf g = L lim
α⟶0

φ t, α, βð Þ
n o

= sβ−1

sβ
= L 1f g,

lim
α⟶1

L φ t, α, βð Þf g = L lim
α⟶1

φ t, α, βð Þ
n o

= 1
s1−β

= L
t−β

Γ 1 − βð Þ

 �

= L φ0 t, βð Þf g,

lim
β⟶0

L φ t, α, βð Þf g = L lim
β⟶0

φ t, α, βð Þ

 �

= 1
s
= L 1f g,

lim
β⟶1

L φ t, α, βð Þf g = L lim
β⟶1

φ t, α, βð Þ

 �

= 1
1 − αð Þs + α

= L
1

1 − α
e−αt/ 1−αð Þ


 �
= L φ1 t, αð Þf g,

ð16Þ
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therefore,

lim
α⟶0

φ t, α, βð Þ = lim
β⟶0

φ t, α, βð Þ = 1,

lim
α⟶1

φ t, α, βð Þ = φ0 t, βð Þ = t−α

Γ 1 − αð Þ ,

lim
β⟶1

φ t, α, βð Þ = φ1 t, αð Þ = 1
1 − α

exp −αt
1 − α

� �
,

φ t, α, αð Þ = φ2 t, αð Þ = 1
1 − α

Eα −
α

1 − α
tα

� 	
,

lim
α⟶1
β⟶1

φ t, α, βð Þ = δ tð Þ:

ð17Þ

In the above relations, functions φ0ðt, αÞ, φ1ðt, αÞ, φ2ðt,
αÞ, and δðtÞare, respectively, Caputo kernel, Caputo-
Fabrizio kernel, Atangana-Baleanu kernel, and the Dirac’s
distribution.

Definition 1. The generalized Atangana-Baleanu fractional
derivative in Caputo sense.

If f ∈H1ð0, TÞ, T > 0, α ∈ ½0, 1�, β ∈ ½0, 1�, the general-
ized Atangana-Baleanu fractional derivative in Caputo
sense, of order α of the function f ðtÞ, is defined by the rela-
tion

GABD
α,β
t f

� 	
tð Þ = φ t, α, βð Þ ∗ f

:

tð Þ =
ðt
0
φ t − τ, α, βð Þ f

:

τð Þdτ:

ð18Þ

Using Equations (17) and (18), we obtain the following
properties of the generalized Atangana-Baleanu time-
fractional derivative:

GABD
0,β
t f

� 	
tð Þ = GABD

α,0
t f

� 	
tð Þ = 1 ∗ f

:

tð Þ =
ðt
0
f
:

τð Þdτ = f tð Þ − f 0ð Þ,

GABD
1,1
t f

� 	
tð Þ = δ tð Þ ∗ f

:

tð Þ = f
:

tð Þ = df tð Þ
dt

,

GABD
1,β
t f

� 	
tð Þ = φ0 t, βð Þ ∗ f

:

tð Þ = CD
β
t f

� 	
tð Þ,

GABD
α,1
t f

� 	
tð Þ = φ1 t, βð Þ ∗ f

:

tð Þ = CFD
β
t f

� 	
tð Þ,

GABD
α,α
t f

� 	
tð Þ = φ2 t, βð Þ ∗ f

:

tð Þ = ABD
α
t f

� 	
tð Þ,

ð19Þ

where ðCDβ
t f ÞðtÞ denotes the time-fractional Caputo

derivative, ðCFDβ
t f ÞðtÞ is time-fractional Caputo-Fabrizio

derivative, and ðABDα
t f ÞðtÞ denotes the time-fractional

Atangana-Baleanu derivative.
Associated with the generalized Atangana-Baleanu

derivative, we define the following fractional integral oper-

ator:

Jα,βt f
� 	

tð Þ = 1 − αð Þf tð Þ + αψ0 t, βð Þ ∗ f tð Þ, α ∈ 0, 1½ �, β ∈ 0, 1ð �,
ð20Þ

where the kernel ψ0ðt, βÞ is defined as

ψ0 t, βð Þ = tβ−1

Γ βð Þ : ð21Þ

It is observed that Lfψ0ðt, βÞg = 1/sβ, lim
β⟶0

Lfψ0ðt, βÞg
= 1 = LfδðtÞg; therefore,

lim
β⇒0

ψ0 t, βð Þ = δ tð Þ: ð22Þ

Using property (22), the fractional integral operator
can be defined for β = 0.

The fractional integral operator (20) has the following
properties:

J1,0t f
� �

tð Þ = δ tð Þ ∗ f tð Þ = f tð Þ,

J1,1t f
� �

tð Þ = 1 ∗ f tð Þ =
ðt
0
f τð Þdτ:

ð23Þ

Regarding the generalized Atangana-Baleanu derivative
and associated fractional integral operator, we remember
the foloowingproposition.

Proposition 2. The following relationships are fulfilled:

GABD
α,β
t Jα,βt f
� 	� 	

tð Þ = f tð Þ − 1 − αð Þf 0ð Þφ t, α, βð Þ,

Jα,βt
GABD

α,β
t f

� 	� 	
tð Þ = f tð Þ − f 0ð Þ:

ð24Þ

The demonstration of the above proposition can be
found in the reference [17].

The generalized fractional integral operator (20) con-
tains the following particular cases:

10:
α = 1, β ∈ 0, 1½ �,

J1,βt f
� 	

tð Þ = ψ0 t, βð Þ ∗ f tð Þ = 1
Γ βð Þ

ðt
0
t − τð Þβ−1 f τð Þdτ,

ð25Þ

i.e., the well-known Riemann-Liouville fractional inte-
gral operator.

20:
α ∈ 0, 1½ �, β = 1,

Jα,1t f
� �

tð Þ = 1 − αð Þf tð Þ + α
ðt
0
f τð Þdτ,

ð26Þ

that is, the integral operator associated to the Caputo-
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Fabrizio derivative.

