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We describe certain C*-algebras generated by Toeplitz operators with nilpotent symbols and acting on a poly-Bergman type space

of the Siegel domain D, ¢ C2. Bounded measurable functions of the form ¢(Im ¢,,Im ¢, —|¢,|*) are called nilpotent symbols. In

this work, we consider symbols of the form a(Im {,)b(Im {, - |¢,]*), where both limits lirgl b(s) and lim b(s) exist, and a(s)
s—0* $—+00

belongs to the set of piecewise continuous functions on R = [~c0, + co] and having one-side limit values at each point of a finite
set S C R. We prove that the C*-algebra generated by all Toeplitz operators T, is isomorphic to C(IT), where IT=R x R, and

R, =0, +oo0].

1. Introduction

In the study of Toeplitz operators, one of the common strat-
egies consists in selecting a set of symbols E ¢ L* in such a
way that the algebra generated by Toeplitz operators with
symbols in E can be described up to isomorphism, say, with
an algebra of continuous functions or finding its spectrum.
In this paper, we study Toeplitz operators with nilpotent
symbols and acting on a poly-Bergman type space of the Sie-
gel domain D, c C2. In [1-3], the authors have fully
described all commutative C*-algebras generated by Toeplitz
operators with symbols invariant under the action of a max-
imal abelian subgroup of biholomorphisms and acting on the
Bergman spaces of both the unit disk D and the Siegel
domain D, c C". For the unit disk, they discovered three
families of symbols associated to commutative C*-algebras
of Toeplitz operators, while for the Siegel domain, they found
n+2 classes of symbols. Each class of symbols is invariant
under the action of a maximal abelian group of biholo-
morphism. Certainly, one can use these classes of symbols
to study Toeplitz operators acting on poly-Bergman type
spaces of the unit disk or the Siegel domain.

Let [T={z=x+iy€C:y>0} be the upper half-plane.
Toeplitz operators with vertical symbols, which depend on

y =1Im z, and acting on Bergman type spaces have been stud-
ied. In [4-9], the authors proved that the algebra generated
by Toeplitz operators with vertical symbols and acting on
the weighted Bergman space /3 (IT) is isometrically isomor-
phic to the algebra VSO(R,) of all bounded functions that
are very slowly oscillating on R,. Taking vertical symbols
having limit values at y = 0 and y = co, in [10, 11], the authors
found that R, = [0, +00] is the spectrum of the algebra gener-
ated by all Toeplitz operators on the true-poly Bergman
space of %n> (IT). Similar research was made for Toeplitz oper-
ators on poly-Bergman spaces with homogeneous symbols
([12, 13]). Other works about it were made in [14-16], where
the authors studied Toeplitz operators acting on d%n)(ﬂ )

from the point of view of wavelet spaces. On the other hand,
in [17, 18], the authors studied Toeplitz operators on the
Fock space F3(C) with radial and bounded horizontal sym-
bols; they found that spectral functions are uniformly contin-
uous with respect to an adequate metric. Taking horizontal
symbols having one-side limits at x = +o00, in [19, 20], the
authors studied Toeplitz operators acting on poly-Fock
spaces F7(C); they found the spectrum of the C*-algebra
generated by such Toeplitz operators. Even though the
authors described the C*-algebras generated by all spectral
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functions, the spectrum of the algebras is not fully under-
stood in some cases; for this reason, additional conditions
on the symbols are imposed.

In [1, 2], the authors made remarkable research on the
study of Toeplitz operators acting on the Bergman space of
the Siegel domain D, ¢ C". In particular, they studied the
C*-algebra Ty generated by all Toeplitz operators with
bounded nilpotent symbols, which are functions of the form
al()=a(Imd{,, -, Im{, ;,Im{, - |C’|2), where ¢' = ({,, -+
,,_1)- Let us denote this kind of symbols by N,,. Although
Ty is commutative, it is too large, so it is impossible to figure
out what its spectrum is. In particular, in [21, 22], the authors
described the algebra generated by Toeplitz operators acting
on the weighted Bergman space &/3(D,) over three-
dimensional Siegel domain D, using nilpotent symbols of
the form ¢(y,)g(Im 5 - [({ Cz)|2)

The main purpose of the paper is to find the spectrum of
the algebra generated by Toeplitz operators acting on the
true-poly-Bergman type space &i(zm (D)) over two-
dimensional Siegel domain D, by selecting a particular set
of nilpotent symbols. In this sense, we just consider nilpotent
symbols of the form a(Im¢,) and b(Im ¢, - |¢,]*). This
paper is organized as follows. In Section 2, we recall how
poly-Bergman type spaces are defined for the Siegel domain,
and how they can be identified with a L?-space through a
Bargmann type transform. In Section 3, we introduce Toe-
plitz operators acting on Qf%L) (D,) with nilpotent symbols;
we show that such Toeplitz operators are unitary equivalent
to multiplication operators. In Section 4, we take symbols
of the form b(Im {, — |Cl|2) for which both limits lirg b(s)
and lim b(s) exist; it is proved that the C*-algebra generated

s—+00

by all Toeplitz operators T, is isomorphic to C(R, ), where
R, =[0, +00] is the one-point compactification of [0, +c0).
In Section 5, we take nilpotent symbols of the form a(Im (),
where a € C(R), and R = [-00, + 00] is the two-point com-
pactification of R; we prove that the C*-algebra generated by
all Toeplitz operators T, is isomorphic to C(A), where A = IT
/(R x {+00}) and IT = R x R,. In Section 6, we describe the
C~-algebra generated by all Toeplitz operators T,;, where
d(Im ;) € PC(R, S), and PC(R,S) is the set of all piece-
wise continuous functions on R having one-side limit
values at each point of a finite set S ¢ R. Finally, in Section
7, we describe the C*-algebra generated by all Toeplitz
operators T, =T,T,=T,T,.

