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In this paper, using a new shrinking projection method and new generalized k-demimetric mappings, we consider the strong
convergence for finding a common point of the sets of zero points of maximal monotone mappings, common fixed points of a
finite family of Bregman k-demimetric mappings, and common zero points of a finite family of Bregman inverse strongly
monotone mappings in a reflexive Banach space. To the best of our knowledge, such a theorem for Bregman k-demimetric
mapping is the first of its kind in a Banach space. This manuscript is online on arXiv by the link http://arxiv.org/abs/2107.13254.

1. Introduction

Let H be a Hilbert space and let C be a nonempty, closed,
and convex subset of H. Let T : C⟶H be a mapping.
Then, we denote by FðTÞ the set of fixed points of T . For
a real number t with 0 ≤ t ≤ 1, a mapping U : C⟶H is
said to be a t-strict pseudocontraction [1] if

Ux −Uyk k2 ≤ x − yk k2 + t x −Ux − y −Uyð Þk k2, ð1Þ

for all x, y ∈ C. In particular, if t = 0, then U is nonexpansive,
i.e.,

Ux −Uyk k ≤ x − yk k, ∀x, y ∈ C: ð2Þ

If U is a t-strict pseudocontraction and FðUÞ ≠∅, then
we get that, for x ∈ C and p ∈ FðUÞ,

Ux − pk k2 ≤ x − pk k2 + t x −Uxk k2: ð3Þ

From this inequality, we get that

Ux − xk k2 + x − pk k2 + 2 Ux − x, x − ph i ≤ x − pk k2 + t x −Uxk k2:
ð4Þ

Then, we get that

2 x −Ux, x − ph i ≥ 1 − tð Þ x −Uxk k2: ð5Þ

A mapping U : C⟶H is said to be a generalized
hybrid [2] if there exist real numbers α, β such that

α Ux −Uyk k2 + 1 − αð Þ x −Uyk k2 ≤ β Ux − yk k2 + 1 − βð Þ x − yk k2,
ð6Þ

for all x, y ∈ C. Such a mapping U is said to be a ðα, βÞ
-generalized hybrid. The class of generalized hybrid map-
pings covers several well-known mappings. A ð1, 0Þ-gener-
alized hybrid mapping is nonexpansive. For α = 2 and
β = 1, it is nonspreading [3, 4], i.e.,
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2 Ux −Uyk k2 ≤ Ux − yk k2 + Uy − xk k2, ∀x, y ∈ C: ð7Þ

For α = 3/2 and β = 1/2, it is also a hybrid [5], i.e.,

3 Ux −Uyk k2 ≤ x − yk k2 + Ux − yk k2 + Uy − xk k2, ∀x, y ∈ C:

ð8Þ

In general, nonspreading mappings and hybrid map-
pings are not continuous (see [6]). If U is a generalized
hybrid and FðUÞ ≠∅, then we get that, for x ∈ C and p ∈ F
ðUÞ,

α p −Uxk k2 + 1 − αð Þ p −Uxk k2 ≤ β p − xk k2 + 1 − βð Þ p − xk k2,
ð9Þ

and hence, kUx − pk2 ≤ kx − pk2. From this, we have that

2 x − p, x −Uxh i ≥ x −Uxk k2: ð10Þ

Let E be a smooth Banach space and let G be a maximal
monotone mapping with G−10 ≠∅. Then, for the metric
resolvent Jλ of G for a positive number λ > 0, we obtain from
[7, 8] that, for x ∈ E and p ∈G−10 = FðJλÞ,

Jλx − p, J x − Jλxð Þh i ≥ 0: ð11Þ

Then, we get

Jλx − x + x − p, J x − Jλxð Þh i ≥ 0, ð12Þ

and hence,

x − p, J x − Jλxð Þh i ≥ x − Jλxk k2, ð13Þ

where J is the duality mapping on E. Motivated by (5), (10),
and (13), Takahashi [9] introduced a nonlinear mapping in a
Banach space as follows: let C be a nonempty, closed, and
convex subset of a smooth Banach space E and let η be a real
number with η ∈ ð−∞,1Þ. A mapping U : C⟶ E with Fð
UÞ ≠∅ is said to be η-demimetric if, for x ∈ C and p ∈ FðUÞ,

2 x − p, J x −Uxð Þh i ≥ 1 − ηð Þ x −Uxk k2: ð14Þ

According to this definition, we have that a t-strict pseu-
docontraction U with FðUÞ ≠∅ is t-demimetric, an ðα, βÞ
-generalized hybrid mapping U with FðUÞ ≠∅ is 0-demi-
metric, and the metric resolvent Jλ with G−10 ≠∅ is ð−1Þ
-demimetric.

On the other hand, in 1967, Bregman [10] discovered an
effective technique using the so-called Bregman distance
function Df in the process of designing and analyzing feasi-
bility and optimization algorithms. This led to a growing
area of research in which Bregman’s technique is applied
in various ways in order to design and analyze iterative algo-
rithms for solving feasibility problems, equilibrium prob-
lems, fixed point problems for nonlinear mappings, and so
on (see, e.g., [11, 12] and the references therein).

In 2010, Reich and Sabach [11] using the Bregman dis-
tance function Df introduced the concept of Bregman
strongly nonexpansive mappings and studied the conver-
gence of two iterative algorithms for finding common fixed
points of finitely many Bregman strongly nonexpansive
operators in reflexive Banach spaces.

In this paper, motivated by Takahashi [13], we general-
ize k-demimetric mappings by the Bregman distance, and
using a new shrinking projection method, we deal with the
strong convergence for finding a common point of the sets
of zero points of maximal monotone mappings, common
fixed points of a finite family of Bregman k-demimetric
mappings, and common zero points of a finite family of
Bregman inverse strongly monotone mappings in a reflexive
Banach space (see [14]).

2. Preliminaries

Let E be a reflexive real Banach space and C be a nonempty,
closed, and convex subset of E. Throughout this paper, the
dual space of E is denoted by E∗. The norm and duality pair-
ing between E and E∗ are, respectively, denoted by k:k and
h:, :i. Let fxngn∈ℕ be a sequence in E, and we denote the
strong convergence of fxngn∈ℕ to x ∈ E as n⟶∞ by xn
⟶ x and the weak convergence by xn ⇀ x.