30:
α = β ∈ 0, 1½ �,

Jα,αt fð Þ tð Þ = 1 − αð Þf tð Þ + α

Γ αð Þ
ðt
0
t − τð Þα−1 f τð Þdτ,

ð27Þ

that is, the fractional integral operator associated with
the Atangana-Baleanu fractional derivative.

3. Problem Formulation

The classical one-dimensional Burgers equation with vari-
able coefficients, defined for ðy, tÞ ∈ ½0, L� × ½0, T�, L > 0, T >
0, is [20]

∂u y, tð Þ
∂t

= a tð Þ ∂
2u y, tð Þ
∂y2

+ b tð Þu y, tð Þ ∂u y, tð Þ
∂y

, ð28Þ

where aðtÞ > 0 and bðtÞ are differentiable and bounded
functions of the variable t. For bðtÞ = const:, Rizun and
Engel’brekht [20] have determined the analytical solution
of Equation (28).

In the present paper, we consider a generalized form of
Equation (28), namely,

GABD
α,β
t u y, tð Þ = a tð Þ ∂

2u y, tð Þ
∂y2

+ b tð Þu y, tð Þ ∂u y, tð Þ
∂y

, 0 < α, β < 1,

ð29Þ

where GABD
α,β
t uðy, tÞ is the generalized Atangana-

Baleanu derivative defined by Equation (18). Along with
Equation (29), we consider the initial and boundary condi-
tions

u y, 0ð Þ = ψ yð Þ, y ∈ 0, L½ �, ð30Þ

u 0, tð Þ = u L, tð Þ = 0, t ∈ 0, Tð �: ð31Þ
In the following, we will elaborate a numerical scheme

for determining the solution of problem (29)–(31). The pro-
posed scheme is based on the finite-difference method and
on the properties of the Mittag-Leffler functions.

Let us consider the discrete set of spatial nodes yk = kΔ
y, k = 0, 1, 2,⋯,N1, respectively, the discrete set of the time
nodes t j = jΔt, j = 0, 1, 2,⋯,N2, where Δy = L/N1, Δt = T/
N2 are the increment steps of y and t, respectively.

3.1. Numerical Evaluation of the Generalized Atangana-
Baleanu Derivative. Using Equation (18), we have

GABD
α,β
t u y, tð Þ

���
y,tð Þ= yk ,tnð Þ

= 1
1 − α

ðtn
0
Eβ

−α
1 − α

tn − τð Þβ
� 	 ∂u yk, τð Þ

∂τ
dτ

= 〠
n−1

j=0

1
1 − α

ðt j+1
t j

Eβ

−α
1 − α

tn − τð Þβ
� 	 ∂u yk, τð Þ

∂τ
dτ, n

= 1, 2,⋯,N2:

ð32Þ

The first-order time derivative ∂uðyk, τÞ/∂τ, τ ∈ ½t j, t j+1�
is approximated by [21].

∂u yk, τð Þ
∂τ

≅
u yk, t j+1
� �

− u yk, t j
� �

Δt
−
Δt
2
∂2u yk, τð Þ

∂τ2

�����
τ=t j

+O Δt2
� �

:

ð33Þ

Using approximation (33), Equation (32) becomes

GABD
α,β
t u y, tð Þ

���
y,tð Þ= yk ,tnð Þ

= 〠
n−1

j=0

u yk, t j+1
� �

− u yk, t j
� �

1 − αð ÞΔt
ðt j+1
t j

Eβ

−α
1 − α

tn − τð Þβ
� 	

dτ + Rkn

= 〠
n−1

j=0

u yk, t j+1
� �

− u yk, t j
� �

1 − αð ÞΔt
ðtn−t j
tn−t j+1

Eβ,1 λxβ
� 	

dx + Rkn

= 〠
n−1

j=0

u yk, t j+1
� �

− u yk, t j
� �

1 − αð ÞΔt

�
ðtn−t j
0

Eβ,1 λxβ
� 	

dx −
ðtn−t j+1
0

Eβ,1 λxβ
� 	

dx
� �

+ Rkn,

ð34Þ

where λ = −α/ð1 − αÞ, and Rkn is the truncation error.
Now, using the properties of Mittag-Leffler functions

given in Equation (7), we obtain

GABD
α,β
t u y, tð Þ

���
y,tð Þ= yk,tnð Þ

= 〠
n−1

j=0

u yk, t j+1
� �

− u yk, t j
� �

1 − αð ÞΔt tn − t j
� �

Eβ,2 λ tn − t j
� �β� 	h

− tn − t j+1
� �

Eβ,2 λ tn − t j+1
� �β� 	i

+ Rkn

= 〠
n−1

j=0
Anju

j+1
k − 〠

n−1

j=0
Bnju

j
k + Rkn,

ð35Þ

where

Anj =
tn − t j
� �

Eβ,2 λ tn − t j
� �β� 	

1 − αð ÞΔt , Bnj =
tn − t j+1
� �

Eβ,2 λ tn − t j+1
� �β� 	

1 − αð ÞΔt , uj
k = u yk, t j

� �
:

ð36Þ

Introducing notations

Dnj =
n − 1ð ÞEn1 − nEn0, j = 0,
n − j + 1ð ÞEnj−1 − 2 n − jð ÞEnj

Enn−1, j = n,

8>><>>: + n − j − 1ð ÞEnj+1, j ∈ 1, 2,⋯, n − 1f g,

ð37Þ

where Enj = Eβ,2ðλðtn − t jÞβÞ, Equation (35) can be written in
the equivalent form

GABD
α,β
t u y, tð Þ

���
y,tð Þ= yk ,tnð Þ

= 1
1 − α

〠
n

j=0
Dnju

j
k + Rkn: ð38Þ
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The truncation error Rkn is defined as

