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The boundary value problem of a fourth-order beam equation uð4Þ = λf ðx, u, u′, u″, u′′′Þ, 0 ≤ x ≤ 1 is investigated. We formulate a
nonclassical cantilever beam problem with perturbed ends. By determining appropriate values of λ and estimates for perturbation
measurements on the boundary data, we establish an existence theorem for the problem under integral boundary conditions
uð0Þ = u′ð0Þ = Ð 10pðxÞuðxÞdx, u″ð1Þ = u′′′ð1Þ = Ð 10qðxÞu″ðxÞdx, where p, q ∈ L1½0, 1�, and f is continuous on ½0, 1� × ½0,∞Þ × ½0,
∞Þ × ð−∞, 0� × ð−∞, 0�:

1. Introduction and Preliminaries

Beams are one of the main structural elements in construc-
tion engineering. One of the objectives of the beam theory
is to study the behavior of beams to analyze deformations
under loads. The deformation of beams occurs when the
beam is under a load, which causes the beam to develop
bending moment and shear force. The deformation of the
beam is modeled by the fourth-order Euler–Bernoulli equa-
tion

u 4ð Þ = f xð Þ, ð1Þ

where u represents the deflection of the beam, u′ represents
the slope, u″ is the bending moment (torque), u′′′ is the
shear force, and uð4Þ is the load density stiffness. The func-
tion f is a load on the beam; it is uniformly distributed if
the loading is only the weight of the beam, without any fur-
ther concentrated mass at the free end. The boundary condi-
tions are governed by the particular type of beams under
study and the way in which the beam is supported. The most
important type of beams that have many useful applications

in industry is the cantilever beam, where the beam is fixed
(clamped, anchored to a support, or built into a wall) at
one end (say at x = 0) and free at the other end (say x = 1).
The fixed end must have zero transitional and zero rota-
tional motions, whereas the free end must have zero bending
and zero shearing force. The bending moment is equal to the
applied force multiplied by the distance to the point of appli-
cation; so, it becomes zero at the free end because there is no
stress at this end. So, we must have the following boundary
conditions

u 0ð Þ = u′ 0ð Þ = 0, u″ 1ð Þ = u′′′ 1ð Þ = 0: ð2Þ

The cantilever beams are widely used in construction
engineering and can be found in many structures such as
buildings and bridges. Some of the common examples of
cantilever beams are aircraft wings, cranes, suspended brid-
ges, balconies, diving board, electronic spring connectors,
shelves, basketball backboard, road signs, and many other
examples. Because of its importance, the cantilever beam
problem received a wide and considerable attention from
researchers, and a large number of research about cantilever
can be found from a quick literature search [see and the
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references therein]. In particular, in [1–3], the authors inves-
tigated the existence of deflections (solutions) for the case

u 4ð Þ = f x, u xð Þð Þ, 0 ≤ x ≤ 1, ð3Þ

under conditions (2). In [4–6], the case

u 4ð Þ = f x, u, u′
� �

, 0 ≤ x ≤ 1 ð4Þ

was investigated under conditions (2). In [7–11], the fully
fourth-order nonlinear boundary value problem

u 4ð Þ = f x, u, u′, u′′, u′′′
� �

, 0 ≤ x ≤ 1 ð5Þ

was investigated under conditions (2). The authors in
[8, 9] assumed a Nagumo-type condition on f , and [10]
assumed a L1 Caratheodory condition on f :

In all the aforementioned research, the cantilever prob-
lem was investigated under the classical condition (2).
Some special types of relaxed, restrained, or propped can-
tilever beams violate these conditions. If the fixed end is
loose, the support (or the anchor) is relaxed then uð0Þ ≠
0 or/and u′ð0Þ ≠ 0: If the free end is rolled or pinned support,
then u″ð1Þ ≠ 0, u′′′ð1Þ ≠ 0. If a concentrated force, or trans-
lational elastic spring is attached at the free end, then u″ð1Þ
= 0 and u′′′ð1Þ ≠ 0, while if a concentrated moment, or rota-
tional elastic spring is attached, then u″ð1Þ ≠ 0: If a concen-
trated mass is placed at the free end, it will develop a shear
force of the form u′′′ð1Þ = −mg, and when m = 0, this
reduces the condition to the classical one.