Throughout this paper, f : E⟶ ð−∞,+∞� is a proper,
lower semicontinuous, and convex function. We denote by
dom f ≔ fx ∈ E ; f ðxÞ<∞g, the domain of f . The function
f is said to be strongly coercive if limkxk⟶∞ f ðxÞ/kxk = +
∞. Let x ∈ int dom f , and the subdifferential of f at x is
the convex mapping set ∂f : E⟶ 2E∗ defined by

∂f xð Þ = ξ ∈ E∗ : f xð Þ + y − x, ξh i ≤ f yð Þ,∀y ∈ Ef g, ∀x ∈ E,
ð15Þ

and f ∗ : E∗ ⟶ ð−∞,+∞� is the Fenchel conjugate of f
defined by

f ∗ ξð Þ = sup ξ, xh i − f xð Þ: x ∈ Ef g: ð16Þ

It is well known that ξ ∈ ∂f ðxÞ is equivalent to

f xð Þ + f ∗ ξð Þ = x, ξh i: ð17Þ

For any x ∈ int dom f and y ∈ E, we denote by f ∘ðx, yÞ
the right-hand derivative of f at x in the direction y, that is,

f ∘ x, yð Þ≔ lim
t⟶0+

f x + tyð Þ − f xð Þ
t

: ð18Þ

The function f is called Gâteaux differentiable at x, if the
limit in (18) exists for any y ∈ E. In this case, the gradient
of f at x is the linear function ∇f which is defined by
hy,∇f ðxÞi≔ f ∘ðx, yÞ for any y ∈ E. The function f is said
to be Gâteaux differentiable if it is Gâteaux differentiable
at each x ∈ int dom f . The function f is said to be Fréchet
differentiable at x, if the limit in (18) is attained uniformly
in kyk = 1, for any y ∈ E. Finally, f is said to be uniformly
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Fréchet differentiable on a subset C of E, if the limit in
(18) is attained uniformly for x ∈ C and kyk = 1.

Lemma 1 (see [11]). If f : E⟶ℝ is uniformly Fréchet dif-
ferentiable and bounded on bounded subsets of E, then f is
uniformly continuous on bounded subsets of E and ∇f is uni-
formly continuous on bounded subsets of E from the strong
topology of E to the strong topology of E∗.

Proposition 2 (see [15]). Let f : E⟶ℝ be a convex func-
tion which is bounded on bounded subsets of E. Then, the fol-
lowing assertions are equivalent:

(i) f is strongly coercive and uniformly convex on
bounded subsets of E

(ii) f ∗ is Fréchet differentiable, and ∇f ∗ is uniformly
norm-to-norm continuous on bounded subsets of
dom f ∗ = E∗

Definition 3. The function f is said to be “Legendre” if it sat-
isfies the following two conditions:

(L1): int dom f ≠∅, and ∂f is single-valued on its
domain.

(L2): int dom f ∗ ≠ ∅, and ∂f ∗ is single-valued on its
domain.

Because here the space E is assumed to be reflexive, we
always have ð∂f Þ−1 = ∂f ∗ ([16], p. 83). This fact, when com-
bined with the conditions (L1) and (L2), implies the follow-
ing equalities:

∇f = ∇f ∗ð Þ−1,
ran∇f = dom∇f ∗ = int dom f ∗,

ran∇f ∗ = dom∇f = int dom f :

ð19Þ

In addition, the conditions (L1) and (L2), in conjunction
with Theorem 5.4 of [17], imply that the functions f and f ∗

are strictly convex on the interior of their respective domains
and f is Legendre if and only if f ∗ is Legendre.

One important and interesting Legendre function is ð1/
pÞk:kp, p ∈ ð1, 2�. When E is a uniformly convex and p-uni-
formly smooth Banach space with p ∈ ð1, 2�, the generalized
duality mapping Jp : E⟶ 2E∗

is defined by

Jp xð Þ = jp xð Þ ∈ E∗ : jp xð Þ, x
D E

= xk k: jp xð Þ
��� ���, jp xð Þ

��� ��� = xk kp−1
n o

:

ð20Þ

In this case, the gradient ∇f of f coincides with the gen-
eralized duality mapping Jp of E, ∇f = Jp, p ∈ ð1, 2�. Several
interesting examples of Legendre functions are presented
in [17–19].

From now on, we always assume that the convex func-
tion f : E⟶ ð0,+∞� is Legendre.

Definition 4 (see [20]). Let f : E⟶ ð−∞,+∞ be a convex
and Gâteaux differentiable function. The bifunction Df

: dom f × int dom f ⟶ ½0,+∞Þ defined by

Df y, xð Þ≔ f yð Þ − f xð Þ − ∇f xð Þ, y − xh i, ð21Þ

is called the Bregman distance with respect to f .

It should be noted that Df is not a distance in the usual
sense of the term. Clearly, Df ðx, xÞ = 0, but Df ðy, xÞ = 0 may
not imply x = y. In our case, when f is Legendre, this indeed
holds ([17], Theorem 7.3 (vi), p. 642). In general, Df satisfies
the three-point identity

Df x, yð Þ +Df y, zð Þ −Df x, zð Þ = x − y,∇f zð Þ−∇f yð Þh i, ð22Þ

and the four-point identity

Df x, yð Þ +Df ω, zð Þ −Df x, zð Þ −Df ω, yð Þ = x − ω,∇f zð Þ−∇f yð Þh i,
ð23Þ

for any x, ω ∈ dom f and y, z ∈ int dom f . Over the last 30
years, Bregman distances have been studied by many
researchers (see [17, 21–23]).

Let f : E⟶ ð−∞,+∞� be a convex function on E which
is Gâteaux differentiable on int dom f . The function f is
said to be totally convex at a point x ∈ int dom f if its mod-
ulus of total convexity at x, vf ðx,:Þ: ½0,+∞Þ⟶ ½0,+∞�,
defined by

vf x, tð Þ = inf Df y, xð Þ: y ∈ dom f , y − xk k = t
� �

, ð24Þ

is positive whenever t > 0. The function f is said to be totally
convex when it is totally convex at every point of int dom f .
The function f is said to be totally convex on bounded sets, if
for any nonempty bounded set B ⊆ E, the modulus of total
convexity of f on B, vf ðB, tÞ is positive for any t > 0, where
vf ðB,:Þ: ½0,+∞Þ⟶ ½0,+∞� is defined by

vf B, tð Þ = inf vf x, tð Þ: x ∈ B ∩ int dom f
� �

: ð25Þ

We remark in passing that f is totally convex on
bounded sets if and only if f is uniformly convex on
bounded sets (see [24, 25]).