2. Poly-Bergman Type Spaces of the
Siegel Domain

In this section, we recall some results obtained in [23], which
are needed in our research about Toeplitz operators. Each
€ C" will be represented as an ordered pair ¢ =({’,{,),
where (' =((;,--{, ;) €C"'. Besides, the Euclidean
norm function will be denoted by |-|. The Siegel domain
is defined by
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D, = {c: (c’,cn) €C™'xC:Im¢, - [’ > o}. (1)

We will study Toeplitz operators acting on certain
poly-Bergman type subspaces of L*(D,,du,), where d

U, (0)=(Im ¢, - \C'|2)/\dy((), with A>-1, and du({) is
the usual Lebesgue measure. Once and for all, L*(X)
means L?(X, dm), where X is any subset of a Euclidean
space and dm is the Lebesgue area measure on X.

For each multi-index L=(I,---,1,) € N", the poly-
Bergman type space o/3,(D,) is the closed subspace of
L*(D,, du,) consisting of all L-analytic functions, that is,
all functions f({) satisfying the equations

d 2\
<— —2i(m—> f=0, l<m<n-1,

o¢,, o¢,

2 \"
o

o¢,
In particular, for L=(1,---,1), o/3,(D,) is just the
Bergman space. Likewise, the anti-poly-Bergman type
space s?ﬂiL(Dn) is defined to be the complex conjugate of

3,(D,). Thus, we introduce true-poly-Bergman type
spaces as follows:

’Q{%\(L) (Dn) = ‘Q{%\L(Dn) e (Z ‘Q{iL—em (Dn)> >

eS;ff\(L) (Dn) = ‘S;{/Z\L(Dn) e (Z eS;{i,L—em (Dn)> >

where e, =(0,---,1,---,0) and the 1 is placed at the m
-entry. We assume that &/%)(D,)={0} whenever L e
Z"\N".

In [23], the authors proved that L*(D,,du,) equals
to the direct sum of all the true-poly-Bergman type
spaces:

(D, dmy) = (@ 3, (D,)) D (& F1y(Dy))- (&)

LeN" LeN"

The authors also proved that &Yﬁa) (D,) is isomor-
phic and isometric to the tensor product

PR eH, &-oH oL’ R,)8Z |, (5
where R, =(0,00). Both H, and £, are one-

dimensional spaces defined below. Recall the Hermite
and Laguerre polynomials:
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for m=0,1,2,---
functions

Recall also the Hermite and Laguerre

O HL ()7 840) = (1), ()

hy(y) = ———
) )
(7)

where ¢, =/ml/[(m+A+1) and I is the usual

Gamma function. It is well known that {h,}, , and
{21 are orthonormal bases for L?(R) and L*(R,,
yrdy), respectively. Finally, H, =span{h,} and Z, =
span{e} }.

In this work, we restrict ourselves to the study of Toeplitz
operators acting on the true-poly-Bergman type spaces over
two-dimensional Siegel domain D, with the Lebesgue mea-
sure du (A = 0). Henceforth, the space 'Q[S(L) (D,) will be sim-
ply denoted by QY(ZL) (D,); similarly, ¢,,(y) and L,,(y) stand
for €% (y) and L? (y), respectively. The true-poly-Bergman
type space &/(;)(D,) can be identified with L*(RxR,)

through a Bargmann type transform ([23]), such identifica-
tion fits to the study of Toeplitz operators with nilpotent
symbols. Several operators are needed to define such identifi-
cation. To begin with, we introduce the flat domain @ =C
x IT, where I = R x R, ¢ C. Then, & can be identified with
D, using the mapping

K DI3w=(wy, w,) = (w, w, +ilw,[*) €D,.  (8)

Thus, we have the unitary operator U, : L*(D,, du)
—> L*(9, dn) given by

(Uof)(w) = f(k(w)), ©)

where dyj(w) = du(w). Take w = (w,, w,) € Cx I, with w,,
=u,, +iv,, and m=1,2. We identify w = (u, + v}, u, + iv,)
with (u;, vy, 4,, v,). Then

L*(2,dn) =L1*(R,du,) ® L*(R, dv,) ® L*(R, du,) ® L*(R,, dv,).

(10)
Introduce
U =F®I®F®I, (11)

where F is the Fourier transform acting on L*(RR) by the rule

(Fo)(0)= = glweax (12)

—00

Consider now the following two mappings acting on Z:

v = tis)pw= <El,t2 +i3—2),
2|ty

Y, 2= (x +iy,z,) 8
= <m<x1 +y1)+ iﬁ(_’cl +J’1)’Zz>>
(13)

where &= (§,,¢,), z=(21,2,) €9, &, =t,, +is,,, and 2, =
X,, + iy,,. Both functions y, and v, lead to the following uni-
tary operators acting on L*(9, d):

1
(Vlf)(f)=W ¥1(8)) (V29)(2) = 9(v5(2)). (14)

Henceforth, L= (I}, 1,) = (j, k).

Theorem 1 (see [23]). The operator U =V,V,U,U, is uni-
tary and maps L?(D,, du) onto the space

L*(2,dn) = I*(R, dx;) ® [*(R, dy,) ® L*(R, dx,) ® *(R,, dy,).
(15)

For each L= (j,k) € N, the operator U restricted to
.QifL) (D,) is an isometric isomorphism onto the space

ans I*(R) ®span{h;_;(y,)} ® L*(R,) ® span{_;(y,)}-
(16)

Introduce the isometric linear embedding Ry, : L2
(RxR,)— L*(D) defined by

(RO(L)g) (X1 Y1 %2, ¥) = AR, (x%2) g(x1>%3) hjy (1)1 (72)-
(17)

Of course, #;) is the range of Ry(;), and it is also the
image of of %L) (D,) under U. Thus, the operator

