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In this paper, we establish fixed point theorems for Chatterjea contraction mappings on a generalized metric space endowed with a
graph. Our results extend, generalize, and improve many of existing theorems in the literature. Moreover, some examples and an
application to matrix equations are given to support our main result.

1. Introduction

Fixed point theorems for contraction mappings and their
generalizations play a crucial role in the determination of
the existence and uniqueness of solutions of certain problems
in mathematics and applied sciences, such as variational and
linear inequalities, mathematical models, optimization, and
mathematical economics. In 1922, Banach [1] proved the
contraction principle, today named after him, which states
any contraction on a complete metric space has a unique
fixed point. In 1972, Chatterjea [2] proved that a self-
mapping on a complete metric space X has a unique fixed
point whenever there exists 0 ≤ k < 1/2 such that

d Tx, Tyð Þ ≤ k d x, Tyð Þ + d y, Txð Þ½ �, for all x, y ∈ X: ð1Þ

On the other hand, different generalizations of the usual
notion of metric space were proposed by a number of math-
ematicians (see [3, 4]). Recently, Jleli and Samet [5] intro-
duced a new concept of generalized metric space that, in
fact, recovers various topological spaces. The class of such
metric spaces is larger than the class of standard metric
spaces, than the class of b-metric spaces, than that of dislo-
cated metric spaces, than that of dislocated b-metric spaces,
and than the class of modular spaces with the Fatou property.
The interested reader is referred to [5] for further details.

This work is the continuation of [6]. Motivated by the
ideas recently introduced in [7–12]), we extend the Chatter-
jea fixed point theorem to the setting of generalized metric
spaces with a graph. As corollaries, we obtain Chatterjea fixed
point theorems in the setting of partially ordered metric
spaces. Furthermore, we generalize the common fixed point
result given in [13]. We provide an example to illustrate
our main result.

2. Preliminaries

We recall the definition of generalized metric space and some
related topological concepts, as introduced firstly by Jleli and
Samet in [5].

Definition 1 [5]. Let X be a nonempty set and D : X ×
X⟶½0, +∞� be a given mapping.

For every x ∈ X, define the set

C D, X, xð Þ = xnf g ⊂ X : lim
n⟶∞

D xn, xð Þ = 0
n o

: ð2Þ

We say that D is a generalized metric on X if it satisfies
the following conditions:

(D1) For every ðx, yÞ ∈ X × X, Dðx, yÞ = 0 implies x = y
(D2) For every ðx, yÞ ∈ X × X, Dðx, yÞ =Dðy, xÞ
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(D3) There exists C > 0 such that for all ðx, yÞ ∈ X × X, if
there exists fxng ∈CðD, X, xÞ, then

D x, yð Þ ≤ Clim sup
n⟶∞

D xn, yð Þ: ð3Þ

The pair ðX,DÞ is called a generalized metric space.

Definition 2 [5].

(i) A sequence fxng in a generalized metric space
ðX,DÞ is said to be D-convergent to x ∈ X if fxng
∈CðD, X, xÞ

(ii) A sequence fxng in a generalized metric space
ðX,DÞ is said to be a D-Cauchy sequence if
lim

m,n⟶∞
Dðxn, xmÞ = 0

(iii) The space ðX,DÞ is said to beD-complete if everyD
-Cauchy sequence in X is D-convergent to some
element in X

(iv) The space ðX,DÞ is said to be D-compact if every
sequence in X has a D-convergent subsequence to
some element in X

The basic concepts, notation, and terminology related to
graph theory can be found, for example, in [14, 15]. A
directed graph or digraph G consists of a nonempty set
VðGÞ, whose elements are called the vertices of G, and a set
EðGÞ ⊂VðGÞ ×VðGÞ, called the set of directed edges of G.
The diagonal of the cartesian product VðGÞ ×VðGÞ will be
denoted by Δ. A digraph is said to be reflexive if EðGÞ con-
tains all loops, i.e., if Δ ⊂ EðGÞ. G is said to be transitive if,
for any x, y, z ∈ VðGÞ

x, yð Þ ∈ E Gð Þand y, zð Þ ∈ E Gð Þ½ � x, zð Þ ∈ E Gð Þ: ð4Þ

Given a digraph G = ðV , EÞ, a directed path in G is a
sequence of vertices.

a0,a1,...,an ⋯ , with ðai, ai+1Þ ∈ EðGÞ for each i ∈ℕ. A
finite path ða0, a1,⋯, anÞ is said to have length n. The transi-
tive closure of G is the digraph G′ such that VðG′Þ =VðGÞ
and that ði, jÞ is an edge in G′ if there is a directed path from
i to j in G.

We say that a vertex x in VðGÞ is isolated if for any vertex
y in VðGÞ such that x ≠ y, neither ðx, yÞ ∈ EðGÞ nor ðy, xÞ ∈
EðGÞ.

In the sequel, given a graphG,G−1 will stand for it, that is,
for the graph obtained from G by reversing the direction of
its edges. Thus,

E G−1� �
= x, yð Þ ∈ X × X : y, xð Þ ∈ E Gð Þf g: ð5Þ

In addition, ~G will stand for the undirected graph
obtained from G by ignoring the direction of its edges. In
other words,

E ~G
� �

= E Gð Þ ∪ E G−1� �
: ð6Þ

Throughout this paper, the triplet ðX,D,GÞwill stand for
the generalized metric space ðX,DÞ endowed with a reflexive
digraph G such that VðGÞ = X. In [16], Alfuraidan et al.
introduced the idea of G-monotonicity of sequences and
the G-completeness of the metric space. Specifically,

Definition 3 [16]. Let G be a digraph. A sequence fxng ∈
VðGÞ is said to be

(i) G-increasing, if ðxn, xn+1Þ ∈ EðGÞ for all n ∈ℕ
(ii) G-decreasing, if ðxn+1, xnÞ ∈ EðGÞ for all n ∈ℕ
(iii) G-monotone, if it is either G-increasing or G

-decreasing

The preceding notion of G-completeness can naturally be
extended to the setting of generalized metric spaces as
follows:

Definition 4.A generalized metric space ðX,DÞ is said to beG
-complete if any D-Cauchy, G-monotone sequence fxng ⊂
VðGÞ is D-convergent to an element in VðGÞ.