Proposition 5 (see [24]). Let f : E⟶ ð−∞,+∞� be a con-
vex function that its domain contains at least two points. If
f is lower semicontinuous, then f is totally convex on
bounded sets if and only if f is uniformly convex on bounded
sets.

Lemma 6 (see [11]). If x ∈ int dom f , then the following
statements are equivalent:

(i) The function f is totally convex at x

(ii) For any sequence fyng ⊂ dom f ,
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lim
n⟶+∞

Df yn, xð Þ = 0⇒ lim
n⟶+∞

yn − xk k = 0: ð26Þ

Recall that the function f is called sequentially consistent
[25], if for any two sequences fxngn∈ℕ and fyngn∈ℕ in E
such that fxngn∈ℕ is bounded,

lim
n⟶+∞

Df yn, xnð Þ = 0⇒ lim
n⟶+∞

yn − xnk k = 0: ð27Þ

Lemma 7 (see [14]). If dom f contains at least two points,
then the function f is totally convex on bounded sets if and
only if the function f is sequentially consistent.

Lemma 8 (see [26]). Let f : E⟶ℝ be a Gâteaux differen-
tiable and totally convex function. If x1 ∈ E and the sequence
fDf ðxn, x1Þg is bounded, then the sequence fxng is also
bounded.

Lemma 9 (see [12]). Let f : E⟶ℝ be a Legendre function
such that ∇f ∗ is bounded on bounded subsets of int dom
f ∗. Let x1 ∈ E, and if fDf ðx1, xnÞg is bounded, then the
sequence fxng is bounded too.

Recall that the Bregman projection [10] with respect to f
of x ∈ int dom f onto a nonempty, closed, and convex set

C ⊆ int dom f is the unique vector ProjfCðxÞ ∈ C satisfying

Df ProjfC xð Þ, x
� �

= inf Df y, xð Þ: y ∈ C� �
: ð28Þ

Similar to the metric projection in Hilbert spaces, the
Bregman projection with respect to totally convex and Gâ
teaux differentiable functions has a variational characteriza-
tion ([25], corollary 4.4, p. 23).

Lemma 10 (see [25]). Suppose that f is Gâteaux differentia-
ble and totally convex on int dom f . Let x ∈ int dom f and
C ⊆ int dom f be a nonempty, closed, and convex set. Then,
the following Bregman projection conditions are equivalent:

(i) z0 = ProjfCðxÞ
(ii) z = z0 is the unique solution of the following varia-

tional inequality:

z − y,∇f xð Þ−∇f zð Þh i ≥ 0, ∀y ∈ C: ð29Þ

(iii) z = z0 is the unique solution of the following varia-
tional inequality:

Df y, zð Þ +Df z, xð Þ ≤Df y, xð Þ, ∀y ∈ C: ð30Þ

Let E be a real Banach space and C be a nonempty subset
of E. An element p ∈ C is called a fixed point of a single-

valued mapping T : C⟶ C, if p = Tp. The set of fixed
points of T is denoted by FðTÞ.

A point x ∈ C is called an asymptotic fixed point of T if C
contains a sequence fxng which converges weakly to x and
limn⟶+∞kxn − Txnk = 0. We denote the asymptotic fixed
points of T by ~FðTÞ.

Let C be a nonempty, closed, and convex subset of int
dom f and T : C⟶ C be a mapping. Now, T is said to
be Bregman quasi-nonexpansive, if FðTÞ ≠∅ and

Df p, Txð Þ ≤Df p, xð Þ, ∀x ∈ C, p ∈ F Tð Þ: ð31Þ

Let C be a nonempty, closed, and convex subset of int
dom f . An operator T : C⟶ int dom f is said to be Breg-
man strongly nonexpansive with respect to a nonempty
~FðTÞ, if

Df y, Txð Þ ≤Df y, xð Þ, ∀x ∈ C, y ∈ ~F Tð Þ, ð32Þ

and for any bounded sequence fxng ⊆ C with

lim
n⟶∞

Df y, xnð Þ −Df y, Txnð Þ� �
= 0, ð33Þ

it follows that

lim
n⟶∞

Df Txn, xn
� �

= 0: ð34Þ

A mapping B : E⟶ 2E∗
is called Bregman inverse

strongly monotone on the set C, if C ∩ ðint dom f Þ ≠∅,
and for any x, y ∈ C ∩ ðint dom f Þ, ξ ∈ Bx, and η ∈ By, we
have that

ξ − η,∇f ∗ ∇f xð Þ − ξð Þ−∇f ∗ ∇f yð Þ − ηð Þh i ≥ 0: ð35Þ

Let B : E⟶ 2E∗
be a mapping. Then, the mapping

defined by

Bf
λ ≔∇f ∗ ∘ ∇f − λBð Þ: E⟶ E, ð36Þ

is called an antiresolvent associated with B and λ for any λ > 0.
Suppose that A is a mapping of E into 2E∗

for the real
reflexive Banach space E. The effective domain of A is
denoted by dom ðAÞ, that is, dom ðAÞ = fx ∈ E : Ax ≠∅g.
A multivalued mapping A on E is said to be monotone if
hx − y, u∗ − v∗i ≥ 0 for all x, y ∈ dom ðAÞ, u∗ ∈ Ax, and v∗ ∈
Ay. A monotone operator A on E is said to be maximal if
graph A, the graph of A, is not a proper subset of the graph
of any monotone operator on E.

Let E be a real reflexive Banach space, f : E⟶ð−∞,+
∞� uniformly Fréchet differentiable and bounded on
bounded subsets of E. Then for any λ > 0, the resolvent of
A defined by

ResfA xð Þ = ∇f + λAð Þ−1∘∇f xð Þ, ð37Þ

is a single-valued Bregman quasi-nonexpansive mapping

from E onto dom ðAÞ and FðRes fAÞ = A−10. We denote by
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Aλ = ð1/λÞð∇f−∇f ðResfAÞÞ the Yosida approximation of A
for any λ > 0. We get from [26] (prop. 2.7, p. 10) that

Aλ xð Þ ∈ A ResfA xð Þ
� �

, ∀x ∈ E, λ > 0: ð38Þ

See [11], too.

