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In this paper, we have studied the time-fractional Zakharov-Kuznetsov equation (TFZKE) via natural transform decomposition
method (NTDM) with nonsingular kernel derivatives. The fractional derivative considered in Caputo-Fabrizio (CF) and
Atangana-Baleanu derivative in Caputo sense (ABC). We employed natural transform (NT) on TFZKE followed by inverse
natural transform, to obtain the solution of the equation. To validate the method, we have considered a few examples and
compared with the actual results. Numerical results are in accordance with the existing results.

1. Introduction

Fractional calculus is an emerging field in various branches of
engineering science. Fractional differential equations
attracted researchers as they used to model a variety of
diverse applications such as visco elasticity, heat conduction,
biology, and dynamical systems [1–7]. Due to its importance
in diverse fields, considerable methods developed to study
the exact and computational solutions of fractional differen-
tial equations. Other than the modelling, divergence and con-
vergence of the solutions are also equally important. A
suitable definition is essential for a fractional generalization
of a physical model. Several fractional derivative definitions
developed in the last few decades. Some of the popular defi-
nitions in the literature are Riemann-Liouville (R-L), Caputo,

CF, ABC, Grunwald-Letnikov, and Riesz fractional deriva-
tives. For more details, we refer to [8, 9] and the references
therein. R-L and Caputo fractional derivatives have a singular
kernel. Recently, two nonsingular kernel fractional derivative
definitions are developed by Atangana-Baleanu and Caputo-
Fabrizio. Several methods are being investigated for the anal-
ysis of fractional differential equations for accuracy and
reliable solutions. Some of the popular semi analytical and
numerical methods are variational iteration method (VIM)
[10], fractional differential transform method [11–14],
homotopy perturbation transform method (HPTM) [15],
homotopy analysis transform method [16, 17], residual
power series method (RPS) [18], q-homotopy analysis
transform method (q-HATM) [19–21], operational matrix
method [22], tension spline method [23], parametric cubic
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spline [24], exponential B-spline method [25–27], fractional
natural decomposition method (FNDM) [28], Adam
Bashforth’s Moulton method [29], and references therein.

In this paper, we have considered the TFZKE

Dμ
t u x, ζ, tð Þ + a uξ

� �
x
+ b uηð Þxxx + c uδ

� �
xζζ

= 0, ð1Þ

with initial condition

u x, ζ, 0ð Þ = ϕ x, ζð Þ: ð2Þ

This model illustrates the behavior of weakly nonlinear
ion-acoustic waves in a plasma bearing cold ions and hot iso-
thermal electrons in the presence of a uniformmagnetic field.
This problem has been solved by many techniques such as
VIM [10], homotopy perturbation method [30], HPTM
[15], perturbation iteration algorithm and RPS [31], and
new iterative Sumudu transform method [32]. Recently,
Veeresha and Prakasha [28] presented the applications of
q-HATM and FNDM for solving TFZKE.

The aim of this paper is to implement NTDM to solve
TFZKE. Rawashdeh and Maitama [33] introduced NTDM
for a class of nonlinear partial differential equations. NTDM
do not require linearization; prescribe assumptions, pertur-
bation, or discretization; and prevent any round-off errors.
Recently, NTDM employed to time-fractional Fisher’s equa-
tion [34] and ð2 + 1Þ − dimensional time-fractional coupled
Burger equations [35]. The paper is organized as follows.
Basic definitions of singular and nonsingular definitions of
fractional calculus and NT and its fractional derivatives are
discussed briefly in Section 2. In Section 4, we presented the
convergence and uniqueness of the solutions. In Section 3,
we presented the NTDM for nonsingular definitions to solve
TFZKE. In Section 5, few examples of TFZKE are given to
validate the present methods. Section 6 presents the results
and discussions. In Section 7, brief conclusion of this paper
is presented.

2. Basic Definitions

There are various fractional derivative definitions that are avail-
able in the literature; for more details, we refer [8, 36–38]. In

this section, we give the definitions of R-L, Caputo, CF, and
ABC fractional derivatives for the benefit of the readers.

Definition 1 (see [36]). The R-L left-sided fractional integral
operator of a function f ∈ Cν, ν ≥ −1 is given as

Iμ f ωð Þ = 1
Γ μð Þ

ðω
0
ω − ςð Þμ−1 f ςð Þdς, μ > 0, ω > 0, ð3Þ

and I0 f ðωÞ = f ðωÞ.