The present paper deals with the fully fourth-order non-
linear boundary value problem

u 4ð Þ = λf x, u, u′, u″, u′′′
� �

, 0 ≤ x ≤ 1, ð6Þ

where f is continuous on ½0, 1� × ½0,∞Þ × ½0,∞Þ × ð−∞, 0�
× ð−∞, 0�, under a perturbed homogeneous conditions,
where the two ends are perturbed (the fixed end is slightly
relaxed, and the free end is slightly supported). This can be
formulated using integral conditions of the form

u 0ð Þ = u′ 0ð Þ =
ð1
0
p xð Þu xð Þdx, u″ 1ð Þ = u′′′ 1ð Þ

=
ð1
0
q xð Þu″ xð Þdx,

ð7Þ

where p, q ∈ L1½0, 1�. Here, f satisfies a growth condition
with the variable parameters:

f x, u, v,w, zð Þj j ≤ a xð Þ uj j + b xð Þ vj j + c xð Þ wj j
+ d xð Þ zj j + e xð Þ, ð8Þ

where a, b, c, d, and e are positive continuous functions on
½0, 1�: Moreover, letting

α =
ð1
0
p2 xð Þdx, β =

ð1
0
q2 xð Þdx, ð9Þ

then we have the following assumptions

0 ≤ α ≤ δ1 <
1
4 , 0 ≤ β ≤ δ2 <

1
4 : ð10Þ

Letting

λ0 =
1/2 − δ2/1 − 2δ2

M 2C1/1 − 2δ1ð Þ + 2C1 + 2/1 − 2δ2ð Þð Þ , ð11Þ

where M =max fa, b, c, d, eg, and

C1 =
2/1 − 2β

1/2 − α/1 − 2αð Þ2 : ð12Þ

Then, we impose the following condition

λ ≤ λ0: ð13Þ

Condition (13) provides small deflections. The parame-
ter λ represents the reciprocal of the flexural rigidity which
measures the resistance to bend; so, smaller values of λ
indicate large flexural rigidity for the material of the beam,
and this causes small deflections when load is applied on
the beam. Hook’s law is valid as long as the deflection is
small. Problems with large deflections cannot be solved in
terms of the linear beam theory—in which Euler-Bernoulli
Equation applies, since Hook’s law is no longer valid. When
the beam is assumed to be homogeneous, made of high
rigid material, and behaves in a linear elastic manner, its
deflection under bending is usually small. When thin flexi-
ble beams are used, large deflections are expected to occur.
Many researchers investigated cantilever beams with large
deflections [12–26], and others investigated small deflec-
tions [27, 28]. Most of the beams used in industry and con-
structions (buildings, bridges, aircrafts, etc.) undergo small
deflections [29]. This is of utmost importance since large
deflections can cause cracks in the beams, and this may
eventually lead to disastarous damages. So, best efforts are
made to limit deflections in the ceilings and walls and in
the design of aircraft, see [29] for more details on beam
theory. Small deflections usually occur when either the
loaded force f is small (hence, M is small) or the material
of the beam has high flexural rigidity, which implies that
λ is small.

Condition (10) provides small values for p, q to produce
the required slight changes to the default boundary settings
of a cantilever beam. The functions p, q represent perturba-
tion measurements related to bearings, rollers, springs, or
any other mechanical settings that will perturb the bound-
ary data.
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Condition (8) is a growth condition imposed on the load
function f : This condition generalizes the boundedness condi-
tion and the growth condition with constant parameters

f x, u, v,w, zð Þj j ≤ a uj j + b vj j + c wj j + d zj j + e ð14Þ

for some positive constants a, b, c, d, and e:
The integral boundary conditions (7) results from per-

turbing conditions (2) by imposing small measurements p,
q related. Note that if p = q = 0, the conditions in (7) reduce
to (2). The integral boundary conditions have been studied
and applied extensively in beam theory by many authors,
for example, see [30–41].