Lemma 11 (see [27]). Let E be a real reflexive Banach space
and f : E⟶ ð−∞,+∞� be a Legendre function which is
totally convex on bounded subsets of E. Also, let C be a non-
empty, closed, and convex subset of int dom f and T : C
⟶ 2C be a multivalued Bregman quasi-nonexpansive map-
ping. Then, the fixed point set FðTÞ of T is a closed and con-
vex subset of C.

Lemma 12 (see[28]). Assume that f : E⟶ℝ is a Legendre
function which is uniformly Fréchet differentiable and
bounded on bounded subsets of E. Let C be a nonempty,
closed, and convex subset of E. Also, let fTi : i = 1,⋯,Ng
be N Bregman strongly nonexpansive mappings which satisfy
~FðTiÞ = FðTiÞ for each 1 ≤ i ≤N and let T = TNTN−1 ⋯ T1. If
FðTÞ and TN

i=1FðTiÞ are nonempty, then T is also Bregman
strongly nonexpansive with FðTÞ = ~FðTÞ.

Lemma 13 (see [29]). Let G : E⟶ 2E
∗
be a maximal mono-

tone operator and B : E⟶ E∗ be a Bregman inverse strongly
monotone mapping such that ðG + BÞ−1ð0∗Þ ≠∅. Also, let f
: E⟶ℝ be a Legendre function which is uniformly Fréchet
differentiable and bounded on bounded subsets of E. Then,

(i) ðG + BÞ−1ð0∗Þ = FðResfλG ∘ Bf
λÞ

(ii) ResfλG ∘ Bf
λ is a Bregman strongly nonexpansive map-

ping such that

F ResfλG ∘ Bf
λ

� �
= ~F ResfλG ∘ Bf

λ

� �
: ð39Þ

(iii) Df ðu, ResfλG ∘ Bf
λðxÞÞ +Df ðResfλG ∘ Bf

λðxÞ, xÞ ≤Df ðu,
xÞ, ∀u ∈ ðG + BÞ−1ð0∗Þ, x ∈ E, and λ > 0

Lemma 14 (see [30]). Let f : E⟶ ð−∞,+∞� be a proper
convex and lower semicontinuous Legendre function. Then,
for any z ∈ E, for any fxng ⊆ E and ftigNi=1 ⊆ ð0, 1Þ with
∑N

i=1ti = 1, the following holds

Df z,∇f ∗ 〠
N

i=1
ti∇f xið Þ

 ! !
≤ 〠

N

i=1
tiDf z, xið Þ: ð40Þ

Proposition 15 (see [26], prop. 2.8, p. 10). Let f be Gâteaux
differentiable and A : E⟶ 2E

∗
be a maximal monotone

operator such that A−10 ≠∅. Then

Df q, xð Þ ≥Df q, ResfrA xð Þ
� �

+Df ResfrA xð Þ, x
� �

, ð41Þ

for all r > 0, q ∈ A−10, and x ∈ E.

Next, we generalize the k-demimetric notation intro-
duced in [15].

Definition 16. Let E be a reflexive Banach space, f : E⟶
ð−∞,+∞� be a Legendre function which is Gâteaux differ-
entiable, C be a nonempty, closed and convex subset of
int dom f and let k∈ð−∞,1Þ. A mapping T : C⟶ int
dom f with FðTÞ ≠∅ is said to be Bregman k-demi-
metric, if for x ∈ C and q ∈ FðTÞ,

x − q,∇f xð Þ−∇fT xð Þh i ≥ 1 − kð ÞDf x, T xð Þð Þ: ð42Þ

Example 1. Every Bregman quasi-nonexpansive mapping
with the required conditions in Definition 16 is a Bregman
0-demimetric mapping. Let p ∈ FðTÞ ≠∅ and x ∈ C, and
we have

Df p, Txð Þ ≤Df p, xð Þ⇒ 0 ≤Df p, xð Þ −Df p, Txð Þ
=Df p, xð Þ +Df x, Txð Þ −Df p, Txð Þ −Df x, Txð Þ
= p − x,∇fT xð Þ−∇f xð Þh i −Df x, Txð Þ:

ð43Þ

Therefore,

x − p,∇f xð Þ−∇fT xð Þh i ≥Df x, Txð Þ: ð44Þ

Example 2. From [31] (Lemma 2.1), every Bregman quasi-
strictly pseudocontractive mapping with the required con-
ditions is a Bregman k-demimetric mapping for k ∈ ½0, 1Þ.

Example 3. Let E be a reflexive Banach space, f : E⟶ ð−
∞,+∞� be a Legendre function which is Gâteaux differentia-
ble, and A : E⟶ 2E∗

be a maximal monotone operator with

A−10 ≠∅ and r > 0. Then, the f -resolvent ResfrA is Bregman
0-demimetric. In fact, from (22) and Proposition 15, we have
that

Df q, xð Þ ≥Df q, ResfrA xð Þ
� �

+Df ResfrA xð Þ, x
� �

=Df q, xð Þ + q − ResfrA xð Þ,∇f xð Þ−∇f ResfrA xð Þ
� �D E

,

ð45Þ

for any x ∈ E and q ∈ A−10. Then, we obtain

ResfrA xð Þ − q,∇f xð Þ−∇f ResfrA xð Þ
� �D E

≥ 0: ð46Þ

Therefore,

ResfrA xð Þ − x + x − q,∇f xð Þ−∇f ResfrA xð Þ
� �D E

≥ 0, ð47Þ
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and hence, from (22), we have that

x − q,∇f xð Þ−∇f ResfrA xð Þ
� �D E

≥ x − ResfrA xð Þ,∇f xð Þ−∇f ResfrA xð Þ
� �D E

=Df x, ResfrA xð Þ
� �

+Df ResfrA xð Þ, x
� �

:

ð48Þ

Thus,

x − q,∇f xð Þ−∇f ResfrA xð Þ
� �D E

≥Df x, ResfrA xð Þ
� �

, ð49Þ

and then, we get that ResfrA is Bregman 0-demimetric.