Remark 5. It is shown in [16] (Example 3.3) that G-com-
pleteness is finer than usual completeness.

The following definitions of some useful types of conti-
nuity are borrowed from [11].

Definition 6. A self-mapping T on the generalized metric
space X is called

(i) Subsequentially continuous, if for every sequence
fxng ⊂ X, D-convergent to x ∈ X, there exists a
subsequence fxnqg of fxng such that fTxnqgD-con-

verges to Tx (as q⟶∞)

(ii) Orbitally G-continuous, if for all x, y ∈ VðGÞ and any
sequence fkng of positive integers

Tknx
n o

⟶ y and Tknx, Tkn+1x
� �

∈ E ~G
� �

imply T Tknx
� �n o

⟶ Ty:

ð7Þ

The following property, initially introduced in [17] for
partially ordered sets and in [11] for metric spaces with a
graph, is often assumed to relax continuity assumptions.

Property (JNRL). The digraph G is said to satisfy the
property (JNRL), if for any G-monotone increasing (decreas-
ing) sequence fxng, which D-converges to some x ∈ VðGÞ, it
holds that ðxn, xÞ ∈ EðGÞ (ðx, xnÞ ∈ EðGÞ), for any n ∈ℕ.

Let ðX,D,GÞ be a generalized metric space endowed with
a reflexive graph. Motivated by [11, 18], we define G-Chat-
terjea mappings on a generalized metric space ðX,DÞ with
a graph, as follows:
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Definition 7. A mapping T : X⟶ X is said to be a G -Chat-
terjea mapping if the following conditions are satisfied:

(i) T is G-monotone (edge-preserving), that is, if:

Tx, Tyð Þ ∈ E Gð Þ, for every x, yð Þð ∈ E Gð Þ, ð8Þ

(ii) There exists k ∈ ½0, 1/2Þ such that for every ðx, yÞ ∈ E
ðGÞ,

D Tx, Tyð Þ ≤ k D Tx, yð Þ +D x, Tyð Þð Þ: ð9Þ

Remark 8. It follows immediately from the above definition
that:

(i) If T is a G-Chatterjea mapping, then T is both a G−1

-Chatterjea and a ~G-Chatterjea mapping

(ii) Any Chatterjea mapping is a G0-Chatterjea mapping,
where the complete graphG0 is defined byVðG0Þ = X
and EðG0Þ =X × X

The following example shows that a G-Chatterjea
mapping is not necessarily a Chatterjea mapping.

Example 1. Let X = f0, 1, 2, 3g. Consider the function D

defined on X by Dðx, yÞ = ðx − yÞ2. It can be shown that D
is a generalized metric with constant C ≥ 2.

Consider the mapping f : X⟶ X defined by

f 0ð Þ = 1
f 1ð Þ = f 2ð Þ = 0,
f 3ð Þ = 1:

8>><
>>: ð10Þ

SinceDð f ð0Þ, f ð2ÞÞ = 1 andDð f ð0Þ, 2ÞÞ+Dðð0, f ð2ÞÞ = 1,
f is not a Chatterjea mapping.

On the other hand, consider the digraph G with VðGÞ
= X and edges

E Gð Þ = 0, 0ð Þ, 1, 1ð Þ, 2, 2ð Þ, 3, 3ð Þ, 0, 3ð Þ, 1, 2ð Þ, 1, 3ð Þ, 2, 3ð Þf g:
ð11Þ

It can be easily seen that f is aG-Chatterjea mapping with
constant k ∈ ½1/9, 1/2Þ.

3. Main Results

In this section, we extend the fixed point theorems for G
-Chatterjea mappings to the setting of a generalized metric
space with a digraph.

Let T : X ⟶ X be a mapping. Let x0 ∈ X. Let G½OTðx0Þ�
be the subgraph of G induced on the orbit OTðx0Þ≔ fTnx0

: n ∈ℕg. The following technical lemmas are necessary for
the proof of the main result in this work.

Lemma 9. Let T : X ⟶ X be a G-monotone mapping and
suppose that there exists x0 ∈ X such that ðx0, Tx0Þ ∈ EðGÞ
(respectively, ðTx0, x0Þ ∈ EðGÞ) and that the subgraph G½OT
ðx0Þ� is transitive. Then, fTnx0g is a G-increasing (respec-
tively, G-decreasing) sequence and ðTmx0, Tnx0Þ ∈ EðGÞ
(respectively, ðTnx0, Tmx0Þ ∈ EðGÞ) for any m, n ∈ℕ such
that m ≤ n.

Proof. Without loss of generality, assume that ðx0, Tx0Þ ∈ E
ðGÞ. Since T is G-monotone, it follows that ðTx0, T2x0Þ ∈ E
ðGÞ. Induction on n yieldsðTnx0, Tn+1x0Þ ∈ EðGÞ for all n ∈
ℕ. Therefore, fTnx0g is a G-monotone increasing sequence.
Since ðTmx0, Tm+1x0Þ, ðTm+1x0, Tm+2x0Þ,⋯, ðTn−1x0, Tnx0Þ
∈ EðGÞ and G½OTðx0Þ� is transitive, it follows that ðTmx0,
Tnx0Þ ∈ EðGÞ.

