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In this paper, we prove a sufficient condition that every nonempty closed convex bounded pair ðM,NÞ in a reflexive Banach space B
satisfying Opial’s condition has proximal normal structure. We analyze the relatively nonexpansive self-mapping T on M ∪N
satisfying TðMÞ ⊆M and TðNÞ ⊆N , to show that Ishikawa’s and Halpern’s iteration converges to the best proximity point. Also,
we prove that under relatively isometry self-mapping T on M ∪N satisfying TðNÞ ⊆N and TðMÞ ⊆M, Ishikawa’s iteration
converges to the best proximity point in the collection of all Chebyshev centers of N relative to M. Some illustrative examples
are provided to support our results.

1. Introduction and Preliminaries

Let M and N be nonempty subsets of a Banach space B. A
mapping T : M ∪N →M ∪N satisfying ∥Ts − Tt∥≤∥s − t∥
(respectively, ∥Ts − Tt∥ = ∥s − t∥) for all s ∈M, t ∈N is called
relatively nonexpansive mapping (respectively, relatively
isometry mapping). For more results on relatively nonexpan-
sive (respectively, relatively isometry) mappings, readers can
see the research papers in [1, 2] and references therein.

For any two nonempty bounded subsets M and N of a
Banach space B, we denote some notations as follows:

R s,Nð Þ≔ sup ∥s − t∥ : t ∈Nf g,
M0 ≔ s ∈M : ∥s − t∥ = dist M,Nð Þfor some t ∈Nf g,
N0 ≔ t ∈N : ∥s − t∥ = dist M,Nð Þ for some s ∈Mf g,

ð1Þ

where distðM,NÞ≔ inf f∥s − t∥ : s ∈M and t ∈Ng. Here, it is
to note that if M ∩N ≠∅, then M0 =N0 =M ∩N .

Let M be a nonempty convex subset of a normed linear
space X, and let T : M→M be a mapping with FixðTÞ ≠∅,
where FixðTÞ = fs ∈M : Ts = sg. A set M is said to have

approximate fixed point property (AFPP) if the nonexpan-
sive mapping T has an approximate fixed point sequence,
that is, a sequence fpng in M satisfies lim

n→+∞
∥Tpn − pn∥ = 0.

Definition 1 [3]. A normed space X is said to be uniformly
convex (or uniformly rotund) if and only if for every ε ∈ ð0,
2� there exists δ > 0 such that ð∥s + t∥/2Þ ≤ 1 − δ whenever s,
t ∈ X implies ∥s∥ = 1, ∥t∥ = 1, and ∥s − t∥≥ε.

Definition 2 [4]. A nonempty convex subset M of a Banach
space B is said to have normal structure if for any nonempty
convex closed bounded subset S ofM with diamðSÞ > 0 there
exists s ∈ S such that Rðs, SÞ < diamðSÞ, where diamðSÞ =
diamðS, SÞ = sup fRðs, SÞ: s ∈ Sg.

Eldred et al. [1] introduced the notions of proximal pair
and proximal normal structure.

Definition 3 [1]. A nonempty pair ðM,NÞ of a normed linear
space X is known as a proximal pair if, for every ðs, tÞ ∈M ×N
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,there exists ðs′, t ′Þ ∈M ×N such that

∥s − t ′∥ = dist M,Nð Þ = ∥s′ − t∥: ð2Þ

Anonempty convex pair ðM,NÞ in a Banach space B is said
to have proximal normal structure if ðM1,N1Þ ⊆ ðM,NÞ is a
closed bounded convex pair for which distðM1,N1Þ = distðM
,NÞ and diamðM1,N1Þ > distðM1,N1Þ, there exists ðs1, t1Þ ∈
M1 ×N1 such that

R s1,N1ð Þ < diam M1,N1ð Þ
= sup R s1,N1ð Þ: s1 ∈M1f g andR t1,M1ð Þ
< diam M1,N1ð Þ:

ð3Þ

Here, it is to note that every nonempty convex weakly
compact pair in a uniformly convex Banach space has proximal
normal structure. If M =N, then proximal normal structure
becomes normal structure of Definition 2.

Definition 4 [5]. A proximal pair ðM,NÞ in a Banach space B
is known as a proximal parallel pair if

(1) for every element ðs, tÞ in M ×N , there exists a
unique element ðs1, t1Þ in M ×N such that ∥s − t1∥
= ∥t − s1∥ = distðM,NÞ and

(2) N =M + h, where h is a unique element in B

Further, Espinola [5] proved the following lemma.

Lemma 5 [5]. If ðM,NÞ is a nonempty proximal pair in a
strictly convex Banach space B , then proximal pair ðM,NÞ
is a proximal parallel pair.