Rkn = 〠
n−1

j=0

1
1 − α

ðt j+1
t j

Δt
2
∂2u yk, τð Þ

∂τ2

�����
τ=t j

Eβ

−α
1 − α

tn − τð Þβ
� 	

dτ

= Δt2

2 1 − αð Þ〠
n−1

j=0

∂2u yk, τð Þ
∂τ2

�����
τ=t j

n − jð ÞEnj − n − j − 1ð ÞEnj+1
 �

≤
C1Δt

2

2 1 − αð Þ max
0≤t≤tn

∂2u yk, τð Þ
∂τ2

( )
,

ð39Þ

where C1 is a constant coming from the bounded of the
Mittag-Leffler function. The inequality (39) ensures the con-
sistency of the proposed method because, assuming that the
function uðy, tÞ is sufficiently smooth on its domain of defi-
nition, the truncation error Rkn tends to zero if the time step
Δt tends to zero. So, at point ðyk, tnÞ, the generalized
Atangana-Baleanu time-fractional derivative is approxi-
mated by

GABD
α,β
t u y, tð Þ

���
y,tð Þ= yk ,tnð Þ

≅
1

1 − α
〠
n

j=0
Dnju

j
k: ð40Þ

In the above relations, the numerical values of the
Mittag-Leffler functions are evaluated using the integral rep-
resentation (10).

An important property of the coefficients Dnj is given in
the following.

Lemma 3. Coefficients Dnj given by (37) have negative values
for j = 0, 1,⋯, n − 1. For α ∈ ð0, 1/2Þ, Dnn > 0 and Dnn ⟶ 1
if Δt⟶ 0.

Proof. Let QðzÞ a function defined as

Q zð Þ = zEβ,2 λ zΔtð Þβ
� 	

− z − 1ð ÞEβ,2 λ z − 1ð ÞΔtð Þβ
� 	

: ð41Þ

Using the definition of Mittag-Leffler function, QðzÞ can
be written as

Q zð Þ = z〠
∞

k=0

λk

Γ βk + 2ð Þ zΔtð Þβk − z − 1ð Þ〠
∞

k=0

λk

Γ βk + 2ð Þ z − 1ð ÞΔtð Þβk

= 1
Δt

〠
∞

k=0

λk

Γ βk + 2ð Þ zΔtð Þβk+1 − 〠
∞

k=0

λk

Γ βk + 2ð Þ z − 1ð ÞΔtð Þβk+1
" #

:

ð42Þ

Using the formula Γðz + 1Þ = zΓðzÞ, the derivative of
function QðzÞis given by

dQ zð Þ
dz

= 〠
∞

k=0

λk

Γ βk + 1ð Þ zΔtð Þβk+1 − 〠
∞

k=0

λk

Γ βk + 1ð Þ z − 1ð ÞΔtð Þβk+1

= Eβ,1 λ zΔtð Þβ
� 	

− Eβ,1 λ z − 1ð ÞΔtð Þβ
� 	

:

ð43Þ

It is known that Mittag-Leffler function Eβ,1ðzÞ is an
increasing function. Because, in this study, parameter λ < 0,
it results that function QðzÞ is a decreasing function.

The coefficients Dnj are written as

Dnj = n − j + 1ð ÞEnj−1 − n − jð ÞEnj

 �
− n − jð ÞEnj − n − j − 1ð ÞEnj+1
 �

= n − j + 1ð ÞEβ,2 λ n − j + 1ð ÞΔtð Þβ
� 	

− n − jð ÞEβ,2 λ n − jð ÞΔtð Þβ
� 	

− n − jð ÞEβ,2 λ n − jð ÞΔtð Þβ
� 	

− n − j − 1ð ÞEβ,2 λ n − j − 1ð ÞΔtð Þβ
� 	h i

=Q n − j + 1ð Þ −Q n − jð Þ:
ð44Þ

Since, the function QðzÞ is decreasing we obtain that
Dnj < 0, j = 1, 2,⋯, n − 1.

Dnn = Enn−1 = Eβ,2ðλΔtβÞ. Since α ∈ ð0, 1/2Þ, we obtain j
λj < 1; therefore, λΔtβ ⟶ 0 for Δtβ ⟶ 0. Using the
asymptotic expansion of Mittag-Leffler function [22], we
have Eβ,2ðλΔtβÞ ≃ 1 + ðλΔtβ/ðΓðβ + 2ÞÞÞ that proves the
property in Lemma 3.

In the following, two examples of the application of for-
mula (40) are presented.

Example 1. The generalized Atangana-Baleanu derivative of
function f ðtÞ = t.

The time-fractional generalized Atangana-Baleanu
derivative of function f ðtÞ = t is given by

GABD
α,β
t f tð Þ = 1

1 − α

ðt
0
Eβ,1

−α
1 − α

τβ
� 	

dτ = t
1 − α

Eβ,2
−α
1 − α

tβ
� 	

, t ≥ 0:

ð45Þ

Table 1 gives the values of this derivative determined
with the analytical expression (45), respectively, with the
numerical formula (40) for tk = 0:02k, k = 1, 2,⋯, 20
,α = 0:45, β = 0:75.

Numerical results obtained by Equations (40) and (45)
are graphically illustrated in Figure 1.

It can be seen in Table 1 and Figure 1 that there is a very
good accuracy of the numerical method given by equation
(40).

Example 2. Find the solution of the fractional equation

GABD
α,β
t u tð Þ = tγ, γ > 0, α, β ∈ 0, 1ð �: ð46Þ

Using the Laplace transform, it is found that the analyt-
ical solution of Equation (46) is given by

u tð Þ = 1 − αð Þtλ + αΓ 1 + γð Þ
Γ 1 + β + γð Þ t

β+λ: ð47Þ

Table 2 gives the values of the solution of Equation (46)
determined with the analytical expression (47), respectively,
with the numerical formula (40) for tk = 0:01k, k = 4, 8,⋯,
80,α = 0:45, β = 0:75, λ = 2.
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Numerical results for the solution of Equation (46),
obtained by Equations (40) and (47) are graphically illus-
trated in Figure 2.