3. Main Results

The following lemma is important and crucial in the proof of
Theorem 18.

Lemma 17. Let E be a reflexive Banach space andf : E⟶
ð−∞,+∞� be a Legendre function which is Gâteaux differen-
tiable, and letC be a nonempty, closed, and convex subset of
int dom f and let k be a real number with k ∈ ð−∞,1Þ
and let T be a Bregman k-demimetric mapping of C into
int dom f . Then, FðTÞ is closed and convex.

Proof. First, we show that FðTÞ is closed. Consider a
sequence fqng such that qn ⟶ q and qn ∈ FðTÞ. We con-
clude from the definition of T that

q − qn,∇f qð Þ−∇fT qð Þh i ≥ 1 − kð ÞDf q, T qð Þð Þ: ð50Þ

Since qn ⟶ q, we have 0 ≥ ð1 − kÞDf ðq, TðqÞÞ. Then,
from 1 − k > 0, we have that Df ðq, TðqÞÞ = 0, and hence,
q = TðqÞ, and therefore, q ∈ FðTÞ. This implies that FðTÞ is
closed.

Next, we show that FðTÞ is convex. Suppose p, q ∈ FðTÞ
and set z = αp + ð1 − αÞq, where α ∈ ½0, 1�. Then, we have that

z − p,∇f zð Þ−∇fT zð Þh i ≥ 1 − kð ÞDf z, T zð Þð Þ,
z − q,∇f zð Þ−∇fT zð Þh i ≥ 1 − kð ÞDf z, T zð Þð Þ:

ð51Þ

Thus, from α ≥ 0 and 1 − α ≥ 0, we have that

αz − αp,∇f zð Þ−∇fT zð Þh i ≥ α 1 − kð ÞDf z, T zð Þð Þ,

1 − αð Þz − 1 − αð Þq,∇f zð Þ−∇fT zð Þh i ≥ 1 − αð Þ 1 − kð ÞDf z, T zð Þð Þ:
ð52Þ

From these inequalities, we get that

0 = z − z,∇f zð Þ−∇fT zð Þh i ≥ 1 − kð ÞDf z, T zð Þð Þ: ð53Þ

Thus, we get that Df ðz, TðzÞÞ = 0; hence, z = Tz; there-
fore, z ∈ FðTÞ. We conclude that FðTÞ is convex.

Theorem 18. Let E be a real reflexive Banach space. Suppose
that f : E⟶ℝ is a proper, convex, lower semicontinuous,
strongly coercive, Legendre function which is bounded on
bounded subsets of E, uniformly Fréchet differentiable, and
totally convex on bounded subsets of E. Let C be a nonempty,
closed, and convex subset of int dom f . Let fk1, k2,⋯, kMg
⊆ ð−∞,1Þ and fT jgMj=1 be a finite family of Bregman kj
-demimetric and Bregman quasi-nonexpansive and demi-
closed mappings of C into itself. Suppose that fBigNi=1 is a finite
family of Bregman inverse strongly monotone mappings of C

into E and fBf
i,ηng

N

i=1
is the family of antiresolvent mappings

of fBigNi=1. Let A : E⟶ 2E
∗
and G : E⟶ 2E

∗
be maximal

monotone mappings on E and let Qη = ResfηG = ð∇f + ηGÞ−1∇
f and Jr = ResfrA = ð∇f + rAÞ−1∇f be the resolvents of G and
A for η > 0 and r > 0, respectively. Assume that

Ω = A−10 ∩ ∩ M
j=1F T j

� �� �
∩ ∩ N

i=1 Bi +Gð Þ−10∗� �
≠∅: ð54Þ

For x1 ∈ C and C1 =Q1 = C, let fxng be a sequence defined
by

yn = ∇f ∗ 〠
M

j=1
ξj 1 − λnð Þ∇f + λn∇f T j

� �
xn

 !
,

zn = ∇f ∗ 〠
N

i=1
σi∇f Qηn

Bf
i,ηn

ynð Þ,

un = Jrnzn,

Cn+1 = z ∈ Cn : Df z, ynð Þ ≤Df z, xnð Þ,Df z, znð Þ ≤Df z, ynð Þ and zn − z,∇f znð Þ−∇f unð Þh i ≥Df zn, unð Þ� �
,

xn+1 = ProjfCn+1∩Qn
x1ð Þ, ∀n ∈ℕ,

Qn+1 = z ∈Qn : xn+1 − z,∇f x1ð Þ−∇f xn+1ð Þh i ≥ 0f g,

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð55Þ

6 Journal of Function Spaces



where fλng ⊆ ð0, 1Þ, fηng, frng ⊆ ð0,+∞Þ, fξ1, ξ2,⋯, ξMg,
fσ1, σ2,⋯, σNg ⊆ ð0, 1Þ, and a, b, c ∈ℝ satisfy the following:

(1) 0 < a ≤ λn, ∀n ∈ℕ

(2) 0 < c ≤ rn, ∀n ∈ℕ

(3) ∑M
j=1ξj = 1 and ∑N

i=1σi = 1

Then, fxng converges strongly to a point ω0 ∈Ω where

ω0 = ProjfΩx1.

Proof. We divide the proof into several steps:

(Step 1) First, we prove that Ω is a closed and convex
subset of C.

Since fT jgMj=1 is a finite family of kj-Bregman demimetric

mappings, by Lemma 17 and the condition Ω ≠∅, FðT jÞ is
nonempty, closed, and convex for 1 ≤ j ≤M. Also, it follows

from Lemma 13 (i)–(ii) that ðBi + GÞ−10∗ = FðQηn
Bf
i,ηnÞ and

Qηn
Bf
i,ηn

is a Bregman strongly nonexpansive mapping, and
therefore, from Lemma 12, we have that

F Qηn
Bf
i,ηn

� �
= ~F Qηn

Bf
i,ηn

� �
: ð56Þ

Thus, fQηn
Bf
i,ηng is a family of Bregman quasi-

nonexpansive mappings. Using Ω ≠∅ and Lemma 11, we

see that ðBi +GÞ−10∗ = FðQηn
Bf
i,ηn

Þ is a nonempty, closed,

and convex set. We also know that A−10 is closed and con-
vex. Then, Ω is nonempty, closed, and convex. Therefore,

ProjfΩ is well defined.