Definition 6 [6]. The nonempty proximal parallel pair ðM,NÞ
in a Banach space B is said to have rectangle property if for
any s, t ∈M,

∥s + h − t∥ = ∥t + h − s∥, ð4Þ

where h ∈ B and N =M + h.

Eldred et al. [1] proved the following result.

Theorem 7 [1]. Let ðM,NÞ be a nonempty closed bounded
convex pair in a uniformly convex Banach space B . Let T be
a relatively nonexpansive self-mapping on M ∪N satisfying T
ðMÞ ⊆M and TðNÞ ⊆N . Let s0 ∈M be an initial point, and
define a sequence (Krasnoselskii’s iteration formula) by sn+1 =
ðsn + Tsn/2Þ, n ≥ 0 . Then, lim

n→+∞
kTsn − snk = 0 . If TðMÞ is a

subset of some compact set in B , then the limit point of fsng
under the norm topology is the best proximity point of T.

It is ascertained that the geometric property, that is, prox-
imal normal structure, was used in the following result of
Eldred et al. [1].

Theorem 8 [1]. Let B be a strictly convex Banach space, and
let ðM,NÞ be a nonempty weakly compact convex pair having
proximal normal structure. Let T be a self-mapping onM ∪N
satisfying

T Mð Þ ⊆M, T Nð Þ ⊆N and∥Ts − Tt∥ ≤ ∥s − t∥for all s ∈M, t ∈N ,
ð5Þ

then T has fixed points s ∈M, t ∈N , and ∥s − t∥ = distðM,NÞ.

Definition 9 [7]. Let M be a nonempty convex subset of a real
Hilbert spaceH , and let T be a self-mapping onM . Let s0 ∈M
be an initial point, and fsng is a sequence defined by

sn+1 = 1 − ξnð Þsn + ξnTtn, tn = 1 − ηnð Þsn + ηnTsn, ð6Þ

where 0 ≤ ξn ≤ 1, 0 ≤ ηn ≤ 1, n ≥ 0.

The iterative sequence defined in (6) is called Ishikawa’s
iteration. If ηn = 0, then Ishikawa’s iteration sequence reduces
to Mann’s iteration sequence. Eldred and Praveen [8] gener-
alized and extended Theorem 7 of Eldred et al. [1] by using
Mann’s iteration method.

Definition 10 [9]. Let M be a nonempty convex subset of a
real Hilbert space H , and let T be a self-mapping on M
. Fix u ∈M . Let p0 ∈M be an initial point, and a sequence
fpng is defined by

pn+1 = ξnu + 1 − ξnð ÞTpn, 0 ≤ ξn ≤ 1, n ≥ 0: ð7Þ

The iterative sequence defined in (7) is called Halpern’s
iteration.

The following interesting result will be used extensively
in the sequel.

Proposition 11 [10]. Let X be a uniformly convex normed
linear space, 0 < α < 1 , and ε > 0 . For any r > 0 , if s, t ∈ X
are such that ∥s∥≤r, ∥t∥≤r, ∥s − t∥≥ε , then there exists δ = δ
ðε/rÞ > 0 such that

∥αs + 1 − αð Þt∥ ≤ 1 − 2δ
ε

r

� �
min α, 1 − αf g

� �
r: ð8Þ

Almezel et al. [11] modified the result of Xu [12] in the
following way.

Lemma 12 [11, 12]. Let fxng be a sequence of nonnegative
real numbers satisfying

xn+1 ≤ 1 − ηnð Þxn + ηnνn, n ≥ 0, ð9Þ

where fηng and fνng satisfy the following conditions.

(1) fηng is a sequence in �0, 1½, where ∑+∞
n=1 ηn = +∞

(2) fνng is a sequence in ℝ; either limsup
n→+∞

ηn ≤ 0 or ∑+∞
n=0

∣ ηnνn ∣ < +∞
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Then, xn → 0 as n→ +∞.

Let M and N be nonempty bounded subsets of a Banach
space B. The number RðM,NÞ≔ inf fRðs,NÞ: s ∈Mg is the
Chebyshev radius of N relative to M and CMðNÞ≔ fs ∈M
: Rðs,NÞ = RðM,NÞg is the set of all Chebyshev centers of
N relative to M. Since the function R is convex and continu-
ous on X, R is lower semicontinuous with respect to the weak
topology. Consequently, ifM is a nonempty weakly compact
convex set, then CMðNÞ is a nonempty convex weakly
compact subset of M. Rajesh and Veeramani [2] proved the
following proposition.

Proposition 13 [2]. Let ðM,NÞ be a nonempty convex
weakly compact proximal parallel pair in a Banach space
B . Let the nonempty pair ðM,NÞ have the rectangle prop-
erty. Then, Rðs,NÞ = Rðs + h,MÞ for s ∈M , and Rðt,MÞ
= Rðt − h,NÞ for t ∈N . Moreover, CNðMÞ = CMðNÞ + h.

