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We describe certain C∗-algebras generated by Toeplitz operators with nilpotent symbols and acting on a poly-Bergman type space
of the Siegel domain D2 ⊂ℂ2. Bounded measurable functions of the form cðIm ζ1, Im ζ2 − jζ1j2Þ are called nilpotent symbols. In
this work, we consider symbols of the form aðIm ζ1ÞbðIm ζ2 − jζ1j2Þ, where both limits lim

s→0+
bðsÞ and lim

s→+∞
bðsÞ exist, and aðsÞ

belongs to the set of piecewise continuous functions on �ℝ = ½−∞, +∞� and having one-side limit values at each point of a finite
set S ⊂ℝ. We prove that the C∗-algebra generated by all Toeplitz operators Tab is isomorphic to Cð �ΠÞ, where �Π = �ℝ × �ℝ+ and
�ℝ+ = ½0, +∞�.

1. Introduction

In the study of Toeplitz operators, one of the common strat-
egies consists in selecting a set of symbols E ⊂ L∞ in such a
way that the algebra generated by Toeplitz operators with
symbols in E can be described up to isomorphism, say, with
an algebra of continuous functions or finding its spectrum.
In this paper, we study Toeplitz operators with nilpotent
symbols and acting on a poly-Bergman type space of the Sie-
gel domain D2 ⊂ℂ2. In [1–3], the authors have fully
described all commutative C∗-algebras generated by Toeplitz
operators with symbols invariant under the action of a max-
imal abelian subgroup of biholomorphisms and acting on the
Bergman spaces of both the unit disk D and the Siegel
domain Dn ⊂ℂn. For the unit disk, they discovered three
families of symbols associated to commutative C∗-algebras
of Toeplitz operators, while for the Siegel domain, they found
n + 2 classes of symbols. Each class of symbols is invariant
under the action of a maximal abelian group of biholo-
morphism. Certainly, one can use these classes of symbols
to study Toeplitz operators acting on poly-Bergman type
spaces of the unit disk or the Siegel domain.

Let Π = fz = x + iy ∈ℂ : y > 0g be the upper half-plane.
Toeplitz operators with vertical symbols, which depend on

y = Im z, and acting on Bergman type spaces have been stud-
ied. In [4–9], the authors proved that the algebra generated
by Toeplitz operators with vertical symbols and acting on
the weighted Bergman space A2

λðΠÞ is isometrically isomor-
phic to the algebra VSOðℝ+Þ of all bounded functions that
are very slowly oscillating on ℝ+. Taking vertical symbols
having limit values at y = 0 and y =∞, in [10, 11], the authors
found that �ℝ+ = ½0, +∞� is the spectrum of the algebra gener-
ated by all Toeplitz operators on the true-poly Bergman
space A2

ðnÞðΠÞ. Similar research was made for Toeplitz oper-
ators on poly-Bergman spaces with homogeneous symbols
([12, 13]). Other works about it were made in [14–16], where
the authors studied Toeplitz operators acting on A2

ðnÞðΠÞ
from the point of view of wavelet spaces. On the other hand,
in [17, 18], the authors studied Toeplitz operators on the
Fock space F2

1ðℂÞ with radial and bounded horizontal sym-
bols; they found that spectral functions are uniformly contin-
uous with respect to an adequate metric. Taking horizontal
symbols having one-side limits at x = ±∞, in [19, 20], the
authors studied Toeplitz operators acting on poly-Fock
spaces F2

kðℂÞ; they found the spectrum of the C∗-algebra
generated by such Toeplitz operators. Even though the
authors described the C∗-algebras generated by all spectral
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functions, the spectrum of the algebras is not fully under-
stood in some cases; for this reason, additional conditions
on the symbols are imposed.

In [1, 2], the authors made remarkable research on the
study of Toeplitz operators acting on the Bergman space of
the Siegel domain Dn ⊂ℂn. In particular, they studied the
C∗-algebra TNn

generated by all Toeplitz operators with
bounded nilpotent symbols, which are functions of the form

aðζÞ = aðIm ζ1,⋯, Im ζn−1, Im ζn − jζ′j2Þ, where ζ′ = ðζ1,⋯
, ζn−1Þ. Let us denote this kind of symbols by Nn. Although
TNn

is commutative, it is too large, so it is impossible to figure
out what its spectrum is. In particular, in [21, 22], the authors
described the algebra generated by Toeplitz operators acting
on the weighted Bergman space A2

λðD3Þ over three-
dimensional Siegel domain D3 using nilpotent symbols of
the form cðy2ÞgðIm ζ3 − jðζ1, ζ2Þj2Þ.

The main purpose of the paper is to find the spectrum of
the algebra generated by Toeplitz operators acting on the
true-poly-Bergman type space A2

ðLÞðD2Þ over two-
dimensional Siegel domain D2 by selecting a particular set
of nilpotent symbols. In this sense, we just consider nilpotent
symbols of the form aðIm ζ1Þ and bðIm ζ2 − jζ1j2Þ. This
paper is organized as follows. In Section 2, we recall how
poly-Bergman type spaces are defined for the Siegel domain,
and how they can be identified with a L2-space through a
Bargmann type transform. In Section 3, we introduce Toe-
plitz operators acting on A2

ðLÞðD2Þ with nilpotent symbols;
we show that such Toeplitz operators are unitary equivalent
to multiplication operators. In Section 4, we take symbols
of the form bðIm ζ2 − jζ1j2Þ for which both limits lim

s→0+
bðsÞ

and lim
s→+∞

bðsÞ exist; it is proved that the C∗-algebra generated

by all Toeplitz operators Tb is isomorphic to Cð�ℝ+Þ, where
�ℝ+ = ½0, +∞� is the one-point compactification of ½0, +∞Þ.
In Section 5, we take nilpotent symbols of the form aðIm ζ1Þ,
where a ∈ Cð�ℝÞ, and �ℝ = ½−∞, +∞� is the two-point com-
pactification of ℝ; we prove that the C∗-algebra generated by
all Toeplitz operators Ta is isomorphic to CðΔÞ, where Δ = �Π
/ð�ℝ × f+∞gÞ and �Π = �ℝ × �ℝ+. In Section 6, we describe the
C∗-algebra generated by all Toeplitz operators Td , where
dðIm ζ1Þ ∈ PCð�ℝ, SÞ, and PCð�ℝ, SÞ is the set of all piece-
wise continuous functions on �ℝ having one-side limit
values at each point of a finite set S ⊂ℝ. Finally, in Section
7, we describe the C∗-algebra generated by all Toeplitz
operators Tab = TaTb = TbTa.

2. Poly-Bergman Type Spaces of the
Siegel Domain

In this section, we recall some results obtained in [23], which
are needed in our research about Toeplitz operators. Each ζ
∈ℂn will be represented as an ordered pair ζ = ðζ′, ζnÞ,
where ζ′ = ðζ1,⋯, ζn−1Þ ∈ℂn−1. Besides, the Euclidean
norm function will be denoted by j·j. The Siegel domain
is defined by

Dn = ζ = ζ′, ζn
� �

∈ℂn−1 ×ℂ : Im ζn − ζ′
�� ��2 > 0

n o
: ð1Þ

We will study Toeplitz operators acting on certain

poly-Bergman type subspaces of L2ðDn, dμλÞ, where d

μλðζÞ = ðIm ζn − jζ′j2ÞλdμðζÞ, with λ > −1, and dμðζÞ is
the usual Lebesgue measure. Once and for all, L2ðXÞ
means L2ðX, dmÞ, where X is any subset of a Euclidean
space and dm is the Lebesgue area measure on X.

For each multi-index L = ðl1,⋯, lnÞ ∈ℕn, the poly-
Bergman type space A2

λLðDnÞ is the closed subspace of
L2ðDn, dμλÞ consisting of all L-analytic functions, that is,
all functions f ðζÞ satisfying the equations

∂
∂�ζm

− 2iζm
∂
∂�ζn

� �lm
f = 0, 1 ≤m ≤ n − 1,

∂
∂�ζn

� �ln
f = 0:

ð2Þ

In particular, for L = ð1,⋯, 1Þ, A2
λLðDnÞ is just the

Bergman space. Likewise, the anti-poly-Bergman type

space ~A
2
λLðDnÞ is defined to be the complex conjugate of

A2
λLðDnÞ: Thus, we introduce true-poly-Bergman type

spaces as follows:

A2
λ Lð Þ Dnð Þ =A2

λL Dnð Þ ⊖ 〠
n

m=1
A2

λ,L−em Dnð Þ
 !