Definition 2 (see [1]). The Caputo sense fractional derivative
of f ðωÞis defined by

C
0D

μ
ω f ωð Þ = Im−μDmf ωð Þ = 1

m − μ

ðω
0
ω − ςð Þm−μ−1 f m ςð Þdς,

ð4Þ

for m − 1 < μ ≤m, m ∈ℕ, ω > 0, f ∈ Cm
ν , and ν ≥ −1.

Definition 3 (see [39]). The CF fractional derivative of f ðωÞ is
given by

CF
0 Dμ

ω f ωð Þð Þ = B μð Þ
1 − μ

ðω
0
exp

−μ ω − ςð Þ
1 − μ

� �
D f ςð Þð Þdς, ð5Þ

where 0 < μ < 1 and BðμÞ is a normalization function, where
Bð0Þ = Bð1Þ = 1.

Definition 4 (see [40]). The ABC fractional derivative of f ðωÞ
is presented as

ABC
0 Dμ

ω f ωð Þ = B μð Þ
1 − μ

ðω
0
Eμ

−μ ω − ςð Þ
1 − μ

� �
D f ςð Þð Þdς, ð6Þ

where 0 < μ < 1. Normalization function is BðμÞ, and the
Mittag-Leffler function is EμðzÞ =∑∞

l=0ðzl/Γðμl + 1ÞÞ. These
definitions widely used to study the fractional differential
equation solutions using numerous integral transform tech-
niques such as Sumudu transform, Shehu transform, and
Laplace transform. Recently, natural transform of these defi-
nitions applied to study various differential equations; for
more details, we refer [33, 41, 42]. Computational time can

Table 1: Absolute errors of NTDMCF and NTDMABC with PIA [31] and RPSM [31] of Example 1 for μ = 1 and λ = 0:001.

x ζ t NTDMCF NTDMABC PIA [31] RPSM [31]

0.1 0.1

0.2 3.8519E-07 3.8519E-07 3.8521E-07 3.8521E-07

0.3 5.7584E-07 5.7584E-07 5.7591E-07 5.7591E-07

0.4 7.6517E-07 7.6517E-07 7.6535E-07 7.6535E-07

0.6 0.6

0.2 4.6474E-05 4.6474E-05 4.6634E-05 4.6639E-05

0.3 6.8157E-05 6.8157E-05 6.8606E-05 6.8631E-05

0.4 8.8582E-05 8.8582E-05 8.9824E-05 8.9905E-05

0.9 0.9

0.2 4.9249E-04 4.9249E-04 5.1213E-04 5.1424E-04

0.3 6.7503E-04 6.7503E-04 7.3819E-04 7.4845E-04

0.4 8.1510E-04 8.1510E-04 9.5794E-04 9.8914E-04
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be reduced in this transform than other traditional methods
while preserving the efficiency. When v = 1 and s = 1, the
NT reduced to the Laplace transform and Sumudu integral
transform, respectively.

Definition 5. The natural transform of uðtÞ is defined by

NT u tð Þð Þ =U s, vð Þ =
ð∞
−∞

e−stu vtð Þdt, s, v ∈ −∞,∞ð Þ: ð7Þ

For t ∈ ð0,∞Þ, natural transform of uðtÞ is defined by

NT u tð ÞH tð Þð Þ =NT+ u tð Þð Þ =U+ s, vð Þ =
ð∞
0
e−stu vtð Þdt, s, v ∈ 0,∞ð Þ,

ð8Þ

where HðtÞ is the Heaviside function.

Definition 6. The inverse natural transform ofUðs, vÞ is given
by

NT−1 U s, vð Þ½ � = u tð Þ,∀t ≥ 0: ð9Þ

Lemma 7 (linearity property). If natural transform of u1ðtÞ is
u1ðs, vÞ and u2ðtÞ is u2ðs, vÞ, then

NT c1u1 tð Þ + c2u2 tð Þ½ � = c1NT u1 tð Þ½ � + c2NT u2 tð Þ½ �
= c1u1 s, vð Þ + c2u2 s, vð Þ, ð10Þ

where c1 and c2 are constants.