The purpose of this paper is to prove the existence of
solutions (small deflections) of the cantilever beam bound-
ary value problem (6) under the conditions (7)-(13). This
interesting problem has not been studied in research. The
result gives an affirmative answer to the question of exis-
tence of solutions of (6)-(13), i.e., the existence of small
deflections of general types of perturbed cantilever beams
under conditions (7)-(13), including the simple cantilever
beam problem when p = q = 0:

2. Existence and Uniqueness Theorems

The problem (1.6)-(7) can be converted into the following
system:

u″ = v, u 0ð Þ = u′ 0ð Þ =
ð1
0
p xð Þu xð Þdx,

v″ = λf x, u, u′, v, v′
� �

, v 1ð Þ = v′ 1ð Þ =
ð1
0
q xð Þv xð Þdx:

8>>><
>>>:

ð15Þ

We need the following lemma.

Lemma 1. If h ∈C1½0, 1� with hð0Þ = Ð 10rðxÞhðxÞdx or hð1Þ
=
Ð 1
0rðxÞhðxÞdx, x ∈ ½0, 1�, where r ∈C ½0, 1�, then

ð1
0
h2 xð Þdx ≤ 2

1 − 2
Ð 1
0r

2 xð Þdx

ð1
0
h′
� �2

xð Þdx ð16Þ

provided 1 − 2
Ð 1
0r

2ðxÞdx > 0:

Proof. For hð0Þ = Ð 10rðxÞhðxÞdx, we note that
h xð Þ =

ðx
0
h′ ξð Þdξ + h 0ð Þ =

ðx
0
h′ ξð Þdξ +

ð1
0
r xð Þh xð Þdx: ð17Þ

Since x ≤ 1, we have

h xð Þj j ≤
ð1
0
h′ xð Þ�� ��dx + ð1

0
r xð Þh xð Þj jdx: ð18Þ

Hence,

h2 xð Þ ≤ 2
ð1
0
h′ xð Þ�� ��dx� �2

+
ð1
0
r xð Þh xð Þj jdx

� �2" #
: ð19Þ

Using the Cauchy-Schwarz inequality, we obtain

h2 xð Þ ≤ 2
ð1
0
h′
� �2

xð Þdx +
ð1
0
r2 xð Þdx

� � ð1
0
h2 xð Þdx

� �� �
:

ð20Þ

Consequently,

ð1
0
h2 xð Þdx ≤ 2

ð1
0
h′
� �2

xð Þdx +
ð1
0
r2 xð Þdx

� � ð1
0
h2 xð Þdx

� �� �
:

ð21Þ

The proof is complete. Similarly, for hð1Þ = Ð 10rðxÞhðxÞd
x, we also note that

−h xð Þ =
ð1
x
h′ ξð Þdξ − h 1ð Þ =

ð1
x
h′ ξð Þdξ −

ð1
0
r xð Þh xð Þdx:

ð22Þ

Then, the argument is similar to the proof of the
above.☐

Proposition 2. If (8)-(13) hold, then there exists a constant
L > 0 such that for any x ∈ ½0, 1� and any solution u to
Eq.(6), we have

max
0≤x≤1

u xð Þj j + max
0≤x≤1

u″ xð Þ�� �� ≤ L: ð23Þ

Proof. Multiplying both sides of the first equation of (15) by
φðxÞu′, where φðxÞ = 1 − x and integrating the resulting
equation from 0 to 1, then employing integration by parts
with φð0Þ = 1,φð1Þ = 0 and φ′ðxÞ = −1, we obtain

1
2

ð1
0
u′ xð Þ
� �2

dx −
1
2 u′ 0ð Þ
� �2

=
ð1
0
1 − xð Þv xð Þu′ xð Þdx:

ð24Þ

Taking into account u′ð0Þ = Ð 10pðxÞuðxÞdx, we have
1
2

ð1
0
u′ xð Þ
� �2

dx = 1
2

ð1
0
p xð Þu xð Þdx

� �2
+
ð1
0
1 − xð Þv xð Þu′ xð Þdx:

ð25Þ
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The integrals
Ð 1
0pðxÞuðxÞdx and

