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In the present research, we generalize the midpoint inequalities for strongly convex functions in weighted fractional integral
settings. Our results generalize many existing results and can be considered as extension of existing results.

1. Introduction

One of the most interesting research areas of classical analy-
sis is the study of functions and operators, especially convex
functions, due to its applications in both integration and dif-
ferentiation. In the last few years, a great effort has been put
to develop new inequalities in convex analysis to deal with
the various new applications, since modern problems are
modeled by fractional calculus and new applications. So,
the classical convexity [1, 2] and its related [3, 4] inequalities
are not enough to tackle these ones. The new fractional inte-
gral inequalities in convexity are always appreciable. More-
over, the generalized and new mode of convexity is the
area of interest for most of researcher of convex analysis
[5, 6].

A function f : I — R is said to be convex on I, if the
inequality holds for all r, s €I and 9 € [0, 1],

fOr+ (1=9)s) <<If(r) + (1= 9)f(s). (1)

Many problems may discuss in convexity of sets and
functions. In recent year, convexity of sets and functions

has been main object of study [7-9]. Some new generalized
ideas in this point of view are pseudoconvex function,
strongly convex function, quasiconvex, generalized convex
function, preinvex functions [10], B-convex function, and
invex functions. There are many different fundamental
books of convex analysis optimization [11, 12].

Fractional calculus [13, 14] is not a new concept in
mathematics, and similar discussion and controversy are
observe in history by famous mathematician like Jensen,
Hermite, H older, and Stolz. However, the subject of frac-
tional calculus from an applied point of view got rapid devel-
opment last years. Like other fields of mathematics, this also
influences the integral inequalities and convex analysis
([15]). As a result, various trends in the result are settled
recently. The famous fractional integral operators involve
Riemann-Liouville [16], Caputo [17, 18], Hadamard [19],
and Caputo Fabrizio [20, 21]. For more details about frac-
tional integral operators, we refer [22-24].

The classical Hermite-Hadamard inequality is one of the
most well-established inequalities in the theory of convex
functions with geometrical interpretation, and it has many
applications  [25-27]. Recall Hermite-Hadamard-type
inequality (simply H-H type inequality) which is given as:
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Suppose function s : [¢,d] R is convex, and then the
inequality

s<ﬂ> < ﬁjds(al)dtxl < w (2)

2 c

is called the Hermite-Hadamard Inequality.

In the present research, we generalize the midpoint
inequalities for strongly convex functions in weighted frac-
tional integral settings. Our results generalize many existing
results and can be considered as extension of existing results.

2. Definitions and Basic Results

« _»

Definition 1. Assume that j € R is an interval and that “a” is
a positive integer. If a function s: jCR — R is strongly
convex with modulus g, it is called strongly convex with
modulus a.

S(IBy + (1= D)B,) < Is(By) + 1(1 = D)s(By) — al(1 = 1)||B, = By
3)

for all B,, 8, €I and l€[0,1].

Adamek expanded on the idea of a strongly convex function.
They replaced the nonnegative term with a real-valued non-
negative function and defined it as follows:

If a function is strongly convex, it is defined as such.

S(IB+ (L =1)B,) <Is(By) + 1(1 = D)s(B,) = I(1 = D)M(B, = B3)
(4)

for all B,, B, €I and [ €0, 1]. See [5, 28, 29] and refer-
ences therein for more detail about strongly convex
functionality.

Definition 2 [30]. Let ¢ : [d;,d,] — [0,00) be a function,
Then, we say ¢ is symmetric with respect to d, + d,/2 if

Hdy +dy—B,) =t(B,)VB, € [dy> dy]. (5)

With the help of above definition, in [31], Fejér gave,
namely, the Hermite-Hadamard-Fejér type inequality.

s<d1 ; dz) J zt(mdﬁl s J st(ﬁl)t(ﬁl)dﬁl (6)

where t is the integrable function.
Definition 3. Suppose If, s(f3,) and I3 _s(f3,) are the left- and

rigt-sided RL fractional integrals of order a >0 defined by
(32]
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RL 7V I -1
o8 = 75 | (8107 s >
1 7)
d2
RL S(By) = 1"(11/)J/31(l_ Bl By < dys

Endpoint inequalities were found, namely, the general-
ized and reformulated forms of H-H and H-H-F inequalities
in terms of RL fractional integrals, respectively, in [22, 24].

d, +d ZV_IF(V+ 1) v v
S( : 2 2) < (dz _ dl)V |:Id1+d2/2+s(d2) +I(dl;u12)5(d2):|

_ s(d)) +5(ds)

2

(5% [+ 1 o)
< [14,4(st) () + I (st) ()] (8)

< TR [ vy ey )

where s is the positive convex function, continuous on
the closed interval [d,, d,] when s(B,) € L'[d,, d,] and d, <
d,.