Ry =Ry U : L*(Dy) — L*(RxR,), (18)

isometrically maps the true-poly-Bergman type space ,QY%L)
(D,) onto L*(Rx R, ). Therefore, R;)R(;) =1 and R(;\ R,
=B;), where B(;) is the orthogonal projection from L*(D,)
onto szf%L) (D,). In addition, the operator Rf;) = U” Ry plays
the role of the Segal-Bargmann transform for the true-poly-
Bergman type space ,QY(ZL) (D,), where the adjoint operator
Ry L*(2) — L*(R x R,) is given by
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+ (19)

with (x},x,) e RxR,.
3. Toeplitz Operators with Nilpotent Symbols

In this section, we study Toeplitz operators with nilpotent sym-
bols and acting on the true-poly-Bergman type space &/ %L) (D,).
In [3], the author has widely developed the theory of Toeplitz
operators on the Bergman spaces, and the author’s techniques
can be applied to the study of Toeplitz operators acting on
de) (D,). To begin with, a function ¢ € L*°(D,,du) is said
to be a nilpotent symbol if it has the form ¢({;,{,) = c(Im

{;,Im{, —|¢,|*). Then, the Toeplitz operator acting on
.QY%L) (D,), with nilpotent symbol ¢({), is defined by

(TE) = (Buy(eh) @), (20)

where B(;) is the orthogonal projection from L*(D,) onto
ol (D ) identifies the
space d(L)( ,) with L*(RxR,), and it ﬁts properly in
the study of the Toeplitz operator T..

»)- The Bargmann-type operator R

Theorem 2. Let ¢ be a nilpotent symbol. Then, the Toeplitz
operator T . is unitary equivalent to the multiplication operator
YI=Ry TR ) where y° : Rx R, — Cis given by

o= [ [ (G2 32 ) 000 0 e,
@)

Proof. We have

Ry TeR(y) = Ry By (DR
=Ry Rty Ry (DR,
= Ry (DR},
= R;(L) VoViU U (el) Uy Uy vy VEIRO(L)'
(22)

Recall that ¢ = x(w) = (w,, w, + ilw,|*), where w = (w,,
w,) € Dandw,, = u,, +iv,,. For g € L*(D),

c(k(w))(Up' 9) (k(w)) = c(x(w)) g (w).
(23)

(Uo(cD)Uy' g) (w) =

That is, Uy (cI)Uy" = c(k(w))I, where c(xk(w)) = c(vy, v,).
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Itis easy to see that U, (c(v;, v,) ) U;" = c(vy, v,)1,

Vi (cI)V;' = c(sl, %) I,
2

(24)
VoV (Vv = 2 2 )
2 1( ) 1 2 (2 |x2‘ 2|x2|
Thus
=X +y y
T.R(; LIS o xp, %),
() L (2 /—|x2 2|x2|> Y(l 2)
(25)

where y°(x,, x,) is given in (21).

By Theorem 2, the C*-algebra generated by all Toeplitz
operators T, is commutative (see [1, 3]), but its spectrum is dif-
ficult to figure out what it is. For this reason, we assume cer-
tain continuity conditions on the nilpotent symbols in order
to describe the spectrum of the subalgebra generated by the
Toeplitz operators. We will split our research into two cases
concerning the symbols. Firstly, we study Toeplitz operators
with symbols of the form b(Im ¢, — |¢,]*), for which

Pl ) =P (r) = jkb(y—Z) (br )P dyy (26)

2x,

Secondly, we analyze Toeplitz operators with symbols of
the form a(Im {,), for which

Vo= | o(SH2) () @)

As mentioned above, the C*-algebra generated by all Toe-
plitz operators T, is still complicated to be fully described
despite its commutative property. Fortunately, the C*-alge-
bra generated by all operators T, can be described when the
symbols a are taken to be continuous on R =[-co, + 0],
where R is the two-point compactification of R. Even more,
the C*-algebra of Toeplitz operators T, can be still described
for symbols having finitely many jump discontinuities, as
shown in Section 6. Finally, we analyze Toeplitz operators with

symbols of the form ¢(,,¢,) = a(Im ¢,)b(Im {, — |¢,]*).

4. Toeplitz Operators with
Symbols b(Im {, — [¢,|*)

In this section, we study the C*-algebra generated by all Toe-
plitz operators T), with symbols of the form b(Im ¢, - |¢,]*),
where b(y) has limit values at y = 0, +c0. Under this continu-
ity condition, we will see that y is continuous on IT := R x
R,, where R, = [0, +00] is the two-point compactification
of R, = (0,+00). Apply the change of variable y, — 2x,y, in
the integral representation of y?, then



Journal of Function Spaces

b(yz)(ek—l(zxz)’z))zd)’r (28)

+

Y6 x) =1 (x) = 2, j

R

Actually, y® depends only on the variable x, and is con-
tinuous on R, because of the continuity of €,_,(y) and the
Lebesgue dominated convergence theorem.

Let LY . oy (R, ) denote the subspace of L(R,) consist-

ing of all functions having limit values at 0 and +oco. For b

€ L0 100} (R, ), define
by =l b(3). by = fim b(y). (29)

It is worth mentioning that yb was obtained in [10] as the
spectral function of a Toeplitz operator acting on a true-poly-
Bergman space of the upper half-plane. Thus, we have at least
two scenarios in which y? appears as a spectral function.

Lemma 3 (see [10]). Let be LY

{0’+00}(1R+). Then, the spectral

function y° satisfies

bo= lim y(x,). (30)

X,—+00

b_ = lim yb(xz),

[e3)
x,—0"

According to Lemma 3 and Theorem 4.8 in [10], we have
the following.

Theorem 4. For be LY, .\ (R,), the spectral function Y (x,)

is continuous on R =[0, +o0o]. The C* -algebra generated by
all functions y°, with be Ly, oy (R,), is isomorphic and
isometric to the algebra C[0,c0]. That is, the C* -algebra

generated by all Toeplitz operators T, with b(Im{, -

P €L,

isomorphism is defined on the generators by

(R,), is isomorphic to C[0, 00|, where the

Tb|—>yb. (31)

Obviously, the spectral function y®(x, ) is defined and con-
tinuous on IT, but it is constant along each horizontal straight
line. Thus, y? is identified with a continuous function on the
quotient space IT/IR, which is homeomorphic to R,.

