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In this paper, using a new shrinking projection method and new generalized k-demimetric mappings, we consider the strong
convergence for finding a common point of the sets of zero points of maximal monotone mappings, common fixed points of a
finite family of Bregman k-demimetric mappings, and common zero points of a finite family of Bregman inverse strongly
monotone mappings in a reflexive Banach space. To the best of our knowledge, such a theorem for Bregman k-demimetric
mapping is the first of its kind in a Banach space. This manuscript is online on arXiv by the link http://arxiv.org/abs/2107.13254.

1. Introduction

Let H be a Hilbert space and let C be a nonempty, closed,
and convex subset of H. Let T: C— H be a mapping.
Then, we denote by F(T) the set of fixed points of T. For
a real number t with 0<t<1, a mapping U: C— H is
said to be a t-strict pseudocontraction [1] if

|Ux= Uyl <|lx=y|* +tlx - Ux= (y=Up)[>, (1)

for all x, y € C. In particular, if t = 0, then U is nonexpansive,
ie.,

|Ux- Uyl <[lx-y], VxyeC. 2)

If U is a t-strict pseudocontraction and F(U) # &, then
we get that, for x € C and p € F(U),

1Ux = p|I* < [|x = p|* + ]| - Ux|]* (3)

From this inequality, we get that

|Ux = x|+ [lx = pl[* + 2(Ux =, = p) < [ = p|* + ]}~ U

(4)
Then, we get that
2(x = Ux,x—p) > (1-1t)|x - Ux|*. (5)

A mapping U:C— H is said to be a generalized
hybrid [2] if there exist real numbers «, 3 such that

af|Ux = Uy|* + (1 - @)||x = Uy|[* < Bl|Ux - || + (1= B)|x = ¥,

(6)

for all x,y € C. Such a mapping U is said to be a (a, f8)
-generalized hybrid. The class of generalized hybrid map-
pings covers several well-known mappings. A (1, 0)-gener-
alized hybrid mapping is nonexpansive. For a=2 and
B =1, it is nonspreading [3, 4], i.e.,
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2Ux - Uyl < [Ux=y|P + Uy -], VxyeC. (7)

For «=3/2 and B =1/2, it is also a hybrid [5], i.e.,

3Ux - Uyl < e - | + [Ux=y|* + | Uy 2, VayeC.

(®)

In general, nonspreading mappings and hybrid map-
pings are not continuous (see [6]). If U is a generalized
hybrid and F(U) # &, then we get that, forxe Cand p€ F
(),

allp = Ux|f* + (1= a)lp - Ux|* < Bllp = x[* + (1= B)lp = x[|*,
©)

and hence, ||Ux - p||* < ||x - p||>. From this, we have that
2(x—p,x—Ux) > ||x - Ux|*. (10)
Let E be a smooth Banach space and let G be a maximal
monotone mapping with G0 # &. Then, for the metric

resolvent J, of G for a positive number A > 0, we obtain from
[7, 8] that, for x e Eand p € G'0=F(J,),

(hx=p J(x = Jyx)) 20. (11)
Then, we get
(Jyx—x+x—-p,J(x—])x)) =0, (12)
and hence,
(x=p, J(x = Jax)) =l = Tl (13)

where ] is the duality mapping on E. Motivated by (5), (10),
and (13), Takahashi [9] introduced a nonlinear mapping in a
Banach space as follows: let C be a nonempty, closed, and
convex subset of a smooth Banach space E and let # be a real
number with # € (-00,1). A mapping U : C — E with F(
U) # O is said to be #-demimetric if, for x € C and p € F(U),

2{x = p,J(x = Ux)) 2 (1 - 1) lx - Ux]*. (14)

According to this definition, we have that a ¢-strict pseu-
docontraction U with F(U) # & is t-demimetric, an (a, f3)
-generalized hybrid mapping U with F(U) # @ is 0-demi-
metric, and the metric resolvent ], with G'0+ @ is (-1)
-demimetric.

On the other hand, in 1967, Bregman [10] discovered an
effective technique using the so-called Bregman distance
function Dy in the process of designing and analyzing feasi-
bility and optimization algorithms. This led to a growing
area of research in which Bregman’s technique is applied
in various ways in order to design and analyze iterative algo-
rithms for solving feasibility problems, equilibrium prob-
lems, fixed point problems for nonlinear mappings, and so
on (see, e.g., [11, 12] and the references therein).
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In 2010, Reich and Sabach [11] using the Bregman dis-
tance function D, introduced the concept of Bregman
strongly nonexpansive mappings and studied the conver-
gence of two iterative algorithms for finding common fixed
points of finitely many Bregman strongly nonexpansive
operators in reflexive Banach spaces.

In this paper, motivated by Takahashi [13], we general-
ize k-demimetric mappings by the Bregman distance, and
using a new shrinking projection method, we deal with the
strong convergence for finding a common point of the sets
of zero points of maximal monotone mappings, common
fixed points of a finite family of Bregman k-demimetric
mappings, and common zero points of a finite family of
Bregman inverse strongly monotone mappings in a reflexive
Banach space (see [14]).

2. Preliminaries

Let E be a reflexive real Banach space and C be a nonempty,
closed, and convex subset of E. Throughout this paper, the
dual space of E is denoted by E*. The norm and duality pair-
ing between E and E* are, respectively, denoted by ||.|| and
(. .). Let {x,}, be a sequence in E, and we denote the
strong convergence of {x,}, . to x€E as n— oo by x,
— x and the weak convergence by x, — x.