It can be seen in Table 2 and Figure 2 that there is a very
good accuracy of the numerical method given by Equation
(40).

3.2. Particular Cases. Note that the expression (40) of the
generalized Atangana-Baleanu time-fractional derivative
can be easily customized in the following cases:

(a) If α = β ∈ ð0, 1Þ, it is obtained the expression of the
time-fractional Atangana-Baleanu derivative

(b) If α ∈ ð0, 1Þ and β = 1, it is obtained the expression of
the time-fractional Caputo-Fabrizio derivative

(c) If α = 1 and β ∈ ð0, 1Þ, it is obtained the expression of
the time-fractional Caputo derivative

We must note that in the first two cases, the formulas
(34)–(40) which determine the numerical values of the frac-

tional derivative remain valid, obviously with the corre-
sponding particularizations of the parameters α and β.

In the third case, for α = 1, there is an indeterminacy
because lim

α⟶1
ðα/ð1 − αÞÞ =∞.

To eliminate this indeterminacy, we use the following
asymptotic expansion of the Mittag-Leffler function [22]:

β ∈ 0, 1ð Þ, zj j⟶∞,βπ ≤ arg zð Þj j ≤ π,

Eβ zð Þ = −〠
n0

r=1

1
zrΓ 1 − βrð Þ +O

1
zn0+1

� �
, n0 ∈ℕ, n0 > 1:

ð48Þ

Using Equation (44) into (34), we obtain the following
relation:

lim
α⟶1

1
1 − α

ðt j+1
t j

Eβ

−α
1 − α

tn − τð Þβ
� 	

dτ

=
ðt j+1
t j

lim
α⟶1

−1
1 − α

〠
n0

r=1

1
Γ 1 − βrð Þ

1 − αð Þr

−α tn − τð Þβ
h ir dτðt j+1

t j

tn − τð Þ−β
Γ 1 − βð Þ dτ

= − tn − τð Þ1−β
1 − βð ÞΓ 1 − βð Þ

�����
t j+1

t j

= 1
Γ 2 − βð Þ tn − t j

� �1−β − tn − t j+1
� �1−βh i

:

ð49Þ

As expected, the integrand in (45) is the Caputo kernel
φ0ðt, βÞ. Replacing (45) into (34), we obtain the following
approximate formula for the time-fractional Caputo deriva-
tive:

CD
α,β
t u y, tð Þ

���
y,tð Þ= yk ,tnð Þ

= 〠
n

j=0
Cnju

j
k, ð50Þ

Table 1: Comparison between analytical and numerical results of (GAB) derivative of function f ðtÞ = t.

tk = kΔt

Δt = 0:02

Values given by Equation.
(41)

Values given by Equation
(40)

tk = kΔt

Δt = 0:02

Values given by Equation
(41)

Values given by Equation
(40)

0.02 0.0354002 0.0354002 0.22 0.3421464 0.3421464

0.04 0.0695321 0.0695321 0.24 0.3695233 0.3695233

0.06 0.1026737 0.1026737 0.26 0.3964245 0.3964245

0.08 0.1349557 0.1349557 0.28 0.4228701 0.4228701

0.10 0.1664644 0.1664644 0.30 0.4488783 0.4488783

0.12 0.1952606 0.1952606 0.32 0.4744658 0.4744658

0.14 0.2274026 0.2274026 0.34 0.4996481 0.4996481

0.16 0.2569308 0.2569308 0.36 0.5244396 0.5244396

0.18 0.2858761 0.2858761 0.38 0.5488537 0.5488537

0.20 0.3142722 0.3142722 0.40 0.5729029 0.5729029
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Figure 1: Comparison between analytical and numerical (GAB)-
fractional derivative of function f ðtÞ = t.
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where

Cnj =

1
ΔtβΓ 2 − βð Þ n − 1ð Þ1−β − n1−β

h i
, j = 0,

1
ΔtβΓ 2 − βð Þ n − j + 1ð Þ1−β − 2 n − jð Þ1−β + n − j − 1ð Þ1−β

h i
1

ΔtβΓ 2 − βð Þ , j = n:

8>>>>>>>><>>>>>>>>:
, j = 1, 2,⋯, n − 1,

ð51Þ

3.3. Numerical Solution to the Burgers Equation with
Generalized Atangana-Baleanu Time-Fractional Derivative.
To determine the numerical solution of Equation (29), we
approximate the first- and second-order derivative with
respect to y by [23–25].

∂u y, tð Þ
∂y

����
y,tð Þ= yk ,t jð Þ

≅
uj
k+1 − uj

k−1
2Δy , k = 1, 2,⋯,N1 − 1,

∂2u y, tð Þ
∂y2

�����
y,tð Þ= yk ,t jð Þ

≅
uj
k+1 − 2uj

k + uj
k−1

Δy2
, k = 1, 2,⋯,N1 − 1:

ð52Þ

The nonlinear term uðy, tÞð∂uðy, tÞ/∂yÞ is replaced by
the equivalent term

1
3 u y, tð Þ ∂u y, tð Þ

∂y
+ ∂u2 y, tð Þ

∂y

� �
: ð53Þ

For simplicity of calculations and proving the stability of
the scheme, the nonlinear term is approximated by [30, 31]

u y, tð Þ ∂u y, tð Þ
∂y

����
y,tð Þ= yk ,t jð Þ

= 1
3 uj−1

k

uj
k+1 − uj

k−1
2Δy + uj−1

k+1u
j
k+1 − uj−1

k−1u
j
k−1

2Δy

" #
:

ð54Þ

Using Equations (40), (52), and (54), we obtain the fol-
lowing numerical scheme for fractional Burgers equation

Table 2: Comparison between analytical and numerical results of the solution of Equation (46).