,

~A
2
λ Lð Þ Dnð Þ = ~A

2
λL Dnð Þ ⊖ 〠

n

m=1
~A
2
λ,L−em Dnð Þ

 !
,

ð3Þ

where em = ð0,⋯, 1,⋯, 0Þ and the 1 is placed at the m
-entry. We assume that A2

λðLÞðDnÞ = f0g whenever L ∈
ℤn \ℕn.

In [23], the authors proved that L2ðDn, dμλÞ equals
to the direct sum of all the true-poly-Bergman type
spaces:

L2 Dn, dμλð Þ = ⊕
L∈ℕn

A2
λ Lð Þ Dnð Þ

� �
⨁ ⊕

L∈ℕn
~A
2
λ Lð Þ Dnð Þ

� �
: ð4Þ

The authors also proved that A2
λðLÞðDnÞ is isomor-

phic and isometric to the tensor product

L2 ℝn−1� �
⊗ℍl1−1 ⊗⋯⊗ℍln−1−1 ⊗ L2 ℝ+ð Þ ⊗L ln−1, ð5Þ

where ℝ+ = ð0,∞Þ. Both ℍm and Lm are one-
dimensional spaces defined below. Recall the Hermite
and Laguerre polynomials:

Hm yð Þ≔ −1ð Þmey2 dm

dym
e−y

2
� �

, Lλm yð Þ≔ ey
y−λ

m!

dm

dym
e−yym+λ
� �

,

ð6Þ
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for m = 0, 1, 2,⋯ Recall also the Hermite and Laguerre
functions

hm yð Þ = −1ð Þm
2n ffiffiffi

π
p

n!
� �1/2 Hm yð Þe−y2/2, ℓλm yð Þ = −1ð ÞmcmLλm yð Þe−y/2,

ð7Þ

where cm =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m!/Γðm + λ + 1Þp

and Γ is the usual
Gamma function. It is well known that fhmg∞m=0 and
fℓλmg

∞
m=0 are orthonormal bases for L2ðℝÞ and L2ðℝ+,

yλdyÞ, respectively. Finally, ℍm = spanfhmg and Lm =
spanfℓλmg.

In this work, we restrict ourselves to the study of Toeplitz
operators acting on the true-poly-Bergman type spaces over
two-dimensional Siegel domain D2 with the Lebesgue mea-
sure dμ (λ = 0). Henceforth, the space A2

0ðLÞðD2Þ will be sim-

ply denoted by A2
ðLÞðD2Þ; similarly, ℓmðyÞ and LmðyÞ stand

for ℓ0mðyÞ and L0mðyÞ, respectively. The true-poly-Bergman
type space A2

ðLÞðD2Þ can be identified with L2ðℝ ×ℝ+Þ
through a Bargmann type transform ([23]), such identifica-
tion fits to the study of Toeplitz operators with nilpotent
symbols. Several operators are needed to define such identifi-
cation. To begin with, we introduce the flat domain D =ℂ
×Π, whereΠ =ℝ ×ℝ+ ⊂ℂ. Then,D can be identified with
D2 using the mapping

κ : D ∋w = w1,w2ð Þ↦ ζ = w1,w2 + i w1j j2� �
∈D2: ð8Þ

Thus, we have the unitary operator U0 : L
2ðD2, dμÞ

⟶ L2ðD, dηÞ given by

U0 fð Þ wð Þ = f κ wð Þð Þ, ð9Þ

where dηðwÞ = dμðwÞ. Take w = ðw1,w2Þ ∈ℂ ×Π, with wm
= um + ivm and m = 1, 2. We identify w = ðu1 + iv1, u2 + iv2Þ
with ðu1, v1, u2, v2Þ. Then

L2 D, dηð Þ = L2 ℝ, du1ð Þ ⊗ L2 ℝ, dv1ð Þ ⊗ L2 ℝ, du2ð Þ ⊗ L2 ℝ+, dv2ð Þ:
ð10Þ

Introduce

U1 = F ⊗ I ⊗ F ⊗ I, ð11Þ

where F is the Fourier transform acting on L2ðℝÞ by the rule

Fgð Þ tð Þ = 1ffiffiffiffiffiffi
2π

p
ð∞
−∞

g xð Þe−itxdx: ð12Þ

Consider now the following two mappings acting on D:

ψ1 : ξ = ξ1, t2 + is2ð Þ↦w = ξ1, t2 + i
s2

2 t2j j
� �

,

ψ2 : z = x1 + iy1, z2ð Þ↦ ξ

=
ffiffiffiffiffiffiffi
x2j j

p
x1 + y1ð Þ + i

1
2
ffiffiffiffiffiffiffi
x2j jp −x1 + y1ð Þ, z2

 !
,

ð13Þ

where ξ = ðξ1, ξ2Þ, z = ðz1, z2Þ ∈D, ξm = tm + ism, and zm =
xm + iym. Both functions ψ1 and ψ2 lead to the following uni-
tary operators acting on L2ðD, dηÞ:

V1 fð Þ ξð Þ = 1
2 t2j jð Þ1/2

f ψ1 ξð Þð Þ, V2gð Þ zð Þ = g ψ2 zð Þð Þ: ð14Þ

Henceforth, L = ðl1, l2Þ = ðj, kÞ.

Theorem 1 (see [23]). The operator U =V2V1U1U0 is uni-
tary and maps L2ðD2, dμÞ onto the space

L2 D, dηð Þ = L2 ℝ, dx1ð Þ ⊗ L2 ℝ, dy1ð Þ ⊗ L2 ℝ, dx2ð Þ ⊗ L2 ℝ+, dy2ð Þ:
ð15Þ

For each L = ðj, kÞ ∈ℕ2, the operator U restricted to
A2

ðLÞðD2Þ is an isometric isomorphism onto the space

H+
Lð Þ = L2 ℝð Þ ⊗ span hj−1 y1ð Þ
 �

⊗ L2 ℝ+ð Þ ⊗ span ℓk−1 y2ð Þf g:
ð16Þ

Introduce the isometric linear embedding R0ðLÞ : L
2

ðℝ ×ℝ+Þ⟶ L2ðDÞ defined by

R0 Lð Þg
� �

x1, y1, x2, y2ð Þ = χℝ+
x2ð Þg x1, x2ð Þ hj−1 y1ð Þℓk−1 y2ð Þ:

ð17Þ

Of course, H+
ðLÞ is the range of R0ðLÞ, and it is also the

image of A2
ðLÞðD2Þ under U . Thus, the operator

R Lð Þ = R∗
0 Lð ÞU : L2 D2ð Þ⟶ L2 ℝ ×ℝ+ð Þ, ð18Þ

isometrically maps the true-poly-Bergman type space A2
ðLÞ

ðD2Þ onto L2ðℝ ×ℝ+Þ. Therefore, RðLÞR
∗
ðLÞ = I and R∗

ðLÞRðLÞ
= BðLÞ, where BðLÞ is the orthogonal projection from L2ðD2Þ
onto A2

ðLÞðD2Þ. In addition, the operator R∗
ðLÞ =U∗R0ðLÞ plays

the role of the Segal-Bargmann transform for the true-poly-
Bergman type space A2

ðLÞðD2Þ, where the adjoint operator

R∗
0ðLÞ : L

2ðDÞ⟶ L2ðℝ ×ℝ+Þ is given by
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R∗
0 Lð Þ f

� �
x1, x2ð Þ =

ð
ℝ

ð
ℝ+

hj−1 y1ð Þℓk−1 y2ð Þf x1, y1, x2, y2ð Þdy2dy1,

ð19Þ

with ðx1, x2Þ ∈ℝ ×ℝ+.

3. Toeplitz Operators with Nilpotent Symbols

In this section, we study Toeplitz operators with nilpotent sym-
bols and acting on the true-poly-Bergman type spaceA2

ðLÞðD2Þ.
In [3], the author has widely developed the theory of Toeplitz
operators on the Bergman spaces, and the author’s techniques
can be applied to the study of Toeplitz operators acting on
A2

ðLÞðD2Þ. To begin with, a function c ∈ L∞ðD2, dμÞ is said

to be a nilpotent symbol if it has the form cðζ1, ζ2Þ = cðIm
ζ1, Im ζ2 − jζ1j2Þ. Then, the Toeplitz operator acting on
A2

ðLÞðD2Þ, with nilpotent symbol cðζÞ, is defined by

Tcfð Þ ζð Þ = B Lð Þ cfð Þ
� �

ζð Þ, ð20Þ

where BðLÞ is the orthogonal projection from L2ðD2Þ onto

A2
ðLÞðD2Þ. The Bargmann-type operator RðLÞ identifies the

space A2
ðLÞðD2Þ with L2ðℝ ×ℝ+Þ, and it fits properly in

the study of the Toeplitz operator Tc.