Definition 4. Let (d,,d,) CR and o(f;) be an increasing
positive and monotone function on the interval (d,, d,] with
a continuous derivative o’ (f3,) on the open interval (d,, d,).
Then, left- and right-sided weighted fractional integral of a
function s, according to another function o(f;) on [d,, d,),
is defined by [25]:

(4237 ) B =1,

(o177 @) 6 = B

J: o' (O(a(l) = a(B,)" sy (Ddl, a> 0,
©)

where [y(8,)] " = 1/y/(B,) such that y(B,) #0.

Midpoint inequalities were found, namely, the general-
ized and reformulated forms of H-H and H-H-F inequalities
in terms of RL fractional integrals and weighted fractional
integrals with positive weighted symmetric function in a ker-
nel, due to using the midpoint d, + m/2 of the interval given
by, respectively, in [33, 34].

di+d)\ _2'T'(v+1) [, v
( 2 )< Gody |[(a)s@) + g s(d)

 $(d)) +5(dy)

X >

2

(10)
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where s : [d, d,] — R is convex and continuous, and

(55 [ o)) (@)
+ (15 (vo0)) (o7 ()]
<) (o135, (20) ) (07 ()

() (ol ) (520) ) ()

<MD [y (v 0)) (07 (d)

+ (I - (v o 0) (07 ()]

(11)

where s : [d;, d,] — R is convex and continuous, o(f3,)
is the monotone increasing function from (d,, d,] onto itself
with o’ being continuous on (d,,d,), and v : [d,, d,] — (
0,00) is an integrable function, which is symmetric with
respect to d; + d,/2, where d, <d,.

The fractional integral operators induced a new diversity
in inequality theory. There are many fractional integral
operators introduced by different mathematicians having
their own characteristics.

Lemma 5. Assume that v : [d;, d,] — (0,00) is an integra-
ble function and symmetric with respect to (d; +d,)/2, d, <
d,, then

(i) For each 1€ [0, 1], we have
! 2-1 2-1 l
w(§d1+7d2>=1//<7d1+§d2>. (12)

(ii) For v > 0, we have

(0’1(d1+d22)+1v:0 (yeo 0)) (‘771 (dy))

- (1 o)) (07 )
1)
= é |:(0’1 (d1+d22)+IV:a(1V ° 0)) (U_I(dz))

(1 o)) (07 )

Theorem 6. Let d, >d; >0, and let s : [d;,d,] — R be an
L' strong convex function and v : [d,;, d,] — R be an inte-
grable, positive, and weighted symmetric function w.r.t d, +
d,/2. If, in addition, o is an increasing and positive function
from [d,, d,) onto itself such that its derivative o' (B,) is con-
tinuous on (d,,d,), then for n> 0, the following inequalities
are valid:

s (dl ; d2) [(0’1(d1+d22) T (ye 0)) (07(d2))
+ (I;Gz (42) (yeo 0)) (Gil (dl))]
<y(d,) (crl(d1+d22)*1$;(s ° 0)) (0_1 (dy))

96) (ol gy (55 ) (07 )

: [(0’1(d1+d22)+1w0-(u/ ° ‘7)) (07'(dy))

(1 gy o0 ) )|

(14)

Proof. The strong convexity of “s” on [d,, d,] gives

s<ﬁ1 ;‘/52> < s(By) *2'5(/32) _ gM(ﬁl - B,)VB,. B, €[dy, d,),

2s <ﬁl ;ﬁ2> <S(By) +5(By) —aM(By = By) VB By € [dyy dy]-
(15)

So, for B, = (I/2)d, + (2-1/2)d, and B, = (2 -1/2)d, + (
112)d,, 1€ [0, 1], it follows that

2- 2 -
2$(d1 +d2) gs(ldl + —ld2> +s<—ld1 + de>
2 2 2 2 2

—aM[(I-1)(d, - d,)].