Definition 14 [13]. Let B be a Banach space. We say that B sat-
isfies Opial’s condition if for any sequence fpng in B converges
weakly to some s , then limsup

n→+∞
kpn − pk > limsup

n→+∞
kpn − sk for

all p ≠ s ∈ B . If a reflexive Banach space B satisfies Opial’s
condition, then B has a normal structure.

Proposition 15 (demiclosed principle [13]). Let B be a
Banach space, and letM be a nonempty weakly compact subset
of B . Also, let T be a nonexpansive self-mapping onM with Fix
ðTÞ ≠∅ . If a sequence fpng inM converges weakly to s and a
sequence fðI − TÞpng converges strongly to p , then ðI − TÞs = p
. Moreover, if p = 0 , then I − T is demiclosed at zero.

We need the following result of Dutta and Veeramani
[14] to prove Proposition 17.

Theorem 16 [14]. If a nonempty convex pair ðM,NÞ in a
Banach space B does not have a proximal normal structure,
then there exist sequences fsng ⊂M, ftng ⊂N such that ∥sn
− tn∥ = distðM,NÞ for all n, ∥sm − tn∥> distðM,NÞ for some
m, n and

lim
n→+∞

dist sn+1, conv t1, t2,⋯, tnf gð Þ = diam snf g, tnf gð Þ,
ð10Þ

or

lim
n→+∞

dist tn+1, conv s1, s2,⋯, snf gð Þ = diam snf g, tnf gð Þ,
ð11Þ

where diamðfsng, ftngÞ = diamðfs1,⋯, sn,⋯g, ft1,⋯, tn,
⋯gÞ.

2. Opial’s Condition and Ishikawa’s
Iteration for Relatively
Nonexpansive Mappings

The geometrical property, that is, the proximal normal struc-
ture, is the sufficient condition for the existence of the best
proximity [1]. For details about the best proximity point,
one can see research papers in [1, 2, 5, 15–19]. We now prove
the following result, which shows that the above condition
can be dropped if a reflexive Banach space satisfies Opial’s
condition.

Proposition 17. Every closed bounded convex pair ðM,NÞ in
reflexive Banach space B satisfying Opial’s condition has
proximal normal structure.

Proof. Suppose the pair ðM,NÞ does not have a proximal nor-
mal structure. Then, by Theorem 16, there exist sequences
fsng ⊂M, ftng ⊂N such that ∥sn − tn∥ = distðM,NÞ for all n,
∥sm − tn∥>distðM,NÞ for some m, n, and lim

n→+∞
distðtn+1,

convfs1, s2,⋯, sngÞ = Rðfsng, ftngÞ. Let the sequence fsng
converges weakly to 0. Therefore, 0 ∈ �convfs1, s2,⋯, sng.

Suppose s ∈ convfs1, s2,⋯, sng, then lim
n→+∞

∥s − tn∥ = Rðf
sng, ftngÞ, and the same holds as s ∈ �convfs1, s2,⋯, sng. There-
fore, when taking s = 0, we get lim

n→+∞
∥tn∥ = Rðfsng, ftngÞ, and

lim
n→+∞

∥s1 − tn∥ = Rðfsng, ftngÞ, which is a contradiction, hence

the result.

After analyzing the theorems, definitions, lemma, and
propositions mentioned above, we have some impressive
new results herewith.

Theorem 18. Let ðM,NÞ be a nonempty convex closed
bounded proximal pair of B , a uniformly convex Banach
space. Let T be a relatively nonexpansive self-mapping on M
∪N satisfying TðMÞ ⊆M and TðNÞ ⊆N . Let s0 ∈M be an
initial point, and a sequence fsng is defined as

sn+1 = 1 − ξnð Þsn + ξnTtn, tn = 1 − ηnð Þsn
+ ηnTsn, θ < ηn ≤ ξn < 1 − θ, 0 < θ ≤

1
2
, lim
n→+∞

ξnηn = 0:

ð12Þ

Then, lim
n→+∞

∥Tsn − sn∥ = 0. If TðMÞ is a subset of a

compact set, then the limit point of fsng under the norm
topology is the best proximity point of T .

Proof. If distðM,NÞ = 0, then it is not necessary to discuss.
Suppose distðM,NÞ > 0, then by applying the result of
Theorem 8, there exists t ∈N such that Tt = t. Since

∥sn+1 − t∥ ≤ 1 − ξnð Þ∥sn − t∥+ξn∥Ttn − t∥
≤ 1 − ξnð Þ∥sn − t∥+ξn 1 − ηnð Þ∥sn − t∥
+ξnηn∥Tsn − t∥ ≤ ∥sn − t∥,

ð13Þ
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f∥sn − t∥g is a nonincreasing sequence, there exists k > 0
such that lim

n→+∞
∥sn − t∥ = k.