Throughout this paper, f : E— (—00,+00] is a proper,
lower semicontinuous, and convex function. We denote by
dom f={x € E; f(x)<oo}, the domain of f. The function
f is said to be strongly coercive if lim . f(x)/||x] =+
00. Let x eint dom f, and the subdifferential of f at x is
the convex mapping set df : E — 2F defined by

of (x) ={E € E" : f(x) + (y =%, &) < f(y).Yy € E},

Vx €E,

(15)

and f*:E* — (—00,400] is the Fenchel conjugate of f
defined by

f7(8) =sup {(§,x) — f(x): x € E}. (16)
It is well known that & € df (x) is equivalent to
) +£7(8) = (x8). (17)

For any x €int dom f and y € E, we denote by f"(x, y)
the right-hand derivative of f at x in the direction y, that is,

Floy)= lim LETP) S (18)

t—0* t

The function f is called Gateaux differentiable at x, if the
limit in (18) exists for any y € E. In this case, the gradient
of f at x is the linear function Vf which is defined by
(y.Vf(x)) =f"(x,y) for any y € E. The function f is said
to be Gateaux differentiable if it is Gateaux differentiable
at each x eint dom f. The function f is said to be Fréchet
differentiable at x, if the limit in (18) is attained uniformly
in ||y|| =1, for any y € E. Finally, f is said to be uniformly
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Fréchet differentiable on a subset C of E, if the limit in
(18) is attained uniformly for x € C and ||y|| = 1.

Lemma 1 (see [11]). If f : E— R is uniformly Fréchet dif-
ferentiable and bounded on bounded subsets of E, then f is
uniformly continuous on bounded subsets of E and Vf is uni-
formly continuous on bounded subsets of E from the strong
topology of E to the strong topology of E*.

Proposition 2 (see [15]). Let f : E— R be a convex func-
tion which is bounded on bounded subsets of E. Then, the fol-
lowing assertions are equivalent:

(i) f is strongly coercive and uniformly convex on
bounded subsets of E

(ii) f* is Fréchet differentiable, and Vf* is uniformly
norm-to-norm continuous on bounded subsets of
dom f* =E*

Definition 3. The function f is said to be “Legendre” if it sat-
isfies the following two conditions:

(L1): int dom f# &, and Of is single-valued on its
domain.

(L2): int dom f* + ¢, and df" is single-valued on its
domain.

Because here the space E is assumed to be reflexive, we
always have (3f)' = 8f* ([16], p. 83). This fact, when com-
bined with the conditions (L1) and (L2), implies the follow-
ing equalities:

Vf=(Vf)"
ranVf = domVf" =int dom f~, (19)
ranVf" =domVf =int dom f.

In addition, the conditions (L1) and (L2), in conjunction
with Theorem 5.4 of [17], imply that the functions f and f*
are strictly convex on the interior of their respective domains
and f is Legendre if and only if /™ is Legendre.

One important and interesting Legendre function is (1/
P)IIII7, p € (1,2]. When E is a uniformly convex and p-uni-
formly smooth Banach space with p € (1, 2], the generalized
duality mapping J, : E— 2F" is defined by

Tp(x) = {jp(0) € B* : (jp (). ) = || i ()

()| = <0}
(20)

>

In this case, the gradient Vf of f coincides with the gen-
eralized duality mapping J, of E, Vf =], p € (1,2]. Several
interesting examples of Legendre functions are presented
in [17-19].

From now on, we always assume that the convex func-
tion f : E— (0,+00] is Legendre.

Definition 4 (see [20]). Let f : E— (—00,+00 be a convex
and Gateaux differentiable function. The bifunction Df

:dom f xint dom f — [0,+00) defined by
Dy(y,x) = f () = f(x) = (Vf (%), y = %), (21)
is called the Bregman distance with respect to f.

It should be noted that Dy is not a distance in the usual
sense of the term. Clearly, Df(x, x) =0, but Dy (y, x) = 0 may
not imply x = y. In our case, when f is Legendre, this indeed
holds ([17], Theorem 7.3 (vi), p. 642). In general, Dy satisfies
the three-point identity

Dy(x,y) + Dy(y>2) = D(x.2) = (x = .V (2)-V/(5)), (22)
and the four-point identity

Dy(x.y) + Dy(w, 2) = Dy(x, 2) = Dy(w, y) = (x = @.Vf(2)=Vf (7)),
(23)

for any x,w € dom f and y,z €int dom f. Over the last 30
years, Bregman distances have been studied by many
researchers (see [17, 21-23]).

Let f : E— (—00,+00] be a convex function on E which
is Gateaux differentiable on int dom f. The function f is
said to be totally convex at a point x € int dom f if its mod-
ulus of total convexity at x,v((x,.): [0,+00) — [0,+00],
defined by

ve(x, t) =inf {Dy(y,x): yedom f,||y-x||=t},  (24)

is positive whenever t > 0. The function f is said to be totally
convex when it is totally convex at every point of int dom f.
The function f is said to be totally convex on bounded sets, if
for any nonempty bounded set B C E, the modulus of total
convexity of f on B, v;(B,t) is positive for any ¢ >0, where
v¢(B..): [0,+00) — [0,+00] is defined by

vi(B,t) =inf {v(x,t): xe Bnint dom f}. (25)

We remark in passing that f is totally convex on
bounded sets if and only if f is uniformly convex on
bounded sets (see [24, 25]).

Proposition 5 (see [24]). Let f : E— (—00,+00] be a con-
vex function that its domain contains at least two points. If
f is lower semicontinuous, then f is totally convex on
bounded sets if and only if f is uniformly convex on bounded
sets.

Lemma 6 (see [11]). If xeint dom f, then the following
statements are equivalent:

(i) The function f is totally convex at x

(ii) For any sequence {y,} C dom f,



lim Dy(y,,x)=0= lim [y, —x|=0. (26)

n—-+0o n—-+00

Recall that the function f is called sequentially consistent
[25], if for any two sequences {x,},. and {y,}, . in E
such that {x,}, . is bounded,

lim Dy(y,,x,)=0= lim |y, -x,|=0. (27)

n—-+0o n—+00

Lemma 7 (see [14]). If dom f contains at least two points,
then the function f is totally convex on bounded sets if and
only if the function f is sequentially consistent.

Lemma 8 (see [26]). Let f : E— R be a Gateaux differen-
tiable and totally convex function. If x, € E and the sequence
{Dy(x,,x;)} is bounded, then the sequence {x,} is also
bounded.