Ð 1
0ð1 − xÞvðxÞu′ðxÞdx

can be estimated by means of the Cauchy-Schwarz inequality

ð1
0
p xð Þu xð Þdx

� �2
≤
ð1
0
p2 xð Þdx

� � ð1
0
u2 xð Þdx

� �
,

ð1
0
1 − xð Þv xð Þu′ xð Þdx

����
���� ≤

ð1
0
v2 xð Þdx

� �1/2 ð1
0
u′ xð Þ
� �2

dx
� �1/2

:

ð26Þ

Thus,

1
2

ð1
0
u′ xð Þ
� �2

dx ≤
1
2

ð1
0
p2 xð Þdx

� � ð1
0
u2 xð Þdx

� �

+
ð1
0
v2 xð Þdx

� �1/2 ð1
0
u′ xð Þ
� �2

dx
� �1/2

:

ð27Þ

Applying now Lemma 1 to the functions u and v appear-
ing in the right-hand side of this inequality with u′ð0Þ = Ð 10p
ðxÞuðxÞdx and vð1Þ = Ð 10qðxÞvðxÞdx, respectively, we obtain
1
2

ð1
0
u′ xð Þ
� �2

dx

≤
Ð 1
0p

2 xð Þdx
1 − 2Ð 10p2 xð Þdx

ð1
0
u′ xð Þ
� �2

dx + 2
1 − 2Ð 10q2 xð Þdx

 !1/2

�
ð1
0
v′ xð Þ
� �2

dx
� �1/2 ð1

0
u′ xð Þ
� �2

dx
� �1/2

:

ð28Þ

It follows that

1
2 −

Ð 1
0p

2 xð Þdx
1 − 2

Ð 1
0p

2 xð Þdx

 ! ð1
0
u′ xð Þ
� �2

dx
� �1/2

≤
2

1 − 2
Ð 1
0q

2 xð Þdx

 !1/2 ð1
0
v′ xð Þ
� �2

dx
� �1/2

:

ð29Þ

Consequently,

1
2 −

Ð 1
0p

2 xð Þdx
1 − 2

Ð 1
0p

2 xð Þdx

 !2ð1
0
u′ xð Þ
� �2

dx

≤
2

1 − 2
Ð 1
0q

2 xð Þdx

ð1
0
v′ xð Þ
� �2

dx

ð30Þ

provided 1/2 −
Ð 1
0p

2ðxÞdx/1 − 2
Ð 1
0p

2ðxÞdx > 0; that is, 1 − 4
Ð 1
0

p2ðxÞdx > 0:
It follows that

ð1
0
u′ xð Þ
� �2

dx ≤ C1

ð1
0
v′ xð Þ
� �2

dx, ð31Þ

where

C1 =
2/1 − 2

Ð 1
0q

2 xð Þdx
1/2 − Ð 10p2 xð Þdx/1 − 2Ð 10p2 xð Þdx
� �2

= 2/1 − 2β
1/2 − α/1 − 2αð Þ2 :

ð32Þ

Proceeding as before, multiplying both sides of the sec-
ond equation of (15) by ψðxÞv′, where ψðxÞ = −x and inte-
grating the resulting equation from 0 to 1, then employing
integration by parts, taking into account ψð0Þ = 0,
ψð1Þ = −1,ψ′ðxÞ = −1 and the nonlocal boundary condition
vð1Þ = Ð 10qðxÞvðxÞdx, we obtain

1
2

ð1
0
v′ xð Þ
� �2

dx = 1
2

ð1
0
q xð Þv xð Þdx

� �2

− λ
ð1
0
xf x, u, u′, v, v′
� �

v′ xð Þdx:
ð33Þ

Applying the growth condition (8) to f ðx, u, u′, v, v′Þ by
assuming that aðxÞ ≤ a, bðxÞ ≤ b, cðxÞ ≤ c, dðxÞ ≤ d, eðxÞ ≤ e,
∀x ∈ ½0, 1� with a, b, c, d, e > 0, we obtain