5. Toeplitz Operators with Continuous
Symbols a(Im ()

In this section, we study the C*-algebra generated by all Toe-
plitz operators T,, where symbols a(Im () are taken to be
continuous on R. Once again, such a C*-algebra can be iden-
tified with the algebra of all continuous functions on a quo-
tient space of IT. Henceforth, (x,,x,) will denote points in
IT instead of intervals.

It is fairly simple to see that y* is continuous on I1. Take
the change of variable y, — 2,/X,y, + x, in the integral repre-
sentation of y“, then

Y15 %3) = z\/x—zj 00 (1 2/, +30)) oy, (32)

a
R
The function y? is continuous at each point (x,,x,) € IT

because of the continuity of ;_; and the Lebesgue dominated

convergence theorem. Next, we will prove that y* has one-
side limit value at each point of R x {0}. For a € L(R), we
introduce the notation

a_= lim a(y)anda, = lim a(y), (33)

y——00 y—+00
if such limits exist.

Lemma 5. Let a € L°(R), and suppose that a(y) converges at
y =to00. Then, for each x, € R, the spectral function y* sat-

isfies

X 00

(hj,1(y1))2d)’1 + a+J (hj—l(yl))zdyl'

*o

lim (x5 x,) = a,J
() (x00) (x> x2) o

(34)
Proof. Let A denote the right-hand side of equality (34). Take

e>0. We will prove that there exist 8 >0 such that |y*(x,,
x,) — A| < & whenever |x; —x,| <8 and 0 < x, < §. Note that

la_|,|a,| < ||a||o. Since f(fooo(hj_l(yl))zdy1 =1, there exists
0, > 0 such that

S, +x, ) €
lalo| " (at)Vdn<s o 9)

Then

L= [y*(x1, %) = A

- U(:Oa <_;1/¥1) (hi ) dy, - a_Jio (h; (7)) dy,

- a+JOO (hj—l(J’1))2d)’1

Xo

SJ 51+X0 a(_xl +y1> 4
o |\ 2%
clal[" (a0 el
-8, +x,
8, +x,
‘]
—-8,+x,
0
‘]
8, +x,

<

—00<y, <=0, +x,

(hj-l()’1))2d)’1

8, +x,

(hj—l(yl))zdyl

X0

a(_;%l> (hjl(yl))z‘dyl

—X +y 2
“( 21\/’?;1> —a, (hj—l(yl)) dy,
a(_xl +)’1> —a

25
() |
25

3¢
+ — + max
5 8,+xy<y,<00




We have assumed that a(y) converges at +oo; then, there
exists N >0 such that |a(y) —a_| <e/5 and |a(y) —a,| <&/5
for |y| > N. Let 8 = min {8,/2, 87/(16N?)}. Then, we have 1
1(2/%;)|=%, +y,| > N if |x; — x| <8, 0<x, <8, and [y, -
x| = 8,. Thus,

(—xl +y1> €
max a —a_| <o,
—00<y, <=0, +x, 2,\/%, 5 (37)
—X; + &€
ma a 11 —a,|<—.
8, +x<y, <00 2, /X, 5

Finally, we conclude that |y?(x;, x,) — A| < ¢ whenever |
x; —xy| <8 and 0 < x, < 4.

In general, y*(x,, x,) does not converge at each point x
= (+00,+00) € IT; however, y*(x,, x,) has limit values along
the parabolas x, = a(x? + 1), with a>0. We will define a
bijective mapping @ : IT — IT so that ¢* =y% o @~ will be

a continuous mapping on IT=R xR, with the usual
topology.

5.1. Modified Spectral Function for T,. Let @ : IT — IT be
the mapping

D(x), x,) = <x1, L) (38)

x+1

It is easy to see that @'(f,,t,) = (t;, (17 + 1)t,). Con-
cerning the spectral properties of T, the function ¢ :== % o
@' is as important as y°, but ¢ behaves much better than
y“, at least for a continuous on R. From now on, we take
¢ as the spectral function for the Toeplitz operator T,. A
direct computation shows that

¢u(t1’t2)=ro“ _hte (hj—l(sl))zdsl' (39)

-0\ 24/t, (1 +1)

Both @ and @ ! are continuous on IT. Besides, the spec-
tral function ¢* =% o @' is continuous on IT because y* is.
Since @7'(t,,0)=(t,,0), we have ¢?(t;,0)=y%(x;,0). By
Lemma 5, ¢ is also continuous on R x {0}.

Theorem 6. For a(Im{,) € C(R), the spectral function
¢* : I1—> C can be extended continuously to IT=R x
R,.

Proof. Follows from Lemmas 5 and 7-9.

For any domain X ¢ R” and a function ¢ : X — C, we
write ¢(x,) to mean the limit value of ¢ at x,, even if x, does
not belong to X. For example, a(+00) means lim a(x).

X—+00
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Lemma 7. Let a € L°(R), and suppose that a(y) converges at
the points y = +0o. Then, ¢” satisfies

¢ (1 1) = a(~co). (40)

lim
(£15t2)—=(+00,0)

That is, for €>0, there exists §>0 and N >0 such
that |¢*(t;,t,)| <& whenever 0<t,<8 and t;>N. Analo-

gously,

lim “(t,,t,) =a(+00). 41
m g ) = a(oo) (1)

Proof. Suppose that a(-00) =0. Let &>0. Since h;_, € L?
(R), there exists s, >0 such that

Jallo| (50 < 5. (42)

So

Take into account ffooo(hj,l(sl))zds1 =1 in the follow-
ing computation

© —t +5

9%t t,)| = J (hj—l(sl))zdsl

—oo |\ 24/t (1 +1)
S —
SJO _hts (hj—l(sl))z ds,
—oo| | 24/t, (1 +1)
(¢]
. J a
So
—t + 8

&
< max 4| ——— + —.
T\ 24/, (B +1)

—t+8

— | (hi_, (5 2d51
2,/t,(£+1) (hj-a(e0)

(43)