Lemma 9 (see [12]). Let f : E— R be a Legendre function
such that Vf* is bounded on bounded subsets of int dom
f*. Let x; €E, and if {Ds(x;,x,)} is bounded, then the

sequence {x,} is bounded too.

Recall that the Bregman projection [10] with respect to f
of x eint dom f onto a nonempty, closed, and convex set

Ccint dom f is the unique vector Proj{;(x) € C satisfying
Dy (Proj’;(x),x) =inf {D;(y,x): y € C}. (28)

Similar to the metric projection in Hilbert spaces, the
Bregman projection with respect to totally convex and Ga
teaux differentiable functions has a variational characteriza-
tion ([25], corollary 4.4, p. 23).

Lemma 10 (see [25]). Suppose that f is Gateaux differentia-
ble and totally convex on int dom f. Let x € int dom f and
Ccint dom f be a nonempty, closed, and convex set. Then,
the following Bregman projection conditions are equivalent:

(i) zy= Projfc(x)

(ii) z=z, is the unique solution of the following varia-
tional inequality:

(z=yVf(x)-Vf(2)) =0, VyeC. (29)

(iii) z =z, is the unique solution of the following varia-
tional inequality:

D¢(y,z) + Ds(z,x) <Ds(y,x), VyeC. (30)

Let E be a real Banach space and C be a nonempty subset
of E. An element p € C is called a fixed point of a single-
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valued mapping T: C— C, if p=Tp. The set of fixed
points of T is denoted by F(T).

A point x € Cis called an asymptotic fixed point of T'if C
contains a sequence {x,} which converges weakly to x and
lim, ., |lx,—Tx,||=0. We denote the asymptotic fixed
points of T by F(T).

Let C be a nonempty, closed, and convex subset of int
dom f and T : C — C be a mapping. Now, T is said to
be Bregman quasi-nonexpansive, if F(T) + & and

Ds(p, Tx) <Dy (p,x), VxeC,peF(T). (31)

Let C be a nonempty, closed, and convex subset of int
dom f. An operator T : C — int dom f is said to be Breg-
man strongly nonexpansive with respect to a nonempty
E(T), if

Ds(y, Tx) <Dy (y,x), VxeC,ye F(T), (32)

and for any bounded sequence {x,} € C with

lim (Dy(y,x,) - Dy(y, Tx,)) =0, (33)

n—=aoo

it follows that

lim (D;Tx,,x,) =0. (34)

n—~oo

A mapping B:E—2F" is called Bregman inverse
strongly monotone on the set C, if Cn(int dom f) + &,
and for any x,y € Cn (int dom f), & € Bx, and 7 € By, we
have that

(§=nVf" (Vf(x) =&)-Vf (Vf(y) = 1)) 2 0. (35)

Let B: E— 2% be a mapping. Then, the mapping
defined by

B} :=Vf* o (Vf - AB): E—E, (36)

is called an antiresolvent associated with B and A for any A > 0.

Suppose that A is a mapping of E into 2F" for the real
reflexive Banach space E. The effective domain of A is
denoted by dom (A), that is, dom (A)={x€ E: Ax+ &}.
A multivalued mapping A on E is said to be monotone if
(x—y,u* —v*) >0 for all x,y € dom (A), u* € Ax, and v* €
Ay. A monotone operator A on E is said to be maximal if
graph A, the graph of A, is not a proper subset of the graph
of any monotone operator on E.

Let E be a real reflexive Banach space, f : E—(—0co,+
oo| uniformly Fréchet differentiable and bounded on
bounded subsets of E. Then for any A > 0, the resolvent of
A defined by

Res) (x) = (Vf + 14) oV (x), (37)

is a single-valued Bregman quasi-nonexpansive mapping
from E onto dom (A) and F(Resﬁ) =A7'0. We denote by
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A, = (I/A)(Vf—Vf(Resz)) the Yosida approximation of A
for any A > 0. We get from [26] (prop. 2.7, p. 10) that

Ay(x) e A(Resj; (x)), Vx €E 1 >0. (38)

See [11], too.

Lemma 11 (see [27]). Let E be a real reflexive Banach space
and f : E—> (—00,+00] be a Legendre function which is
totally convex on bounded subsets of E. Also, let C be a non-
empty, closed, and convex subset of int dom f and T :C
— 2C be a multivalued Bregman quasi-nonexpansive map-
ping. Then, the fixed point set F(T) of T is a closed and con-
vex subset of C.

Lemma 12 (see[28]). Assume that f : E— R is a Legendre
function which is uniformly Fréchet differentiable and
bounded on bounded subsets of E. Let C be a nonempty,
closed, and convex subset of E. Also, let {T;:i=1,---,N}
be N Bregman strongly nonexpansive mappings which satisfy
E(T,)=F(T,) foreach 1<i<Nandlet T=TyTy_, - T,. If

F(T) and Y, F(T;) are nonempty, then T is also Bregman
strongly nonexpansive with F(T) = F(T).

Lemma 13 (see [29]). Let G : E— 25" be a maximal mono-
tone operator and B : E — E* be a Bregman inverse strongly

monotone mapping such that (G + B) ™' (0*) #+ @. Also, let f
: E— R be a Legendre function which is uniformly Fréchet
differentiable and bounded on bounded subsets of E. Then,

(i) (G+B)™(0°) = F(Res); o BY)

(i) ResﬁG 0 B{ is a Bregman strongly nonexpansive map-
ping such that

F (Res;G o B{) - F (Resﬁc o B{) . (39)

(iii) Dj(u, Res), o B} (x)) + Dy (Res) o B, (x), x) < Dy (u,
x), Vue (G+B)(0), x€E, and A >0

Lemma 14 (see [30]). Let f : E—> (—00,+00] be a proper
convex and lower semicontinuous Legendre function. Then,
for any z€E, for any {x,} CE and {t;}Y, < (0,1) with
YNt = 1, the following holds

Dy (z,Vf* (i th(x,-))) < itin(z, x;). (40)

Proposition 15 (see [26], prop. 2.8, p. 10). Let f be Gateaux
differentiable and A : E— 25" be a maximal monotone
operator such that A~'0# &. Then

D(q,x) 2 Dy (q, Res{A(x)) +Dy (Res{A(x),x), (41)

forallr>0,qe A0, and x € E.