Suppose lim
n→+∞

∥Tsn − sn∥≠ 0, then there exists a subse-

quence fsnig of fsng such that

∥sni − Tsni∥ ≥ ε > 0: ð14Þ

Let α ∈ �0, 1½ and ε1 such that ε/α > k and 0 < ε1 < min
fðε/αÞ − k, ðkδðαÞ/ð1 − δðαÞÞÞg. Since B is a uniformly
convex Banach space, the modulus of convexity function
δð:Þ is strictly increasing and continuous. Hence, 0 < δðαÞ
< δðε/ðk + ε1ÞÞ. So, we can choose a small positive number
ε1 > 0 such that ð1 − aδðε/ðk + ε1ÞÞÞðk + ε1Þ < k, where a > 0
.

Let ∥sni − t∥≤k + ε1 and ∥tni − t∥≤k + ε1 for some i. Now,

∥t − Ttni∥ ≤ ∥t − tni∥ = ∥t − 1 − ηni

� �
sni + ηniTsni

n o
∥

= ∥ 1 − ηni

� �
t − sni
� �

+ ηni t − Tsni
� �

∥

≤ 1 − 2δ ε

k + ε1

� �
min ηni , 1 − ηni

n o� �
k + ε1ð Þ

≤ 1 − a1δ
ε

k + ε1

� �� �
k + ε1ð Þ,

ð15Þ

where 0 < a1 ≤ 2 min fηni , 1 − ηnig. Further

∥t − sni+1∥ = ∥t − 1 − ξni
� �

sni + ξniTtni
� 	

∥

= ∥ 1 − ξni
� �

t − sni
� �

+ ξni t − Ttni
� �

∥

≤ 1 − 2δ ε

k + ε1

� �
min ξni , 1 − ξni

� 	� �
k + ε1ð Þ

≤ 1 − a2δ
ε

k + ε1

� �� �
k + ε1ð Þ,

ð16Þ

where 0 < a2 ≤ 2 min fξni , 1 − ξnig:
By choosing ε1 > 0 as small as we wish, we get

max 1 − a1δ
ε

k + ε1

� �� �
k + ε1ð Þ, 1 − a2δ

ε

k + ε1

� �� �
k + ε1ð Þ


 �
< k,

ð17Þ

which is a contradiction. Hence, lim
n→+∞

∥Tsn − sn∥ = 0 and

lim
n→+∞

∥sn+1 − sn∥ = 0.
If TðMÞ is compact, then the sequence fsng has a

subsequence fsnig such that lim
i→+∞

sni = s ∈M. Since ðM,NÞ
is a proximal pair, there exists v ∈N such that ∥s − v∥ =
distðM,NÞ.

Now, we have lim
i→+∞

∥sni − v∥ = distðM,NÞ, and f∥sn − v∥g
is a nonincreasing sequence; it implies that lim

n→+∞
∥sn − v∥ =

distðM,NÞ. This shows that lim
n→+∞

sn = s ∈M. By strict

convexity of the norm, lim
n→+∞

∥Tsn − v∥ = distðM,NÞ and ∥T

sn − Tv∥≤∥sn − v∥→ distðM,NÞ as n→ +∞ give Tv = v. Since
lim

n→+∞
∥Tsn − sn∥ = 0, it follows that Ts = s.

We obtain the following result from Theorem 18 by
taking ηn = 0 for n ∈ℕ.

Corollary 19 [8]. Let ðM,NÞ be a nonempty convex closed
bounded proximal pair of B , a uniformly convex Banach
space, and let T be a relatively nonexpansive self-mapping
on M ∪N satisfying TðNÞ ⊆N and TðMÞ ⊆M . Let s0 ∈M
be an initial point, and a sequence fsng is defined as

sn+1 = 1 − ξnð Þsn + ξnTsn, ε < ξn < 1 − ε, 0 < ε ≤
1
2

Mann’s iteration
� �

:

ð18Þ

Then, lim
n→+∞

∥Tsn − sn∥ = 0. Moreover, if TðMÞ is a subset
of a compact set, then the limit point of fsng under norm
topology is the best proximity point of T .

3. Halpern’s Iteration and Relatively
Nonexpansive Mapping

LetM be a nonempty subset of a real Hilbert space H, and let
PM : H → 2M be the nearest point projection mapping from
H onto M that is, PMðsÞ≔ fs′ ∈M : ∥s′ − s∥ = distðs,MÞg. If
M is nonempty convex closed, then PM is nonexpansive
giving unique image for all s in H, and hence by Kolmogor-
ov’s criterion <PMt − s, PMt − t > ≤0 for all t ∈ X, s ∈M. Here,
we use the following notation MFixT = fs ∈M : Ts = sg.