Theorem 2. Let c be a nilpotent symbol. Then, the Toeplitz
operator Tc is unitary equivalent to the multiplication operator
γcI = RðLÞTcR

∗
ðLÞ, where γ

c : ℝ ×ℝ+ ⟶ℂ is given by

γc x1, x2ð Þ =
ð
ℝ

ð
ℝ+

c
−x1 + y1
2
ffiffiffiffiffi
x2

p , y2
2x2

� �
hj−1 y1ð Þ� �2 ℓk−1 y2ð Þð Þ2dy2dy1:

ð21Þ

Proof. We have

R Lð ÞTcR
∗
Lð Þ = R Lð ÞB Lð Þ cIð ÞR∗

Lð Þ

= R Lð ÞR
∗
Lð ÞR Lð Þ cIð ÞR∗

Lð Þ

= R Lð Þ cIð ÞR∗
Lð Þ

= R∗
0 Lð ÞV2V1U1U0 cIð ÞU−1

0 U−1
1 V−1

1 V−1
2 R0 Lð Þ:

ð22Þ

Recall that ζ = κðwÞ = ðw1,w2 + ijw1j2Þ, where w = ðw1,
w2Þ ∈D andwm = um + ivm. For g ∈ L2ðDÞ,

U0 cIð ÞU−1
0 g

� �
wð Þ = c κ wð Þð Þ U−1

0 g
� �

κ wð Þð Þ = c κ wð Þð Þg wð Þ:
ð23Þ

That is, U0ðcIÞU−1
0 = cðκðwÞÞI, where cðκðwÞÞ = cðv1, v2Þ.

It is easy to see thatU1ðcðv1, v2ÞIÞU−1
1 = cðv1, v2ÞI,

V1 cIð ÞV−1
1 = c s1,

s2
2 t2j j

� �
I,

V2V1 cIð ÞV−1
1 V−1

2 = c
−x1 + y1
2
ffiffiffiffiffiffiffi
x2j jp , y2

2 x2j j

 !
I:

ð24Þ

Thus

R Lð ÞTcR
∗
Lð Þ = R∗

0 Lð Þc
−x1 + y1
2
ffiffiffiffiffiffiffi
x2j jp , y2

2 x2j j

 !
IR0 Lð Þ = γc x1, x2ð ÞI,

ð25Þ

where γcðx1, x2Þ is given in (21).

By Theorem 2, the C∗-algebra generated by all Toeplitz
operators Tc is commutative (see [1, 3]), but its spectrum is dif-
ficult to figure out what it is. For this reason, we assume cer-
tain continuity conditions on the nilpotent symbols in order
to describe the spectrum of the subalgebra generated by the
Toeplitz operators. We will split our research into two cases
concerning the symbols. Firstly, we study Toeplitz operators
with symbols of the form bðIm ζ2 − jζ1j2Þ, for which

γb x1, x2ð Þ = γb x2ð Þ =
ð
ℝ+

b
y2
2x2

� �
ℓk−1 y2ð Þð Þ2dy2: ð26Þ

Secondly, we analyze Toeplitz operators with symbols of
the form aðIm ζ1Þ, for which

γa x1, x2ð Þ =
ð
ℝ
a

−x1 + y1
2 ffiffiffiffiffi

x2
p

� �
hj−1 y1ð Þ� �2dy1: ð27Þ

As mentioned above, the C∗-algebra generated by all Toe-
plitz operators Ta is still complicated to be fully described
despite its commutative property. Fortunately, the C∗-alge-
bra generated by all operators Ta can be described when the
symbols a are taken to be continuous on �ℝ = ½−∞, +∞�,
where �ℝ is the two-point compactification of ℝ. Even more,
the C∗-algebra of Toeplitz operators Ta can be still described
for symbols having finitely many jump discontinuities, as
shown in Section 6. Finally, we analyze Toeplitz operators with
symbols of the form cðζ1, ζ2Þ = aðIm ζ1ÞbðIm ζ2 − jζ1j2Þ.

4. Toeplitz Operators with
Symbols bðIm ζ2 − jζ1j2Þ

In this section, we study the C∗-algebra generated by all Toe-
plitz operators Tb with symbols of the form bðIm ζ2 − jζ1j2Þ,
where bðyÞ has limit values at y = 0, +∞. Under this continu-
ity condition, we will see that γb is continuous on �Π≔ �ℝ ×
�ℝ+, where �ℝ+ = ½0, +∞� is the two-point compactification
of ℝ+ = ð0,+∞Þ. Apply the change of variable y2 ↦ 2x2y2 in
the integral representation of γb, then
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γb x1, x2ð Þ = γb x2ð Þ = 2x2
ð
ℝ+

b y2ð Þ ℓk−1 2x2y2ð Þð Þ2dy2: ð28Þ

Actually, γb depends only on the variable x2 and is con-
tinuous on ℝ+ because of the continuity of ℓk−1ðyÞ and the
Lebesgue dominated convergence theorem.

Let L∞f0,+∞gðℝ+Þ denote the subspace of L∞ðℝ+Þ consist-
ing of all functions having limit values at 0 and +∞. For b
∈ L∞f0,+∞gðℝ+Þ, define

b0 ≔ lim
y→0+

b yð Þ, b∞ ≔ lim
y→+∞

b yð Þ: ð29Þ

It is worth mentioning that γb was obtained in [10] as the
spectral function of a Toeplitz operator acting on a true-poly-
Bergman space of the upper half-plane. Thus, we have at least
two scenarios in which γb appears as a spectral function.

Lemma 3 (see [10]). Let b ∈ L∞f0,+∞gðℝ+Þ. Then, the spectral
function γb satisfies

b∞ = lim
x2→0+

γb x2ð Þ, b0 = lim
x2→+∞

γb x2ð Þ: ð30Þ

According to Lemma 3 and Theorem 4.8 in [10], we have
the following.

Theorem 4. For b ∈ L∞f0,+∞gðℝ+Þ, the spectral function γbðx2Þ
is continuous on �ℝ = ½0, +∞�. The C∗ -algebra generated by
all functions γb, with b ∈ L∞f0,+∞gðℝ+Þ, is isomorphic and
isometric to the algebra C½0,∞�. That is, the C∗ -algebra
generated by all Toeplitz operators Tb, with bðIm ζ2 −
jζ1j2Þ ∈ L∞f0,+∞gðℝ+Þ, is isomorphic to C½0,∞�, where the
isomorphism is defined on the generators by

Tb ↦ γb: ð31Þ

Obviously, the spectral function γbðx2Þ is defined and con-
tinuous on �Π, but it is constant along each horizontal straight
line. Thus, γb is identified with a continuous function on the
quotient space �Π/�ℝ, which is homeomorphic to �ℝ+.

5. Toeplitz Operators with Continuous
Symbols aðIm ζ1Þ

In this section, we study the C∗-algebra generated by all Toe-
plitz operators Ta, where symbols aðIm ζ1Þ are taken to be
continuous on �ℝ. Once again, such a C∗-algebra can be iden-
tified with the algebra of all continuous functions on a quo-
tient space of �Π. Henceforth, ðx1, x2Þ will denote points in
�Π instead of intervals.

It is fairly simple to see that γa is continuous on Π. Take
the change of variable y1 ↦ 2 ffiffiffiffiffi

x2
p

y1 + x1 in the integral repre-
sentation of γa, then

γa x1, x2ð Þ = 2 ffiffiffiffiffi
x2

p ð
ℝ
a y1ð Þ hj−1 2 ffiffiffiffiffi

x2
p

y1 + x1ð Þ� �2dy1: ð32Þ

The function γa is continuous at each point ðx1, x2Þ ∈Π
because of the continuity of hj−1 and the Lebesgue dominated
convergence theorem. Next, we will prove that γa has one-
side limit value at each point of ℝ × f0g. For a ∈ L∞ðℝÞ, we
introduce the notation

a− = lim
y→−∞

a yð Þ and a+ = lim
y→+∞

a yð Þ, ð33Þ

if such limits exist.