Next, we generalize the k-demimetric notation intro-
duced in [15].

Definition 16. Let E be a reflexive Banach space, f : E—
(—00,+00] be a Legendre function which is Gateaux differ-
entiable, C be a nonempty, closed and convex subset of
int dom f and let ke(—00,1). A mapping T : C— int
dom f with F(T)+@ is said to be Bregman k-demi-
metric, if for x € C and g € F(T),

(x = q,Vf(x)-VIT(x)) > (1 - k)Dy(x, T(x)). (42)
Example 1. Every Bregman quasi-nonexpansive mapping
with the required conditions in Definition 16 is a Bregman

0-demimetric mapping. Let pe F(T)+ @ and x € C, and
we have

D¢(p, Tx) < Dg(p, x) = 0 < Dg(p, x) — Dy (p, Tx)
= Df(p, x)+ Df(x, Tx) - Df(p, Tx) - Df(x, Tx)
=(p—xVIT(x)-Vf(x)) - Df(x, Tx).
(43)

Therefore,

(x = p.Vf (x)-VIT(x)) > Dy (x, Tx). (44)
Example 2. From [31] (Lemma 2.1), every Bregman quasi-
strictly pseudocontractive mapping with the required con-
ditions is a Bregman k-demimetric mapping for k € [0, 1).

Example 3. Let E be a reflexive Banach space, f : E— (-
00,+00] be a Legendre function which is Gateaux differentia-
ble, and A : E — 2£" be a maximal monotone operator with
A7'0# @& and r > 0. Then, the f-resolvent Res{ 4 is Bregman
0-demimetric. In fact, from (22) and Proposition 15, we have
that

Dy(q,x) 2 Dy (q, Res{A (x)) +Dy <Res{A (x), x)
=Dy (4:) + (4 = Res] (x),V/ (x)-Vf (Ress () ).

(45)
forany x€Eand g€ A710. Then, we obtain
(Resl, (x) - a.Vf (x)-Vf (Resly(x)) ) 0. (46)

Therefore,

<Res’r[A (x) —x+x—q,Vf(x)-Vf (Res';A(x)> > >0, (47)



and hence, from (22), we have that

(x =@ Vf(x)-Vf (Resly(x) ) ) = (- Res], ().V (x)-Vf (Resy () )
=Dy (x, Res{A (x)) +Dy (Res{A (%), x) .
(48)

Thus,
(x=aVf(x)-Vf (Resly(x)) ) = Dy (. Resly(x)),  (49)

and then, we get that Res: 4 is Bregman 0-demimetric.

3. Main Results

The following lemma is important and crucial in the proof of
Theorem 18.

Lemma 17. Let E be a reflexive Banach space andf : E —
(—00,+00] be a Legendre function which is Gateaux differen-
tiable, and letC be a nonempty, closed, and convex subset of
int dom f and let k be a real number with ke (—00,1)
and let T be a Bregman k-demimetric mapping of C into
int dom f. Then, F(T) is closed and convex.

Proof. First, we show that F(T) is closed. Consider a
sequence {g,} such that g, — g and g, € F(T). We con-
clude from the definition of T that

(a-a,Vf(9)-VIT(q)) = (1-Kk)Ds(q. T(q)).  (50)
Since g, — g, we have 0> (1-k)D;(q, T(q)). Then,
from 1-k>0, we have that D;(q, T(q)) =0, and hence,
q=T(q), and therefore, g € F(T). This implies that F(T) is
closed.
Next, we show that F(T) is convex. Suppose p, g € F(T)
and set z = ap + (1 — a)q, where « € [0, 1]. Then, we have that

(z=p.Vf(2)-VIT(2)) > (1 - k)Ds (2, T(z)),

(51)
(2~ q.9f(2)-VfT(2)) = (1 - k)Dy(z, T(2)).

M=

I
—

In = Vf* < E]((l _An>vf+AanTj)xn>’
J

N
2, =Vf" Y 0VfQ, By, (,)
i1
uﬂ = ]rnzn’
Cu1={2€C, : Ds(2,,) <Ds(z,x,), Df(2,2,) < Ds

Xpp1 = Projémen (%), VneN,
Qn+1 = {Z € Qn : <xn+1 - Z,Vf(xl)—Vf(an» = 0}’

Journal of Function Spaces
Thus, from « >0 and 1 — a >0, we have that

(az = ap,Vf(z)-VII(z)) 2 a(1 - k)Ds(z, T(2)),

(1- @)z (1 - @)gVf(2)-FT(2)) = (1- )(1 - K)Dy (2, T(2)).
(52)

From these inequalities, we get that

0=(z-2Vf(z)-VfI(2)) 2 (1 -k)Ds(2, T(2)).  (53)

Thus, we get that D;(z, T(z)) = 0; hence, z = Tz; there-
fore, z € F(T). We conclude that F(T) is convex. O

Theorem 18. Let E be a real reflexive Banach space. Suppose
that f : E— R is a proper, convex, lower semicontinuous,
strongly coercive, Legendre function which is bounded on
bounded subsets of E, uniformly Fréchet differentiable, and
totally convex on bounded subsets of E. Let C be a nonempty,
closed, and convex subset of int dom f. Let {k;, k,, -,k }

C (—00,1) and {Tj};\il be a finite family of Bregman k;
-demimetric and Bregman quasi-nonexpansive and demi-
closed mappings of C into itself. Suppose that {B;}~ , is a finite
family of Bregman inverse strongly monotone mappings of C
N

into E and {B{n }i:I is the family of antiresolvent mappings
of {B}Y,. Let A: E— 2% and G : E— 2% be maximal
monotone mappings on E and let Q, = ResZG = (Vf+7G)"'v
fand ], = Resz = (Vf +rA)'Vf be the resolvents of G and
A for >0 and r > 0, respectively. Assume that