1
2

ð1
0
v′ xð Þ
� �2

dx ≤
1
2

ð1
0
q2 xð Þdx

� � ð1
0
v2 xð Þdx

� �

+ aλ
ð1
0
u xð Þv′ xð Þ�� ��dx + bλ

ð1
0
u′ xð Þv′ xð Þ�� ��dx

+ dλ
ð1
0
v′ xð Þ
� �2

dx + λ
ð1
0
e xð Þv′ xð Þ�� ��dx:

ð34Þ

The integrals appearing in the right-hand side of this
inequality can be estimated by means of the ε − inequality:

ð1
0
A xð ÞB xð Þj jdx ≤ 1

ε

ð1
0
A2 xð Þdx + ε

ð1
0
B2 xð Þdx, ε > 0: ð35Þ

Thus,

1
2

ð1
0
v′ xð Þ
� �2

dx

≤
1
2

ð1
0
q2 xð Þdx

� � ð1
0
v2 xð Þdx

� �
+ aλ

ε1

ð1
0
u2 xð Þdx

+ aλε1

ð1
0
v′ xð Þ
� �2

dx + bλ
ε2

ð1
0
u′ xð Þ
� �2

dx

+ bλε2

ð1
0
v′ xð Þ
� �2

dx + cλ
ε3

ð1
0
v2 xð Þdx

+ cλε3

ð1
0
v′ xð Þ
� �2

dx + dλ
ð1
0
v′ xð Þ
� �2

dx

+ λε4

ð1
0
v′ xð Þ
� �2

dx + e2λ
ε4

, εi > 0, i = 1,⋯, 4:

ð36Þ
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Applying Lemma 1 to the functions u and v, we obtain

1
2

ð1
0
v′ xð Þ
� �2

dx

≤
Ð 1
0q

2 xð Þdx
1 − 2

Ð 1
0q

2 xð Þdx

ð1
0
v′ xð Þ
� �2

dx
2aλ

ε1 1 − 2Ð 10p2 xð Þdx
� �

�
ð1
0
u′ xð Þ
� �2

dx + aλε1

ð1
0
v′ xð Þ
� �2

dx

+ bλ
ε2

ð1
0
u′ xð Þ
� �2

xð Þdx + bλε2

ð1
0
v′ xð Þ
� �2

dx

+ 2cλ
ε3 1 − 2

Ð 1
0q

2 xð Þdx
� � ð1

0
v′ xð Þ
� �2

dx

+ cλε3

ð1
0
v′ xð Þ
� �2

dx + dλ
ð1
0
v′ xð Þ
� �2

dx

+ λε4

ð1
0
v′ xð Þ
� �2

dx + e2λ
ε4

, εi > 0, i = 1,⋯, 4::

ð37Þ

From (31), the inequality (37) becomes

1
2

ð1
0
v′ xð Þ
� �2

dx

≤
Ð 1
0q

2 xð Þdx
1 − 2

Ð 1
0q

2 xð Þdx

ð1
0
v′ xð Þ
� �2

dx

+ 2aλC1

ε1 1 − 2Ð 10p2 xð Þdx
� � ð1

0
v′ xð Þ
� �2

dx

+ aλε1

ð1
0
v′ xð Þ
� �2

dx + bλC1
ε2

ð1
0
v′ xð Þ
� �2

dx

+ bλε2

ð1
0
v′ xð Þ
� �2

dx + 2cλ
ε3 1 − 2

Ð 1
0q

2 xð Þdx
� �

�
ð1
0
v′ xð Þ
� �2

dx + cλε3

ð1
0
v′ xð Þ
� �2

dx

+ dλ
ð1
0
v′ xð Þ
� �2

dx + λε4

ð1
0
v′ xð Þ
� �2

dx + e2λ
ε4

:

ð38Þ

Choosing εi = 1, i = 1,⋯, 3,ε4 =M, and using the
hypothesis (10) with M =max fa, b, c, d, eg, we obtain