Lemma 5. Let a ∈ L∞ðℝÞ, and suppose that aðyÞ converges at
y = ±∞. Then, for each x0 ∈ℝ, the spectral function γa sat-
isfies

lim
x1 ,x2ð Þ→ x0 ,0ð Þ

γa x1, x2ð Þ = a−

ðx0
−∞

hj−1 y1ð Þ� �2dy1 + a+

ð∞
x0

hj−1 y1ð Þ� �2dy1:
ð34Þ

Proof. Let A denote the right-hand side of equality (34). Take
ε > 0. We will prove that there exist δ > 0 such that jγaðx1,
x2Þ − Aj < ε whenever jx1 − x0j < δ and 0 < x2 < δ. Note that
ja−j, ja+j ≤ kak∞. Since

Ð∞
−∞ðhj−1ðy1ÞÞ2dy1 = 1, there exists

δ1 > 0 such that

ak k∞
ðδ1+x0
−δ1+x0

hj−1 y1ð Þ� �2dy1 < ε

5 : ð35Þ

Then

I ≔ γa x1, x2ð Þ − Aj j
=
ð∞
−∞

a
−x1 + y1
2 ffiffiffiffiffi

x2
p

� �
hj−1 y1ð Þ� �2dy1 − a−

ðx0
−∞

hj−1 y1ð Þ� �2dy1
����
− a+

ð∞
x0

hj−1 y1ð Þ� �2dy1
�����

≤
ð−δ1+x0
−∞

a
−x1 + y1
2 ffiffiffiffiffi

x2
p

� �
− a−

����
���� hj−1 y1ð Þ� �2dy1

+ a−j j
ðx0
−δ1+x0

hj−1 y1ð Þ� �2dy1 + a+j j
ðδ1+x0
x0

hj−1 y1ð Þ� �2dy1
+
ðδ1+x0
−δ1+x0

a
−x1 + y1
2 ffiffiffiffiffi

x2
p

� �
hj−1 y1ð Þ� �2����

����dy1
+
ð∞
δ1+x0

a
−x1 + y1
2 ffiffiffiffiffi

x2
p

� �
− a+

����
���� hj−1 y1ð Þ� �2dy1

≤ max
−∞<y1<−δ1+x0

a
−x1 + y1
2 ffiffiffiffiffi

x2
p

� �
− a−

����
���� + 3ε

5 + max
δ1+x0<y1<∞

� a
−x1 + y1
2 ffiffiffiffiffi

x2
p

� �
− a+

����
����:

ð36Þ
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We have assumed that aðyÞ converges at ±∞; then, there
exists N > 0 such that jaðyÞ − a−j < ε/5 and jaðyÞ − a+j < ε/5
for jyj >N . Let δ =min fδ1/2, δ21/ð16N2Þg. Then, we have 1
/ð2 ffiffiffiffiffi

x2
p Þj−x1 + y1j >N if jx1 − x0j < δ, 0 < x2 < δ, and jy1 −

x0j ≥ δ1. Thus,

max
−∞<y1<−δ1+x0

a
−x1 + y1
2 ffiffiffiffiffi

x2
p

� �
− a−

����
���� < ε

5 ,

max
δ1+x0<y1<∞

a
−x1 + y1
2 ffiffiffiffiffi

x2
p

� �
− a+

����
���� < ε

5 :
ð37Þ

Finally, we conclude that jγaðx1, x2Þ − Aj < ε whenever j
x1 − x0j < δ and 0 < x2 < δ.

In general, γaðx1, x2Þ does not converge at each point x
= ð±∞,+∞Þ ∈ �Π; however, γaðx1, x2Þ has limit values along
the parabolas x2 = αðx21 + 1Þ, with α > 0. We will define a
bijective mapping Φ : Π⟶Π so that ϕa = γa ∘Φ−1 will be
a continuous mapping on �Π = �ℝ × �ℝ+ with the usual
topology.

5.1. Modified Spectral Function for Ta. Let Φ : Π⟶Π be
the mapping

Φ x1, x2ð Þ = x1,
x2

x21 + 1

� �
: ð38Þ

It is easy to see that Φ−1ðt1, t2Þ = ðt1, ðt21 + 1Þt2Þ. Con-
cerning the spectral properties of Ta, the function ϕa ≔ γa ∘
Φ−1 is as important as γa, but ϕa behaves much better than
γa, at least for a continuous on �ℝ. From now on, we take
ϕa as the spectral function for the Toeplitz operator Ta. A
direct computation shows that

ϕa t1, t2ð Þ =
ð∞
−∞

a
−t1 + s1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 t21 + 1
� �q

0
B@

1
CA hj−1 s1ð Þ� �2ds1: ð39Þ

Both Φ and Φ−1 are continuous on Π. Besides, the spec-
tral function ϕa = γa ∘Φ−1 is continuous on Π because γa is.
Since Φ−1ðt1, 0Þ = ðt1, 0Þ, we have ϕaðt1, 0Þ = γaðx1, 0Þ. By
Lemma 5, ϕa is also continuous on ℝ × f0g.

Theorem 6. For aðIm ζ1Þ ∈ Cð�ℝÞ, the spectral function
ϕa : Π⟶ℂ can be extended continuously to �Π = �ℝ ×
�ℝ+.

Proof. Follows from Lemmas 5 and 7–9.

For any domain X ⊂ℝm and a function φ : X ⟶ℂ, we
write φðx0Þ to mean the limit value of φ at x0, even if x0 does
not belong to X. For example, að+∞Þ means lim

x→+∞
aðxÞ.

Lemma 7. Let a ∈ L∞ðℝÞ, and suppose that aðyÞ converges at
the points y = ±∞. Then, ϕa satisfies

lim
t1 ,t2ð Þ→ +∞,0ð Þ

ϕa t1, t2ð Þ = a −∞ð Þ: ð40Þ

That is, for ε > 0, there exists δ > 0 and N > 0 such
that jϕaðt1, t2Þj < ε whenever 0 < t2 < δ and t1 >N . Analo-
gously,

lim
t1 ,t2ð Þ→ −∞,0ð Þ

ϕa t1, t2ð Þ = a +∞ð Þ: ð41Þ

Proof. Suppose that að−∞Þ = 0. Let ε > 0. Since hj−1 ∈ L2

ðℝÞ, there exists s0 > 0 such that

ak k∞
ð∞
s0

hj−1 s1ð Þ� �2ds1 < ε

2 : ð42Þ

Take into account
Ð∞
−∞ðhj−1ðs1ÞÞ2ds1 = 1 in the follow-

ing computation

ϕa t1, t2ð Þj j =
ð∞
�∞

a
�t1 + s1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 t21 + 1
� �q

0
B@

1
CA hj�1 s1ð Þ� �2ds1

�������
�������

≤
ðs0
�∞

a
�t1 + s1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 t21 + 1
� �q

0
B@

1
CA hj�1 s1ð Þ� �2

�������
�������ds1

+
ð∞
s0

a
�t1 + s1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 t21 + 1
� �q

0
B@

1
CA hj�1 s1ð Þ� �2

�������
�������ds1

≤ max
�∞<s1<s0

a
�t1 + s1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 t21 + 1
� �q

0
B@

1
CA

�������
������� +

ε

2 :

ð43Þ

Since aðsÞ converges to zero at −∞, there exists
N1 > 0 such that jaðsÞj < ε/2 for −s >N1. Take δ = 1/ð
16N2

1Þ. Then, we have 1/ð2 ffiffiffiffi
t2

p Þ > 2N1 for 0 < t2 < δ.
On the other hand, assume t1 > s0 and −∞ < s1 < s0.
Then

t1 − s1ffiffiffiffiffiffiffiffiffiffiffi
t21 + 1

p > t1 − s0ffiffiffiffiffiffiffiffiffiffiffi
t21 + 1

p : ð44Þ
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The right-hand side of this inequality converges to 1
when t1 tends to +∞; thus, there exists N2 > s0 such that
ðt1 − s0Þ/

ffiffiffiffiffiffiffiffiffiffiffi
t21 + 1

p
> 1/2 for t1 >N2. Consequently,

N1 = 2N1
1
2 < 1

2 ffiffiffiffi
t2

p t1 − s0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t21 + 1
� �q < t1 − s1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 t21 + 1
� �q : ð45Þ

For 0 < t2 < δ and t1 >N ≔max fs0,N2g, we have

a
−t1 + s1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 t21 + 1
� �q

0
B@

1
CA

�������
������� <

ε

2 : ð46Þ

We define ~aðsÞ = aðsÞ − a2 in the case að−∞Þ ≠ 0,
where a2 ≔ að−∞Þ is a constant. Note that ~aðsÞ converges
to zero at −∞, and ϕa1+a2 = ϕa1 + ϕa2 for any nilpotent
symbols a1 and a2. Then

lim
t1,t2ð Þ→ +∞,0ð Þ

ϕa t1, t2ð Þ = lim
t1,t2ð Þ→ +∞,0ð Þ

ϕ~a+a2 t1, t2ð Þ

= lim
t1,t2ð Þ→ +∞,0ð Þ

ϕ~a t1, t2ð Þ

+a2
ð∞
−∞

hj−1 s1ð Þ� �2ds1 = a −∞ð Þ:

ð47Þ

Finally, the limit of ϕaðt1, t2Þ at ð−∞, 0Þ can be proved
analogously.