The following notation will be used in the sequel:

δ D, T , x0ð Þ≔ sup D Tix0, x0
� �

: i ∈ℕ∗� �
: ð12Þ

Lemma 10. Under the assumptions of Lemma 9, if T is a G
-Chatterjea mapping with constant k ∈ ½0, 1/2Þ, then

(i) For every ðm, nÞ ∈ℕ∗ ×ℕ∗, we have

D Tnx0, Tmx0ð Þ ≤ δ0 〠
n+m−1

m

kj
j − 1

m − 1

 !
+ 〠

n+m−1

n

kj
j − 1

n − 1

 ! !
,

ð13Þ

(ii) For every ðm, nÞ ∈ℕ∗2 such that m ≤ n, we have

D Tnx0, Tmx0ð Þ ≤ δ0
1 − 2k

2kð Þm, ð14Þ

where δ0 = δðD, T , x0Þ.

Proof.

(i) The proof of this statement follows from the applica-
tion of two-dimensional induction on p = n +m, for
every p ≥ 2

Since

D T1x0, T1x0
� �

≤ kD Tx0, x0ð Þ + kD x0, Tx0ð Þ ≤ δ0 2kð Þ,
ð15Þ

it is clear that the inequality (13) holds for p = 2 with
ðm, nÞ = ð1, 1Þ.

Assume next that inequality (13) holds for any ðm′, n′Þ
∈ℕ∗2 be chosen in such a way that n′ +m′ = p; let ðm, nÞ
∈ℕ∗2 with n +m = p + 1.
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Since T is a G-Chatterjea mapping and ðTn−1x0, Tm−1x0Þ
∈ Eð~GÞ, it holds that

D Tnx0, Tmx0ð Þ ≤ k D Tnx0, Tm−1x0
� �

+D Tn−1x0, Tmx0
� �� �

:

ð16Þ

Since n + ðm − 1Þ = p and ðn − 1Þ +m = p, the inductive
hypothesis yields

D Tnx0, Tmx0ð Þ ≤ kδ0 〠
n+m−2

j=m
kj

j − 1

m − 1

 !
+ 〠

n+m−2

j=n−1
kj

j − 1

n − 2

 ! 

+ 〠
n+m−2

j=m−1
kj

j − 1

m − 2

 !
+ 〠

n+m−2

j=n
kj

j − 1

n − 1

 !!

≤ kδ0 〠
n+m−2

j=m
kj

j − 1

m − 1

 !
+

j − 1

m − 2

 ! !
+ km−1

 

+ 〠
n+m−2

j=n
kj

j − 1

n − 1

 !
+

j − 1

n − 2

 ! !
+ kn−1

!

≤ kδ0 〠
n+m−2

j=m
kj

j

m − 1

 !
+ 〠

n+m−2

j=n
kj

 

�
j

n − 1

 !
+ km−1 + kn−1

!

≤ kδ0 〠
n+m−2

j=m−1
kj

j

m − 1

 !
+ 〠

n+m−2

j=n−1
kj

j

n − 1

 ! !

≤ δ0 〠
n+m−1

j=m
kj

j − 1

m − 1

 !
+ 〠

n+m−1

j=n
kj

j − 1

n − 1

 ! !
,

ð17Þ

that inequality (13) holds for ðn,mÞ ∈ℕ∗ such that n +m =
p + 1.

(ii) Let n,m ∈ℕ∗; assume that m ≤ n. Since
j − 1
m − 1

 !

≤ 2j−1 for any j ∈m, n +m − 1 and
j − 1
n − 1

 !
≤ 2 j−1

for any j ∈ n, n +m − 1, it follows that

〠
n+m−1

j=m
kj

j − 1
m − 1

 !
≤
1
2 〠
n+m−1

j=m
2kð Þj ≤ 1

2 1 − 2kð Þ 2kð Þm,

ð18Þ

and that

〠
n+m−1

j=n
kj

j − 1
n − 1

 !
≤

1
2 1 − 2kð Þ 2kð Þn ≤ 1

2 1 − 2kð Þ 2kð Þm:

ð19Þ

It follows from inequality (13) that

D Tnx0, Tmx0ð Þ ≤ δ0
1 − 2k 2kð Þm: ð20Þ

Theorem 11. Let ðX,D,GÞ be a generalized, G-complete
metric space and T : X ⟶ X be a G-Chatterjea mapping
with constant k ∈ ½0, 1/2Þ. Suppose that there exists x0 ∈ X such
that δðD, T , x0Þ <∞, that ðx0, Tx0Þ ∈ Eð~GÞ, and that the sub-
graph G½OTðx0Þ� is transitive. Under these assumptions, the
sequence fTnx0g converges to some ω ∈ X. Moreover, if one
of the following conditions ðiÞ − ðiiiÞ holds, namely

(i) T is subsequentially continuous

(ii) T is orbitally G-continuous

(iii) G satisfies property (JNRL) and Dðx0, TωÞ <∞

then ω is a fixed point of T.

Proof. Without loss of generality, it may be assumed that
ðx0, Tx0Þ ∈ EðGÞ. Select ðm, nÞ ∈ℕ∗ ×ℕ∗ such that m ≤ n.
From Lemma 9, it is clear that ðTmx0, Tnx0Þ ∈ EðGÞ. If T is
a G-Chatterjea mapping, Lemma 10 yields

D Tnx0, Tmx0ð Þ ≤ δ0/ 1 − 2kð Þ 2kð Þm: ð21Þ

Thus, fTnx0g is a D-Cauchy sequence. Since ðX,D,GÞ is
G-complete, the sequence fTnx0gD-converges to some ω ∈ X.