Lemma 8 (inverse linearity property). If inverse natural
transform of u1ðs, vÞ and u2ðs, vÞ is u1ðtÞ and u2ðtÞ, respec-
tively, then

NT−1 c1u1 s, vð Þ + c2u2 s, vð Þ½ � = c1NT−1 u1 s, vð Þ½ � + c2NT−1 u2 s, vð Þ½ �
= c1u1 tð Þ + c2u2 tð Þ,

ð11Þ

where c1 and c2 are constants.

Table 2: Approximate solutions of NTDMCF and NTDMABC for μ = 0:67 and μ = 0:75 of Example 1 for t = 1 and λ = 0:001.

x ζ
μ = 0:67 μ = 0:75

NTDMCF NTDMABC NTDMCF NTDMABC

0.02

0.02 1.7406E-06 1.7189E-06 1.7380E-06 1.7176E-06

0.04 4.1951E-06 4.1584E-06 4.1923E-06 4.1581E-06

0.06 7.7192E-06 7.6674E-06 7.7161E-06 7.6679E-06

0.08 1.2317E-05 1.2250E-05 1.2313E-05 1.2251E-05

0.10 1.7994E-05 1.7911E-05 1.7990E-05 1.7913E-05

0.04

0.02 4.1951E-06 4.1584E-06 4.1923E-06 4.1581E-06

0.04 7.7192E-06 7.6674E-06 7.7161E-06 7.6679E-06

0.06 1.2317E-05 1.2250E-05 1.2313E-05 1.2251E-05

0.08 1.7994E-05 1.7911E-05 1.7990E-05 1.7913E-05

0.10 2.4757E-05 2.4658E-05 2.4752E-05 2.4660E-05

0.06

0.02 7.7192E-06 7.6674E-06 7.7161E-06 7.6679E-06

0.04 1.2317E-05 1.2250E-05 1.2313E-05 1.2251E-05

0.06 1.7994E-05 1.7911E-05 1.7990E-05 1.7913E-05

0.08 2.4757E-05 2.4658E-05 2.4752E-05 2.4660E-05

0.10 3.2616E-05 3.2500E-05 3.2610E-05 3.2503E-05

0.08

0.02 1.2317E-05 1.2250E-05 1.2313E-05 1.2251E-05

0.04 1.7994E-05 1.7911E-05 1.7990E-05 1.7913E-05

0.06 2.4757E-05 2.4658E-05 2.4752E-05 2.4660E-05

0.08 3.2616E-05 3.2500E-05 3.2610E-05 3.2503E-05

0.10 4.1581E-05 4.1448E-05 4.1575E-05 4.1451E-05

0.10

0.02 1.7994E-05 1.7911E-05 1.7990E-05 1.7913E-05

0.04 2.4757E-05 2.4658E-05 2.4752E-05 2.4660E-05

0.06 3.2616E-05 3.2500E-05 3.2610E-05 3.2503E-05

0.08 4.1581E-05 4.1448E-05 4.1575E-05 4.1451E-05

0.10 5.1665E-05 5.1513E-05 5.1657E-05 5.1516E-05
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Figure 1: Continued.
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Definition 9 (see [43]). Natural transform of Dμ
t uðtÞ by

means of Caputo sense is given as

NT C
0D

μ
t u tð Þ� �

=
s
v

� �μ
NT u tð Þ½ � − 1

s

� �
u 0ð Þ

� �
: ð12Þ

Definition 10 (see [44]). Natural transform of Dμ
t uðtÞ by

means of CF is defined as

NT CF
0 Dμ

t u tð Þ� �
=

1
1 − μ + μ v/sð Þ NT u tð Þ½ � − 1

s
u 0ð Þ

� �
:

ð13Þ

With this motivation, we defined natural transform of
ABC derivative as follows.

Definition 11.Natural transform of Dμ
t uðtÞ by means of ABC

derivative is defined as

NT ABC
0 Dμ

t u tð Þ� �
=

M μ½ �
1 − μ + μ v/sð Þμ NT u tð Þ½ � − 1

s

� �
u 0ð Þ

� �
:

ð14Þ

3. Methodology

In this section, we present a novel approximate analytical
procedure based on natural transform [42] to the following
equation

Dμ
t u ζ, tð Þ =L u ζ, tð Þð Þ +N u ζ, tð Þð Þ + h ζ, tð Þ, ð15Þ

with the initial condition

u ζ, 0ð Þ = ϕ ζð Þ, ð16Þ

where N , L , and hðζ, tÞ are nonlinear, linear, and source
terms, respectively. Now we employing NT on equation
(15) by considering fractional derivative by means of three
fractional definitions.