Lemma 8. Let t0 ∈ℝ+. If a ∈ L∞ðℝÞ is continuous at −1/ð2ffiffiffiffi
t0

p Þ, then the spectral function ϕa satisfies

lim
t1 ,t2ð Þ→ +∞,t0ð Þ

ϕa t1, t2ð Þ = a −
1

2
ffiffiffiffi
t0

p
� �

: ð48Þ

Analogously, if a is continuous at 1/ð2 ffiffiffiffi
t0

p Þ, then

lim
t1 ,t2ð Þ→ −∞,t0ð Þ

ϕa t1, t2ð Þ = a
1

2
ffiffiffiffi
t0

p
� �

: ð49Þ

Proof. Suppose that a converges to zero at −1/ð2 ffiffiffiffi
t0

p Þ.
Let ε > 0. Since hj−1 ∈ L2ðℝÞ, there exists s0 > 0 such
that

ak k∞
ð−s0
−∞

hj−1 s1ð Þ� �2ds1 < ε

3 ,  ak k∞
ð∞
s0

hj−1 s1ð Þ� �2ds1 < ε

3 :

ð50Þ

Take into account
Ð∞
−∞ðhj−1ðs1ÞÞ2ds1 = 1 in the fol-

lowing computation

ϕa t1, t2ð Þj j ≤
ð�s0

�∞
a

�t1 + s1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 t21 + 1
� �q

0
B@

1
CA

�������
������� hj�1 s1ð Þ� �2ds1

+
ðs0
�s0

a
�t1 + s1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 t21 + 1
� �q

0
B@

1
CA

�������
������� hj�1 s1ð Þ� �2ds1

+
ð∞
s0

a
�t1 + s1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 t21 + 1
� �q

0
B@

1
CA

�������
������� hj�1 s1ð Þ� �2ds1

< 2ε
3 + max

�s0<s1<s0
a

�t1 + s1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 t21 + 1
� �q

0
B@

1
CA

�������
�������:

ð51Þ

Because of the continuity of aðsÞ at −1/ð2 ffiffiffiffi
t0

p Þ,
there exists δ1 > 0 such that jaðsÞj < ε/3 for js − ð−1Þ/ð2ffiffiffiffi
t0

p Þj < δ1. Let us estimate the value of the argument
of a:

I ≔
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 t21 + 1
� �q −t1 + s1ð Þ − −1

2 ffiffiffiffi
t0

p

�������
�������

≤ −
1

2 ffiffiffiffi
t2

p + 1
2 ffiffiffiffi

t0
p

����
���� t1ffiffiffiffiffiffiffiffiffiffiffi

t21 + 1
p
�����

����� + 1
2 ffiffiffiffi

t0
p 1 − t1ffiffiffiffiffiffiffiffiffiffiffi

t21 + 1
p

�����
�����

+ s1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 t21 + 1
� �q

�������
�������:

ð52Þ

Choose δ > 0 in such a way j−ð1/ð2 ffiffiffiffi
t2

p ÞÞ + ð1/ð2 ffiffiffiffi
t0

p ÞÞj
< δ1/3 for jt2 − t0j < δ. Pick N1 > 0 such that j1 − t1/ðffiffiffiffiffiffiffiffiffiffiffi
t21 + 1

p
Þj < ð2 ffiffiffiffi

t0
p

δ1Þ/3 whenever t1 >N1. Now assume that j
t2 − t0j < δ and js1j < s0. Then, j1/ð2

ffiffiffiffi
t2

p Þj < 1/ð2 ffiffiffiffi
t0

p Þ + δ1/3.
Thus, js1j/ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2ðt21 + 1Þ

p
Þ converges to 0 when t1 tends to +

∞. Therefore, there exists N >N1 such that js1j/ð2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2ðt21 + 1Þ

p
Þ < δ1/3 for t1 >N. The additional condition t1 >

N implies

a
−t1 + s1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 t21 + 1
� �q

0
B@

1
CA

�������
������� < ε/3: ð53Þ

Hence, jϕaðt1, t2Þj < ε if jt2 − t0j < δ and t1 >N.
If a does not converge to zero at −ð1/ð2 ffiffiffiffi

t0
p ÞÞ, then take

the function ~aðsÞ = aðsÞ − a2 and proceed as in the proof of
Lemma 7, where a2 = að−ð1/ð2 ffiffiffiffi

t0
p ÞÞÞ.

Finally, the justification of the limit of ϕaðt1, t2Þ at
ð−∞, t0Þ can be done analogously.
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Lemma 9. Let a ∈ L∞ðℝÞ be continuous at 0 ∈ℝ. For t0 ∈ �ℝ,
the spectral function ϕa satisfies

lim
t1 ,t2ð Þ→ t0 ,+∞ð Þ

ϕa t1, t2ð Þ = a 0ð Þ: ð54Þ

Actually, we have uniform convergence of ϕaðt1, t2Þ at
ðt0, +∞Þ, that is, for ε > 0, there exists N > 0 such that j
ϕaðt1, t2Þ − að0Þj < ε for all t2 >N and for all t1 ∈ �ℝ.

Proof. Suppose that að0Þ = 0. Let ε > 0, and choose s0 > 0 such
that equations (50) hold. Then

ϕa t1, t2ð Þj j ≤
ð−s0
−∞

a
−t1 + s1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 t21 + 1
� �q

0
B@

1
CA

�������
������� hj−1 s1ð Þ� �2ds1

+
ðs0
−s0

a
−t1 + s1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 t21 + 1
� �q

0
B@

1
CA

�������
������� hj−1 s1ð Þ� �2ds1

+
ð∞
s0

a
−t1 + s1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 t21 + 1
� �q

0
B@

1
CA

�������
������� hj−1 s1ð Þ� �2ds1

< 2ε
3 + max

−s0<s1<s0
a

−t1 + s1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 t21 + 1
� �q

0
B@

1
CA

�������
�������:

ð55Þ

By the continuity of aðsÞ at 0, there exists δ1 > 0 such that
jaðsÞj < ε/3 for jsj < δ1. For −s0 < s1 < s0, we have

−t1 + s1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 t21 + 1
� �q

�������
������� ≤

1
2 ffiffiffiffi

t2
p t1ffiffiffiffiffiffiffiffiffiffiffi

t21 + 1
p
�����

����� + s1j jffiffiffiffiffiffiffiffiffiffiffi
t21 + 1

p
 !

< 1
2 ffiffiffiffi

t2
p 1 + s0ð Þ:

ð56Þ

Take N = ð1 + s0Þ2/ð4δ21Þ. The inequality t2 >N implies
1/ð2 ffiffiffiffi

t2
p Þ < δ1/ð1 + s0Þ. Thus, if t2 >N , t1 ∈ �ℝ, and −s0 < s1

< s0, then

−t1 + s1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 t21 + 1
� �q

�������
������� < δ1: ð57Þ

Consequently, jϕaðt1, t2Þj < ε for all t2 >N and t1 ∈ �ℝ.
Finally, in the case að0Þ ≠ 0, the proof can be carry out by

considering the symbol ~aðsÞ = aðsÞ − að0Þ.

For each nilpotent symbol aðIm ζ1Þ ∈ Cð�ℝÞ, the spec-
tral function ϕa is continuous on �Π and is constant
along �ℝ × f+∞g. For this reason, the C∗-algebra gener-
ated by all spectral functions ϕa is not Cð �ΠÞ, but it coin-

cides with the algebra of continuous functions on a
quotient space of �Π.