Q=a"0n (n}LE(T) ) (Y, (Bi+G)'0) #2. (54)

Forx,; € Cand C, = Q, =C, let {x,} be a sequence defined
by

(55)

(Z’yn) and <Zn - Z>Vf(zn)_vf(un)> 2 Df(zn’ un)}’
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where {A,} C
{op 05

0, 1), {n,}, {r,} <(0+00), {&, &, &}
0on} €(0,1), and a, b, c € R satisfy the following:

(1) 0<a<A, VnelN

(2) 0<c<r, VneN

(3) Z?ﬁ]&j =land YN ,0,=1

Then, {x,} converges strongly to a point w, €  where
W, = Projgxl.
Proof. We divide the proof into several steps:

(Step 1) First, we prove that Q2 is a closed and convex
subset of C.

Since {Tj}j,\i
mappings, by Lemma 17 and the condition Q # &, F(T) is
nonempty, closed, and convex for 1 < j <M. Also, it follows
from Lemma 13 (i)-(ii) that (B, + G)_lo* = F(Qfl,.B{m) and

Q, B{ y, is @ Bregman strongly nonexpansive mapping, and

| is a finite family of k;-Bregman demimetric

therefore, from Lemma 12, we have that
F(QmB{m> - F<Qﬂn3{m)' (56)

Thus, {QmB{ Vln} is a family of Bregman quasi-
nonexpansive mappings. Using O+ & and Lemma 11, we
see that (B;+G)™"
and convex set. We also know that A~10 is closed and con-
vex. Then, O is nonempty, closed, and convex. Therefore,

=F (QﬂnB{,,n) is a nonempty, closed,

Pron;2 is well defined.

(Step 2) We prove that C, and Q,, are closed and convex
subsets of Cand Q< C,,, NQ,,VneN.

In fact, it is clear that C, = C is closed and convex. Sup-
pose that C, is closed and convex for some k > 1. Note that

Dy(2yy) < Dy(2 xi) © f(2) = f i) = (VF Oi)> 2 =7

<f(2) = f (%) = (Vf (%), 2 = %)
& (Vf(xk), 2= x) = (Vf (7i)> 2= i)
<fO) = f (%)

(57)
Similarly, we have that

D¢ (2, z) < Dy(2, yy) © (Vf(Vi)> 2 = ¥k)
<f(2z) = f)-

= (Vf(zk), 2 —z)

(58)

Thus, from the fact that D/(.,x) is continuous for each
fixed x and using the above inequalities {z € Cy : Dy(z, y;)
<Dy(z,x;)} and {z€Cy : Dy(z,2;) < Dy(z, y;) bwhich are

closed and convex. We have also {z € C; : (z;, —z,Vf(z,)-
Vf(uy)) 2 Dy(zp w) b which is closed and convex. There-
fore, C,,, is closed and convex. From mathematical induc-
tion, we have that C, is a closed and convex subset in C
with C,,, €C, for all n e N.

Also, it is clear that Q, = C is closed and convex. Suppose
that Q. is closed and convex for some k> 1. Hence, {z €
Qi : (x4 — 2 VS (x))-Vf(x;,,)) 20} is closed and convex;
i.e, Qi is a closed and convex subset of Q,. Therefore, by
mathematical induction, Q, is a closed and convex subset
of C with Q,,; €Q, for all n € N. Next, we show that Q C
C, for all n>1. Clearly, Q< C, =C. Assume that Q< C,
for some k € N. Note from Lemma 14 that

Dy(2,y,) =Dy <Z)Vf ' Z &i((1=X)Vf + L Vf Tj)xk)

<zvf ZEVfo I—Ak)Vf+/\kaTj)xk>

In
ME

§;Ds (ZVf" (1= ) Vf + /\kaTj)xk)

-
]
—

In
M=z

§((1=X)Dys(z, xi) + 4Dy (2 Tixy) )

-
I
—

In
Mz

§;((1=M)Dy(2 x;) + MDy (2, 1)) = Dy(2 %),

-
Il
—

(59)

for all z € Q. Furthermore, since B; is a Bregman inverse
strongly monotone mapping for all 1 <i < N and hence from
Lemmas 13 and 14, we have that

Dy(z,2) = D,(sz Zonan L )
_Zl ( e zr,kJ’k) ;Gin(Z’)’k):Df(z’J’k)’
(60)

for all z € Q. Also, since J, is the resolvent of A and u; =
Iy 2k We have from (22) and Proposition 15 that

(2 = 2.Vf (2k)=Vf () = Dy(2, 2¢) + Dy (2 ) = Dy(2, 1)
= Dy(z,2) + Dy(2 w) = Dy (2, ], 2)
2 D (2, zi) + Dy(zp i) — Dy (2, 2¢)
= Dy(zp ),

(61)

for all z € Q. From (59)-(61), we have that Q € Cy,,. There-
fore, we have by mathematical induction that Q ¢ C,, for all
nelN.

Now, we shall show that Q ¢ Q,, for all n € IN. Note that
0<cQ, =C. Assume that Q ¢ Q, for some k € N. Thus, QO



€ Cyyq N Q, for some k € N. From x;,; = Pron;kaQk (x;) and
Lemma 10, we have that

<xk+1 - Z’Vf(xl)_vf(xlﬁl» 20, Vze Ck+1 n Qk' (62)
Since Q € Cy,; N Q, we have that

(X1 =2V (01)=Vf (%01)) 20, V2 Q. (63)

Then, we get Q€ Qy,,. By mathematical induction, we
have that Q € Q, for all n € N. This implies that {x,,} is well
defined.

(Step 3) We show that lim,_,,D¢(x,, x;) exists.