(i) It follows from the subsequential continuity
assumption on T that there exists a subsequence
fTnqx0g such that fTnq+1x0gD-converges to Tω as
nq ⟶∞. The uniqueness of the limit yields
Tω = ω

(ii) Assume that T is orbitally G-continuous. Since fTn

x0gD-converges to ω and ðTnx0, Tn+1x0Þ ∈ EðGÞ, it
follows that TðTnx0Þ⟶ Tω. Likewise, TðTnx0Þ =
Tn+1x0 ⟶ ω. Hence, ω = Tω

(iii) Assume that G satisfies Property (JNRL) and that
Dðx0, TωÞ <∞. Since fTnx0g is G-increasing and
it D-converges to ω ∈ X, it follows that ðTnx0, ωÞ ∈
EðGÞ, for any n ∈ℕ

Select n ∈ℕ, n ≥ 1. If T is a G-Chatterjea mapping, then
necessarily

D Tnx0, Tωð Þ ≤ kD Tn−1x0, Tω
� �

+ kD Tnx0, ωð Þ
≤ k2D Tn−2x0, Tω

� �
+ k2D Tn−1x0, ω

� �
+ kD Tnx0, ωð Þ:

ð22Þ

It follows by induction on n, that for any n ≥ 1,

D Tnx0, Tωð Þ ≤ knD x0, Tωð Þ + 〠
n

j=1
kjD Tn+1−jx0, ω

� �
: ð23Þ
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Let j ∈ 1, n. Since fTpx0gp≥nD-converges to ω using ðD3Þ,
it follows that

D Tn+1−jx0, ω
� �

≤ Clim sup
p⟶∞

D Tn+1−jx0, Tpx0
� �

: ð24Þ

Applying Lemma 10, we obtain

D Tn+1−jx0, ω
� �

≤
Cδ0
1 − 2k lim sup

p⟶∞
2kð Þn+1−j ≤ Cδ0

1 − 2k 2kð Þn+1−j:

ð25Þ

Then,

kjD Tn+1−jx0, ω
� �

≤
Cδ0
1 − 2k kð Þj 2kð Þn+1−j ≤ Cδ0

1 − 2k 2kð Þn+1 12j :
ð26Þ

Hence

〠
n

j=1
kjD Tn+1−jx0, ω

� �
≤

Cδ0
1 − 2k 2kð Þn+1 〠

n

j=1

1
2j

 !
≤

Cδ0
1 − 2k 2kð Þn+1:

ð27Þ

Finally, inequality (23) becomes

D Tnx0, Tωð Þ ≤ knD x0, Tωð Þ + Cδ0
1 − 2k 2kð Þn+1: ð28Þ

Since Dðx0, TωÞ <∞, it follows that lim
n⟶∞

DðTnx0, TωÞ
= 0. Therefore, fTnx0gD-converges to Tω. Uniqueness of
the limit yields Tω = ω.

Proposition 12. Suppose that T is G -Chatterjea. If T has two
fixed points ω and ω′ in X, such that Dðω, ω′Þ <∞ and
ðω, ω′Þ ∈ EðGÞ, then ω = ω′.

Proof. Suppose that ω, ω′ ∈ X are two fixed points of T such
that Dðω, ω′Þ <∞. Since T is a G-Chatterjea mapping, we
have

D ω, ω′
� �

=D Tω, Tω′
� �

≤ k D Tω, ω′
� �

+D ω, Tω′
� �� �

,

ð29Þ

which implies that

D ω, ω′
� �

≤ 2kD ω, ω′
� �

: ð30Þ

Hence

1 − 2kð ÞD ω, ω′
� �

≤ 0: ð31Þ

Therefore, Dðω, ω′Þ = 0, i.e., ω = ω′.

The following example illustrates Theorem 11.

Example 2. Let X be the open interval ð−1, 1Þ. Consider the
function D defined on X as follows:

D x, yð Þ =
2 ∣x∣+∣y ∣ð Þ if either of x = 0 or y = 0,
∣x∣+∣y ∣
3 otherwise:

8<
:

ð32Þ

It can be easily verified that ðD1Þ and ðD2Þ hold. For the
validity of ðD3Þ, observe first that for all x ≠ 0, we have Cð
D, X, xÞ =∅. If x = 0, then there exists a sequence fxng such
that lim

n⟶∞
Dðxn, xÞ = 0. Consider the sets P≔ fn ∈ℕ : xn ≠

0g and Q≔ fn ∈ℕ : xn = 0g. We distinguish three cases:
If P is finite, then there exists C ≥ 1 such that for any y ∈ X

it holds that

D 0, yð Þ = 2∣y∣ ≤ 2C∣y∣ = Clim sup
n⟶∞

D xn, yð Þ: ð33Þ

If Q is finite, then there exists C ≥ 6 such that for any y
∈ X

D 0, yð Þ = 2 yj j ≤ C
∣y ∣
3 = Clim sup

n⟶∞
D xn, yð Þ: ð34Þ

If P and Q are infinite, there exist two increasing func-
tions φ, ψ : ℕ⟶ℕ such that, for all n ∈ℕ, xφðnÞ ≠ 0, xψðnÞ
= 0, and fxng = fxφðnÞg ∪ fxψðnÞg. Then, for any y ∈ X

lim sup
n⟶∞

D xφ nð Þ, y
� �

= yj j
3 and lim sup

n⟶∞
D xψ nð Þ, y
� �

= 2 yj j:

ð35Þ

Thus,D is a generalized metric with C ≥ 6. Note that X is
not aD-compact space. Indeed, let fxngn∈ℕ∗ be a sequence of
X such that xn = 1 − 1/n and suppose that there exists a sub-
sequence fxφðnÞg of fxng wich D-converges to an element x
in X. Since lim

n⟶∞
DðxφðnÞ, xÞ = 0, we have

lim
n⟶∞

xφ nð Þ
��� ��� + xj j = 0: ð36Þ

Thus, ∣x ∣ = −1. Contradiction.
Consider the graph G on X consisting of the transitive

closure of the graph represented in Figure 1.
Note that

E Gð Þ = Δ
[ −1ð Þn

2n , 0
	 


, −1ð Þm
2m , −1ð Þn

2n
	 


: n,m ∈ℕ∗ and n >m
� �

:

ð37Þ

Let us prove that the space ðX,DÞ is G-complete. Let
fxng be a G-monotone, D-Cauchy sequence in X. We have
two cases:

5Journal of Function Spaces



Case 1. If there exists n0 ∈ℕ such that xn = 0, for any n ≥ n0.
We have lim

n⟶∞
Dðxn, 0Þ = 0. Therefore, the sequence fxngD

-converges to 0.