Case 1. (NTDMCF). By taking natural transform of equation
(15), by means of CF fractional derivative, we obtain

1
p μ, v, sð Þ NT u ζ, tð Þ½ � − ϕ ζð Þ

s

� �
=NT M ζ, tð Þ½ �, ð17Þ

where

p μ, v, sð Þ = 1 − μ + μ
v
s

� �
: ð18Þ

By taking inverse natural transform using (8), we rewrite
(17) as

u ζ, tð Þ =NT−1 ϕ ζð Þ
s

+ p μ, v, sð ÞNT M ζ, tð Þ½ �
� 	

: ð19Þ

N ðuðζ, tÞÞ can be decomposed into

N u ζ, tð Þð Þ = 〠
∞

l=0
Al, ð20Þ

where Al is the Adomian polynomials [45, 46]. We assume
that equation (15) has the analytical expansion

u ζ, tð Þ = 〠
∞

l=0
ul ζ, tð Þ: ð21Þ

By substituting equations (20) and (21) into (19), we
obtain

4×10–4

2×10–4

0

0.5

1
0

0.5

1

y

x

μ

(c)

Figure 1: (a) Exact solution, (b) absolute error of NTDMCF, and (c) absolute error of NTDMABC of Example 1 for μ = 1, t = 0:5, and λ = 0:001.
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〠
∞

l=0
ul ζ, tð Þ =NT−1 ϕ ζð Þ

s
+ p μ, v, sð ÞNT h ζ, tð Þ½ �

� 	

+NT−1 p μ, v, sð ÞNT 〠
∞

l=0
L ul ζ, tð Þð Þ + Al

" #" #
:

ð22Þ

From (22), we get

uCF
0 ζ, tð Þ =NT−1 ϕ ζð Þ

s
+ p μ, v, sð ÞNT h ζ, tð Þ½ �

� 	
uCF
1 ζ, tð Þ

=NT−1 p μ, v, sð ÞNT L u0 ζ, tð Þð Þ + A0½ �½ �⋮uCF
l+1 ζ, tð Þ

=NT−1 p μ, v, sð ÞNT L ul ζ, tð Þð Þ + Al½ �½ �, l = 1, 2,⋯:

ð23Þ

By substituting (23) into (21), we get the NTDMCF solu-
tion of (15) and (16) as

uCF ζ, tð Þ = uCF
0 ζ, tð Þ + uCF

1 ζ, tð Þ + uCF
2 ζ, tð Þ+⋯: ð24Þ

Case 2. (NTDMABC). By taking natural transform of equation
(15), by means of ABC derivative, we acquire

1
q μ, v, sð Þ NT u ζ, tð Þ½ � − ϕ ζð Þ

s

� �
=NT M ζ, tð Þ½ �, ð25Þ

where

q μ, v, sð Þ = 1 − μ + μ v/sð Þμ
B μð Þ : ð26Þ

μ
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0.005

0.000
0.0

0.5
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0.5 y

1.0

x

(c)
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(d)

Figure 2: (a) NTDMCF for μ = 0:60, (b) NTDMCF for μ = 0:75, (c) NTDMABC for μ = 0:60, and (d) NTDMABC for μ = 0:75, when t = 0:5 and
λ = 0:001 of Example 1.
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By taking inverse natural transform using (8), we rewrite
(25), as

u ζ, tð Þ =NT−1 ϕ ζð Þ
s

+ q μ, v, sð ÞNT M ζ, tð Þ½ �
� 	

: ð27Þ

N ðuðζ, tÞÞ can be decomposed into

N u ζ, tð Þð Þ = 〠
∞

l=0
Al, ð28Þ

where Al is the Adomian polynomials. We assume that equa-
tion (15) has the analytical expansion

u ζ, tð Þ = 〠
∞

l=0
ul ζ, tð Þ: ð29Þ

By substituting equations (28) and (29) into (27), we obtain

〠
∞

l=0
ul ζ, tð Þ =NT−1 ϕ ζð Þ

s
+ q μ, v, sð ÞNT h ζ, tð Þ½ �

� 	

+NT−1 q μ, v, sð ÞNT 〠
∞

l=0
L ul ζ, tð Þð Þ + Al

 !" #" #
:

ð30Þ

From (30), we get

uABC
0 ζ, tð Þ =NT−1 ϕ ζð Þ

s

� 	
+NT−1 q μ, v, sð ÞNT h ζ, tð Þ½ �½ �uABC

1 ζ, tð Þ

=NT−1 q μ, v, sð ÞNT L u0 ζ, tð Þð Þ + A0½ �½ �⋮uABC
l+1 ζ, tð Þ

=NT−1 q μ, v, sð ÞNT L ul ζ, tð Þð Þ + Al½ �½ �, l = 1, 2,⋯:

ð31Þ

By substituting (31) into (29), we get the NTDMABC solu-
tion of (15)–(16) as

uABC ζ, tð Þ = uABC
0 ζ, tð Þ + uABC

1 ζ, tð Þ + uABC
2 ζ, tð Þ+⋯ ð32Þ

4. Convergence Analysis

We have presented uniqueness and convergence of the
NTDMCF and NTDMABC in this section.

Theorem 12. The NTDMCF solution of (15) is unique when
0 < ðδ1 + δ2Þð1 − μ + μtÞ < 1.

Proof. Let F = ðC½J�, k:kÞ be the Banach space with the norm
kϕðtk =maxt∈J jϕðtÞj, ∀ continuous functions on J . Let
G : F ⟶ F is a nonlinear mapping, where

uC
l+1 ζ, tð Þ = uC

0 +NT−1 p μ, v, sð ÞNT L ul ζ, tð Þð Þ +N ul ζ, tð Þð Þ½ �½ �, l ≥ 0:

ð33Þ

Suppose that jLðuÞ −Lðu∗Þj < δ1ju − u∗j and jN ðuÞ
−N ðu∗Þj < δ2ju − u∗j, where δ1 and δ2 are Lipschitz con-
stants and u≔ uðζ, tÞ and u∗ ≔ u∗ðζ, tÞ are two different
function values.

Gu −Gu∗k k ≤max
t∈J

NT−1 p μ, v, sð ÞNT L uð Þ −L u∗ð Þ½ �½


+ p μ, v, sð ÞNT N uð Þ −N u∗ð Þ½ ��



≤max
t∈J

δ1NT−1 p μ, v, sð ÞNT u − u∗j j½ ��
+ δ2NT−1 p μ, v, sð ÞNT u − u∗j j½ ��

≤max
t∈J

δ1 + δ2ð Þ NT−1 p μ, v, sð ÞNT u − u∗j j½ �� �
≤ δ1 + δ2ð Þ NT−1 p μ, v, sð ÞNT u − u∗k k½ �� �
= δ1 + δ2ð Þ 1 − μ + μtð Þ u − u∗j jj j:

ð34Þ

G is contraction as 0 < ðδ1 + δ2Þð1 − μ + μtÞ < 1. The
solution of (15) is unique from Banach fixed point theorem.

☐
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Figure 3: (a) NTDMCF and (b) NTDMABC of Example 1, for x = 0:5, ζ = 0:5, and λ = 0:001 for different values of μ.
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Theorem 13. The NTDMABC solution of (15) is unique when
0 < ðδ1 + δ2Þð1 − μ + μðtμ/Γðμ + 1ÞÞÞ < 1.

Proof. Let F = ðC½J�, k:kÞ be the Banach space with the norm
kϕðtk =maxt∈J jϕðtÞj, ∀ continuous functions on J . Let
G : F ⟶ F is a nonlinear mapping, where

uC
l+1 ζ, tð Þ = uC

0 +NT−1 q μ, v, sð ÞNT L ul ζ, tð Þð Þ +N ul ζ, tð Þð Þ½ �½ �, l ≥ 0:

ð35Þ

Suppose that jLðuÞ −Lðu∗Þj < δ1ju − u∗j and jN ðuÞ
−N ðu∗Þj < δ2ju − u∗j, where δ1 and δ2 are Lipschitz con-
stants and u≔ uðζ, tÞ and u∗ ≔ u∗ðζ, tÞ are two different
function values.