(Step 2) We prove that Cn and Qn are closed and convex
subsets of C and Ω ⊆ Cn+1 ∩Qn, ∀n ∈ℕ.

In fact, it is clear that C1 = C is closed and convex. Sup-
pose that Ck is closed and convex for some k ≥ 1. Note that

Df z, ykð Þ ≤Df z, xkð Þ⇔ f zð Þ − f ykð Þ − ∇f ykð Þ, z − ykh i
≤ f zð Þ − f xkð Þ − ∇f xkð Þ, z − xkh i
⇔ ∇f xkð Þ, z − xkh i − ∇f ykð Þ, z − ykh i
≤ f ykð Þ − f xkð Þ:

ð57Þ

Similarly, we have that

Df z, zkð Þ ≤Df z, ykð Þ⇔ ∇f ykð Þ, z − ykh i − ∇f zkð Þ, z − zkh i
≤ f zkð Þ − f ykð Þ:

ð58Þ

Thus, from the fact that Df ð:,xÞ is continuous for each
fixed x and using the above inequalities fz ∈ Ck : Df ðz, ykÞ
≤Df ðz, xkÞg and fz ∈ Ck : Df ðz, zkÞ ≤Df ðz, ykÞgwhich are

closed and convex. We have also fz ∈ Ck : hzk − z,∇f ðzkÞ−
∇f ðukÞi ≥Df ðzk, ukÞg which is closed and convex. There-
fore, Ck+1 is closed and convex. From mathematical induc-
tion, we have that Cn is a closed and convex subset in C
with Cn+1 ⊆ Cn for all n ∈ℕ.

Also, it is clear that Q1 = C is closed and convex. Suppose
that Qk is closed and convex for some k ≥ 1. Hence, fz ∈
Qk : hxk+1 − z,∇f ðx1Þ−∇f ðxk+1Þi ≥ 0g is closed and convex;
i.e., Qk+1 is a closed and convex subset of Qk. Therefore, by
mathematical induction, Qn is a closed and convex subset
of C with Qn+1 ⊆Qn for all n ∈ℕ. Next, we show that Ω ⊆
Cn for all n ≥ 1. Clearly, Ω ⊆ C1 = C. Assume that Ω ⊆ Ck
for some k ∈ℕ. Note from Lemma 14 that

Df z, ykð Þ =Df z,∇f ∗ 〠
M

j=1
ξj 1 − λkð Þ∇f + λk∇f T j

� �
xk

 !

=Df z,∇f ∗ 〠
M

j=1
ξj∇f∇f

∗ 1 − λkð Þ∇f + λk∇f T j

� �
xk

 !

≤ 〠
M

j=1
ξjDf z,∇f ∗ 1 − λkð Þ∇f + λk∇f T j

� �
xk

� �

≤ 〠
M

j=1
ξj 1 − λkð ÞDf z, xkð Þ + λkDf z, T jxk

� �� �

≤ 〠
M

j=1
ξj 1 − λkð ÞDf z, xkð Þ + λkDf z, xkð Þ� �

=Df z, xkð Þ,

ð59Þ

for all z ∈Ω. Furthermore, since Bi is a Bregman inverse
strongly monotone mapping for all 1 ≤ i ≤N and hence from
Lemmas 13 and 14, we have that

Df z, zkð Þ =Df z,∇f ∗ 〠
N

i=1
σi∇f Qηk

Bf
i,ηkyk

 !

≤ 〠
N

i=1
σiDf z,Qηk

Bf
i,ηkyk

� �
≤ 〠

N

i=1
σiDf z, ykð Þ =Df z, ykð Þ,

ð60Þ

for all z ∈Ω. Also, since Jrk is the resolvent of A and uk =
Jrkzk, we have from (22) and Proposition 15 that

zk − z,∇f zkð Þ−∇f ukð Þh i =Df z, zkð Þ +Df zk, ukð Þ −Df z, ukð Þ
=Df z, zkð Þ +Df zk, ukð Þ −Df z, Jrk zk

� �
≥Df z, zkð Þ +Df zk, ukð Þ −Df z, zkð Þ
=Df zk, ukð Þ,

ð61Þ

for all z ∈Ω. From (59)–(61), we have that Ω ⊆ Ck+1. There-
fore, we have by mathematical induction that Ω ⊆ Cn for all
n ∈ℕ.

Now, we shall show that Ω ⊆Qn for all n ∈ℕ. Note that
Ω ⊆Q1 = C. Assume that Ω ⊆Qk for some k ∈ℕ. Thus, Ω
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⊆ Ck+1 ∩Qk for some k ∈ℕ. From xk+1 = ProjfCk+1∩Qk
ðx1Þ and

Lemma 10, we have that

xk+1 − z,∇f x1ð Þ−∇f xk+1ð Þh i ≥ 0, ∀z ∈ Ck+1 ∩Qk: ð62Þ

Since Ω ⊆ Ck+1 ∩Qk, we have that

xk+1 − z,∇f x1ð Þ−∇f xk+1ð Þh i ≥ 0, ∀z ∈Ω: ð63Þ

Then, we get Ω ⊆Qk+1. By mathematical induction, we
have that Ω ⊆Qn for all n ∈ℕ. This implies that fxng is well
defined.

(Step 3) We show that limn⟶∞Df ðxn, x1Þ exists.

Since Ω is nonempty, closed, and convex, there exists a

ω0 ∈Ω such that ω0 = ProjfΩðx1Þ. From xn+1 = ProjfCn+1∩Qn
ðx1Þ

, we get that

Df xn+1, x1ð Þ ≤Df z, x1ð Þ, ð64Þ

for all z ∈ Cn+1 ∩Qn. From ω0 ∈Ω ⊆ Cn+1 ∩Qn, we obtain that

Df xn+1, x1ð Þ ≤Df ω0, x1ð Þ: ð65Þ

This shows that fDf ðxn, x1Þg is a bounded sequence. By
Lemma 10 (iii), we have that

0 ≤Df xn+1, xnð Þ =Df xn+1, Proj
f
Cn∩Qn−1

x1ð Þ
� �

≤Df xn+1, x1ð Þ −Df ProjfCn∩Qn−1
x1ð Þ, x1

� �
=Df xn+1, x1ð Þ −Df xn, x1ð Þ,

ð66Þ

for all n > 1. Therefore,

Df xn, x1ð Þ ≤Df xn+1, x1ð Þ: ð67Þ

This implies that fDf ðxn, x1Þg is bounded and nonde-
creasing. Then, limn⟶∞Df ðxn, x1Þ exists. In view of Lemma
8, we deduce that the sequence fxng is bounded. Also, from
(66), we have that

lim
n⟶∞

Df xn+1, xnð Þ = 0: ð68Þ

Since the function f is totally convex on bounded sets, by
Lemma 7, we have that

lim
n⟶∞

xn+1 − xnk k = 0: ð69Þ

(Step 4) We prove that fxng is a Cauchy sequence in C.