5.2. Toeplitz Operators Ta with Continuous Symbols aðIm ζ1Þ
. Introduce the quotient space Δ≔ �Π/ð�ℝ × f+∞gÞ. By
Lemma 9, the spectral function ϕa can be identified with
a continuous function on Δ, which will be also denoted
by ϕa : Δ⟶ℂ. We establish now one of our main results
in this work.

Theorem 10. The C∗ -algebra generated by all spectral func-
tions ϕa, with aðIm ζ1Þ ∈ Cð�ℝÞ, is isomorphic and isometric
to the algebra CðΔÞ. That is, the C∗ -algebra generated by all
Toeplitz operators Ta is isomorphic to CðΔÞ, where the iso-
morphism is defined on the generators by the rule

Ta ↦ ϕa: ð58Þ

Proof. The functions ϕa separate the points of Δ according to
Lemmas 11–13 below. The Stone-Weierstrass theorem com-
pletes the proof.

Lemma 11. Let ðt1, t2Þ and ðy1, y2Þ be distinct points of
�Π \Π, where they do not belong simultaneously to �ℝ
× f+∞g. Then, there exists a ∈ Cð�ℝÞ such that ϕaðt1,
t2Þ ≠ ϕaðy1, y2Þ.

Proof. First consider the nilpotent symbol a1ðsÞ = s/ð ffiffiffiffiffiffiffiffiffiffiffi
s2 + 1

p Þ,
which is continuous on �ℝ. Note that

(i) ϕa1ð±∞,t2Þ = a1ð∓1/ð2
ffiffiffiffi
t2

p ÞÞ = ∓1/ ffiffiffiffiffiffiffiffiffiffiffiffiffi1 + 4t2
p

for0 < t2 ≤ +∞,

(ii) ϕa1ð±∞,0Þ = a1ð∓∞Þ = ∓1,
(iii) ϕa1ðt1,+∞Þ = a1ð0Þ = 0 for t1 ∈ �ℝ,

(iv) ϕa1ðt1, 0Þ = −
Ð t1
−∞ðhj−1ðs1ÞÞ2ds1 +

Ð∞
t1
ðhj−1ðs1ÞÞ2ds1

for t1 ∈ℝ.

From
Ð∞
−∞ðhj−1ðs1ÞÞ2ds1 = 1, we get

ϕa1 t1, 0ð Þ = 2
ð∞
t1

hj−1 s1ð Þ� �2ds1 − 1: ð59Þ

This formula also says that ϕa1ð±∞,0Þ = ∓1. On the other
hand, the Hermite function hj−1 is continuous, and it has just
a finitely many roots. Hence, ϕa1ðt1, 0Þ is monotonically
decreasing with respect to t1. Thus, points in �ℝ × f0g are sep-
arated by ϕa1 .

Recall that �ℝ × f+∞g is identified with one point in Δ so
take ð−∞, +∞Þ as representative point of the equivalence
class �ℝ × f+∞g. For t2,~t2 ∈ ½0,∞Þ, the three points ð−∞, t2Þ,
ð−∞, +∞Þ, and ð+∞,~t2Þ are separated by ϕa1ð±∞,tÞ because
of the injective property of 1/

ffiffiffiffiffiffiffiffiffiffiffi
1 + 4t

p
.

Consider now the nilpotent symbol a2ðsÞ = 1/ðs2 + 1Þ,
which is continuous on �ℝ. We have
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(i) ϕa2ð±∞,t2Þ = a2ð∓1/ð2
ffiffiffiffi
t2

p ÞÞ = 4t2/ð1 + 4t2Þ>0 for
t2 > 0,

(ii) ϕa2ðt1,+∞Þ = a2ð0Þ = 1 for t1 ∈ �ℝ,

(iii) ϕa2ðt1, 0Þ = 0 for all t1 ∈ �ℝ.

Thus, ϕa2 separates each point ðt1, 0Þ from the points
ð±∞, t2Þ and ðt1, +∞Þ.

Now our aim is to separate the points ofΠ. Consider the
following family of continuous functions:

aα sð Þ =
0 si −∞≤s≤−α,
1
α
s + 1 si −α ≤ s ≤ 0,

1 si 0 ≤ s≤+∞:

8>><
>>: ð60Þ

Then, ϕaαðt1, t2Þ = ψαðt1, t2Þ + φðt1Þ, where

ψα t1, t2ð Þ =
ðt1
t1−2α

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 t21+1ð Þp s1 − t1

2α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 t21 + 1
� �q + 1

0
B@

1
CA hj−1 s1ð Þ� �2ds1,

ð61Þ

φ t1ð Þ =
ð∞
t1

hj−1 s1ð Þ� �2ds1: ð62Þ

Lemma 12. If ðt1, t2Þ and ðy1, y2Þ are distinct points in Π,
then there exists α > 0 such that ϕaαðt1, t2Þ ≠ ϕaαðy1, y2Þ, where
aα is defined in (60).

Proof. At first suppose that ðt1, t2Þ and ðy1, y2Þ satisfy t1 < y1.
Introduce k≔ φðt1Þ − φðy1Þ > 0. It is easy to see that
ψαðt1, t2Þ can be written as

ψα t1, t2ð Þ =
ð0
−1

s + 1ð Þ hj−1 t1 + 2α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 t21 + 1
� �q

s
� �� 2

2α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 t21 + 1
� �q

ds:

ð63Þ

This integral representation allows us to prove easily
that

lim
α→0+

ψα t1, t2ð Þ = 0: ð64Þ

Take α small enough that jψαðt1, t2Þ − ψαðy1, y2Þj < k
/2. Then

ϕaα t1, t2ð Þ − ϕaα y1, y2ð Þj j = k + ψα t1, t2ð Þ − ψα y1, y2ð Þj j
≥ k −j jψα t1, t2ð Þ − ψα y1, y2ð Þk
≥ k −

k
2 > 0:

ð65Þ

Now suppose that t1 = y1 = t and t2 < y2. Let α = 1/
ð2 ffiffiffiffiffiffiffiffiffiffiffi

t2 + 1
p Þ > 0. Then

ψα t, t2ð Þ =
ðt
t−
ffiffiffi
t2

p
s1 − tffiffiffiffi

t2
p + 1

� �
hj−1 s1ð Þ� �2ds1,

ψα t, y2ð Þ =
ðt
t− ffiffiffiy2p

s1 − tffiffiffiffiffi
y2

p + 1
� �

hj−1 s1ð Þ� �2ds1:
ð66Þ

Since 0 < t2 < y2, we have t − ffiffiffiffiffi
y2

p < t −
ffiffiffiffi
t2

p
. Besides,

the following inequality holds

0 < s1 − tffiffiffiffi
t2

p + 1 < s1 − tffiffiffiffiffi
y2

p + 1, ð67Þ

for t −
ffiffiffiffi
t2

p < s1 < t. Hence, ψαðt, t2Þ < ψαðt, y2Þ. Finally,
from φðt1Þ = φðy1Þ = φðtÞ, we get ϕaαðt, t2Þ < ϕaαðt, y2Þ.

Lemma 13. Let ðt1, t2Þ ∈Π and ðy1, y2Þ ∈ �Π \Π. Then, there
exists α > 0 such that ϕaαðt1, t2Þ ≠ ϕaαðy1, y2Þ, where aα is
given in (60).

Proof. Take ðt1, t2Þ ∈Π, ðy1, 0Þ ∈ℝ × f0g, and α > 0. It is easy
to see that ψaαðt1, t2Þ > 0. Then, we have ϕaαðy1, 0Þ = φðy1Þ
≤ φðt1Þ < ϕaαðt1, t2Þ for t1 ≤ y1. Now suppose that y1 < t1.
Let k≔ φðy1Þ − φðt1Þ > 0. The inequality ψαðt1, t2Þ < k holds
for α > 0 small enough. For such α,

ϕaα t1, t2ð Þ = ψα t1, t2ð Þ + φ t1ð Þ < φ y1ð Þ = ϕaα y1, 0ð Þ: ð68Þ

This proves that all points of Π can be separated from
points of ℝ × f0g. On the other hand,

0 < ϕaα t1, t2ð Þ = ψα t1, t2ð Þ + φ t1ð Þ
≤
ðt1
t1−2α

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 t21+1ð Þp hj−1 s1ð Þ� �2ds1 + φ t1ð Þ

=
ð∞
t1−2α

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 t21+1ð Þp hj−1 s1ð Þ� �2ds1 < 1:

ð69Þ

For y2 ∈ �ℝ+, we have ϕaαð−∞,y2Þ = aαð1/ð2 ffiffiffiffiffi
y2

p ÞÞ = 1;
hence, ϕaαðt1, t2Þ ≠ ϕaαð−∞,y2Þ:

Finally, consider the function aðsÞ≔ aαðs − αÞ. Then, ϕa
ð+∞,y2Þ = að−ð1/ð2 ffiffiffiffiffi

y2
p ÞÞÞ = 0, and consequently, ϕaðt1, t2Þ

≠ ϕað+∞,y2Þ.