Since a(s) converges to zero at —oco, there exists
N, >0 such that |a(s)|<e/2 for —s>N,;. Take &=1/(
16N?). Then, we have 1/(2y/f,)>2N; for 0<t,<é.
On the other hand, assume t;,>s, and —co<s; <s,.
Then

ty—$

>
ViE+1

ti =5

VEFL

(44)
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The right-hand side of this inequality converges to 1
when ¢, tends to +00; thus, there exists N, > s, such that

(t; —so)/\/t2 +1>1/2 for t; > N,. Consequently,

1 t =5 1751 (45)

1 t
N,=2N, - < < .
L2 AR ey 2o

For 0<t, <& and t; > N :=max {sy, N, }, we have

—t +
al T £ (46)

2/t (F+1)

We define a(s)=a(s) —a, in the case a(-o0)+0,
where a, == a(—00) is a constant. Note that a(s) converges
to zero at —oco, and ¢“*%2 = ¢ + ¢* for any nilpotent
symbols a, and a,. Then

¢ (1), 1)

¢°(t1: 1)

lim  ¢%(t,t,)=  lim

(tt2) = (+00,0) (trt) = (+00,0)

= lim
(t1ty) = (+00,0)

+“2Jio (hj,l(sl))zds1 = a(-00).

(47)

Finally, the limit of ¢*(¢,,¢,) at (=00, 0) can be proved
analogously.

Lemma 8. Let ty€ R,. If a e L°(R) is continuous at —1/(2
Vo), then the spectral function ¢“ satisfies

1
lim Yt t)=al — . 48
(oo ? 112 ( 2\/5) o
Analogously, if a is continuous at 1/(2./%,), then
li “(t,,t,) = 1 (49)
(tz’tz)_l’I(rzoo’to)(p ( L 2) -4 2\/6 .

Proof. Suppose that a converges to zero at —1/(2./%;).
Let e>0. Since hj, € *(R), there exists s,>0 such
that

o £ 0 €
Jallo| (a5 < S5 | a650) s < 5.
(50)

Take into account ffooo(hj_l(sl))zdslzl in the fol-
lowing computation

% —t +5

—oo| \ 24/t (8 +1)

(51)

Because of the continuity of a(s) at -1/(21/%,),
there exists 8, >0 such that |a(s)| <e&/3 for |s—(-1)/(2
VT)| <0,. Let us estimate the value of the argument
of a:

1 -1
I=|——— (-t +5)) — ——=
2,/t,(B+1) 2Vt
1 1 t 1 t
<|- + + 1- (52)
2V 2G| /Bl 2Vh 2+1

s
. 1

2,/6(8+1)

Choose & >0 in such a way |—-(1/(2y/%,)) + (1/(2v/%,))]
<8,/3 for |t,—1ty|<8. Pick N;>0 such that |I—¢/(
V1 +1)| < (24/%,0,)/3 whenever ¢, > N;. Now assume that |
t, —to] <& and [s;| < s,. Then, |1/(2/%,)| < 1/(2/F,) + 6,/3.
Thus, [s;]/(21/t,(t2 + 1)) converges to 0 when ¢, tends to +
00. Therefore, there exists N >N; such that |s]|/(2

t,(t3 + 1)) < 8,/3 for t; > N. The additional condition t, >
N implies

—t +
L7 || <e. (53)

24/t (1] +1)

Hence, [¢°(t,, 1,)| < eif |t, —t,| <Sand t; > N.

If a does not converge to zero at —(1/(24/%,)), then take
the function a(s) = a(s) — a, and proceed as in the proof of
Lemma 7, where a, = a(—(1/(2./%,)))-

Finally, the justification of the limit of ¢“(¢,,t,) at
(—00,t,) can be done analogously.



Lemma 9. Let a € L (R) be continuous at 0 € R. For t, € R,
the spectral function ¢* satisfies

lim  ¢%(t;, t,) =a(0). (54)

(£15t2) = (tg,+00)

Actually, we have uniform convergence of ¢°(t,,t,) at
(tg, +00), that is, for €>0, there exists N> 0 such that |
¢ (t;t,) —a(0)| <e for all t,>N and for all t; € R.

Proof. Suppose that a(0) = 0. Let € > 0, and choose s, > 0 such
that equations (50) hold. Then

% —t; +s
|¢“(t1,t2)|SJ a —

ool \ 24/t (81 +1)
So
+j a
-5
(00]
+j a
So

&
< —+ max |a
—5<5, <5,

(hj 1 (sy)) ds,

=1+

24/t (11 +1)

-t +5;
2/t (6 +1)
-t +5
24/t (15 + 1)
(55)
By the continuity of a(s) at 0, there exists §; > 0 such that

la(s)| < &/3 for |s| < §;. For —s, <'s; <'s,, we have

|51

1
F><2¢5

t2

=t +5$
2,/t,(B+1) 2\/_<
(56)

Take N = (1 +s5,)*/(46?). The inequality ¢, > N implies
1/(24/1;) <8,/(1 +55). Thus, if £, >N, t; € R, and —s, <s,
< sy, then

=t +58

S i S P (57)
2/t (5 +1)

Consequently, |¢%(t,,t,)| <eforallt, >N and ¢, € R.
Finally, in the case a(0) # 0, the proof can be carry out by
considering the symbol a(s) = a(s) — a(0).

For each nilpotent symbol a(Im ;) € C(R), the spec-
tral function ¢? is continuous on IT and is constant
along R x {+0co}. For this reason, the C*-algebra gener-
ated by all spectral functions ¢* is not C(IT), but it coin-

(1+5s).
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cides with the algebra of continuous functions on a
quotient space of IT.

5.2. Toeplitz Operators T , with Continuous Symbols a(Im ;)
. Introduce the quotient space A:=II/(Rx {+0co}). B

Lemma 9, the spectral function ¢ can be identified with
a continuous function on A, which will be also denoted
by ¢* : A— C. We establish now one of our main results
in this work.