We have Cm ⊆ Cn and Qm ⊆Qn for any m, n ∈ℕ with

m ≥ n. From xn = ProjfCn∩Qn−1
ðx1Þ ∈ Cn ∩Qn−1 and Lemma

10, we have that

Df xm, xnð Þ =Df xm, Proj
f
Cn∩Qn−1

x1ð Þ
� �

≤Df xm, x1ð Þ −Df ProjfCn∩Qn−1
x1ð Þ, x1

� �
=Df xm, x1ð Þ −Df xn, x1ð Þ:

ð70Þ

Letting m, n⟶∞ in (70), we deduce that Df ðxm, xnÞ
⟶ 0. In view of Lemma 7, since the function f is totally
convex on bounded sets, we get that kxm − xnk⟶ 0 as m,
n⟶∞. Thus, fxng is a Cauchy sequence. Since E is a
Banach space and C is closed and convex, we conclude that
there exists �x ∈ C such that

lim
n⟶∞

xn − �xk k = 0: ð71Þ

(Step 5) We prove that limn⟶∞k∇f ðxnÞ−∇f ðynÞk = 0.

Using (68) and from xn+1 ∈ Cn+1, we get that

Df xn+1, ynð Þ ≤Df xn+1, xnð Þ⟶ 0  as n⟶∞ð Þ: ð72Þ

Then, limn⟶∞Df ðxn+1, ynÞ = 0. Since the function f is
totally convex on bounded sets and fyng is bounded, by
Lemma 7, we have that

lim
n⟶∞

xn+1 − ynk k = 0: ð73Þ

Using (69) and (73), we have that

xn − ynk k ≤ xn − xn+1k k + xn+1 − ynk k⟶ 0  as n⟶∞ð Þ:
ð74Þ

Then,

lim
n⟶∞

xn − ynk k = 0: ð75Þ

Since from Lemma 1, ∇f is uniformly continuous, we
have that

lim
n⟶∞

∇f xnð Þ−∇f ynð Þk k = 0: ð76Þ

(Step 6) We prove that limn⟶∞k∇f ðynÞ−∇f ðznÞk = 0.

Using (72) and from xn+1 ∈ Cn+1, we get that

Df xn+1, znð Þ ≤Df xn+1, ynð Þ⟶ 0  as n⟶∞ð Þ: ð77Þ

Then, limn⟶∞Df ðxn+1, znÞ = 0. Since function f is
totally convex on bounded sets and fzng is bounded, by
Lemma 7, we have that
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lim
n⟶∞

xn+1 − znk k = 0: ð78Þ

Using (69) and (78), we have that

lim
n⟶∞

xn − znk k = 0: ð79Þ

Applying (75) and (79), we get that

lim
n⟶∞

yn − znk k = 0: ð80Þ

Since ∇f is uniformly continuous, we have that

lim
n⟶∞

∇f ynð Þ−∇f znð Þk k = 0: ð81Þ

(Step 7) We prove that limn⟶∞k∇f ðznÞ−∇f ðunÞk = 0.

Using xn+1 ∈ Cn+1 and from (22), we get that

Df zn, unð Þ ≤ zn − xn+1,∇f znð Þ−∇f unð Þh i
=Df xn+1, znð Þ +Df zn, unð Þ −Df xn+1, unð Þ:

ð82Þ

Then,

0 ≤Df xn+1, znð Þ −Df xn+1, unð Þ: ð83Þ

Therefore, from (77), we have that

Df xn+1, unð Þ ≤Df xn+1, znð Þ⟶ 0  as n⟶∞ð Þ, ð84Þ

and then, limn⟶∞Df ðxn+1, unÞ = 0. Since the function f is
totally convex on bounded sets and from Proposition 15
and Lemma 9, fung is bounded; hence, by Lemma 7, we
have that

lim
n⟶∞

xn+1 − unk k = 0: ð85Þ

Using (69) and (85), we conclude that

lim
n⟶∞

xn − unk k = 0: ð86Þ

Now, by (79) and (86), we get that

lim
n⟶∞

zn − unk k = 0: ð87Þ

Since from Lemma 1, ∇f is uniformly continuous, we
have that

lim
n⟶∞

∇f znð Þ−∇f unð Þk k = 0: ð88Þ

(Step 8) We prove that �x ∈Ω.

Since T j is Bregman kj-demimetric for all 1 ≤ j ≤M, we
get that

xn − z,∇f xnð Þ−∇f ynð Þh i

= xn − z,∇f xnð Þ−∇f∇f ∗ 〠
M

j=1
ξj 1 − λnð Þ∇f + λn∇f T j

� �
xn

 !* +

= 〠
M

j=1
ξj xn − z,∇f xnð Þ − 1 − λnð Þ∇f + λn∇f T j

� �
xn

	 