(16)

Multiplying both sides of above equation (16) by ' y/(

(1/2)d, + (2 —1/2)d,) and integrating the resulting inequality
with respect to 1 over [0, 1] yield that

1 _
2s <M>J lV-H;/(f d, + 2—ld2> dl
2 /), 2 2
Lol 2 I 21
SJOI ls(§d1+7d2>w<§dl+7d2)d1
1 _ —
+J l”‘ls<2—ld1+ ldz)w(fdl . 2—ld2>dl
. 2 2 2 2

_ J;lv"laM[(l ~1)(d, - dz)}w(; d, + 22—ld2) di,
(17)



Lol 2-1 ! 2-1
SLZ 1s<§d1+Td2)u/(§dl+Td2)dl
Lo 2=, 1 2-1
+Ll 1s(le+§dz>1;/(§d1+sz>all (18)
o 2-1
+aM(d, - d,) sz —d, +=—d, |dl
o \2 2

! 1 2-1
— v-1 — [
Ll 1//(2 d, + 3 dz)dl}.

From the left hand side of inequality in equation (16), we
use (13) to obtain

% [("'1(d1+d22)+1w‘7(1// ° g)) (0_1(d2))

(1 gy (o0 ) () 19
- J;l”‘lwedl N T_ld2> dl {1 - 72(”122'_"51?1))}

which follows that

2s (@) JLZV_IVI(édl + ZT_ldz) dl
2I(v)  (d+d,
) (dz_dl)vs< 2 ) (20)
X [(o’l(d1+d22)+IV:U(W ° 0)) (07'(dy))
<Iw(d1+dz) (‘//"U)) ("_l(d1>)]'

From the right hand side of inequality in (16), we use
(13) to obtain

Lo, 2-1 1 2-1

Lz ls(§d1+7d2>w<§dl+7d2)dl
Lo (21 ! ! 2-1
+Ll 15(7d1+5d2)‘//(§d1+7d2)dl

Lol 2
+aM(d, - d,) qu/ s+ dy )di
0

_Jllrlw(édl . ZT_ldz)dl}

= (;:1:7(611/1))1/ [‘/’(dz) (0’1(d1+d22)‘ I"(yo 0)) (Gfl(dz))
+ W( )( U(dl+d2) (V’ ° G)) (Oﬁl(dl)) -
: [(ofl(d1+d2z)+p:a(ll/ ° G)) (a‘l (dz))

. (I(‘;f,(%)’(‘// ° a)) (Gfl(dl))} I

S M(d, ~d)
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By making use of (20) and (21) in (18), we get the
desired result.

On the other hand, we can prove the second inequality
of Theorem 6 by making use of the strong convexity of “s”

to get
ld +—ld +s 2—_ldl+ £d2
2 2 2 (22)
<s(dy) - s(dy) - (21-P)M(d, - d,).
Multiplying both sides of above equation (16) by I'y/(

(I12)d, + (2 —1/2)d,) and integrating the resulting inequality
with respect to 1 over [0, 1] get

Lo 2] I 2o
Lz ls<fd1+7d2)y/<id1+7d2>
! l 2-
ry(la 22
L ( )( ) (23)

< [s(dy) = s(d;) - (21—12 M(d, - dy)]

[reartie)

Now, by using w((1/2)d, + (2 -
+(1/2)d,) and (21) in (23), we get

112)d,) = w((2 - 112)d,

2'T'(v)
W (0’1 (d1+d22)"
I

I (o
(1 sy ) ) ) - M6, - )

< (w - —M(d, —d2)>
: [(ofl(dwdzzﬁlvza(‘l’ ° ”)) (07(d))

(1 ey o)) (07 )|
This ends our proof. O

Remark 7. From Theorem 6, we can obtain some special
cases as follows:

1) Ifa=0, o(B1)

= x, then inequality (14) becomes

(d i ) {(d1+d22 I'y(dy) + 15 a,p-¥(d )}

() (i 28) )+ ) 4 T ) )
s w |:(d1+d22)+1v1//(d2) + IE@)J/’(dl)}’

(25)



Journal of Function Spaces

where

(26)

Lemma 8. Let d, >d, >0, let s : [d;,d,] — R be a continu-
ous with a derivative s' € L'[d,, d,] such that s(B,) =s(d;)

Big!
+ fdls
tive, and weighted symmetric function with respect to d; +
d,/2. If 0 is a continuous increasing mapping from the inter-

val [d,, d,) onto itself with a derivative o' () which is con-

tinuous on (d,,d,), then for n> 0, the following equality is
valid:

()dl, and let v : [d,, d,] — R be an integrable, posi-

() (o 7w ()
' (’Z’f%wW) <a*1<d1>>}
[ (dz) ol (d1+d22)" (Soo‘)) (or 1(d2))

O] soa))( @)

1 () N
:r<v>J 4 [J< (B (B) - )’ (w)(ﬁ»dﬁl}
1 (0@
( 1. s

1
U B = (B)) (v 20) BB, } (s >0) o'y

(27)

(s’ oa) (o' (1ydl -

3. Main Results

In this section, by using Lemma 8, one can extend to some
new H-H-F type inequalities for strong convex functions.

Theorem 9. Let 0<d; <d,, let s : [d;, d,] C [0,00) — R be
a (continuously) diﬁerentiable mapping on [d;,d,] such
that s(B,) =s(d J"gl s (Ddl, and let y:[d;,d,)] —R

be an zntegmble, posztwe, and weighted symmetric function
with respect to d, +d,/2. If in addition, |s'| is strong con-
vex on [d;, d,], and o is an increasing and positive function
from [d,,d,] onto itself such that its derivative o' (B,) is
continuous on (d,,d,); then for v>0, the following
inequalities hold:

5
e
Ej+E)|= WL*I@,)
- _
1] o BB - v o)p)a
-I ’ 1 (o) -
. (s oa)(l)a (hdl - mj(u)
- _
1] o B0y w0181,
: (-s’ oa)(z Yo' () dz) -
d,~d,
< Sirters {10, 25
: |:(v+3)|5’(d1)| +(v+1)s'(dy)] - W}
19 s o |7+ D" ()
+(v+3)]s'(dy)] - a(v+4)§il2—d1)2}
(=) ¥ oo 7, 0
S ey @)1 )] - ald, - ).
(28)

Proof. By making use of Lemma 8 and properties of the
modulus, we obtain

8+ Byl = | T (45%)
. I'(v) ol(dy)
1
: U y o' (B))(a(By) _dl)VI(woa)(ﬁl)dﬂl:|
' ' 1 (o)
(s eo)(ho (hdl- —
( ) r(v) Ll(@)
1
' U Ly o' (B))(d, -U(ﬁl))“(vfw)(ﬁ])dﬂl}
: (s' oa) (l)a’(l)dl‘
1)
- F(v)‘["l(dl)

1
[ o BB -y w018 B,

()
o' (Il - %J e

1
: j (B0 B))" (v40)(8,)dB,

(29)

Since |s' | is strongly convex on [d},d,], we get for I
€lo7!(dy), 07 (d,)]:
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and simple computations yield

+2)o-

) (dy—o(l) o(l)-d,
’ (dz‘dl dt d,—d, &

d,—o(l), o(l)-d, 'd (30) .
< dz—dl"s( D]+ dz-dl'\s ()| :%{H‘,,||[d1’dlzdﬂm[(v+3)|5'(d1)|+(v+1)
- a(d; - o)) (o(D) - dy). sy
Hence, we obtain |- 2 }}
{ IVl oo [ (74 DS () (33)
V1], (o200 o' (459) (v+4)(d, - d,)’
SN e v o R
! , . (d,—d)" |yl ndylioo Ty 1 / 2
'me“wnwwn—¢>wm STy @]l @) el P,
x [(dz—a(l)]s'(d1)| +(a(l)—dy)|s' (dy) N ) -
, which complete our proof.
~a(d, - o () (o(1) - dy)[}o” ()l o

Remark 10. From Theorem 9, we can obtain some spe-

1N, 4y 121,00 [ )
— cial cases as follows:

(dy=d)L(v) o (ds)
(1) If o(pB,) = x, a =0, then inequlaity (28) 3.1 becomes

i) y
~j o' (B))(ds — o(B)) " dp,

1

x [(d =o' (d)] + (o (1) ~dy)]s'(d)
- a(d, - (1)) (o (1) ~dy)[) o' (dl

s(dl ;d2> {(dudzz)*ﬂ‘”(d” ’ IZ@)*W‘)}

916 1+ a2 () +906) (T ) )
oy

By putting value of integration in above inequalities,

(BB ), = T < 3y W[+ DI @0+ (4 DI )
o o - = > ’ i
LW (Pu(olB) = )by v W g oo v+ DI (@) + v+ 3)]< ()]}
o7\ (d, _ v (d -d )VH”V/” 1»d,],00 ! !
J o (B (A, — o) dp, = 2T < e [ @]+ s @)
l V
o ) o
(o) —dy)" e
o (dy)
[T ey
- Lfl (@)( o))" () (2) If a=0, 0(p,) =x, and y(f3,) = 1,then inequality 3.1
(d,~d )v+2 becomes
_ by —a
C 22 (v+2)]
ot (e 27 (v+1) v v dy +d,
( )(a(l) —d))'(d, - o(l))o' (1)dl @-d) [Wm[ ‘“"Z’”(%—‘”‘il)} ‘5< 2 )
ol(dy) v+l
(dZ_dl) i i
o7l dy) vt | (EDIRCORIGRIRCAI]
- d, — ()" (0 (1) - dy)o’ (1)dl (35)
L%%%<2 1) (o(1) ~dy)o () e D 31
_(dy=dy)"(v+3) < 2(‘1221:(‘11121) [Is' )+ 15" (@)1,
2" (v+1)(v+2) Y
J%Tfl( 1‘2r 2) <M)v+l(dz_o(l))0’(l)dl
o (dy) v (32)
_(dy=d))"(v+4) (3) Ifa=0,0(B,) =x, y(B,) =1, and v=1, then inequal-

S 2BH2)(ve3p ity 3.1 becomes
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el (S,

! ]
b

< 22 [ @)+ |5 ()
Theorem 10. Let 0< d; < d,, lets : [d,, d,] C [0,00) —> R be
a (continuously) diﬁerentiable mapping on [d;, d,] such that
s(B,)=s(d fd’ (0dl, and let y:[d;,d,)) — R be an
integrable, posztzve, and weighted symmetric function with
respect to d, +d,/2. If, in addition, |s'|" is strong convex on
[d,,d,] with > 1, and “s” is an increasing and positive func-
tion from [d,, d,) onto itself such that its derivative s' (f,) is

continuous on (d;,d,), then for v> 0, the following inequal-
ities hold:

(dp—dy)"™!
1) (y 4 2)M (v + 2)

x{1Wl4, 25200 | (v + IS (@)
a(v d,-d;)* 1"
- )]y

i +5,|<

+(v+1)|s'(d

+ 19 gt ) o [(v F D) ()] + (v+ 3)]s' (d,)
a(v+4)(d,—d,)’ 1"

e

(dy—d;)"! Y114, .00
© 2 ) (y 4 2)1Mr (v + 2)

| q

: H(v+3)\s’(d1)|q (v 1)’ (dy)]*
(v+4 2]”‘1

+v+1) ys ,yq+(v+3)\s( )|
a(v+4

(37)

Proof. Since |s'|* is strong convex on [d,, d,], we get for I €

07 (d)), 07 ()]

(o)) - (B0 s )
- d,—o(l)
= d,—d,

|s'(d1)|q+ i\ §

By making use Lemma 8, power mean inequality, and

strong convexity of |s' |q, we get

)" (yo0)(B,)dB,

o)

L b

1

o' (hdl + W[ o

o7\ (d
: J o' (B)(dy = a(B)) " (vo0)(B)dB,

Jfewa)e
o' (B)(o(v) ~ i) (yeo)(B)dp,

S0
fx(rff
| ea)af
()
ol
fewa)ova)

- ”WH[d,,(d,mz/z)],m (r"(@)

1 1-1/q
R0 Joray [U (B)(o(B) )" dﬁm(z)d’)
o l(dy)

1q
((; ou)())qo’(l)dz)
Mot (J(:;) [0 ot ’(zm) A

(s’ . a) (1)"’0’(1);11)

" 1-1/g
J 7 BB ) a’(l)dl)

o' (hdl

1

‘ -

<

U’(l)dl) ;

1
J, ., BB =" o011,

1
=
a'(l)dl)

) T
)
[ o Bt =o8)y e,

~

()
o' (B)(dy = a(By)" " (w=0) (By)dv

[
| 'metp)-aap,
vi(d,)

Q

)|t ;
(J ] e B =otp ) ap,
ol (32|
< Wl @ 1ayyp0 J"'%%)
N I(v) o1 (dy)
[ o' Boes - aag,

Sy oy

d-o), 4 o)-d RN
x < 0 7";1) [s' ()| + Gd(l il (dz)\‘f—a(dz-a(l))(a(l)—d2)>o (l)dl)

v(d, 1-1/9
+ AHWH[(;A(:;Z%"]W < J f:;) gl(l)dl)

o 2= () 1410
XO(—) (=)
+ ”;?:d‘fz Is"(d)|" - a(d, - a(D)(a(]) - dz))a’(l)dl)

_ (dy—dy)™!