6. Toeplitz Operators with Piecewise
Continuous Symbols aðIm ζ1Þ

Take a finite subset S = fβ0,⋯, βmg ⊂ℝ and let PCð�ℝ, SÞ be
the set of functions continuous on �ℝ \ S and having one-side
limit values at each point of S. In this section, we study the C∗

-algebra generated by all Toeplitz operators Ta, where aðIm
ζ1Þ ∈ PCð�ℝ, SÞ. Obviously, we have to study the algebra gen-
erated by the spectral functions ϕa. To begin with, take the
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indicator function χ+ = χ½0,+∞�. Then, the spectral function

ϕχ+ is continuous on �Π \ ð�ℝ × f+∞gÞ according to Lemmas
5, 7, and 8. Actually,

ϕχ+ t1, t2ð Þ =
ð∞
−∞

χ 0,+∞½ �
−t1 + s1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 t21 + 1
� �q

0
B@

1
CA hk−1 s1ð Þð Þ2ds1 = φ t1ð Þ,

ð70Þ

where φ is defined in (61). Hence, ϕχ+ is continuous on �Π
because φ is. Of course, we have now a spectral function
which is not constant along �ℝ × f+∞g anymore.

For any a ∈ PCð�ℝ, f0gÞ, we have

a sð Þ = ~a sð Þ + a 0+ð Þ − a 0−ð Þ½ �χ+ sð Þ, ð71Þ

where að0−Þ and að0+Þ are the one-side limits of a at 0, and
~aðsÞ = aðsÞ + ½að0−Þ − að0+Þ�χ+ðsÞ. This function has a
removable discontinuity at 0; thus, ϕa is continuous on �Π.

Theorem 14. The C∗-algebra generated by all Toeplitz opera-
tors Ta, with aðIm ζ1Þ ∈ PCð�ℝ, f0gÞ, is isomorphic and iso-
metric to Cð �ΠÞ. The isomorphism is defined on the
generators by the rule

Ta ↦ ϕa: ð72Þ

Proof. If t1 ≠ y1, the function ϕχ+ separates any two points
ðt1, t2Þ and ðy1, y2Þ ∈ �Π. By Lemma 12, two points in Π
can be separated by ϕaα , where aα is the nilpotent symbol
given in (60). Further,

ϕaα t1, 0ð Þ = φ t1ð Þ < ϕaα t1, t2ð Þ < 1 = aα 0ð Þ = ϕaα t1,+∞ð Þ:
ð73Þ

We continue our study by introducing another point
of discontinuity. Take the indicator function χβ ≔
χ½β/2,+∞�ðsÞ, where β > 0. We have

ϕχβ t1, t2ð Þ =
ð∞
−∞

χ β/2,+∞½ �
−t1 + s1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 t21 + 1
� �q

0
B@

1
CA hk−1 s1ð Þð Þ2ds1

=
ð∞
t1+β

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 t21+1ð Þp hk−1 s1ð Þð Þ2ds1:

ð74Þ

According to Lemmas 5 and 7–9, the spectral function
ϕχβ is continuous on �Π, except at the point ð−∞,1/β2Þ.
For λ0 ∈ℝ, ϕχβ takes the constant value φðλ0Þ along the
curve t1 + β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2ðt21 + 1Þ

p
= λ0. From this equation, we get

t2 = f t1ð Þ = t1 − λ0ð Þ2
β2 t21 + 1
� � , t1 ≤ λ0: ð75Þ

The horizontal line t2 = 1/β2 is an asymptote of the
graph of t2 = f ðt1Þ, and of course, ϕχβðt1, f ðt1ÞÞ = φðλ0Þ
for t1 ≤ λ0: Thus, the level curves of ϕ

χβ converge to the point
ð−∞,1/β2Þ; our aim is to separate them at ð−∞,1/β2Þ through
amapping Yβ in such a way that ϕ

χβ ∘ Y−1
β is continuous on �Π.

Lemma 15. Let g : �ℝ⟶ ½−1/2, 1/2� be any bijective, smooth,
and increasing function, with gð0Þ = 0. Take β > 0, and let Yβ

be the function on Π defined by the rule

Yβ t1, t2ð Þ = t1, t2 1 + g λ t1, t2ð Þð Þ½ �ð Þ, ð76Þ

where λðt1, t2Þ = t1 + β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2ðt21 + 1Þ

p
. Then, Yβ is an homeo-

morphism from Π onto itself, which can be continuously
extended to �Π \ fð−∞,1/β2Þg with range �Π \ ðf−∞g × JβÞ,
where Jβ = fy : :5/β2 ≤ y ≤ 1:5/β2g.

Proof. The function hðt1, t2Þ≔ 1 + gðλðt1, t2ÞÞ has range
contained in ½1/2, 3/2�. Hence, YβðΠÞ ⊂Π. Now suppose
that Yβðt1, t2Þ = Yβða, bÞ. Then, t1 = a and t2hða, t2Þ = bh
ða, bÞ. The function hða, t2Þ is strictly increasing with
respect to t2. Thus, t2 > b implies that t2hða, t2Þ > bhða, bÞ.
Consequently, Yβ is injective. Let ðc, dÞ be a point inΠ. Con-
sider the equation Yβðt1, t2Þ = ðc, dÞ, which is equivalent to
the system of equations t1 = c, t2hðt1, t2Þ = d. Thus, we have
to prove that t2hðc, t2Þ = d is solvable. The function t2hðc, t2Þ
is bijective from ð0, +∞Þ into itself with respect to t2. There-
fore, t2hðc, t2Þ = d has a unique solution. That is, Yβ : Π

⟶Π is surjective. On the other hand, Yβ is smooth and so

is Y−1
β because of the Inverse Function Theorem.
The correspondence (76) also defines Yβ on ℝ × f0g

by Yβðt1, 0Þ = ðt1, 0Þ. Actually, Yβ can be defined on �Π \
ðΠ∪fð−∞,1/β2ÞgÞ according to the following limits:

lim
t1,t2ð Þ→ t01,0ð Þ

Yβ t1, t2ð Þ = t01, 0
� �

, t01 ∈ �ℝ,

lim
t1,t2ð Þ→ +∞,t02ð Þ

Yβ t1, t2ð Þ = +∞, 32 t
0
2

� �
, t02 ∈ �ℝ,

lim
t1,t2ð Þ→ t01,+∞ð Þ

Yβ t1, t2ð Þ = t01,+∞
� �

, t01 ∈ �ℝ,

lim
t1,t2ð Þ→ −∞,t02ð Þ

Yβ t1, t2ð Þ = −∞, 12 t
0
2

� �
, 0 < t02 < 1/β2,

lim
t1,t2ð Þ→ −∞,t02ð Þ

Yβ t1, t2ð Þ = −∞, 32 t
0
2

� �
, t02 > 1/β2:

ð77Þ

We will justify just the last limit. For t1 < 0,

λ t1, t2ð Þ = t1j j −1 + β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 1 + 1

t21

� �s" #
: ð78Þ
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If t02 > 1/β2 and t2 is close enough to t02, then λðt1, t2Þ
tends to +∞ when t1 tends to −∞. Thus, lim

ðt1,t2Þ→ð−∞,t02Þ
g

ðt1, t2Þ = 1/2. Consequently,

lim
t1,t2ð Þ→ −∞,t02ð Þ

t2h t1, t2ð Þ = 3
2 t

0
2, ð79Þ

that is, Yβðt1, t2Þ converges to ð−∞,3t02/2Þ when ðt1, t2Þ
tends to ð−∞, t02Þ. A local analysis proves that Y−1

β is
continuous. This completes the proof.