Theorem 10. The C* -algebra generated by all spectral func-
tions ¢, with a(Im {,) € C(R), is isomorphic and isometric
to the algebra C(A). That is, the C* -algebra generated by all
Toeplitz operators T, is isomorphic to C(A), where the iso-
morphism is defined on the generators by the rule

T, ¢ (58)

Proof. The functions ¢* separate the points of A according to
Lemmas 11-13 below. The Stone-Weierstrass theorem com-
pletes the proof.

Lemma 11. Let (t;,t,) and (y,,y,) be distinct points of

IT\II, where they do not belong simultaneously to R
x {+0o}. Then, there exists a€ C(R) such that ¢°(t,,

t) # (v, y,)

Proof. First consider the nilpotent symbol a, (s) = s/(v/s2 + 1),
which is continuous on R. Note that

(i) ¢" (xoo,ty) =a,(F1/(2V/F)) =

for0 < t, < +00,

F1/4/1 +4t,

(ii) ¢"(+£00,0) =a,(Fo0) =71,

(iii) ¢* (t;,+00) =a,(0)=0fort, € R,

(iv) ¢“(t,,0) = _jt,loo(hjfl(sl))zdﬁ + j?(hj—l(sl))zdsl
fort, e R.
From f‘jo(x)(h]_l(sl))zds1 =1, we get

(0]

(hya(s1)) dsy ~ 1. (59)

¢%(t,,0) = ZJ
tl

This formula also says that ¢* (+00,0) = ¥1. On the other
hand, the Hermite function h;_, is continuous, and it has just
a finitely many roots. Hence, ¢* (¢;,0) is monotonically
decreasing with respect to t,. Thus, points in R x {0} are sep-
arated by ¢™.

Recall that R x {+00} is identified with one point in A so
take (—0o, +00) as representative point of the equivalence
class R x {+00}. For t,, t, € [0,00), the three points (—co, t,),
(-0, +00), and (+00,t,) are separated by ¢* (+00,t) because
of the injective property of 1/4/1 + 4.

Consider now the nilpotent symbol a,(s) =
which is continuous on R. We have

1/(s* + 1),
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(i) ¢%(xoo,ty) = a,(F1/(2\/1,)) = 4t,/(1 +4t,)>0  for
t, >0,

(i) ¢*(t,,+00) =a,(0)=1for t, € R,
(iii) ¢*(¢,,0)=0 for all t, € R.

Thus, ¢™ separates each point (#;,0) from the points
(+00,t,) and (t;,+00).

Now our aim is to separate the points of I1. Consider the
following family of continuous functions:

0 si  —00<s<—q,
1
a,(s)=q —s+1 si —a<s<0, (60)
a
1 si  0<s<+o0.

Then, ¢ (t,,t,) =w*(t;,t,) + ¢(t; ), where

h s — 1t

f2ay/t(1141) | 20y /8, (1 +1)

Vit t) = J +1 (hj—l(sl))zdsl’

(61)

(B (1)) ds,. (62)

a1

¢(t) :J

Lemma 12. If (t;,t,) and (y,,y,) are distinct points in II,
then there exists a > 0 such that ¢°«(t,,t,) # ¢*(y,,y,), where
a, is defined in (60).

Proof. At first suppose that (¢, t,) and (y,, y,) satisfy ¢, < y,.
Introduce k:=¢(t;) —¢(y;) >0. It is easy to see that
y(t,,t,) can be written as

w@ﬂﬁ:[#+U@H(ﬁ+m¢z@:5grm¢g@:5$

(63)

This integral representation allows us to prove easily
that

lim y*(t,,t,) = 0. (64)

a—0"

Take « small enough that |y*(¢,,t,) —y*(y,»,)| <k
/2. Then

[¢% (15 15) = % (v o) = [k + ¥ (1, 5) =¥ (¥, 7))
> |k - |‘//a(t1’ t) _‘//a()’l’)’z)”

2k—k>0.
2

(65)

Now suppose that t;, =y, =t and t,<y,. Let a=1/

(2vt2+1)>0. Then

wa(tt)_Jt (Sl_t
s\ Ve

viem=[ (5 ) o

Since 0<t,<y,, we have t—,/y, <t-./t,. Besides,
the following inequality holds

+ 1) (hj_l(sl))zdsl,
(66)

-t -t
0« tir<ily, (67)

Vh Vi

for t-./f, <s; <t. Hence, y*(t,t,) <y*(t,y,). Finally,
from () = p(y,) = p(t), we get ¢*(t,1,) <$™(t,y,).

Lemma 13. Let (t;,t,) € Il and (y,, y,) € I1 \ II. Then, there
exists o> 0 such that ¢%(t,,t,) #¢*(y,,y,), where a, is
given in (60).

Proof. Take (t,,t,) € I, (y,,0) € R x {0}, and & > 0. It is easy
to see that y“(t,t,) > 0. Then, we have ¢*(y,,0)=¢(y,)
<@(t) <¢%(t;,t,) for t; <y,. Now suppose that y, <t,.
Let k=¢(y,) — ¢(t;) > 0. The inequality y*(t, t,) < k holds
for & > 0 small enough. For such «,

Pt ) =yt 1) +(t) <p(ry) = ¢™(y1,0).  (68)

This proves that all points of IT can be separated from
points of R x {0}. On the other hand,

0<@(ty,ty) =y (1, 1) + (1)

< Jtl (hjfl(sl))zdsl +o(t))

th-2ay/t,(£+1) (69)

_[” hy \(s1))2ds, < 1.
L_zam(f )

For y, € R,, we have ¢%(-co,y,)=a,(1/(2/7;))=1;
hence, ¢ (t,, 1,) # ¢ (-00,,).

Finally, consider the function a(s) := a (s — ). Then, ¢*
(+00,y,) = a(—(l/(Z\/y_z))) =0, and consequently, ¢*(¢,1,)
# ¢ (+00,9,).