Theorem 20. Let ðM,NÞ be a nonempty closed bounded con-
vex proximal pair of a real Hilbert space H, and let T be a
relatively nonexpansive self-mapping on M ∪N satisfying
TðMÞ ⊆M and TðNÞ ⊆N . Let 0 < ξn < 1, and s0 ∈M be
an initial point. A sequence fsng is defined as

sn+1 = ξnu + 1 − ξnð ÞTsn, ð19Þ

where u ∈M such that ∥sn − t∥≥∥u − t∥for all t ∈N.

If lim
n→+∞

ξn = 0, ∑+∞
n=1 ξn = +∞, and either ∑+∞

n=1 ∣ ξn+1 − ξn

∣ < +∞ or lim
n→+∞

ðξn/ξn+1Þ = 1, then the sequence fsng under

the norm topology converges to s ∈MFixT , closest to point u
such that ∥s − t∥ = distðM,NÞ for some t ∈NFixT .

Proof. By applying Theorem 8, it is found that there exists t
∈N such that Tt = t. Now, we have

∥sn+1 − t∥ = ∥ξnu + 1 − ξnð ÞTsn − t∥ ≤ ξn∥u − t∥
+ 1 − ξnð Þ∥sn − t∥ ≤ ξn∥u − t∥
+ 1 − ξnð Þ∥sn − t∥ ≤ ξn∥sn − t∥
+ 1 − ξnð Þ∥sn − t∥ since∥sn − t∥ ≥ ∥u − t∥ð Þ:

ð20Þ
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Hence f∥sn − t∥g is nonincreasing and lim
n→+∞

∥sn − t∥ =
k > 0.

Suppose lim
n→+∞

∥Tsn − sn∥≠ 0, then there exists a subse-

quence fsnig of fsng such that ∥sni − Tsni∥≥ε > 0. Since H is
a Hilbert space (and hence uniformly convex space), it is
possible to choose a small positive number ε1 > 0, such that
ð1 − aδðε/ðk + ε1ÞÞÞðk + ε1Þ < k, where a > 0.

Let ∥sni − t∥≤k + ε1 for some i. Now,

∥t − sni+1∥ = ∥t − ξniu + 1 − ξni
� �

Tsni
� 	

∥

= ∥ 1 − ξni
� �

t − Tsni
� �

+ ξni t − uð Þ∥

≤ 1 − 2δ ε

k + ε1

� �
min ξni , 1 − ξni

� 	� �
k + ε1ð Þ

≤ 1 − a1δ
ε

k + ε1

� �� �
k + ε1ð Þ,

ð21Þ

where 0 < a1 ≤ 2 min fξni , 1 − ξnig:
By choosing ε1 > 0 as small as we wish, we have

1 − a1δ
ε

k + ε1

� �� �
k + ε1ð Þ < k, ð22Þ

which is a contradiction. Hence, lim
n→+∞

∥Tsn − sn∥ = 0 and

lim
n→+∞

∥sn+1 − sn∥ = 0.
Let fsnig be a subsequence of fsng such that

limsup
n→+∞

< sn − s, s − u > = limsup
i→+∞

< sni − s, s − u > : ð23Þ

Without loss of generality, we assume that subsequence fsnig
converges weakly to p ∈M such that ∥p − t∥ = distðM,NÞ for
some t ∈NFixT . Since lim

n→+∞
∥Tsn − sn∥ = 0, by applying the

demiclosed principle, we have p ∈MFixT . Hence, by applying
Kolmogorov’s criterion, we have

limsup
i→+∞

< sni − s, s − u > = < p − s, s − u > ≥0: ð24Þ

Now, we have

∥sn+1 − s∥2 = <ξnu + 1 − ξnð ÞTsn − s, sn+1 − s >
≤ ξns < u − s, sn+1 − s > + 1 − ξnð Þ∥sn − s∥:∥sn+1 − s∥

≤
1 − ξnð Þ
2 ∥sn − s∥2+∥sn+1 − s∥2

� �
+ ξn < u − s, sn+1 − s > :

ð25Þ

Hence,

⇒∥sn+1 − s∥2 ≤
2ξn
1 + ξn

< u − s, sn+1 − s > + 1 − 2ξn
1 + ξn

� �
∥sn − s∥2

= 1 − ηnð Þ∥sn − s∥2 + ξnνn,
ð26Þ

where ηn = 2ξn/ð1 + ξnÞ and νn = ð2/ð1 + ξnÞÞ < u − s, sn+1
− s > .

Since ∑+∞
n=1 ηn = +∞ and limsup

n→+∞
νn ≤ 0, by Lemma 12, we

have lim
n→+∞

sn = s ∈MFixT , closest to point u so that ∥s − t∥ =
distðM,NÞ for some t ∈NFixT .

We obtain the following corollary from Theorem 20
when M =N .