1
2Δ ≤

δ2
1 − 2δ2

Δ + λ
2MC1
1 − 2δ1

+MC1 + 5M + 2M
1 − 2δ2

� �
Δ

+Mλ,
ð39Þ

where Δ =
Ð 1
0ðv′ðxÞÞ

2
dx: Note that C1 ≥ 8: This gives

λ0 =
1/2 − δ2/1 − 2δ2

M 2C1/1 − 2δ1ð Þ + 2C1 + 2/1 − 2δ2ð Þð Þ
≤

1/2 − δ2/1 − 2δ2
M 2C1/1 − 2δ1ð Þ + C1 + 5 + 2/1 − 2δ2ð Þð Þ :

ð40Þ

Let

γ = 1
2 −

δ2
1 − 2δ2

− λ
2MC1
1 − 2δ1

+MC1 + 5M + 2M
1 − 2δ2

� �
: ð41Þ

We see that γ > 0: Thus,
ð1
0
v′ xð Þ
� �2

dx ≤
Mλ

γ
= C2 ð42Þ

and consequently from (31) and (42), we obtain

ð1
0
u′ xð Þ
� �2

dx ≤ C1C2: ð43Þ

On the other hand, we have

u xð Þ =
ðx
0
u′ ξð Þdξ + u 0ð Þ =

ðx
0
u′ ξð Þdξ +

ð1
0
p xð Þu xð Þdx: ð44Þ

Thus,

u xð Þj j ≤
ð1
0
u′ xð Þ
� �2

dx
� �1/2

+
ð1
0
p2 xð Þdx

� �1/2 ð1
0
u2 xð Þdx

� �1/2
:

ð45Þ

Hence,

u xð Þj j ≤ C1C2ð Þ1/2 + 2
ð1
0
p2 xð Þdx

� �1/2

�
Ð 1
0p

2 xð Þdx
1 − 2

Ð 1
0p

2 xð Þdx

 !1/2

C1C2ð Þ1/2 = L1:

ð46Þ

Similarly,

v xð Þj j ≤ L2 = C2ð Þ1/2 + 2Ð 10q2 xð Þdx
1 − 2

Ð 1
0q

2 xð Þdx

 !1/2

C2ð Þ1/2: ð47Þ

These two inequalities imply the required result and
complete the proof of the proposition.☐

The fundamental theorem used in proving the existence
of the solution is Schauder’s fixed theorem. In order to make
use of this theorem, it is sufficient to present the following
lemmas.
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Lemma 3. Let g : ½0, 1�⟶ℝ be a continuous function. The
unique solution z of the following initial value problem

z″ = h xð Þ ð48Þ

subject to the nonlocal boundary conditions zð0Þ = z′ð0Þ =Ð 1
0rðxÞzðxÞdx, is given by

z xð Þ =
ð1
0
G1 x, yð Þh yð Þdy +

ð1
0
G2 x, yð Þh yð Þdy, ð49Þ

where G1ðx ; yÞ is the Green function given by

G1 x, yð Þ =
x − y, 0 ≤ y ≤ x ≤ 1,
0, 0 ≤ x ≤ y ≤ 1

(

G2 x, yð Þ = x + 1ð Þ
1 −
Ð 1
0 x + 1ð Þr xð Þdx

ð1
0
r xð ÞG1 x, yð Þdx:

ð50Þ

Proof. Integrating this equation twice, we obtain

z xð Þ =
ðx
0

ðy
1
h sð Þds

� �
dy + k1x + k2, ð51Þ

where ki, i = 1, 2 are constants of integration. Integrations by
parts of the integral with respect to y in this equation give

z xð Þ = −x
ð1
x
h yð Þdy −

ðx
0
yh yð Þdy + k1x + k2: ð52Þ

We determine k1 and k2 from zð0Þ = z′ð0Þ = Ð 10rðxÞzðxÞ
dx: It follows that

z xð Þ =
ðx
0
x − yð Þh yð Þdy + x + 1ð Þ

ð1
0
r xð Þz xð Þdx: ð53Þ

Multiplying both sides of this equation by rðxÞzðxÞ and
integrating the resulting from 0 to 1, we obtain

ð1
0
r xð Þz xð Þdx = 1

1 − Ð 10 x + 1ð Þr xð Þdx

ð1
0
r xð Þ

�
ðx
0
x − yð Þh yð Þdy

� �
dx:

ð54Þ

Thus,

z xð Þ =
ðx
0
x − yð Þh yð Þdy + x + 1ð Þ

1 −
Ð 1
0 x + 1ð Þr xð Þdx

�
ð1
0
r xð Þ

ð1
0
r xð Þ

ðx
0
x − yð Þh yð Þdy

� �
dx,

ð55Þ

z xð Þ =
ð1
0
G1 x, yð Þh yð Þdy + x + 1

1 − Ð 10 x + 1ð Þr xð Þdx

�
ð1
0
r xð Þ

ð1
0
r xð Þ

ð1
0
G1 x, yð Þh yð Þdy

� �
dx:

ð56Þ

The proof is complete.☐

We also have the following lemma.

Lemma 4. Let g : ½0, 1�⟶ℝ be a continuous function. The
unique solution z of the following initial value problem

z″ = h xð Þ ð57Þ

subjects to the nonlocal boundary conditions zð1Þ = z′ð1Þ =Ð 1
0rðxÞzðxÞdx, is given by

z xð Þ =
ð1
0
G3 x, yð Þh yð Þdy +

ð1
0
G4 x, yð Þh yð Þdy, ð58Þ

where G3ðx ; yÞ is the Green function given by

G3 x, yð Þ =
0, 0 ≤ y ≤ x ≤ 1,
y, 0 ≤ x ≤ y ≤ 1,

(

G4 x, yð Þ = x

1 −
Ð 1
0xr xð Þdx

ð1
0
r xð ÞG3 x, yð Þdx:

ð59Þ

Thus, problem (15) is equivalent to the following system of
integral equations

u =
ð1
0
G1 x, yð Þv yð Þdy +

ð1
0
G2 x, yð Þv yð Þdy,

v = λ
ð1
0
G3 x, yð Þf x, u yð Þ, u′ yð Þ, v yð Þ, v′ yð Þ

� �
dy + λ

ð1
0
G4 x, yð Þf x, u yð Þ, u′ yð Þ, v yð Þ, v′ yð Þ

� �
dy:

8>>><
>>>:

ð60Þ
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Define the Banach space X =C ½0, 1� ×C ½0, 1� with norm
ku, vk∞ = kuk∞ + kvk∞, where kuk∞ = max

0≤x≤1
juðxÞj: Also,

define the operator T : X⟶X by Tðu, vÞ = ðT1ðu, vÞ, T2
ðu, vÞÞ, where

T1 u, vð Þ =
ð1
0
G1 x, yð Þv yð Þdy +

ð1
0
G2 x, yð Þv yð Þdy, ð61Þ

T2 u, vð Þ = λ
ð1
0
G3 x, yð Þf x, u yð Þ, u′ yð Þ, v yð Þ, v′ yð Þ

� �
dy

+ λ
ð1
0
G4 x, yð Þf x, u yð Þ, u′ yð Þ, v yð Þ, v′ yð Þ

� �
dy:

ð62Þ
Lemma 5. Under the hypothesis of Proposition 2, there
exists Ki > 0, i = 1, 2 such that

max
0≤x≤1

T1 u, vð Þj j ≤ K1 and max
0≤x≤1

T2 u, vð Þj j ≤ K2: ð63Þ

Proof. Since jGiðx, yÞj ≤ 2, i = 1, 3,jG2ðx, yÞj ≤
Ð 1
0pðxÞdx/1 −Ð 1

0ðx + 1ÞpðxÞdx = α∗ and jG4ðx, yÞj ≤ 2
Ð 1
0qðxÞdx/1 −

Ð 1
0xq

ðxÞdx = β∗, ∀x, y ∈ ½0, 1�, thus,

T1 u, vð Þj j ≤
ð1
0
G1 x, yð Þj j v yð Þj jdy +

ð1
0
G2 x, yð Þj j v yð Þj jdy:

ð64Þ

Using jvðxÞj ≤ L2, we get

T1 u, vð Þj j ≤ 2 + α∗ð ÞL2 = K1: ð65Þ

For T2ðu, vÞ, we have

T2 u, vð Þj j ≤ λ
ð1
0
G3 x, yð Þj j f x, u yð Þ, u′ yð Þ, v yð Þ, v′ yð Þ

� ���� ���dy
+ λ
ð1
0
G4 x, yð Þj j f x, u yð Þ, u′ yð Þ, v yð Þ, v′ yð Þ

� ���� ���dy,
ð66Þ

T2 u, vð Þj j ≤ λ 2 + β ∗ð Þ
ð1
0
f x, u yð Þ, u′ yð Þ, v yð Þ, v′ yð Þ
� ���� ��� dy:

ð67Þ
Applying the growth condition,

ð1
0
f x, u yð Þ, u′ yð Þ, v yð Þ, v′ yð Þ
� ���� ���dy

≤ a
ð1
0
u yð Þj jdy + b

ð1
0
u′ yð Þ�� ��dy + c

ð1
0
v yð Þj jdy

+ d
ð1
0
v′ yð Þ�� �� + e,

ð68Þ

ð1
0
f x, u yð Þ, u′ yð Þ, v yð Þ, v′ yð Þ
� ���� ���dy

≤ a
ð1
0
u yð Þj jdy + b

ð1
0
u′ yð Þ
� �2� �1/2

+ c
ð1
0
v yð Þj jdy + d

ð1
0
v′ yð Þ
� �2� �1/2

+ e,

ð69Þ

and employing the following inequalities that used in the
proof of Proposition 2:Ð 1

0ðv′ðxÞÞ
2
dx ≤ C2,

Ð 1
0ðu′ðxÞÞ

2
dx ≤ C1C2,juðxÞj ≤ L1, and

jvðxÞj ≤ L2, we obtainð1
0
f x, u yð Þ, u′ yð Þ, v yð Þ, v′ yð Þ
� ���� ���dy

≤M L1 + C1C2ð Þ12 + L2 + C2ð Þ12 + 1
� �

:

ð70Þ

Hence,

T2 u, vð Þj j ≤ λ 2 + β∗ð ÞM L1 + C1C2ð Þ1/2 + L2 + C2ð Þ1/2 + 1
	 


= K2:

ð71Þ

Consider now the closed and convex set

S = u, vð Þ ∈X : u, vk k∞ ≤ K1 + K2 = K
� �

: ð72Þ

☐

Based on the above results, we have

Lemma 6. For any ðu, vÞ ∈ S,Tðu, vÞ is contained in S:

Proof. From Lemma 5, we have jT1ðu, vÞj ≤ K1 and jT2
ðu, vÞj ≤ K2: Since Tðu, vÞ = ðT1ðu, vÞ, T2ðu, vÞÞ, we obtain
jTðu, vÞj ≤ K1 + K2 = K: This shows that Tðu, vÞ is con-
tained in S:

To prove that Tðu, vÞ is compact, we use the Arzela-
Ascoli lemma; that is, TðSÞ must be closed, bounded, and
equicontinuous. Consequently, Tðu, vÞ has a fixed point by
the Schauder’s fixed point theorem.☐

Thus, we have the following theorem.

Theorem 7. There exists a continuous solution ðu, vÞ which
satisfies problem (15) with (8)-(13).

3. Conclusion

The cantilever beam problem modeled by the nonlinear
fourth-order equation (6) is investigated under the integral
conditions (7) and assuming the conditions (8)-(13). As
illustrated in Section 2, the proposed conditions stand for
perturbed conditions at the boundary, which occurs if the
cantilever beam is not perfectly cantilevered in the sense that
the free end is rolled and/or the fixed end is loose. The
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integral condition generalizes the standard boundary condi-
tions that are usually proposed in literature for a classical
cantilever beam problem. Moreover, these boundary condi-
tions are more practical, in the sense that they represent
the actual conditions that may arise in a real-world cantile-
ver beam, which is very useful to researchers in construction
engineering. The objective of this research is to determine
whether small deflections occur in the cantilever beam under
perturbed boundary data. The result shows that the solution
to the problem exists, which implies that small deflections
continue to exist on the beam whether it is perfectly cantilev-
ered or not.
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