Since Q is nonempty, closed, and convex, there exists a
w, € Q such that w, = Proj{) (x;). From x,,,, = Proj{;mm" (%)
, we get that

Dy (115 X1) < Df (2, X1, (64)
forallze C,,, NQ,. Fromw, € Q< C,,; N Q,, we obtain that
Dy (%115 X1) < Dy (wp, ). (65)

This shows that {Dy(x,,x;)} is a bounded sequence. By
Lemma 10 (iii), we have that

0 < Dg(x,,15X,) =Dy (xn+l’ ProjéanH (x1)>
<Dy(%,415 %) — Dy (Projfcann,l (xl)’x1> (66)
=Dy (x,,15%1) = Dy (%, X1),

for all n > 1. Therefore,

Df<xn>x1)SDf<xn+1’x1)‘ (67)

This implies that {D/(x,,x;)} is bounded and nonde-
creasing. Then, lim,_,,D((x,, x,) exists. In view of Lemma

8, we deduce that the sequence {x,} is bounded. Also, from
(66), we have that

lim Dy(x,,,,x,) =0. (68)

n—00

Since the function f is totally convex on bounded sets, by
Lemma 7, we have that

nh*I}nOOHXnH - xn” =0. (69)

(Step 4) We prove that {x,} is a Cauchy sequence in C.

We have C,, < C, and Q,, €Q, for any m,n €N with
m>n. From x, = ProjfC g, (¥1)€C,NQ, ; and Lemma
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10, we have that

Df(xm, x,) = Dy (xm, Proj)éanH (xl))
<Dy(x,,,x;) = Dy (Proj’;anm1 (x1)s x1> (70)

= Dy (x> %1) = Dy, %)

Letting m, n — oo in (70), we deduce that Dy(x,,, x,)
— 0. In view of Lemma 7, since the function f is totally
convex on bounded sets, we get that ||x,, —x, || — 0 as m,
n—> 00. Thus, {x,} is a Cauchy sequence. Since E is a
Banach space and C is closed and convex, we conclude that
there exists x € C such that

lim ||x, -X||=0. (71)
n—~ao

(Step 5) We prove that lim,,_, ||Vf(x,)-Vf(y,)|| =0.

Using (68) and from x,,,, € C,,,, we get that

n+1>

Df(xnﬂ’yn) < Df(anrl’xn) —0 (as n—>oo) (72)

Then, lim,_,,Df(x,,,y,) =0. Since the function f is
totally convex on bounded sets and {y,} is bounded, by
Lemma 7, we have that

Bim (5,01 -7, =0. 73)
Using (69) and (73), we have that

1% = Yl < (1% = X || + X1 = yull =0 (as n——00).

(74)
Then,
Tim [, 7, =0. (75)

Since from Lemma 1, Vf is uniformly continuous, we
have that

im [|Vf(x,)=Vf(,)] = 0. (76)

(Step 6) We prove that lim,_ ||Vf(y,)-Vf(z,)| =0.
Using (72) and from x,,,, € C,,,, we get that

Df(xnﬂ’ zn) < Df(anrl’yn) —0 (asn—»oo). (77)

Then, lim, ,,D/(x,,;,2,)=0. Since function f is
totally convex on bounded sets and {z,} is bounded, by
Lemma 7, we have that
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=0. (78)

lim ||xn+1 _ZnH -

n—:oo

Using (69) and (78), we have that

lim ||x, —z,| =0. (79)

Applying (75) and (79), we get that

lim ||y, —z,| =0. (80)

n—-=00

Since Vf is uniformly continuous, we have that

Tim [V (3,)-V/(z,)]| =0. (81)

(Step 7) We prove that lim,_, ||[Vf(z,)-Vf(u,)| =

Using x,,.,, € C,,, and from (22), we get that

Df(zn’ un) < <Zn —an,Vf(zn)—Vf(un))

=Dy(x,,1,2,) + Dp(2, ) = Dy (X415 ) -
(82)
Then,
0<Dy(xpi12) = Dy (Xpy1 ty)- (83)
Therefore, from (77), we have that
Dy (%115 4,) < Dp(%,41,2,) — 0 (asn—>00), (84)

and then, lim,_,,Ds(x,,;,u,) =0. Since the function f is
totally convex on bounded sets and from Proposition 15
and Lemma 9, {u,} is bounded; hence, by Lemma 7, we
have that

nli_{noouxnﬂ - un” =0. (85)

Using (69) and (85), we conclude that

lim ||x, —u,| =0. (86)
(0]

n—

Now, by (79) and (86), we get that

lim ||z, —u,|| =0. (87)

n—~oo

Since from Lemma 1, Vf is uniformly continuous, we
have that

Tim [[/(z,)-9/ (u,)]| =0. (88)

(Step 8) We prove that x € Q.

Since T; is Bregman k;-demimetric for all 1<j<M, we
get that

<xn _Z>Vf('xn)_vf(yn)>
= <x,,—z,Vf( —VfVf* (Zf; (1= A)Vf + A, VfT))x >>

§i(x, —2Vf(x,) - ((1

I
Mz

~ AV + A, fT))x,)

-
I
—

Il
Mz
KA

)

n<xn - Z’Vf(xn)_vaj(xn)>

—.
I

M M
> ZEJA (1-k)Dy(x,, Tix,) = Zﬁja(l—k)Df(xn, Tx,),
= =
(89)
for all ze N, F(T;). We have from (76) that
lim Dy (x,, Tjx,) =0, (90)

n—~oo

for all 1 <j< M. Since the function f is totally convex on
bounded sets, by Lemma 7, we have that

lim ||x

n—=aoo

Vie{l,--,M}.  (91)

Tix,|| =0,

Since T; is demiclosed for all 1 <j<M and from (71)
F (Tj).
0*. From (22) and

wherex,, — X as n — 00, we have that x € ﬂ?ﬁl

We now show that xe n¥ (B, +G)™"
Lemma 13 (iii), we get that

I =2 () =Vf (24))
Yu =2V () -V Zonan ,mu,,>>

/\

Q
PR

(yu=29f(0,)-VQ, Bl (1))

™M= 'L'Mz

Q

Q
S /N VS

Df Z’yn +Dj(yn’Q B{nnyn)

(-0u.)