Corollary 21 [9]. Let M be nonempty closed bounded convex
subsets of a real Hilbert spaceH and T be a nonexpansive self-
mapping on M. Let s0 ∈M be an initial point, and fsng is a
sequence defined as

sn+1 = ξnu + 1 − ξnð ÞTsn, ð27Þ

where u ∈M and 0 < ξn < 1 (Halpern’s iteration).

If lim
n→+∞

ξn = 0, ∑+∞
n=1 ξn = +∞, and either ∑+∞

n=1 ∣ ξn+1 − ξn

∣ < +∞ or lim
n→+∞

ξn/ξn+1 = 1, then the sequence fsng under

the norm topology converges to s ∈MFixT , closest to point u.

4. Ishikawa’s Iteration and Chebyshev Centre

Lim et al. [20] proved the following interesting theorem in
the year 2003, by using the geometrical property, viz., normal
structure.

Theorem 22 [20]. Let B be a Banach space, and let T be an
isometry self-mapping on M, a nonempty weakly compact
convex subset of B. It is assumed that M has a normal
structure. Then, there exists s ∈ CðMÞ = CMðMÞ, the set of all
Chebyshev centers of M such that Ts = s.

Let ðM,NÞ be a nonempty convex weakly compact proxi-
mal parallel pair in a Banach space B. Suppose the pair ðM,NÞ
has the rectangle property. Let T : M ∪N →M ∪N be a rela-
tively isometry mapping satisfying TðMÞ ⊆M and TðNÞ ⊆N.
It is ascertained that TðCMðNÞÞ ⊆ CMðNÞ if and only if Rðs,
NÞ = RðTs,NÞ = RðM,NÞ for all s ∈ CMðNÞ. Similarly, TðCN
ðMÞÞ ⊆ CNðMÞ if and only if Rðt,MÞ = RðTt,MÞ = RðM,NÞ
for all t ∈ CNðMÞ. It is affirmed that CNðMÞ = CMðNÞ + h for
some h ∈ B (for details, see [2, 21, 22]). We establish the fol-
lowing result.

Lemma 23. Let ðM,NÞ be a nonempty weakly compact con-
vex proximal pair in a strictly convex Banach space B. Suppose
T is a relatively isometry self-mapping on M ∪N satisfying
TðMÞ ⊆M and TðNÞ ⊆N . If s ∈M and fTnsg has a Cauchy
subsequence in M, then Rðs,NÞ = RðTs,NÞ. Similarly, if t ∈
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N and fTntg has a Cauchy subsequence in N , then Rðt,MÞ
= RðTt,MÞ.

Proof. Let s ∈M. Then,

R s,Nð Þ = R Ts, TNð Þ ≤ R Ts,Nð Þ: ð28Þ

Let ðs, tÞ ∈M ×N such that ∥s − t∥ = distðM,NÞ. Suppose
∥Tjn s − Tin t∥<distðM,NÞ + 1/n, where in, jn ∈ℤ+, with in < jn
, for every n ∈ℤ+. Since T is a relatively isometry mapping,
we get lim

n→+∞
T jn−in s = s.

Let fang be a nondecreasing subsequence of fjn − ing.
Since R is a nonnegative continuous real valued function,
then the sequence fRðTans,NÞg is nondecreasing, and
lim

n→+∞
Tans = s. Therefore, lim

n→+∞
RðTans,NÞ = Rðs,NÞ. Thus,

R Ts,Nð Þ ≤ R Ta1 s,Nð Þ ≤ lim
n→+∞

R Tans,Nð Þ = R s,Nð Þ: ð29Þ

From, (28) and (29), we have Rðs,NÞ = RðTs,NÞ. Simi-
larly, we can show that Rðt,MÞ = RðTt,MÞ.

Lemma 24. Let ðM,NÞ be a nonempty weakly compact convex
proximal parallel pair in a strictly convex Banach space B. It is
assumed that the pair ðM,NÞ has the rectangle property.
Suppose T is a relatively isometry self-mapping onM ∪N satis-
fying TðMÞ ⊆M and TðNÞ ⊆N. If ðCMðNÞ, CNðMÞÞ is non-
empty and contained in a totally bounded proximal parallel
pair ðM1,N1Þ of ðM,NÞ such that TðM1Þ ⊆M1 and TðN1Þ
⊆N1, then TðCMðNÞÞ ⊆ CMðNÞ and TðCNðMÞÞ ⊆ CNðMÞ.

Proof. Let s ∈ CMðNÞ, where CMðNÞ ⊆M1, TðM1Þ ⊆M1, and
CNðMÞ = CMðNÞ + h, for some h ∈ B. Then, fTns : n ∈ℤ+g
⊆M1, and fTnðs + hÞ: n ∈ℤ+g ⊆N1.

As ðM1,N1Þ is a totally bounded proximal pair, the
sequences fTnðsÞg and fTnðs + hÞg, respectively, have Cau-
chy subsequences in M1 and N1. So, by Lemma 23, we have
Rðs,NÞ = RðM,NÞ = RðTs,NÞ.