tk = kΔt

Δt = 0:01
Analytical solution Numerical solution tk = kΔt

Δt = 0:01
Analytical solution Numerical solution

0.04 0:0912002 × 10−4 9:0985187 × 10−4 0.44 0.1277624 0.1277683

0.08 3:7158954 × 10−3 3:7171929 × 10−3 0.48 0.1537559 0.1537622

0.12 8:5174136 × 10−3 8:5192433 × 10−3 0.52 0.1824127 0.1824195

0.16 0.0153980 0.0154002 0.56 0.2137889 0.2137962

0.20 0.0244342 0.0244371 0.60 0.2479393 0.2479471

0.24 0.0356989 0.0357023 0.64 0.2849178 0.2849261

0.28 0.0492606 0.0492645 0.68 0.3247773 0.3247861

0.32 0.0651852 0.0651896 0.72 0.3675701 0.3675794

0.36 0.0835363 0.0835411 0.76 0.4133474 0.4133572

0.40 0.1043754 0.1043807 0.80 0.4621601 0.4621703

0 0.2 0.4 0.6 0.8 1t
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0.2
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Fu
nc
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u 
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Numerical solution
Analytical solution

𝛼 = 0.45
𝛽 = 0.75
𝛾 = 2.00

Figure 2: Comparison between analytical and numerical solutions
of Equation (46).
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Figure 3: The profiles of the (GAB), (AB), and (CF) kernels of
fractional derivatives.
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(29):

b tnð Þ
6Δy un−1k + un−1k−1

� �
−
a tnð Þ
Δy2

� �
unk−1 +

Dnn

1 − α
+ 2a tnð Þ

Δy2

� �
unk

−
b tnð Þ
6Δy un−1k + un−1k+1

� �
+ a tnð Þ

Δy2

� �
unk+1 =

−1
1 − α

〠
n−1

j=0
Dnju

j
k:

ð55Þ

The initial and boundary conditions (30) and (31) are
transformed in following discrete relationships:

u0k = u yk, 0ð Þ = u yk, t0ð Þ = ψ ykð Þ = ψk, k = 0, 1,⋯,N1, ð56Þ

uj
0 = u 0, t j

� �
= u y0, t j
� �

= 0, j = 1, 2,⋯,N2, ð57Þ

uj
N1

= u L, t j
� �

= u yN1
, t j

� 	
= 0, j = 1, 2,⋯,N2: ð58Þ

Using (57) and (58), the numerical scheme (55) is writ-
ten in the following metrical form:

M nð ÞUn = P nð Þ, n = 1, 2,⋯,N2, ð59Þ

where the matrix MðnÞ = ðmn
ijÞi,j=1,2,⋯N1−1

is the following

tridiagonal matrix:

M nð Þ =

mn
11 mn

12 0 0 0 ⋯ 0
mn

21 mn
22 mn

23 0 0 ⋯ 0
0 mn

32 mn
33 mn

34 0 ⋯ 0
0 0 mn

43 mn
44 mn

45 ⋯ 0
::⋯

0 0 ⋯ mn
N1−2N1−3 mn

N1−2N1−2 mn
N1−2N1−1

0 0 ⋯ 0 0 mn
N1−1N1−2 mn

N1−1N1−1

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
N1−1,N1−1ð Þ

,

ð60Þ

with

mn
ij = −

b tnð Þ
6Δy un−1i + un−1i+1

� �
+ a tnð Þ

Δy2

� �
δi+1,j +

Dnn

1 − α
+ 2a tnð Þ

Δy2

� �
δi,j

+ b tnð Þ
6Δy un−1i + un−1i−1

� �
+ a tnð Þ

Δy2

� �
δi,j+1, i, j = 1, 2,⋯,N1 − 1,

Un = un1u
n
2u

n
3 ⋯ unN1−2u

n
N1−1

� 	T
,

P nð Þ = pn1p
n
2p

n
3 ⋯ pnN1−2p

n
N1−1

� 	T
, ð61Þ
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Figure 4: Profiles of the solution uðy, tÞ for Burgers equation with generalized Atangana-Baleanu time-fractional derivative.
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where

pnk = −
1

1 − α
〠
n−1

j=0
Dnju

j
k, k = 1, 2,⋯,N1 − 1: ð62Þ

In the following, we assume that α ∈ ð0, 1/2Þ, βð0, 1�.
Let uðx, tÞ be the exact solution of Equation (29). The

local truncation error of the numerical scheme (55) is

rnk =
Dnn

1 − α
+ 2a tnð Þ

Δy2

� �
u yk, tnð Þ + b tnð Þ

6Δy u yk, tn−1ð Þ + u yk−1, tn−1ð Þð Þ − a tnð Þ
Δy2

� �
u yk−1, tnð Þ

−
b tnð Þ
6Δy u yk, tn−1ð Þ + u yk+1, tn−1ð Þð Þ + a tnð Þ

Δy2

� �
u yk+1, tnð Þ

+ 1
1 − α

〠
n−1

j=0
Dnju yk, t j

� �
:

ð63Þ

According to the Taylor expansion, it is found that exists
a constant k0 such that jrnk j ≤ k0ðΔt + Δy2Þ; therefore, the dis-
crete operator (with finite differences) converges towards the

continuous operator (with derivatives) for Δt, Δy⟶ 0
(vanishing truncation error, so, the numerical scheme is
consistent).

Let us introduce the notations:

unkð Þy =
unk+1 − unk

Δy
, unkð Þy1 =

unk − unk−1
Δy

, unkð Þy2 =
unk+1 − unk−1

2Δy ,

unkð Þyy1 =
unk+1 − 2unk + unk−1

Δy
,

Un = unk , k = 0, 1,⋯,N1f g, Unð Þy = unkð Þy, k = 0, 1,⋯,N1
n o

,

Un,Vnð Þ = Δy 〠
N1−1

k=1
unkvnk , Unk k2 = Un,Unð Þ = 〠

N1−1

k=1
unku

n
k , n = 1, 2,⋯,N2,

Unk k∞ = lim
1≤k≤N1−1

unkj j:

ð64Þ

The following boundedness theorem will be proved.