6. Toeplitz Operators with Piecewise
Continuous Symbols a(Im ()

Take a finite subset S= {3, -+, $,,} C R and let PC(RR, S) be
the set of functions continuous on R \ S and having one-side
limit values at each point of S. In this section, we study the C*
-algebra generated by all Toeplitz operators T, where a(Im
{,) € PC(R, S). Obviously, we have to study the algebra gen-
erated by the spectral functions ¢?. To begin with, take the



10

indicator function x, =y, Then, the spectral function

0,+00]*
¢X+ is continuous on IT \ (R x {+00}) according to Lemmas
5,7, and 8. Actually,

e —t, +5;

X[o,+c0] (hya(51)) dsy = (1)

-00 24/t (5 +1)

Pr (1, 1) =J
(70)

where ¢ is defined in (61). Hence, ¢*+ is continuous on IT
because ¢ is. Of course, we have now a spectral function
which is not constant along R x {+co0} anymore.

For any a € PC(R, {0}), we have

a(s)=a(s) +[a(0,) —a(0_

where a(0_) and a(0, ) are the one-side limits of a at 0, and
a(s)=a(s) +[a(0_) —a(0,)]x,(s). This function has a
removable discontinuity at 0; thus, ¢” is continuous on IT.

)X (5), (71)

Theorem 14. The C*-algebra generated by all Toeplitz opera-
tors T,, with a(Im {;) € PC(R, {0}), is isomorphic and iso-
metric to C(II). The isomorphism is defined on the
generators by the rule

T, ¢, (72)

Proof. If t, # y,, the function ¢X+ separates any two points
(t;,t,) and (y,,y,) € II. By Lemma 12, two points in IT
can be separated by ¢, where a, is the nilpotent symbol
given in (60). Further,

¢ (t;,+00).
(73)

¢ (t1,0) = p(t)) <™ (t;, t,) <1=a,(0) =

We continue our study by introducing another point
of discontinuity. Take the indicator function Xg=

X(g/2,+00)(8)> Where 8> 0. We have

© -t +s;

Xipr,
RS P ATy

P (11, 1,) j (B (s))%ds,

= v h i (s)))ds,.
jtﬁﬁ (t%+1)( 1(51))
(74)

According to Lemmas 5 and 7-9, the spectral function
¢*# is continuous on IT, except at the point (—00,1/8%).
For A, € R, ¢! takes the constant value ¢(A,) along the

curve t; + B+/t,(t2 + 1) = A,. From this equation, we get

_ () -
t —f(tl)—m,ﬁ—/\o- (75)
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The horizontal line t,=1/8* is an asymptote of the

graph of t,=f(t,), and of course, ¢*(t;,f(t;))=0p(A,)
for t; < /\0. Thus, the level curves of ¢*# converge to the point

(—00,1/B%); our aim is to separate them at (—00,1/B%) through
amapping Yz in such a way that ¢ o Y5 3 1s continuous on II.

Lemma 15. Let g : R — [-1/2, 1/2] be any bijective, smooth,
and increasing function, with g(0) = 0. Take B> 0, and let Y
be the function on II defined by the rule

Yp(tys 1) = () 1[I+ g(A(t) 1)), (76)
where At} t;) =t; + /t,(t; + 1). Then, Y4 is an homeo-
morphism from II onto itself, which can be continuously
extended to IT\ {(~co,1/B)} with range IT\ ({-c0} x ] 5),
where Jg={y : SIFF <y <1517}

Proof. The function h(t;,t,)=1+ g(A(t;,t,)) has range
contained in [1/2,3/2]. Hence, Y(IT) C II. Now suppose
that Yp(t,t,) = Yg(a, b). Then, t,=a and t,h(a,t,) = bh
(a,b). The function h(a,t,) is strictly increasing with
respect to t,. Thus, t, > b implies that t,h(a, t,) > bh(a, ).
Consequently, Yy is injective. Let (¢, d) be a point in IT. Con-
sider the equation Y(t,,t,) = (¢, d), which is equivalent to
the system of equations ¢, = ¢, t,h(t;,t,) = d. Thus, we have
to prove that t,h(c, t,) = d is solvable. The function t,h(c, t,)
is bijective from (0, +00) into itself with respect to t,. There-
fore, t,h(c,t,) =d has a unique solution. That is, Yp: IT

— I1 is surjective. On the other hand, Y is smooth and so
is YZ;I because of the Inverse Function Theorem.

The correspondence (76) also defines Yz on Rx {0}
by Yg(t,,0) = (t,,0). Actually, Y, can be defined on IT\
(ITU{(~00,1/B%)}) according to the following limits:

lim Yﬁ(tl’tZ):

t%,0),t° € R,
(t12)—(120) (:0)- 1

3 _
lim  Yg(t,ty) = <+oo,2tg),tge]R,
(t1tr) = (+00t9)

lim  Yg(t, ) = (),400), 1) € R,
(tl,tz)—>(t‘1’,+oo) f ( )

lim gt 1) =( —t2>,0<t <1/p%,

(tl’fz)—’(—oo to
. t)lu(n ) p(tity) = ( 00, =~ 2),1‘0 > 1/
vl —00,

(77)

We will justify just the last limit. For t; <0,

At ty) =t [—1 +pB t2<1 + %)] (78)
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If 19> 1/ and t, is close enough to t3, then A(t;,t,)

tends to +0co when ¢, tends to —co. Thus, lim
(tity) = (-00.t))

(t,>t,) =1/2. Consequently,

lim  th(t,t,) = gtg, (79)

(f1’12>—’(‘°°"2)

that is, Yg(t,,t,) converges to (-c0,3t9/2) when (t,,t,)
tends to (-00,f3). A local analysis proves that Yj' is
continuous. This completes the proof.

Lemma 16. The function $* o Y 5! is continuous on I, and it
separates the points in the line segment {~co} X J 5. For each
continuous function ¢ : IT— C, ¢ o Y is also continuous
on IT and has constant value along {-co} x .