Hence, TðCMðNÞÞ ⊆ CMðNÞ. Similarly, TðCNðMÞÞ ⊆ CN
ðMÞ.

Example 25. Let X = ðℝ2,∥:∥1Þ. Let M = fðs, 10 − 10sÞ: s ∈ ½0,
1�g, and N =M + h, where h = ð0, 1Þ ∈ X. Let ðs, 10 − 10sÞ ∈
M and ð1 + t, 10 − 10tÞ ∈N , where s, t ∈ ½0, 1�. Now, we have

∥ 1 + t, 10 − 10tð Þ − s, 10 − 10sð Þ∥1 = ∥ 1 + t − s, 10s − 10tð Þ∥1
= 1 + t − s + ∣10s − 10t∣

=
1 + 9s − 9t, if t ≤ s,

1 + 11t − 11s, if s ≤ t:

(

ð30Þ

In particular, take ð1, 0Þ, ð0, 10Þ ∈M, and ð2, 0Þ, ð1, 10Þ ∈
N, we have ∥fð1, 0Þ + ð1, 0Þg − ð0, 10Þ∥1 = 12 and ∥fð0, 10Þ
+ ð1, 0Þg − ð1, 0Þ∥1 = 10.

It shows that there exists a proximal parallel pair ðM,NÞ
with distðM,NÞ = ∥h∥1 = 1 which does not satisfy the rectan-
gle property.

Theorem 26. Let ðM,NÞ be a nonempty totally bounded
convex closed proximal pair in a uniformly convex (and
hence reflexive) Banach space B. It is also assumed that the
pair ðM,NÞ has the rectangle property. Suppose T is a rela-
tively isometry self-mapping on M ∪N satisfying TðNÞ ⊆N
and TðMÞ ⊆M. Let s0 ∈ CMðNÞ be an initial point, and a
sequence fsng is defined as

sn+1 = 1 − ξnð Þsn + ξnTtn, tn = 1 − ηnð Þsn + ηnTsn, 0 ≤ ηn

≤ ξn < 1, lim
n→+∞

ξnηn = 0, −θ, 0 < θ ≤
1
2

ð31Þ

Then, lim
n→+∞

∥Tsn − sn∥ = 0. If TðCMðNÞÞ is a subset of a

compact set, then the limit point s ∈ CMðNÞ of the sequence
fsng under norm topology is the best proximity point of T .

Proof. It is easy to see that ðCMðNÞ, CNðMÞÞ is a nonempty
convex weakly compact proximal parallel pair having the
rectangle property in a uniformly convex Banach space B.

Since ðM,NÞ is totally bounded and T is a relatively
isometry self-mapping on M ∪N satisfying TðNÞ ⊆N and
TðMÞ ⊆M, by applying Lemma 24, we have TðCMðNÞÞ ⊆
CMðNÞ and TðCNðMÞÞ ⊆ CNðMÞ.

Now, by Theorem 8, there exist s ∈ CMðNÞ and t ∈
CNðMÞ such that Ts = s, Tt = t, and ∥s − t∥ = distðM,NÞ.

By applying Theorem 18, it is found that the sequence
fsng under norm topology converges to Ts = s ∈ CMðNÞ,
such that ∥s − t∥ = distðM,NÞ for some t ∈NFixT .

We obtain the following result from Theorem 26 if ηn = 0
for n ∈ℕ.

Theorem 27. Let ðM,NÞ be a nonempty totally bounded
convex closed proximal pair in a uniformly convex (and hence
reflexive) Banach space B. It is also assumed that ðM,NÞ has
the rectangle property. Suppose T is a relatively isometry self-
mapping on M ∪N satisfying TðNÞ ⊆N and TðMÞ ⊆M. Let
s0 ∈ CMðNÞ be an initial point, and a sequence fsng is defined
as

sn+1 = 1 − ξnð Þsn + ξnTsn, ε < ξn < 1 − ε, 0 < ε ≤
1
2
: ð32Þ

Then, lim
n→+∞

∥Tsn − sn∥ = 0. If TðCMðNÞÞ is a subset of a

compact set, then the limit point s ∈ CMðNÞ of fsng under
the norm topology is the best proximity point of T .

Proof. The result is similar to that of Theorem 26.

Example 28. Let X = ðℝ2, k:kÞ, a Euclidean space. Let

M = s, tð Þ: s = −2,−1 ≤ t ≤ 1f g,
N = s, tð Þ: s = 2,−1 ≤ t ≤ 1f g:

ð33Þ
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Here, ðM,NÞ is a proximal parallel pair having the rect-
angle property, RðM,NÞ = ffiffiffiffiffi

17
p

, CMðNÞ = fð−2, 0Þg, CNðMÞ
= fð2, 0Þg, and CNðMÞ = CMðNÞ + h, where h = ð4, 0Þ.