Dy(z, yn))

\%

Df Z,)/n +Df(yn’Q Btnyn)

M= B

Q

i\ Dr ()’m Q, Bfr] J’n>)

(92)

for all ze N, (B,+G)™'0* and i€ {1, -,
from the above, we have that

N}. Using (81),
Jim Dy (3 @y Bia 30) =0 >3

for all 1 <i<N. Since the function f is totally convex on
bounded sets, by Lemma 7, we conclude that
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-Q, Bfnyn

(94)

n—-=00

On the other hand, it follows from (71) and (75) that

Tim [}y, ~ 5| =0. (95)

Now, from (94) and (95), we have that x € F (Q%Bi,m)
forallie{1,--,

F(Q B, ) =

N}. From Lemma 13, we conclude that

(QﬂnBzﬂ ) =(B; + G)flo*, Vie {l,--,N},
(96)

and therefore, x € NN, (B; +G)™"

We now show that x € A™'0. Using r,, > ¢, we have from

(88) that
Jim = f(2,) -9, 0. (97)
So applying A, , the Yosida approximation of A, we have

. .1
nh_{nooHArnan = nh—r>nooa va(zn)_vf(un>H =0. (98)

Since A, z, € Au,, for (p,p*) €A, we have from the
monotonicity of A that (p—u,,p* - A, z,) >0 forall n€ N
. By (71) and (79), we have that

lim ||z, — || = 0. (99)

n—

From (87) and the above, we have ||u, — x| — 0. Thus,
we get (p—%,p*) >0. From the maximality of A, we have
that x € A™'0. Therefore, x € Q.

Since w, = Proj{)(xl), x €0, and ||x, — x| — 0, we have
from (65) that

Dy(wy, x;) < Dy(%, x1) = lim Dy(x,, x;)

e (100)
< lim Dy(wp, x;) = Dy(wp, x1),
which implies that
nh_r)noon(x 1) = Dy(wp, xy). (101)
Therefore,
Dy (x,x;) = Dy(wg, X;)- (102)

From (55), (71), and w, € 2 € Q,,,, for all n € N and also
since Vf is uniformly continuous on bounded subsets and is
bounded on bounded subsets, we have that

Journal of Function Spaces

<xn+1 - wO’Vf(xl)_vf(xVH—l»

20= ngnm<xn+1 = @,V (%1)=Vf (%p11)) (103)
> 0= (X - wy,Vf(x)-Vf(x)) =0.

Now, from (22) and (102), we get that

Df(wO’ x) = Df(“’o: )+Df(5c’xl)_Df(w0’xl) (104)

= (wo = %,Vf (x;)-Vf(x)).

From (103) and the above, we conclude that Dy(w,, X)
<0, and therefore, D((w,, X) =0. Thus, w, =X, and hence,
x, — w,. This completes the proof. O

Next, we prove a proposition to extend Theorem 18.

Proposition 19. Let E be a real reflexive Banach space. Sup-
pose that f : E— R is a proper, convex, lower semicontinu-
ous, Legendre function and is Gateaux differentiable of E. Let
C be a nonempty, closed, and convex subset of int dom f.
Suppose k € (—00,0] and a mapping T : C— C with F(T)
#& is Bregman k-demimetric. Then, T is a Bregman
quasi-nonexpansive mapping.

Proof. Let p € F(T) and x € C. Using (22) and Definition 16,
we have

Dy (p, Tx) = Dy(p, x) = Dy (x, Tx) = Dy (p, x) = Dy (x, Tx) + Dy (p, Tx)

=Dy (% Tx) = {p - xVf (Tx)-Vf (x))
<Dy(x, Tx) = (1 = k)Dy(x, Tx)
=kD(x, Tx) <0.

(105)

Then, T is a Bregman quasi-nonexpansive mapping. [

Remark 20. Using Proposition 19, for each 1<j<M, we
may remove the condition that T, is Bregman quasi-

nonexpansive in Theorem 18 when k; <0.

Open Problem 1. Can one generalize Proposition 19 to Breg-
man k-demimetric mappings with k < 1?

Data Availability

No data were used to support the study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] F. E. Browder and W. V. Petryshyn, “Construction of fixed
points of nonlinear mappings in Hilbert space,” Journal of
Mathematical Analysis and Applications, vol. 20, no. 2,
pp. 197-228, 1967.



Journal of Function Spaces

(2]

(7]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

P. Kocourek, W. Takashi, and J.-C. Yao, “Fixed point theorems
and weak convergence theorems for generalized hybrid map-
pings in Hilbert spaces,” Taiwanese Journal of Mathematics,
vol. 14, no. 6, pp. 2497-2511, 2010.

F. Kohsaka and W. Takahashi, “Existence and approximation
of fixed points of firmly nonexpansive-type mappings in
Banach spaces,” SIAM Journal on Optimization, vol. 19,
no. 2, pp. 824-835, 2008.

F. Kosaka and W. Takahashi, “Fixed point theorems for a class
of nonlinear mappings related to maximal monotone opera-
tors in Banach spaces,” Archiv der Mathematik, vol. 91,
no. 2, pp. 166-177, 2008.

W. Takahashi, “Fixed point theorems for new nonlinear map-
pings in a Hilbert space,” Journal of Nonlinear and Convex
Analysis, vol. 11, pp. 79-88, 2010.

T. Igarashi, W. Takahashi, and K. Tanaka, “Weak convergence
theorems for nonspreading mappings and equilibrium prob-
lems,” in Nonlinear Analysis and Optimization, S. Akashi, W.
Takahashi, and T. Tanaka, Eds., pp. 75-85, Yokohama Pub-
lishers, Yokohama, Japan, 2008.

K. Aoyama, F. Kohsaka, and W. Takahashi, “Three generaliza-
tions of firmly nonexpansive mappings: their relations and
continuous properties,” Journal of Nonlinear and Convex
Analysis, vol. 10, pp. 131-147, 2009.