Theorem 6. Assume that ψ ∈H2
0½0, L�, α ∈ ð0, 1/2Þ, β ∈ ½0, 1�.

There exists a constant ~K such that the numerical solution
derived by the finite difference scheme (55) satisfies inequality
kUnk ≤ ~K , n = 1, 2,⋯,N2.

Proof. Equation (55) can be written in the equivalent form

Dnn

1 − α
unk +

1
1 − α

〠
n−1

j=1
Dnju

j
k +

Dn0
1 − α

u0k

−
b tnð Þ
6Δy un−1k unk+1 − unk−1ð Þ + un−1k+1u

n
k+1 − un−1k−1u

n
k−1

 �
= a tnð Þ u

n
k+1 − 2unk + unk−1

Δy2
:

ð65Þ

Multiplying Equation (65) by Δyunk , summing for k = 1

Table 4: Comparison between numerical solutions corresponding
to different fractional derivatives with the nonsingular kernel.

Values
of time
t

(GAB)-fractional
derivative for α =

0:3, β = 0:5

(AB)-fractional
derivative for α
= 0:3, β = 0:3

(CF)-fractional
derivative for α
= 0:3, β = 1:0

0.10 0.026000 0.025000 0.029000

0.20 0.022000 0.021000 0.024000

0.30 0.018000 0.017000 0.041000

0.40 0.014000 0.013000 0.015000

0.50 0.014000 0.013000 0.015000

0.60 0.008921 0.008299 0.009537

0.70 0.007306 0.006798 0.007826

0.80 0.006108 0.005684 0.006553

0.90 0.005210 0.004848 0.005595

1.00 0.004527 0.004212 0.004865

Table 5: Comparison between numerical solutions corresponding
to different fractional derivatives with the nonsingular kernel.

Values
of time
t

(GAB)-fractional
derivative for α =

0:4, β = 0:5

(AB)-fractional
derivative for α
= 0:4, β = 0:4

(CF)-fractional
derivative for α
= 0:4, β = 1:0

0.10 0.029000 0.028000 0.033000

0.20 0.025000 0.024000 0.055000

0.30 0.020000 0.019000 0.022000

0.40 0.016000 0.015000 0.017000

0.50 0.016000 0.015000 0.017000

0.60 0.009886 0.009433 0.011000

0.70 0.008096 0.007726 0.009024

0.80 0.006768 0.006460 0.007555

0.90 0.005773 0.005509 0.006451

1.00 0.005016 0.004787 0.005610

Table 3: Comparison between numerical solutions corresponding
to different fractional derivatives with the nonsingular kernel.

Values
of time
t

(GAB)-fractional
derivative for α =

0:1, β = 0:5

(AB)-fractional
derivative for α
= 0:1, β = 0:1

(CF)-fractional
derivative for α
= 0:1, β = 1:0

0.10 0.022000 0.021000 0.022000

0.20 0.019000 0.018000 0.019000

0.30 0.015000 0.014000 0.015000

0.40 0.012000 0.011000 0.012000

0.50 0.012000 0.011000 0.012000

0.60 0.007455 0.007055 0.007612

0.70 0.006107 0.005780 0.006235

0.80 0.005106 0.004833 0.005213

0.90 0.004355 0.004122 0.005929

1.00 0.003784 0.003582 0.004913
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, 2,⋯,N1 − 1, and using Equation (64), we obtain

Dnn

1 − α
Unk k2 + 1

1 − α
〠
n−1

j=1
Dnj U

j,Un� �
+ Dn0
1 − α

U0,Un� �
− Sn

= a tnð ÞΔy 〠
N1−1

k=1

unk+1 − 2unk + unk−1
Δy2

� �
unk ,

ð66Þ

where

Sn = b tnð Þ
6 〠

N1−1

k=1
un−1k unku

n
k+1 − un−1k−1u

n
k−1u

n
k

� �
+ unku

n−1
k+1u

n
k+1 − unk−1u

n−1
k unk

� �
:

ð67Þ

☐

A straightforward calculus leads to

Sn = b tnð Þ
6 unN1

un−1N1
unN1−1 + unN1

un−1N1−1u
n
N1−1 − un0u

n−1
1 un1 − un0u

n−1
0 un1

� 	
:

ð68Þ

Based on the boundary conditions (57) and (58), it
results that Sn = 0.

Using the property

Δy 〠
N1−1

k=1

unk+1 − 2unk + unk−1
Δy2

� �
unk = Unð Þyy1 ,U

n
� 	

= − Unð Þy, Unð Þy
� 	

= − Unð Þy
��� ���2

ð69Þ

from equality (66) and Lemma 3, we obtain

Dnn

1 − α
Unk k2 + a tnð Þ Unð Þy

��� ���2 = 1
1 − α

〠
n−1

j=1
−Dnj

� �
Uj,Un� �

+ −Dn0ð Þ
1 − α

U0,Un� �
≤

1
2 1 − αð Þ〠

n−1

j=1
−Dnj

� �
Uj
�� ��2 + Unk k2
� 	

+ −Dn0ð Þ
2 1 − αð Þ U0�� ��2 + Unk k2

� 	
= 1
2 1 − αð Þ〠

n−1

j=1
−Dnj

� �
U j�� ��2 + −Dn0ð Þ

2 1 − αð Þ U0�� ��2
+ 1
2 1 − αð Þ 〠

n−1

j=0
−Dnj

� � !
Unk kn

= 1
2 1 − αð Þ〠

n−1

j=1
−Dnj

� �
U j�� ��2 + −Dn0ð Þ

2 1 − αð Þ U0�� ��2 + Dnn

2 1 − αð Þ Unk kn:

ð70Þ

Using (70) and mathematical induction, we obtain that

kU jk2 ≤ kU0k2 for j = 1, 2,⋯, n − 1. Therefore, we have

Dnn

2 1 − αð Þ Unk k2 + a tnð Þ Unð Þy
��� ���2 ≤ 1

2 1 − αð Þ〠
n−1

j=1
−Dnj

� �
Uj�� ��2 + −Dn0ð Þ

2 1 − αð Þ U0�� ��2
≤

1
2 1 − αð Þ〠

n−1

j=1
−Dnj

� �
U0�� ��2 + −Dn0ð Þ

2 1 − αð Þ U0�� ��2 = 1
2 1 − αð Þ 〠

n−1

j=1
−Dnj

� � !
U0�� ��2

= Dnn

2 1 − αð Þ U0�� ��2:
ð71Þ

Equation (71) implies that

Dnn

2 1 − αð Þ Unk k2 − U0�� ��2� 	
≤ −a tnð Þ Unð Þy

��� ���2 ≤ 0, ð72Þ

therefore,

Unk k ≤ U0�� ��: ð73Þ

But, there exist a constant ~K such that kU0k ≤ ~K , respec-
tively, kUnk ≤ ~K . Theorem 6 shows that for a given function
ψðyÞ = uðy, 0Þ, the numerical solution of the problem is
bounded as time increases.

In order to prove a stability result, we consider a per-
turbed problem, i.e., the fractional equation (29) with a dif-
ferent initial condition bψðyÞ = uðy, 0Þ.

We say that the numerical method is globally stable if
there exists a constant K̂ such that kUn −U∧nk ≤ K̂kψðyÞ
− bψðyÞk, where Un and U∧n are solutions corresponding
to initial conditions ψðyÞand bψðyÞ, respectively. Using the
boundedness theorem one can prove that the numerical
scheme (55) corresponding to the Equation (29) is globally
stable.

Theorem 7. (Convergence). Assume that funkg, f�unkg are the
solutions of the difference scheme (55) and (29) and fenk =
unk − �unkg. There exists a positive constant ~C such that
kEnk∞ ≤ ~CðΔt + Δy2Þ.

Proof. Using the equalities (55) and (63), we obtain

Dnn

1 − α
enk − a tnð Þ enkð Þyy1 = rnk +

1
1 − α

〠
n−1

j=1
−Dnj

� �
ejk +

−Dn0ð Þ
1 − α

e0k + Tn
k + Snk ,

ð74Þ

where

Tn
k =

b tnð Þ
3 un−1k unkð Þy2 − �un−1k �unkð Þy2
h i

, Snk =
b tnð Þ
3 un−1k unk

� �
y2
− �un−1k �unk
� �

y2

h i
:

ð75Þ

Multiplying Equation (74) by Δyenk and summing up
from k = 1 to N1 − 1, we get

Dnn

1 − α
Enk k2 − a tnð Þ Enð Þyy1 , E

n
� 	

= Rn, Enð Þ + 1
1 − α

〠
n−1

j=1
−Dnj

� �
Ej, En� �

+ −Dn0ð Þ
1 − α

E0, En� �
+ Tn, Enð Þ + Sn, Enð Þ:

ð76Þ

☐
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Using Equation (69) and the Cauchy-Schwarz inequality

ejke
n
k ≤ ð1/2ÞððejkÞ

2 + ðenkÞ2Þ, we get

Dnn

1 − α
Enk k2 + a tnð Þ Enð Þy

��� ���2 ≤ 1
2 1 − αð Þ〠

n−1

j=1
−Dnj

� �
Ej�� ��2 + 1

2 1 − αð Þ 〠
n−1

j=0
−Dnj

� � !
Enk k2

+ −Dn0ð Þ
2 1 − αð Þ E0�� ��2 + Tn, Enð Þ + Sn, Enð Þ + Rn, Enð Þ:

ð77Þ

We note that kE0k = 0, and ∑n=1
j=0 ð−DnjÞ =Dnn. Based on

the Cauchy-Schwarz inequality, we obtain following
inequalities:

Rn, Enð Þ ≤ γ1εn Rnk k2 + 1
4γ1εn

Enk k2,

Tn, Enð Þ = b tnð ÞΔy
3 〠

N1−1

k=1
un−1k unkð Þy2 − �un−1k �unkð Þy2
h i

enk

= b tnð ÞΔy
3 〠

N1−1

k=1
un−1k enk + �unkð Þy2 − �un−1k �unkð Þy2
h i

enk

= b tnð ÞΔy
3 〠

N1−1

k=1
un−1k enkð Þy2 + en−1k �unkð Þy2
h i

enk

≤
b tnð ÞΔy~K

3 〠
N1−1

k=1
enkð Þy2
��� ��� + en−1k

�� ��h i
enkj j

≤
b tnð Þ~K

3
1
2 En−1�� ��2 + Enk k2
� 	

+ εn Enð Þy
��� ���2 + 1

4εn
Enk k2

� �
,

Sn, Enð Þ ≤ b tnð Þ~K
3 εn γ2 + γ3ð Þ Enð Þy

��� ���2 + 1
4γ2εn

Enk k2 + 1
4γ3εn

En−1�� ��2� �
:

ð78Þ

Taking εn = 3aðtnÞ/4bðtnÞ~K , γ1 = 1/3, γ2 = γ3 = 1/2, we
obtain the following inequality:

δn Enk k2 + a tnð Þ Enð Þy
��� ���2 ≤ 1

2 1 − αð Þ〠
n−1

j=1
−Dnj

� �
Ej�� ��2 + πn En−1�� ��2

+ k1a tnð Þ Δt + Δy2
� �2,

ð79Þ

where

ρn =
~Kb tnð Þ
6a tnð Þ 6 + 2~Kb tnð Þ + a tnð Þ �

,

πn =
~Kb tnð Þ
18a tnð Þ 4~Kb tnð Þ + 3a tnð Þ �

,

δn =
Dnn

2 1 − αð Þ − ρn:

ð80Þ

Now, we will show that

δn Enk k2 + a tnð Þ Enð Þy
��� ���2 ≤ k1a tnð Þδn Δt + Δy2

� �2
δn − πn − Dn0 +Dnnð Þ/ 2 1 − αð Þð Þ ,

ð81Þ

by mathematical induction. For n = 1, inequality (81)
holds according to (79). Suppose that

δn Ej�� ��2 + a tnð Þ Ej� �
y

��� ���2
≤

k1a tnð Þδn Δt + Δy2
� �2

δn − πn − Dn0 +Dnnð Þ/ 2 1 − αð Þð Þ , j = 1, 2,⋯n − 1,

ð82Þ

then,

Ej�� ��2 ≤ k1a tnð Þ Δt + Δy2
� �2

δn − πn − Dn0 +Dnnð Þ/ 2 1 − αð Þð Þ , j = 1, 2,⋯n − 1:

ð83Þ

Introducing (83) into (79), we obtain

δn Enk k2 + a tnð Þ Enð Þy
��� ���2 ≤ 1

2 1 − αð Þ 〠
n−1

j=1
−Dnj

� � !
k1a tnð Þ Δt + Δy2

� �2
δn − πn − Dn0 +Dnnð Þ/ 2 1 − αð Þð Þ

+ πn
k1a tnð Þ Δt + Δy2

� �2
δn − πn − Dn0 +Dnnð Þ/ 2 1 − αð Þð Þ + k1a tnð Þ Δt + Δy2

� �2
= Dnn +Dn0ð Þ/ 2 1 − αð Þð Þð Þ + πn

δn − πn − Dn0 +Dnnð Þ/ 2 1 − αð Þð Þ + 1
� �

k1a tnð Þ Δt + Δy2
� �2

= k1a tnð Þδn Δt + Δy2
� �2

δn − πn − Dn0 +Dnnð Þ/ 2 1 − αð Þð Þ
ð84Þ

Therefore, it results in

Enk k2 ≤ k1a tnð Þ Δt + Δy2
� �2

δn − πn − Dn0 +Dnnð Þ/ 2 1 − αð Þð Þ ,

Enð Þy
��� ���2 ≤ k1δn Δt + Δy2

� �2
δn − πn − Dn0 +Dnnð Þ/ 2 1 − αð Þð Þ :

ð85Þ

Using the discrete Sobolev’s inequality kEnk∞ ≤ C1kEnk
+ C2kðEnÞyk, we obtain the result of Theorem 7.

Some comparisons between our results and other results
from the literature are presented at the end of this section.

(a) If we consider aðtÞ = 1, bðtÞ = −1, α = 1, β ∈ ð0, 1Þ,
then the problem given by (29)–(31) is identical to
the problem studied by Li et al. [23], for p = 1

(b) If aðtÞ =V , bðtÞ = −1, α = β, our solutions are iden-
tical to that obtained by Yadav et al. [24] for gðx, tÞ
= 0

(c) If α = β, the numerical scheme (38) for the general-
ized Atangana-Baleanu derivative is identical with
that given in [25], Equation (3.2).
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4. Example

In this section, we investigate the problem described by the
fractional differential equation (29), with aðtÞ = 0:01 + 0:1
sin2ðπt/4Þ, bðtÞ = −10 sin ðπt/4Þ, along with the following
initial and boundary conditions:

u y, 0ð Þ = ψ yð Þ = 2 1 − exp −yð Þð Þð Þ, y ∈ 0, 1½ �,
u 0, tð Þ = u 0:5, tð Þ = 0:

ð86Þ

The discussions in this section are mainly focused on the
comparison between the solutions corresponding to the dif-
ferent types of fractional derivatives with the non-singular
kernels. Because the kernels of fractional derivatives play
an essential role in describing the effects of memory,
Figure 3 shows the profiles of the kernels corresponding to
the generalized Atangana-Baleanu, Atangana-Baleanu, and
Caputo-Fabrizio derivatives, versus fractional parameter α,
for t = 0:3. It is observed that for α < 0:8, the values of the
generalized kernel (GAB) are higher than the (AB) ones
but smaller than the (CF) ones; therefore, the different
damping effects will be transferred on the values of the func-
tion uðy, tÞ.

The numerical solutions of Burgers equation with gener-
alized Atangana-Baleanu time-fractional derivatives (GAB)
are plotted in Figure 4 for different fractional parameters α
and β, for y ∈ ½0, 0:5�, and for different values of the time t.
The computational results are taken at the time step size Δ
t = 10−2 and spatial step size Δy = 10−2.

Figure 4 shows that, for the considered cases, the func-
tion uðy, tÞ is decreasing in relation to time tand it is increas-
ing in relation to the fractional parameters α. The curves in
Figure 4 indicate that the numerical solutions are bounded,
and the numerical method is stable.

A comparison between the solutions of the Burgers
equation with the generalized Atangana-Baleanu derivative,
the Atangana-Baleanu derivative and the Caputo-Fabrizio
derivative is presented in Tables 3–5, for x = 0:4, and for dif-
ferent values of time t.

As expected, due to the properties of the three nonsingu-
lar kernels, the values of the solution corresponding to the
Atangana-Baleanu derivative are the lowest, respectively,
and the values of the solution corresponding to the
Caputo-Fabrizio derivative are the highest.

5. Conclusion

A numerical scheme to solve the fractional Burgers equation
with variable coefficients has been developed.

The proposed algorithm is a linear implicit finite differ-
ence scheme.

Unconditional stability and convergence of the method
are proved for the fractional parameters α ∈ ð0:1/2Þ, β ∈ ð0,
1�.

The proposed scheme is suitable to solve fractional Bur-
gers’ equation with four fractional derivatives, namely, gen-
eralized Atangana-Baleanu, Atangana-Baleanu, Caputo-
Fbrizio, and Caputo derivatives.
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