= 〠
M

j=1
ξjλn xn − z,∇f xnð Þ−∇f T j xnð Þ	 


≥ 〠
M

j=1
ξjλn 1 − kð ÞDf xn, T jxn

� �
≥ 〠

M

j=1
ξja 1 − kð ÞDf xn, T jxn

� �
,

ð89Þ

for all z ∈ ∩ M
j=1FðT jÞ. We have from (76) that

lim
n⟶∞

Df xn, T jxn
� �

= 0, ð90Þ

for all 1 ≤ j ≤M. Since the function f is totally convex on
bounded sets, by Lemma 7, we have that

lim
n⟶∞

xn − T jxn
�� �� = 0, ∀j ∈ 1,⋯,Mf g: ð91Þ

Since T j is demiclosed for all 1 ≤ j ≤M and from (71)
wherexn ⟶ �x as n⟶∞, we have that �x ∈ ∩ M

j=1FðT jÞ.
We now show that �x ∈ ∩ N

i=1ðBi + GÞ−10∗. From (22) and
Lemma 13 (iii), we get that

yn − z,∇f ynð Þ−∇f znð Þh i

= yn − z,∇f ynð Þ−∇f∇f ∗ 〠
N

i=1
σi∇f Qηn

Bf
i,ηn ynð Þ

* +

= 〠
N

i=1
σi yn − z,∇f ynð Þ−∇f Qηn

Bf
i,ηn ynð Þ

D E

= 〠
N

i=1
σi Df z, ynð Þ +Df yn,Qηn

Bf
i,ηnyn

� �
−Df z,Qηn

Bf
i,ηnyn

� �� �

≥ 〠
N

i=1
σi Df z, ynð Þ +Df yn,Qηn

Bf
i,ηnyn

� �
−Df z, ynð Þ

� �

= 〠
N

i=1
σi Df yn,Qηn

Bf
i,ηn

yn
� �� �

,

ð92Þ

for all z ∈ ∩ N
i=1ðBi +GÞ−10∗ and i ∈ f1,⋯,Ng. Using (81),

from the above, we have that

lim
n⟶∞

Df yn,Qηn
Bf
i,ηn

yn
� �

= 0, ð93Þ

for all 1 ≤ i ≤N . Since the function f is totally convex on
bounded sets, by Lemma 7, we conclude that
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lim
n⟶∞

yn −Qηn
Bf
i,ηnyn

��� ��� = 0: ð94Þ

On the other hand, it follows from (71) and (75) that

lim
n⟶∞

yn − �xk k = 0: ð95Þ

Now, from (94) and (95), we have that �x ∈ ~FðQηn
Bi,ηnÞ

for all i ∈ f1,⋯,Ng. From Lemma 13, we conclude that

~F Qηn
Bi,ηn

� �
= F Qηn

Bi,ηn

� �
= Bi +Gð Þ−10∗, ∀i ∈ 1,⋯,Nf g,

ð96Þ

and therefore, �x ∈ ∩ N
i=1ðBi +GÞ−10∗.

We now show that �x ∈ A−10. Using rn ≥ c, we have from
(88) that

lim
n⟶∞

1
rn

∇f znð Þ−∇f unð Þk k = 0: ð97Þ

So applying Arn
, the Yosida approximation of A, we have

lim
n⟶∞

Arn
zn

�� �� = lim
n⟶∞

1
rn

∇f znð Þ−∇f unð Þk k = 0: ð98Þ

Since Arn
zn ∈ Aun, for ðp, p∗Þ ∈ A, we have from the

monotonicity of A that hp − un, p∗ − Arn
zni ≥ 0 for all n ∈ℕ

. By (71) and (79), we have that

lim
n⟶∞

zn − �xk k = 0: ð99Þ

From (87) and the above, we have kun − �xk⟶ 0. Thus,
we get hp − �x, p∗i ≥ 0. From the maximality of A, we have
that �x ∈ A−10. Therefore, �x ∈Ω.

Since ω0 = ProjfΩðx1Þ, �x ∈Ω, and kxn − �xk⟶ 0, we have
from (65) that

Df ω0, x1ð Þ ≤Df �x, x1ð Þ = lim
n⟶∞

Df xn, x1ð Þ
≤ lim

n⟶∞
Df ω0, x1ð Þ =Df ω0, x1ð Þ,

ð100Þ

which implies that

lim
n⟶∞

Df xn, x1ð Þ =Df ω0, x1ð Þ: ð101Þ

Therefore,

Df �x, x1ð Þ =Df ω0, x1ð Þ: ð102Þ

From (55), (71), and ω0 ∈Ω ⊆Qn+1 for all n ∈ℕ and also
since ∇f is uniformly continuous on bounded subsets and is
bounded on bounded subsets, we have that

xn+1 − ω0,∇f x1ð Þ−∇f xn+1ð Þh i
≥ 0⇒ lim

n⟶∞
xn+1 − ω0,∇f x1ð Þ−∇f xn+1ð Þh i

≥ 0⇒ �x − ω0,∇f x1ð Þ−∇f �xð Þh i ≥ 0:

ð103Þ

Now, from (22) and (102), we get that

Df ω0, �xð Þ =Df ω0, �xð Þ +Df �x, x1ð Þ −Df ω0, x1ð Þ
= ω0 − �x,∇f x1ð Þ−∇f �xð Þh i:

ð104Þ

From (103) and the above, we conclude that Df ðω0, �xÞ
≤ 0, and therefore, Df ðω0, �xÞ = 0. Thus, ω0 = �x, and hence,
xn ⟶ ω0. This completes the proof.

Next, we prove a proposition to extend Theorem 18.

Proposition 19. Let E be a real reflexive Banach space. Sup-
pose that f : E⟶ℝ is a proper, convex, lower semicontinu-
ous, Legendre function and is Gâteaux differentiable of E. Let
C be a nonempty, closed, and convex subset of int dom f .
Suppose k ∈ ð−∞,0� and a mapping T : C⟶ C with FðTÞ
≠∅ is Bregman k-demimetric. Then, T is a Bregman
quasi-nonexpansive mapping.

Proof. Let p ∈ FðTÞ and x ∈ C. Using (22) and Definition 16,
we have

Df p, Txð Þ −Df p, xð Þ =Df x, Txð Þ −Df p, xð Þ −Df x, Txð Þ +Df p, Txð Þ
=Df x, Txð Þ − p − x,∇f Txð Þ−∇f xð Þh i
≤Df x, Txð Þ − 1 − kð ÞDf x, Txð Þ
= kDf x, Txð Þ ≤ 0:

ð105Þ

Then, T is a Bregman quasi-nonexpansive mapping.

Remark 20. Using Proposition 19, for each 1 ≤ j ≤M, we
may remove the condition that T j is Bregman quasi-
nonexpansive in Theorem 18 when kj ≤ 0.

Open Problem 1. Can one generalize Proposition 19 to Breg-
man k-demimetric mappings with k < 1?
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