Gu −Gu∗k k ≤max
t∈J

NT−1 q μ, v, sð ÞNT L uð Þ −L u∗ð Þ½ �½


+ q μ, v, sð ÞNT N uð Þ −N u∗ð Þ½ ��



≤max
t∈J

δ1NT−1 q μ, v, sð ÞNT u − u∗j j½ ��
+ δ2NT−1 q μ, v, sð ÞNT u − u∗j j½ ��

≤max
t∈J

δ1 + δ2ð Þ NT−1 q μ, v, sð ÞNT u − u∗j j½ �� �
≤ δ1 + δ2ð Þ NT−1 q μ, v, sð ÞNT u − u∗k k½ �� �
= δ1 + δ2ð Þ 1 − μ + μ

tμ

Γ μ + 1ð Þ
� �

u − u∗k k:

ð36Þ

G is contraction as 0 < ðδ1 + δ2Þð1 − μ + μðtμ/Γðμ + 1ÞÞÞ
< 1. The solution of (15) is unique from Banach fixed point
theorem. ☐

Theorem 14. NTDMCF solution of (15) is convergent.

Proof. Let um =∑m
r=0urðζ, tÞ. To prove that um is a Cauchy

sequence in F. Consider

um − unk k =max
t∈J

um − unj j =max
t∈J

〠
m

r=n+1
ur












, n = 1, 2, 3,⋯: ≤max

t∈J
NT−1



� p μ, v, sð ÞNT 〠
m

r=n+1
L ur−1ð Þ +N ur−1ð Þð Þ

" #" #





=max

t∈J
NT−1 p μ, v, sð ÞNT 〠

m−1

r=n
L urð Þ +N urð Þð Þ

" #" #












≤max
t∈J

NT−1 p μ, v, sð ÞNT L um−1ð Þ −L un−1ð Þð½½


+N um−1ð Þ −N un−1ð ÞÞ��

 ≤ δ1 max

t∈J

� NT−1 p μ, v, sð ÞNT L um−1ð Þ −L un−1ð Þð Þ½ �½ �

 


+ δ2 max

t∈J
NT−1 p μ, v, sð ÞNT N um−1ð Þ −N un−1ð Þð Þ½ �½ �

 



= δ1 + δ2ð Þ 1 − μ + μtð Þ um−1 − un−1k k:
ð37Þ

Table 3: Absolute errors of NTDMCF and NTDMABC with existing methods of Example 2 when λ = 0:001.

x, ζ t NTDMCF NTDMABC FNDM [28] q −HATM [28]