W. Takahashi, Convex Analysis and Approximation of Fixed
Points (Japanese), Yokohama Publishers, Yokohama, Japan,
2000.

W. Takahashi, “The split common fixed point problem and the
shrinking projection method in Banach spaces,” Journal of
Convex Analysis, vol. 24, pp. 1015-1028, 2017.

L. M. Bregman, “The relaxation method of finding the com-
mon point of convex sets and its application to the solution
of problems in convex programming,” USSR Computational
Mathematics and Mathematical Physics, vol. 7, no. 3,
pp. 200-217, 1967.

S. Reich and S. Sabach, “Two strong convergence theorems for
Bregman strongly nonexpansive operators in reflexive Banach
spaces,” Nonlinear Analysis, vol. 73, no. 1, pp. 122-135, 2010.
S. Sabach, “Products of finitely many resolvents of maximal
monotone mappings in reflexive Banach spaces,” SIAM Jour-
nal on Optimization, vol. 21, no. 4, pp. 1289-1308, 2011.

W. Takahashi, “A strong convergence theorem under a new
shrinking projection method for finite families of nonlinear
mappings in a Hilbert space,” Mathematics, vol. 8, no. 3,
p. 435, 2020.

D. Butnariu and A. N. Iusem, Totally Convex Functions for
Fixed Points Computation and Infinite Dimensional Optimiza-
tion, Kluwer Academic Publishers, Dordrecht, 2000.

C. Zalinescu, Convex Analysis in General Vector Spaces, World
Scientific, River Edge, 2002.

J. E. Bonnans and A. Shapiro, Perturbation Analysis of Optimi-
zation Problems, Springer, New York, NY, USA, 2000.

H. H. Bauschke, J. M. Borwein, and P. L. Combettes, “Essential
smoothness, essential strict convexity, and Legendre functions
in Banach spaces,” Communications in Contemporary Mathe-
matics, vol. 3, no. 4, pp. 615-647, 2001.

H. H. Bauschke and ]. M. Borwein, “Legendre functions and
the method of random Bregman projections,” Journal of Con-
vex Analysis, vol. 4, pp. 27-67, 1997.

D. Reem and S. Reich, “Solutions to inexact resolvent inclusion
problems with applications to nonlinear analysis and optimi-

[20

[21

[22

[23

[24

[25

[26

[27

[28

[29

[30

[31

(32

]

]

]

]

]

]

]

]

]

]

]

]

11

zation,” Rendiconti del Circolo Matematico di Palermo Series
2, vol. 67, no. 2, pp. 337-371, 2018.

Y. Censor and A. Lent, “An iterative row-action method for
interval convex programming,” Journal of Optimization The-
ory and Applications, vol. 34, no. 3, pp. 321-353, 1981.

H. H. Bauschke, J. M. Borwein, and P. L. Combettes, “Bregman
monotone optimization algorithms,” SIAM Journal on Control
and Optimization, vol. 42, no. 2, pp. 596-636, 2003.

D. Butnariu, Y. Censor, and S. Reich, “Iterative averaging of
entropic projections for solving stochastic convex feasibility
problems,” Computational Optimization and Applications,
vol. 8, no. 1, pp. 21-39, 1997.

D. Reem, S. Reich, and A. De Pierro, “Re-examination of Breg-
man functions and new properties of their divergences,” Opti-
mization, vol. 68, no. 1, pp. 279-348, 2019.

D. Butnariu, A. N. [usem, and C. Zalinescu, “On uniform con-
vexity, total convexity and convergence of the proximal point
and outer Bregman projection algorithms in Banach spaces,”
Journal of Convex Analysis, vol. 10, pp. 35-61, 2003.

D. Butnariu and E. Resmerita, “Bregman distances, totally
convex functions, and a method for solving operator equations
in Banach spaces,” Abstract and Applied Analysis, vol. 2006,
Article ID 84919, 39 pages, 2006.

S. Reich and S. Sabach, “Two strong convergence theorems for
a proximal method in reflexive Banach spaces,” Numerical
Functional Analysis and Optimization, vol. 31, no. 1, pp. 22—
44, 2010.

S. Reich and S. Sabach, “Existence and approximation of fixed
points of Bregman firmly nonexpansive mappings in reflexive
Banach spaces,” in Fixed-Point Algorithms for Inverse Prob-
lems in Science and Engineering, pp. 299-314, Springer, New
York, NY, USA, 2010.

S. Kassay, G. Riech, and S. Sabach, “Iterative methods for solv-
ing systems of variational inequalities in reflexive Banach
spaces,” Journal of Nonlinear and Convex Analysis, vol. 10,
pp. 471-485, 2009.

F. U. Ogbuisi and C. Izuchukwu, “Approximating a zero of
sum of two monotone operators which solves a fixed point
problem in reflexive Banach spaces,” Collectanea Mathema-
tica, vol. 41, no. 3, pp- 322-343, 2020.

S. Suantai, Y. J. Cho, and P. Cholamyjiak, “Halpern's iteration
for Bregman strongly nonexpansive mappings in reflexive
Banach spaces,” Computers & Mathematcs with Applications,
vol. 64, no. 4, pp. 489-499, 2012.

G. C. Ugwunnadi, B. Alj, I. Idris, and M. S. Minjibir, “Strong
convergence theorem for quasi-Bregman strictly pseudocon-
tractive mappings and equilibrium problems in Banach
spaces,” Fixed Point Theory and Applications, vol. 2014,
no. 1, 2014.

B. Orouji, E. Soori, D. O’Regan, and R. P. Agarwal, “A strong
convergence theorem for a finite family of Bregman demi-
metric mappings in a Banach space under a new shrinking
projection method,” https://arxiv.org/abs/2107.13254.


https://arxiv.org/abs/2107.13254

	A Strong Convergence Theorem for a Finite Family of Bregman Demimetric Mappings in a Banach Space under a New Shrinking Projection Method
	1. Introduction
	2. Preliminaries
	3. Main Results
	Data Availability
	Conflicts of Interest