With a discontinuity 8, = 3, we define @, =Y. Intro-
duce another point of discontinuity f3,, with 8, < ,. Let P,
= (-00,0.5/f3). The function ¢ o ®d;! has a continuous
extension to IT\ {P,}, and its level curves @, (¢, (t, - A)*/(
B3(£2+1,))), t; > A, converge to P,. As in Lemma 15, we
can construct a mapping @, that separates all these level
curves, and ¢*%: o @' o @' is continuous on I1. Adding
more discontinuity points S, -+, 8., with 8, < ,,,, we can
construct mappings @j, -+, ®,, in such a way that ¢*n o
®;'o -0l is continuous on I1.

Let Tg denote the C*-algebra generated by all Toeplitz
operators T, with nilpotent symbols a(Im {,) € PC(R,S,,),
where S,, = {B,, -, B,,}. For simplicity in our explanation,
we assume that f,=0 and S,,_; ¢S, cR, U{0}. We will
explain how the Toeplitz algebra T increases as S, does.
By Theorem 14, T, is isomorphic to C(IT), where the iso-
morphism is given on the generators by the rule

¥, : TSOBTab—Mp“EC(ﬁ). (80)

Consider now the algebra T, where S, ={0,3,}. By

Lemma 16, ¢* o @' is continuous on IT for every a € PC(R
»S;). Then, the algebra T'g is also isomorphic and isometric

to C(IT), where the isomorphism is given by
¥, T 3T, ¢" @' € C(IT). (81)

At first sight, both algebras Tg and T’y seem to have the

same spectrum I1, but they do not; they are identified with
C(II) through different isomorphisms. Of course, T; is a

subalgebra of T . If T, € T , then ¢" o @' € C(IT) and has
constant value along the line segment I;={-0co}x ] .
According to the isomorphism ¥, we can say that the spec-
trum of T equals I1; meanwhile, the spectrum of T is the
quotient space I1/I,. This phenomenon persists as long as the
set §,,grows.
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Theorem 17. Let S,, = {0, 3,, -+, B,,} C R,. Then, there exist
bijective continuous functions Q- II—1II, j=1,-,m,
such that ¢* o @' o --- o @1 admits a continuous extension
to I1 for each a(Im {,) € PC(R,S,,). The C*-algebra gener-
ated by all Toeplitz operators T, is isomorphic and isometric
to C(II). The isomorphism is defined on the generators by
the rule

Y, T, ¢ o @ lono® ], (82)

Note that for each piecewise continuous symbol a(Im
{,) € PC(R,S,,), in general, the spectral function y*: IT
— C does not admit a continuous extension to II, but
Y o@ lo® o 0@l does, which means that y* is uni-
formly continuous with respect to a new metric on IT; this
metric is the pushforward of the usual metric using the
mapping @' o @[t o0 DL

7. Toeplitz Operators with )
Symbols a(Im ¢, )b(Im {; - |(;]%)

In this section, we describe the C*-algebra generated by
all Toeplitz operators with symbols of the form ¢({;,(,)
=a(Im ¢,)b(Im ¢, - |¢,|*), where a(s) € C(R), and b(t) €
L®(R,) has limit values at ¢t =0, +c0. For such a symbol
¢, we have that y°=9%)", which means that T,=T,T,
=T,T,. Although y’ belongs to C(IT), the spectral func-
tion

(o0 (1 t2) = Jb(z(/T)J (81 (7))
(83)

is continuous on IT\{P_,P,}, where P_=(-00,0) and
P, = (+00,0). Since the level curves of y’(x,,x,) are the
horizontal lines x, =y, the level curves of y’o®! are
given by the equations t, = u/(? + 1), with peR,.

Lemma 18. Let f : [0,+00] — [0, 1] be any bijective, smooth,
and increasing function. Then, the function

O(t) t,) = (tl,t2+ tztﬁf(tz[tiﬂ])), (84)

1

is an homeomorphism from I1 onto itself, which can be con-
tinuously extended to IT\ {P_, P, } with range I \ I, where
Io={(r},1,): 7, =t0c0and0<t,<1}. We have ©(+00,t,)

= (x00,t, + 1) for 0< t, < +00, and © acts like the identity
mapping at the rest of points in IT\ (ITU {P_, P, }).

Proof. Similar to the proof of Lemma 15.
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The image of the level curve t, = /(1 + t3) under © is
the curve

2
7]

%
= + )
2 2 +1 S 3+1

(85)

This means that the level curves of y?c®1o@®! do
not converge to a single point anymore.

Lemma 19. The function y® o @1 o @' is continuous on II,
and for each continuous function ¢ : IT — C, ¢ o © ! is also
continuous on IT and has constant value along each compo-
nent of I ...

Theorem 20. The C*-algebra generated by all Toeplitz opera-
tors T,,, with a(Im{,) € PC(R,{0}) and b(t) € L°(R,)
having limits values at t = 0, +00, is isomorphic and isomet-
ric to C(I1). The isomorphism is defined on the generators
by the rule

Ty yPod oo™ (86)

For the Toeplitz operator TXﬁ with symbol ;=
X[p2.e00)(Im Cy), there exists a mapping ®p : IT— 11
such that y¥od'o®! °®E1 admits a continuous
extension to I1. The construction of ©p is similar to
the construction of (Dﬁ given in Lemma 15, where
one has to take into account the level curves of the
spectral function p¥ o®1o@!, which converge to the
point (—o0,1 + 1/%).

Implicitly, we have considered several compactifications
of IT associated to the C*-algebras studied herein; each
compactification depends on the kind of symbols. Take
Q_=(-00, +00) and Q, = (+00, +00), let us explain the
situation in the case of the algebra generated by the Toe-
plitz operators with symbols a(Im {;) € C(R). Essentially,
the corresponding compactification of IT is obtained from
IT\ ({Q-Q,}) by gluing a line segment at each corner Q_
and Q,. Each spectral function y*(x;,x,) is continuous on
IT\ ({Q-Q,}) and has limit values when (x;,x,) moves
along the parabolas x, =y + ux? and tends to Q,. For a
net {X,} tending to Q,, {y*(X,)} converges if {X,} is
eventually in gaps between two parabolas close enough
from each other with respect to the parameter p.
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