0.02

0.02 4.9926E-09 4.9926E-09 4.9926E-09 4.9926E-09

0.04 9.9852E-09 9.9852E-09 9.9852E-09 9.9852E-09

0.06 1.4979E-08 1.4979E-08 1.4979E-08 1.4979E-08

0.08 1.9970E-08 1.9970E-08 1.9970E-08 1.9970E-08

0.10 2.4963E-08 2.4963E-08 2.4963E-08 2.4963E-08

0.04

0.02 4.9929E-09 4.9929E-09 4.9929E-09 4.9929E-09

0.04 9.9859E-09 9.9859E-09 9.9859E-09 9.9859E-09

0.06 1.4979E-08 1.4979E-08 1.4979E-08 1.4979E-08

0.08 1.9972E-08 1.9972E-08 1.9972E-08 1.9972E-08

0.10 2.4965E-08 2.4965E-08 2.4965E-08 2.4965E-08

0.06

0.02 4.9934E-09 4.9934E-09 4.9934E-09 4.9934E-09

0.04 9.9869E-09 9.9869E-09 9.9869E-09 9.9869E-09

0.06 1.4980E-08 1.4980E-08 1.4980E-08 1.4980E-08

0.08 1.9974E-08 1.9974E-08 1.9974E-08 1.9974E-08

0.10 2.4967E-08 2.4967E-08 2.4967E-08 2.4967E-08

0.08

0.02 4.9942E-09 4.9942E-09 4.9942E-09 4.9942E-09

0.04 9.9884E-09 9.9884E-09 9.9884E-09 9.9884E-09

0.06 1.4983E-08 1.4983E-08 1.4983E-08 1.4983E-08

0.08 1.9977E-08 1.9977E-08 1.9977E-08 1.9977E-08

0.10 2.4971E-08 2.4971E-08 2.4971E-08 2.4971E-08

0.10

0.02 4.9952E-09 4.9952E-09 4.9952E-09 4.9952E-09

0.04 9.9904E-09 9.9904E-09 9.9904E-09 9.9904E-09

0.06 1.4986E-08 1.4986E-08 1.4986E-08 1.4986E-08

0.08 1.9981E-08 1.9981E-08 1.9981E-08 1.9981E-08

0.10 2.4976E-08 2.4976E-08 2.4976E-08 2.4976E-08
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Let m = n + 1, then

un+1 − unk k ≤ δ un − un−1k k ≤ δ2 un−1 − un−2k k
≤⋯≤ δn u1 − u0k k,

ð38Þ

where δ = ðδ1 + δ2Þð1 − μ + μtÞ. Similarly, we have

um − unk k ≤ un+1 − unk k + un+2 − un+1k k+⋯+ um − um−1k k,
≤ δn + δn+1+⋯+δm−1� �

u1 − u0k k

≤ δn
1 − δm−n

1 − δ

� �
u1k k,

ð39Þ

As 0 < δ < 1, we get 1 − δm−n < 1. Therefore

um − unk k ≤ δn

1 − δ
max
t∈J

u1k k: ð40Þ

Since ku1k <∞. kum − unk⟶ 0 when n⟶∞.
Hence, um is a Cauchy sequence in F; therefore, the series
um is convergent. ☐

Theorem 15. NTDMABC solution of (15) is convergent.

Proof. Let um =∑m
r=0urðζ, tÞ. To prove that um is a Cauchy

sequence in F. Consider

um − unk k =max
t∈J

um − unj j =max
t∈J

〠
m

r=n+1
ur












, n = 1, 2, 3,⋯: ≤max

t∈J
NT−1



� q μ, v, sð ÞNT 〠
m

r=n+1
L ur−1ð Þ +N ur−1ð Þð Þ

" #" #





=max

t∈J
NT−1 q μ, v, sð ÞNT 〠

m−1

r=n
L urð Þ +N urð Þð Þ

" #" #












≤max
t∈J

NT−1 q μ, v, sð ÞNT L um−1ð Þ −L un−1ð Þð½½


+N um−1ð Þ −N un−1ð ÞÞ��

 ≤ δ1 max

t∈J

� NT−1 q μ, v, sð ÞNT L um−1ð Þ −L un−1ð Þð Þ½ �½ �

 


+ δ2 max

t∈J
NT−1 q μ, v, sð ÞNT N um−1ð Þ −N un−1ð Þð Þ½ �½ �

 



= δ1 + δ2ð Þ 1 − μ + μ
tμ

Γ μ + 1ð Þ
� �

∥um−1 − un−1∥:

ð41Þ

Table 4: Approximate solutions of NTDMCF and NTDMABC for μ = 0:67 and μ = 0:75 of Example 2 when t = 1 and λ = 0:001.