Define

T : M→M by T s, tð Þ = T1s, T2tð Þ = −2,−tð Þ, ð34Þ

where T1 : f−2g→ f−2g andT2 : ½−1, 1�→ ½−1, 1�:
Let ðs, tÞ ∈M, and ðs′, t ′Þ ∈N . Then

∥T s, tð Þ − T s′, t ′
� �

∥ = ∥ −2,−tð Þ − 2,−t ′
� �

∥

= ∥ −4, t ′ − t
� �

∥

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4ð Þ2 + t ′ − t

� �2
r

= ∥ s, tð Þ − s′, t ′
� �

∥:

ð35Þ

Hence, T is a relatively isometry (and hence relatively
nonexpansive) mapping on M ∪N satisfying TðNÞ ⊆N and
TðMÞ ⊆M.

From Theorem 18, we take the initial point ðs, tÞ ∈M and
set s1 = ð1 − ξ0Þs + ξ0T1s′0 and s′0 = ð1 − η0Þs + η0T1s. We
have T1s = −2. Since s = −2, we obtain s′0 = −2 which implies
s1 = −2.

Similarly, set s2 = ð1 − ξ1Þs1 + ξ1T1s′1 and s′1 = ð1 − η1Þ
s1 + η1T1s1. Since s1 = −2, we obtain s′1 = −2 which implies
s2 = −2. In general, we obtain sn+1 = −2. Therefore, sn → −2
as n→ +∞.

Again, set t1 = ð1 − ξ0Þt + ξ0T2t′0 and t′0 = ð1 − η0Þt +
η0T2t. Since T2t = −t, we obtain t′0 = ð1 − 2η0Þt which
implies t1 = ð1 − 2ξ0 + 2ξ0η0Þt. Similarly, set t2 = ð1 − ξ1Þt1
+ ξ1T2t′1 and t′1 = ð1 − η1Þt1 + η1T2t1. Since T2t1 = −t1, we
obtain

t′1 = 1 − η1ð Þt1 + η1T2t1
= 1 − η1ð Þ 1 − 2ξ0 + 2ξ0η0ð Þt + η1T2 1 − 2ξ0 + 2ξ0η0ð Þt½ �
= 1 − η1ð Þ 1 − 2ξ0 + 2ξ0η0ð Þt − η1 1 − 2ξ0 + 2ξ0η0ð Þt
= 1 − 2η1ð Þ 1 − 2ξ0 + 2ξ0η0ð Þt,

ð36Þ

which implies

t2 = 1 − ξ1ð Þt1 + ξ1T2t′1
= 1 − ξ1ð Þ 1 − 2ξ0 + 2ξ0η0ð Þt − ξ1 1 − 2η1ð Þ 1 − 2ξ0 + 2ξ0η0ð Þt
= 1 − 2ξ0 + 2ξ0η0ð Þ 1 − 2ξ1 + 2ξ1η1ð Þt:

ð37Þ

In general, tn+1 = ð1 − 2ξ0 + 2ξ0η0Þð1 − 2ξ1 + 2ξ1η1Þ⋯ ð
1 − 2ξn + 2ξnηnÞt. Therefore, tn → 0 as n→ +∞. Hence,
lim

n→+∞
ðsn, tnÞ = ð−2, 0Þ, a fixed point of T . In a similar way,

if ðs′, t ′Þ ∈N , then lim
n→+∞

ðs′n, t′nÞ = ð2, 0Þ, a fixed point of T

and ∥ð−2, 0Þ − ð2, 0Þ∥ = distðM,NÞ.

From Theorem 26, if we take the initial point ðx, yÞ ∈
CMðNÞ, then it is trivial that lim

n→+∞
ðsn, tnÞ = ð−2, 0Þ, a fixed

point of T . In a similar way, if ðs′, t ′Þ ∈ CNðMÞ, then
lim

n→+∞
ðs′n, t′nÞ = ð2, 0Þ, a fixed point of T and ∥ð−2, 0Þ − ð2,

0Þ∥ = distðM,NÞ.

5. Open Problem

Let ðM,NÞ be a nonempty weak compact convex pair in a
Banach space (or Hilbert space) B. Can Ishikawa’s iteration
and Halpern’s iteration converge to the best proximity point
of relatively nonexpansive (or relatively isometry) mapping
T : M ∪N →M ∪N satisfying TðMÞ ⊆N and TðNÞ ⊆M?

6. Conclusion

If a reflexive Banach space satisfies Opial’s condition, then
every bounded convex pair ðM,NÞ has a proximal normal
structure. Also, we show that Ishikawa’s and Halpern’s itera-
tive sequences converge to the best proximity point. Finally,
we show that Ishikawa’s iterative sequence converges to the
best proximity point, which is a Chebyshev center.
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