Case 2. If there exists n0 ∈ℕ and a nondecreasing sequence
fpng ⊂ℕ∗ such that xn = ð−1/2Þpn , for any n ≥ n0. We
have lim

n⟶∞
Dðxn, 0Þ = lim

n⟶∞
ð1/3Þð1/2Þpn = 0. Therefore, the

sequence fxng is D-convergent to 0.

(Note that in the case where there exists a nonzero
element α in X such that xn = α for any n ∈ℕ, the sequence
fxng is not D-Cauchy).

Now, consider the self-mapping T on X defined by

Tx =
−
x
2 if x ∈ X ∩ℚ,

x
5 otherwise:

8><
>: ð38Þ

One can easily see that:

T
−1ð Þn
2n , T0

	 

= −1ð Þn+1

2n+1 , 0
 !

∈ E Gð Þ, for any n ∈ℕ∗,

T
−1ð Þm
2m , T −1ð Þn

2n
	 


= −1ð Þm+1

2m+1 , −1ð Þn+1
2n+1

 !
∈ E Gð Þ, for any n,m ∈ℕ∗ with n >m:

8>>>>><
>>>>>:

ð39Þ

It is therefore apparent that T is G-monotone. For x0 =
−ð1/2Þ, we have that ðx0, Tx0Þ ∈ EðGÞ, G½OTðx0Þ� is transitive
and

δ T ,D, x0ð Þ = sup D
−1ð Þi
2i , −12

 !
: i ∈ℕ and i ≥ 2

( )
= 1
4 :

ð40Þ

Pick x, y ∈ X such that ðx, yÞ ∈ EðGÞ. If x = y ∈ X ∩ℚ,
then

D Tx, Txð Þ = ∣x ∣
3 ≤ k xj j = k D Tx, xð Þ +D x, Txð Þð Þ: ð41Þ

Observe that if x = y ∈ X \ℚ, then

D Tx, Txð Þ = 2 ∣ x ∣
15 ≤ k

12 xj j
15 = k D Tx, xð Þ +D x, Txð Þð Þ:

ð42Þ

On the other hand, if ðx, yÞ = ðð−1Þn/2n, 0Þ, then

D T
−1ð Þn
2n , T0

	 

= 1
2n ≤ k

3
2n = k D T

−1ð Þn
2n , 0

	 

+D

−1ð Þn
2n , T0

	 
	 

:

ð43Þ

Finally, in the case ðx, yÞ = ðð−1Þm/2m, ð−1Þn/2nÞÞ, then

D T
−1ð Þm
2m , T −1ð Þn

2n
	 


= 2n + 2m
3 × 2n+m+1 ≤ k

2n + 2m
2n+m+1

= k D T
−1ð Þm
2m , −1ð Þn

2n
	 


+D
−1ð Þm
2m , T −1ð Þn

2n
	 
	 


:

ð44Þ

In all cases, DðTx, TyÞ ≤ kðDðTx, yÞ +Dðy, TxÞÞ. Thus,
T is a G-Chatterjea mapping with constant k ∈ ½1/3, 1/2Þ.

The sequence fTnx0g = fð−1Þn+1/2n+1g is G-increasing,
D-convergent to 0, and furthermore, ðð−1Þn+1/2n+1, 0Þ ∈ E
ðGÞ. Hence, G satisfies Property (JNRL). On account of
Theorem 11, T has a fixed point, namely 0.

Next, we present a version of Theorem 11 in the setting of
a partially ordered generalized metric space. Let ðX,D,≤Þ be
a generalized metric space endowed with a partial order. We
define the directed graph G≤ on X as follows: VðG≤Þ = X and
EðG≤Þ = fðx, yÞ ∈ X × X : x ≤ yg. In this setting, we say that
T : X⟶ X is a monotone Chatterjea mapping if it is a G≤
-Chatterjea mapping. We also say that T is orbitally mono-
tone continuous if T is orbitally G≤-continuous. The general-
ized metric space ðX,D,≤Þ satisfies the Property (JNRL) if
whenever fxng is a decreasing (respectively increasing)
sequence such that xn ⟶ x in X, then for all n ∈ℕ, x ≤ xn
(respectively xn ≤ x).

Theorem 13. Let ðX,D,≤Þ be a generalizedD-complete metric
space endowed with a partial order and T : X⟶ X be a
monotone Chatterjea mapping with constant k ∈ ½0, 1/2Þ. Sup-
pose that there exists x0 ∈ X such that δðD, T , x0Þ <∞ and
that either x0 ≤ Tx0 or Tx0 ≤ x0. Then, the sequence fTnx0g
converges to some ω ∈ X. Moreover, if any one of the condi-
tions ðiÞ − ðiiiÞ in Theorem 11 holds, then ω is a fixed point
of T .

1

0
–1 n+2
2

–1

–1

1

–1

1
64

32

16

8

4 2

–1 n+1
2

–1 n
2

Figure 1: All loops and isolated vertices are not represented.
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Proof. Since the subgraph G≤½OTðx0Þ� is transitive, Theorem
13 is a direct consequence of Theorem 11.