2 ) (y 4 2) T (v 4 2)

. {”WH[A,,"'T”]@ [(H 3)‘5’(d1)‘q+(v+ s’

1)

o
| o (B,)(v—o(B,))"dp,

ol (v)
[ o Bw=owa,

1

2
- S —d#] ””}

- a(v-+4)(d, - d,f] ”“}

|” (v+3)|s'(d

¥l gtz ] o [(” Dls'@ v

- (dy—d))"™! H‘V”u,uﬂm
T2 (v 4+ 2) M (v + 2)

1
l { [(V+3>‘S,(dl)‘q +(v+ 1)‘5,(’12)‘51 - W]

5114
+ [(H D)[s" (d)| "+ (v +3)|5' (dy)]" - W] }

(39)
Hence, the proof is completed. O

Remark 11. From Theorem 10, we can obtain some special
cases as follows:



(1) Theorem 4 of [32] is obtained if we takea =0, w =y,
and p =0 in Theorem 10

(2) If a=0, o(B,) = x, then inequality (37) becomes

d,+d
'5( : 5 2) [(d1+d22)+lv‘//(d2) +IE@)_V’(d1)}

‘[‘V<dz>(<%1¢5)< )y )( () S)w”

(dy —d))"™
-2 (v 4+ 2)VPT (v + 2)

{1 s [0

(d) |1

# ¥l g oo [+ DO+ (v43)]s

(dy—d;)™! W14, ,],00
© vV (y 4 2)Vr (v 4 2)

+ [(V+ 1) s

+(v+1)s

1(dy) |1

(dl)’q +(v+3)|s

(40)

(3) If a=0, o(B,)
(37) becomes

=x, and y(fB,) =1, then inequality

(dy—d;)"™! 1¥ll4, a,000
T 2D (py + 1) PT (v + 1)

Pl nl @] sl [l ]}

(41)

which is already obtained in ((39) [Theorem 5])

(4) If a=0, o(B,) =x, y(B,) =1 and v=1, then inequal-
ity (37) 3.10 become

P jjjs(/ﬂ)d/sl -(45%))

< C;\;/;I { [ () [+ 2fs' ()| v (4)
1/q

+ 2l @]+ s ()]
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Theorem 12. Let 0<d, <d, and s: [d;,d,] c [0,00) — R
be a (continuously) diﬁ’erentiable mapping on [d;,d,] such
that s(8,) =s(d +jd’ I)dl, and let h:[d,,d,] — R be
an integrable, posztzve, and weighted symmetric function with

respect to d, + d,/2. If, in addition, |s'|" is strong convex on
[d,, d,|with (l/v) (1/r)y=1andr> 1, and “s” is an increas-
ing and positive function from [d,, d,] onto itself such that its
derivative s' (B,) is continuous on (d;, d,), then for a> 0, the
following inequalities hold:

(dy—dy)™!
ov+1+(2/q) (pv+ I)I/PF(V‘f 1)
{ku[d 3, {3|s |‘1+ |5’(d2){q
a(v+4)(d,-d;)’ 1"
- f] }

[E;+ 5, <

"+ (v+3)|s'(dy)]*

¥ st g | (v DI (1)

_a(v+4)(d, —d,)z] ”q}

2v
(dy—d;)"™! 1%l 4, .00
T o) (v 4 2)ME (v + 2)

: { [(H 3|5 (" + v+ 15 (d)| - B2

+ {(V+ Ds'@d)|*+ (v+3)|s'(dy)]" - 7a(v+4)(2d2 - d,)z]*}.

Proof. Sinces |s'|* is strong convex on [d}, d,], we get for I

€lo7!(dy), 07! ()]

‘<5’00>(l)‘q— s,(d —0()d o(l)-d, 2)

d, - d, d, - d,
dZ—O'l ' o(l 1.1
< dz_;l) |s"(dy)|" + ;j_dl " (dy)|"
—a(dy —o(l))(o(l) - dy).