Lemma 16. The function ϕχβ ∘ Y−1
β is continuous on �Π, and it

separates the points in the line segment f−∞g × Jβ. For each
continuous function ϕ : �Π⟶ℂ, ϕ ∘ Y−1

β is also continuous

on �Π and has constant value along f−∞g × Jβ.

With a discontinuity β1 = β, we define Φ1 = Yβ. Intro-

duce another point of discontinuity β2, with β1 < β2. Let P2
= ð−∞,0:5/β2

2Þ. The function ϕχβ2 ∘Φ−1
1 has a continuous

extension to �Π \ fP2g, and its level curves Φ1ðt1, ðt1 − λÞ2/ð
β2
2ðt21 + 1, ÞÞÞ, t1 > λ, converge to P2. As in Lemma 15, we

can construct a mapping Φ2 that separates all these level
curves, and ϕχβ2 ∘Φ−1

1 ∘Φ−1
2 is continuous on �Π. Adding

more discontinuity points β3,⋯, βm, with βj < βj+1, we can

construct mappings Φ3,⋯,Φm in such a way that ϕχβm ∘
Φ−1

1 ∘ ⋯ ∘Φ−1
m is continuous on �Π.

Let TSm
denote the C∗-algebra generated by all Toeplitz

operators Ta with nilpotent symbols aðIm ζ1Þ ∈ PCð�ℝ, SmÞ,
where Sm = fβ0,⋯, βmg. For simplicity in our explanation,
we assume that β0 = 0 and Sm−1 ⊂ Sm ⊂ℝ+ ∪ f0g. We will
explain how the Toeplitz algebra TSm

increases as Sm does.
By Theorem 14, TS0

is isomorphic to Cð �ΠÞ, where the iso-
morphism is given on the generators by the rule

Ψ0 : TS0
∋ Ta ↦ ϕa ∈ C �Π

� �
: ð80Þ

Consider now the algebra TS1
, where S1 = f0, β1g. By

Lemma 16, ϕa ∘Φ−1
1 is continuous on �Π for every a ∈ PCð�ℝ

, S1Þ. Then, the algebra TS1
is also isomorphic and isometric

to Cð �ΠÞ, where the isomorphism is given by

Ψ1 : TS1
∋ Ta ↦ ϕa ∘Φ−1

1 ∈ C �Π
� �

: ð81Þ

At first sight, both algebras TS0
and TS1

seem to have the
same spectrum �Π, but they do not; they are identified with
Cð �ΠÞ through different isomorphisms. Of course, TS0

is a

subalgebra of TS1
. If Ta ∈ TS0

, then ϕa ∘Φ−1
1 ∈ Cð �ΠÞ and has

constant value along the line segment I1 = f−∞g × Jβ1
.

According to the isomorphism Ψ1, we can say that the spec-
trum of TS1

equals �Π; meanwhile, the spectrum of TS1
is the

quotient space �Π/I1. This phenomenon persists as long as the
set Smgrows.

Theorem 17. Let Sm = f0, β1,⋯, βmg ⊂ℝ+. Then, there exist
bijective continuous functions Φj : Π⟶Π, j = 1,⋯,m,
such that ϕa ∘Φ−1

1 ∘⋯ ∘Φ−1
m admits a continuous extension

to �Π for each aðIm ζ1Þ ∈ PCð�ℝ, SmÞ. The C∗-algebra gener-
ated by all Toeplitz operators Ta is isomorphic and isometric
to Cð �ΠÞ. The isomorphism is defined on the generators by
the rule

Ψm : Ta ↦ ϕa ∘Φ−1
1 ∘⋯∘Φ−1

m : ð82Þ

Note that for each piecewise continuous symbol aðIm
ζ1Þ ∈ PCð�ℝ, SmÞ, in general, the spectral function γa : Π
⟶ℂ does not admit a continuous extension to �Π, but
γa ∘Φ−1 ∘Φ−1

1 ∘ ⋯ ∘Φ−1
m does, which means that γa is uni-

formly continuous with respect to a new metric on Π; this
metric is the pushforward of the usual metric using the
mapping Φ−1 ∘Φ−1

1 ∘⋯ ∘Φ−1
m .

7. Toeplitz Operators with
Symbols aðIm ζ1ÞbðIm ζ2 − jζ1j2Þ

In this section, we describe the C∗-algebra generated by
all Toeplitz operators with symbols of the form cðζ1, ζ2Þ
= aðIm ζ1ÞbðIm ζ2 − jζ1j2Þ, where aðsÞ ∈ Cð�ℝÞ, and bðtÞ ∈
L∞ðℝ+Þ has limit values at t = 0, +∞. For such a symbol
c, we have that γc = γaγb, which means that Tc = TaTb

= TbTa. Although γb belongs to Cð �ΠÞ, the spectral func-
tion

γb ∘Φ−1
� �

t1, t2ð Þ =
ð
ℝ+

b
y2

2 t21 + 1
� �

t2

 !
ℓk−1 y2ð Þð Þ2dy2,

ð83Þ

is continuous on �Π \ fP−, P+g, where P− = ð−∞,0Þ and
P+ = ð+∞,0Þ. Since the level curves of γbðx1, x2Þ are the
horizontal lines x2 = μ, the level curves of γb ∘Φ−1 are
given by the equations t2 = μ/ðt21 + 1Þ, with μ ∈ℝ+.

Lemma 18. Let f : ½0,+∞�→ ½0, 1� be any bijective, smooth,
and increasing function. Then, the function

Θ t1, t2ð Þ = t1, t2 +
t21

t21 + 1
f t2 t21 + 1

� �� �� �
, ð84Þ

is an homeomorphism from Π onto itself, which can be con-
tinuously extended to �Π \ fP−, P+g with range �Π \ I∞, where
I∞ = fðτ1, τ2Þ: τ1 = ±∞and0 ≤ τ2 ≤ 1g. We have Θð±∞,t2Þ
= ð±∞,t2 + 1Þ for 0 < t2 < +∞, and Θ acts like the identity
mapping at the rest of points in �Π \ ðΠ ∪ fP−, P+gÞ.

Proof. Similar to the proof of Lemma 15.
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The image of the level curve t2 = μ/ð1 + t21Þ under Θ is
the curve

τ2 =
μ

τ21 + 1 + f μð Þ τ21
τ21 + 1 : ð85Þ

This means that the level curves of γb ∘Φ−1 ∘Θ−1 do
not converge to a single point anymore.

Lemma 19. The function γb ∘Φ−1 ∘Θ−1 is continuous on �Π,
and for each continuous function ϕ : �Π⟶ℂ, ϕ ∘Θ−1 is also
continuous on �Π and has constant value along each compo-
nent of I∞.

Theorem 20. The C∗-algebra generated by all Toeplitz opera-
tors Tab, with aðIm ζ1Þ ∈ PCð�ℝ, f0gÞ and bðtÞ ∈ L∞ðℝ+Þ
having limits values at t = 0, +∞, is isomorphic and isomet-
ric to Cð �ΠÞ. The isomorphism is defined on the generators
by the rule

Tab ↦ γab ∘Φ−1 ∘Θ−1: ð86Þ

For the Toeplitz operator Tχβ
with symbol χβ =

χ½β/2,+∞ÞðIm ζ1Þ, there exists a mapping Θβ : Π⟶Π

such that γχβ ∘Φ−1 ∘Θ−1 ∘Θ−1
β admits a continuous

extension to �Π. The construction of Θβ is similar to
the construction of Φβ given in Lemma 15, where
one has to take into account the level curves of the
spectral function γχβ ∘Φ−1 ∘Θ−1, which converge to the
point ð−∞,1 + 1/β2Þ.

Implicitly, we have considered several compactifications
of Π associated to the C∗-algebras studied herein; each
compactification depends on the kind of symbols. Take
Q− = ð−∞, +∞Þ and Q+ = ð+∞, +∞Þ, let us explain the
situation in the case of the algebra generated by the Toe-
plitz operators with symbols aðIm ζ1Þ ∈ Cð�ℝÞ. Essentially,
the corresponding compactification of Π is obtained from
�Π \ ðfQ−,Q+gÞ by gluing a line segment at each corner Q−
and Q+. Each spectral function γaðx1, x2Þ is continuous on
�Π \ ðfQ−,Q+gÞ and has limit values when ðx1, x2Þ moves
along the parabolas x2 = μ + μx21 and tends to Q±. For a
net fXλg tending to Q+, fγaðXλÞg converges if fXλg is
eventually in gaps between two parabolas close enough
from each other with respect to the parameter μ.
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