We remark that Theorem 3.9 in [19] is a corollary of the
preceding theorem, from which it can be derived simply by
removing the ordering.

Corollary 14. Let ðX,DÞ be a D-complete generalized metric
space and T : X⟶ X be a Chatterjea contraction with con-
stant k ∈ ½0, 1/2Þ. Suppose that there exists x0 ∈ X such that δ
ðD, T , x0Þ <∞. Then, fTnx0g converges to some ω ∈ X. If D
ðx0, TωÞ <∞, then ω is a fixed point of T with Dðω, ωÞ = 0.
Moreover, if ω′ ∈ X is another fixed point of T such that
Dðω, ω′Þ <∞, then ω = ω′.

Proof. Taking G =G0, where G0 is the complete graph, i.e.,
VðG0Þ = X and EðG0Þ = X × X, the proof follows from
Theorem 11 and Proposition 12.

We next set to show that the fixed point result given in
Theorem 11 is, in fact, a generalization of the analogue com-
mon fixed point theorem established in [13]. To this effect,
we state and prove the following lemma, introduced by
Haghi et al. in [20].

Lemma 15. Let X be a nonempty set and f : X ⟶ X a func-
tion. Then, there exists a subset E ⊂ X such that f ðEÞ = f ðXÞ.
Moreover, f : E⟶ X is one-to-one.

Let T , S : X⟶ X be two self mappings. We recall the
definition of G-Chatterjea S-contraction and the property
(P) given in [13].

Definition 16. We say that T is G-Chatterjea S-contraction if
there exists k ∈ ½0, 1/2Þ such that for every x, y ∈ VðGÞ, it
holds that

Sx, Syð Þ ∈ E ~G
� �

D Tx, Tyð Þ ≤ k D Tx, Syð Þ +D Sx, Tyð Þð Þ:
ð45Þ

We recall that x∗ is said to be a point of coincidence of T
and S, if there exists a in X such that x∗ = Ta = Sa.

Property (P). The digraph G is said to satisfy the property
(P) for T and S, if whenever x∗, y∗ are points of coincidence
of T and S in VðGÞ, then ðx∗, y∗Þ ∈ Eð~GÞ and Dðx∗, y∗Þ<∞.

Suppose that TðXÞ ⊆ SðXÞ. If x0 ∈ X is arbitrary, we can
choose a point x1 in X such that Tx0 = Sx1. Proceeding in this
manner, assuming that xn in X is given, we can define xn+1
∈ X by the recurrence relation

Txn = Sxn+1, n = 0, 1, 2,:⋯ ð46Þ

By CðT , SÞ, we denote the set of all elements x0 of X such
that ðSxn, SxmÞ ∈ Eð~GÞ, for n,m = 1, 2,⋯. The following
notation will be used in the sequel:

δ D, S, T , x0ð Þ = sup D Sxp, Sx1
� �

: p ≥ 2
� �

: ð47Þ

Corollary 17. Let ðX,DÞ be a generalized metric space
endowed with a reflexive digraph G. Assume that VðGÞ = X,
that G has no parallel edges, and that it satisfies the (JNRL)
property. Let T and S be two self mappings on X such that T
is a G-Chatterjea S-contraction, SðXÞ is a D-complete sub-
space of X and that TðXÞ ⊆ SðXÞ.

(1) Suppose that there exists x0 ∈ CðT , SÞ such that δðD,
S, T , x0Þ <∞. Then, the sequence fSxng defined by
(46) D-converges to x∗ = Sa, with a ∈ X. Moreover, if
DðTx0, TaÞ <∞, then x∗ is a point of coincidence of
T and S in X

(2) In addition, T and S have a unique point of coincidence
in X if the digraph G has the property (P) for T and S.
Finally, if T and S are weakly compatible, then T and S
have a unique common fixed point in X

Proof. By Lemma 15, there exists X0 ⊂ X such that SðX0Þ =
SðXÞ = Y ; moreover, S : X0 ⟶ X is one-to-one. Define the
mapping F : Y ⟶ Y as

F Sxð Þ = Tx: ð48Þ

Since S is one-to-one on X0, F is well defined.
Let u, v ∈ Y . There exist x, y ∈ X such that u = Sx and v

= Sy. If ðu, vÞ ∈ Eð~GÞ, then ðSx, SyÞ ∈ Eð~GÞ. Since T is a G
-Chatterjea S-contraction, there exists k ∈ ½0, 1/2Þ such that

D Tx, Tyð Þ ≤ k D Tx, Syð Þ +D Sx, Tyð Þð Þ, ð49Þ

i.e., DðFðSxÞ, FðSyÞÞ ≤ kðDðFðSxÞ, SyÞ +DðSx, FðSyÞÞÞ:
Then

D Fu, Fvð Þ ≤ k D Fu, vð Þ +D u, Fvð Þð Þ: ð50Þ

Consequently, F is a G-Chatterjea mapping on Y .
Suppose that there exists x0 ∈ CðT , SÞ such that δðD, S,

T , x0Þ <∞. Setting y0 = Sx1, it is clear that Fy0 = FðSx1Þ = T
x1 = Sx2. It follows easily by induction that Fpy0 = Sxp+1, for
any p ∈ℕ. Moreover,

δ D, F, y0ð Þ = sup D Fiy0, y0
� �

: i ≥ 1
� �

= sup D Fp−1y0, y0
� �

: p ≥ 2
� �

= sup D Sxp, Sx1
� �

: p ≥ 2
� �

= δ D, S, T , x0ð Þ <∞:

ð51Þ

From ðSxn, SxmÞ ∈ Eð~GÞ for n,m = 1, 2,⋯, it follows that
ðFiy0, Fjy0Þ ∈ Eð~GÞ for any i, j in ℕ. Hence, G½OFðy0Þ� is
transitive. Furthermore, ðSx1, Sx2Þ = ðy0, Fy0Þ ∈ Eð~GÞ.