(44)

By making use Lemma 8, Hélder inequality, and strong
convexity of |s'|* and properties of modulus, we have

1 J“"(@)
<
I'(v))ora)

1
: Jil(d o' (B)(@(By) =) (yeoo)(B)dp,
o 1(d2)

g

|E) + 5,

1 Vﬁl(‘// °0)(B,)dp,
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(A8
= ﬁ <.L1(d1) .[

o' (dy)

) (yeo)(B)dp, o' (1
o"(‘ 1/q
o0
x (Ll( dl>

%ﬂﬁidr<am

(dy=a(By)) (yeo)(

o1(d2)
X
-1 dl fz)

IWII

1

o' (B)((v)

)i v

(B)dg, o' tyat) "

(s“a) (l)‘qa’(l)au) '

(dy+d,12)],00
T )

:f"(@) 1
(e
o' (dy) o7'(dy)

‘Ufl(d\;dz , 4
x stoa) ()| o' (d
(0,16l

(vl [(dy+dy/2).d,],00

(B (@(By) - )" dB,
I(v)

1/
)
o~ (dy) o) ; .
([ [ goteotsas
(e eparron)”

¥l

IN

P p
o (l)dl)

p 1/p
o (l)dl)

1 (dy +dy12)] 00
F(V)

(J(_) [ @ -ayas| o
o7l(dy) o7l(dy)

) (dy-a()
* Ual(d,) <d2*0d1
|s'dy|" - a(d, - a(1)) (0 (1) - d2)>a'(l)dl])

1Y, +dy12)) 00
F(v

(j o j B1)(ds - ()" dp,
'(dy)

{wf :
T @) - d—a(l))(a(l)—d»)a'a)dl]

(dz dy)"!
241+ 29) (py + 2)"P L (v + 1)

IN

» 1p
a'( )dl)

1/q

p 1/p
o (l)dl)

1/iq

o(l)-d,
d2 - dl

|s'd1|q+

Is'(dy)|"

Wl gl @0 - % -]}
+H1//”["1 L), [|5 1 } +3|5’(d2)|q
(dy—dy)"™ ||‘4/H[d,,dz],oo

v
_ 2a(d, - d,)’ "
14
<
241+ (py + 1)"PL (v + 1)

: {[3|s'(d1)|q 4[5 (dy)|" - 2a(d, - d, ] "

D] @)+ (v +3)[s' (dy)[" - 20(d, - )] w}

Hence, the proof is completed.

O

Remark 13. From Theorem 12, we can obtain some special

cases as follows:

(1) Theorem 4 of [32] is obtained if we take a =0, w =,

and p =0 in Theorem 12

(2) If a=0, o(B,) = x, inequality (43) becomes

d +d
’5< ! 2 2> {(dwdzz)*lvllf(dz) +IE@)_‘/’(‘11)}

- vt (<d1+d22>ﬂ ) @) +9(d) T <) )

v+l

(4,

d,)
= e (pv+1)"PT(v+ 1)

{ Wl s 31 0] 15 0

)ﬂ 1/

Wl iz 4] o []s (dy)]"+3]s' (dy)[* _} }

(dy—dy)™! 1Vl 14,.,].00
— 2 V) (py +2)YA0 (v + 2)

{ [3fs" )|+ |5 ("] + Us’(dl)\q+3\s’(d2)\q}.
(46)
(3) Ifa=0,0(B;) = p(x) =x, and y(B,) = w(x) = 1, then

inequality (43) becomes

27 (v+1)
(dz - dl)v
(dy—d)" |yl [dyd, ] °

S 2 (py + 1) P (v + 1)

. { 315/ ()" + |5/ ()

{ d1+an) 1"y (dy) + IE@)

i -+(5%)

) )

4 [3}5’(d2)|qf},

(47)

which is already obtained in ((39) [Theorem 6])

(4) Ifa=0,0(B,) = p(x) =x y(B;)
, then inequality (43) becomes

— dj s(Bdp, ~s( 5 %)

1
Scz—c1 4 \r
16 +1

{ 315/ @)+ [s' ()] + 1

which is already obtained.

=w(x)=1,andv=1

)[*+ [3|s’(d2)yqf},

(48)
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4. Conclusions

In this paper, we established the midpoint type inequalities
for the strong convex function by using positive weighted
symmetry kernels. As an application, our established
inequalities can be applied to the special means of real num-
bers. Our results can be used to estimate error for the mid-
point formula. It is interesting to establish midpoint type
inequalities for the strong convex function in the setting of
a different version of fractional integral operators.
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