By virtue of Theorem 11, the sequence fSxng = fFn−1y0g
D-converges to x∗ = Sa with a ∈ Y ⊂ X.

Moreover, we have

D y0, Fx∗ð Þ =D Sx1, F Sað Þð Þ =D Tx0, Tað Þ <∞, ð52Þ
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and since G satisfies property (JNRL), on account of Theo-
rem 11, x∗ is a fixed point of F. Hence Ta = FðSaÞ = Fx∗ =
x∗ = Sa, and x∗ is a point of coincidence of T and S in X, as
claimed.

Assume next that there exists another point of coinci-
dence y∗ ∈ SðXÞ, that b ∈ X, and that y∗ = Sb = Tb = FðSbÞ
= Fy∗. Since the digraph G has the property (P) for T and
S, then ðx∗, y∗Þ ∈ Eð~GÞ and Dðx∗, y∗Þ <∞. By Proposition
12, necessarily x∗ = y∗, which implies that T and S have a
unique point of coincidence in X. It follows from [21] (Prop-
osition 1.4) that if T and S are weakly compatible, then T and
S have a unique common fixed point in X.

4. Application

In this section, we study the existence and uniqueness of
solution for the following general nonlinear matrix equation
in the set of all n × n Hermitian-positive definite matrices
P ðnÞ:

Xq − A∗F Xð ÞsA = B, q >
ffiffiffi
2

p
, s ∈ 0, 1ð �, X ∈P nð Þ, ð53Þ

where A is n × n nonsingular matrix, A∗ is the Hermitian
transpose of the matrix A, the matrix B is n × n positive
define matrix, and F : EðnÞ⟶EðnÞ is a self-adjoint oper-
ator such that EðnÞ is a nonempty subset of P ðnÞ. This type
of matrix equation arises in control theory, ladder networks,
dynamic programming, stochastic filtering and statistics, etc.

For M,N ∈P ðnÞ, we denote

M ≺N ⇔N −M is positive definite: ð54Þ

We denote by k:k the spectral norm kAk = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðA∗AÞp

=
kA∗k, where ρðA∗AÞ is the largest eigenvalue of A∗A. We
recall that the Thompson metric is defined on P ðnÞ by:

d : P nð Þ ×P nð Þ⟶ℝ+, ð55Þ

such that

d A, Bð Þ =max ln W
A
B

	 
	 

, ln W

B
A

	 
	 
� �

= ln A− 1/2ð ÞBA− 1/2ð Þ
� ���� ���, ð56Þ

where W ðA/BÞ = inf fλ > 0 : A ≤ λBg = λ max ðA−ð1/2ÞB
A−ð1/2ÞÞ. It is easy to verify that ðP ðnÞ, dÞ is a complete metric
space (see [22]). In the sequel, we consider the space P ðnÞ
endowed by the Thompson generalized metric D defined by

D A, Bð Þ = ln A− 1/2ð ÞBA− 1/2ð Þ
� ���� ���2, ð57Þ

for any A, B ∈P ðnÞ. In the following lemmas, we extend
some properties of the Thompson metric given in [23] to
the Thompson generalized metric space.

Lemma 18. Let D : P ðnÞ ×P ðnÞ⟶ℝ+ be a Thompson
generalized metric on the open convex cone P ðnÞ; then, for
any A,B ∈P ðnÞ and nonsingular matrix M, we have the
following conditions:

(i) DðA, BÞ =DðA−1, B−1Þ =DðM∗AM,M∗BMÞ, where
A−1, B−1 are the inversion of matrices A and B,
respectively

(ii) DðAr , BrÞ ≤ r2DðA, BÞ, r ∈ ½−1, 1�
(iii) DðM∗ArM,M∗BrMÞ ≤ r2DðA, BÞ, r ∈ ½−1, 1�

Proof. Let d be the Thompson metric defined by (56). Since
DðA, BÞ = ðdðA, BÞÞ2, we get ðiÞ, ðiiÞ, and ðiiiÞ by the invari-
ant under the matrix inversion, congruence transformations
for nonsingular matrix M, and the nonpositive curvature
property of the Thompson metric d.

Lemma 19. For any A, B, C,D ∈P ðnÞ,

D A + C, B +Dð Þ ≤max D A, Bð Þ,D C,Dð Þf g: ð58Þ

Especially, DðA + C, B + CÞ ≤DðA, BÞ.

Proof. Let d be the Thompson metric defined by (56). By
using [23] (Lemma 2.1), we have dðA + C, B +DÞ ≤max fd
ðA, BÞ, dðC,DÞg. Since DðA, BÞ = ðdðA, BÞÞ2, we deduce our
result.

We endow P ðnÞ by the graph G defined by:

V Gð Þ =P nð Þ and E Gð Þ = Δ ∪ M,Nð Þ ∈P nð Þ ×P nð Þ,M ≺Nf g:
ð59Þ

We give a graphical version of [24] (Lemma 4.3) in P ðnÞ
endowed with the graph G.

Lemma 20. For any A, B ∈P ðnÞ, if ðA, BÞ ∈ EðGÞ, then ðAr ,
BrÞ ∈ EðGÞ for all r ∈ �0, 1�, and ðBr , ArÞ ∈ EðGÞ for all r ∈
½−1, 0½.

Proof. Let A, B ∈P ðnÞ such that ðA, BÞ ∈ EðGÞ. If A = B then
ðAr , BrÞ ∈ EðGÞ for all r ∈ �0, 1�. If A ≺ B, then by using the
Löwner-Heinz inequality [25, 26], we get Ar ≺ Br . Thus,
ðAr , BrÞ ∈ EðGÞ for all r ∈ �0, 1�.

Theorem 21. Let X0 ∈P ðnÞ and EðnÞ = fX ∈P ðnÞ: ðX0, XÞ
∈ EðGÞg. If the operator F is nondecreasing and for all X, Y
∈EðnÞ such that ðX, YÞ ∈ EðGÞ, we have:

ln F Xð Þ− 1/2ð ÞF Yð ÞF Xð Þ− 1/2ð Þ
� ���� ���
≤ ln X− 1/2ð Þ B + A∗F Yð ÞsAð Þ1/qX− 1/2ð Þ

� ���� ��� ð60Þ

and ðXq
0, BÞ ∈ EðGÞ; then, the matrix equation (53) has a

unique solution.
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Proof. Let T : EðnÞ⟶EðnÞ be a mapping defined by

T Xð Þ = B + A∗F Xð ÞsAð Þ1/q, X ∈E nð Þ: ð61Þ

Let X ∈EðnÞ. Since ðX0, XÞ ∈ EðGÞ and F is nonde-
creasing,

B + A∗F X0ð ÞsA, B + A∗F Xð ÞsAð Þ ∈ E Gð Þ: ð62Þ

As ðXq
0, BÞ ∈ EðGÞ and A∗FðX0ÞsA ∈P ðnÞ, then ðXq

0, B
+ A∗FðX0ÞsAÞ ∈ EðGÞ. By Lemma 20, we have

X0, B + A∗F Xð ÞsAð Þ1/q
� �

= X0, T Xð Þð Þ ∈ E Gð Þ: ð63Þ

Thus, TðXÞ ∈EðnÞ and so T is well defined.
Let X, Y ∈EðnÞ such that ðX, YÞ ∈ EðGÞ, we have

ðTðYÞÞq − ðTðXÞÞq = A∗ðFðYÞs − FðXÞsÞA, then ððTðXÞÞq,
ðTðYÞÞqÞ ∈ EðGÞ. Since 0 ≤ 1/q < 1, by Lemma 20 we have
ðTðXÞ, TðYÞÞ ∈ EðGÞ.

Let X, Y be two elements in EðnÞ such that ðX, YÞ ∈
EðGÞ. By using Lemmas 18 and 19 we have

D F Xð Þ, F Yð Þð Þ ≥ 1
s2
D F Xð Þs, F Yð Þsð Þ ≥ 1

s2
D A∗F Xð ÞsA, A∗F Yð ÞsAð Þ

≥
1
s2
D B + A∗F Xð ÞsA, B + A∗F Yð ÞsAð Þ

≥
1
s2
D T Xð Þq, T Yð Þqð Þ ≥ s

q

	 
2
D T Xð Þ, T Yð Þð Þ:

ð64Þ

Thus,

D T Xð Þ, T Yð Þð Þ ≤ s
q

	 
2
D F Xð Þ, F Yð Þð Þ: ð65Þ

If kln ðFðXÞ−ð1/2ÞFðYÞFðXÞ−ð1/2ÞÞk ≤ kln ðX−ð1/2ÞðB +
A∗FðYÞsAÞ1/qX−ð1/2ÞÞk, then

D F Xð Þ, F Yð Þð Þ ≤D X, T Yð Þð Þ: ð66Þ

From (65) and (66), we get

D T Xð Þ, T Yð Þð Þ ≤ s
q

	 
2
D X, T Yð Þð Þ +D Y , T Xð Þð Þð Þ: ð67Þ

Thus, there exists k = ðs/qÞ2 ∈ ½0, 1/2Þ such that T is a
G-Chatterjea mapping on EðnÞ.

Since ðXq
0, BÞ ∈ EðGÞ, ðXq

0, B + A∗FðX0ÞsAÞ ∈ EðGÞ. Thus,
ðX0, TðX0ÞÞ ∈ EðGÞ.

Next, we show thatEðnÞ satisfies the Property (JNRL) for
the generalized metric D. In fact, let ðXkÞk be a nondecreas-
ing sequence of EðnÞ which converges to X ∈EðnÞ. If the
set fk ∈ℕ : Xk = X0g is infinite, there exists a nondecreasing
function ϕ : ℕ⟶ℕ such that XϕðkÞ = X0, ∀k ∈ℕ, then X
= X0 ∈EðnÞ. If not, Xk ≠ X0, for large integer k. Fix m ∈ℕ
arbitrary. For all k >m,

Xm, Xkð Þ ∈ E Gð Þ⟹ Xk − Xm ∈P nð Þ⟹ Xk ∈P nð Þ + Xm:

ð68Þ

Since P ðnÞ + Xm is closed, X ∈P ðnÞ + Xm. Thus, ðXm,
XÞ ∈ EðGÞ, for all m ∈ℕ. Thus, according to Theorem 11,
we can show that there exists X∗ ∈EðnÞ such that TðX∗Þ =
X∗ which is a solution of the matrix equation (53).

If equation (53) has another solution Y∗ such that ðX∗,
Y∗Þ ∈ Eð~GÞ, then using Proposition 12, we have Y∗ = X∗.

5. Conclusion

Summarizing the present work enhances the area in many
directions

(1) Using Theorem 13, we can improve the following
results

(i) Theorem 2 in [27]

(ii) Theorem 2.12 in [18]

(iii) Theorem 3.9 in [19]

(iv) Theorem 8 in [13]

(2) Establish or improve Chatterjea fixed point theorems
in the setting of standard metric spaces, dislocated
metric spaces, b-metric spaces, and modular spaces
with the Fatou property, also in these spaces endowed
with a partial order and more generally with a graph
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