x ζ
μ = 0:67 μ = 0:75

NTDMCF NTDMABC NTDMCF NTDMABC

0.02

0.02 9.9997E-06 9.9997E-06 9.9997E-06 9.9997E-06

0.04 1.5000E-05 1.5000E-05 1.5000E-05 1.5000E-05

0.06 2.0000E-05 2.0000E-05 2.0000E-05 2.0000E-05

0.08 2.5001E-05 2.5001E-05 2.5001E-05 2.5001E-05

0.10 3.0002E-05 3.0002E-05 3.0002E-05 3.0002E-05

0.04

0.02 1.5000E-05 1.5000E-05 1.5000E-05 1.5000E-05

0.04 2.0000E-05 2.0000E-05 2.0000E-05 2.0000E-05

0.06 2.5001E-05 2.5001E-05 2.5001E-05 2.5001E-05

0.08 3.0002E-05 3.0002E-05 3.0002E-05 3.0002E-05

0.10 3.5003E-05 3.5003E-05 3.5003E-05 3.5003E-05

0.06

0.02 2.0000E-05 2.0000E-05 2.0000E-05 2.0000E-05

0.04 2.5001E-05 2.5001E-05 2.5001E-05 2.5001E-05

0.06 3.0002E-05 3.0002E-05 3.0002E-05 3.0002E-05

0.08 3.5003E-05 3.5003E-05 3.5003E-05 3.5003E-05

0.10 4.0004E-05 4.0004E-05 4.0004E-05 4.0004E-05

0.08

0.02 2.5001E-05 2.5001E-05 2.5001E-05 2.5001E-05

0.04 3.0002E-05 3.0002E-05 3.0002E-05 3.0002E-05

0.06 3.5003E-05 3.5003E-05 3.5003E-05 3.5003E-05

0.08 4.0004E-05 4.0004E-05 4.0004E-05 4.0004E-05

0.10 4.5006E-05 4.5006E-05 4.5006E-05 4.5006E-05

10

0.02 3.0002E-05 3.0002E-05 3.0002E-05 3.0002E-05

0.04 3.5003E-05 3.5003E-05 3.5003E-05 3.5003E-05

0.06 4.0004E-05 4.0004E-05 4.0004E-05 4.0004E-05

0.08 4.5006E-05 4.5006E-05 4.5006E-05 4.5006E-05

0.10 5.0009E-05 5.0009E-05 5.0009E-05 5.0009E-05

10 Journal of Function Spaces



4×10–4

2×10–4

μ

0

0.5

1
0

0.5 y

x

1

(a)

μ

1.3×10–7

1.28×10–7

1.26×10–7

0.0

0.5

1.0
0.0

0.5

1.0

y

x

(b)

μ

1.3×10–7

1.28×10–7

1.26×10–7

0.0

0.5
x

y

1.0
0.0

0.5

1.0

(c)

Figure 4: (a) Exact solution, (b) absolute error of NTDMCF, and (c) absolute error of NTDMABC, for μ = 1, t = 0:5, and λ = 0:001 of Example 2.
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Figure 5: Continued.
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Let m = n + 1, then

un+1 − unk k ≤ δ un − un−1k k ≤ δ2 un−1 − un−2k k
≤⋯≤ δn u1 − u0k k,

ð42Þ

where δ = ðδ1 + δ2Þð1 − μ + μðtμ/Γðμ + 1ÞÞÞ. Similarly, we
have

um − unk k ≤ un+1 − unk k + un+2 − un+1k k+⋯+ um − um−1k k,
≤ δn + δn+1+⋯+δm−1� �

u1 − u0k k

≤ δn
1 − δm−n

1 − δ

� �
u1k k,

ð43Þ

As 0 < δ < 1, we get 1 − δm−n < 1. Therefore

um − unk k ≤ δn

1 − δ
max
t∈J

u1k k: ð44Þ

Since ku1k <∞. kum − unk⟶ 0 when n⟶∞.
Hence, um is a Cauchy sequence in F; therefore, the series
um is convergent. ☐

5. Numerical Examples

This section includes the approximate analytical solutions for
a few examples of TFZKE.We have chosen these equations as
the closed form solutions are available and also well-known
methods employed to study the solutions in the literature.
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Figure 5: Example 2. (a) NTDMCF for μ = 0:60. (b) NTDMCF for μ = 0:75. (c) NTDMABC for μ = 0:60. (d) NTDMABC for μ = 0:75 when
t = 0:5 and λ = 0:001.
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Example 1. TFZKE (1) is considered with the following
parameters. Let ξ = η = δ = 2, a = 1, b = c = 1/8, and uðx, ζ, 0Þ
= ð4/3Þλ sinh2ðx + ζÞ [47, 48]. When μ = 1, exact solution
[49] is uðx, ζ, tÞ = ð4/3Þλ sinh2ðx + ζ − λtÞ.

NTDMCF: By employing NTDMCF, we get

uCF
0 x, ζ, tð Þ = 4

3
λ sinh2 x + ζð Þ,

uCF
1 x, ζ, tð Þ = −

8
9
λ2 μ t − 1ð Þ + 1ð Þ 5 sinh 4 x + ζð Þð Þ − 4 sinh 2 x + ζð Þð Þð Þ,

uCF
2 x, ζ, tð Þ = 32

27
λ3 2 + 2μ2 − 4μ + 4μ − 4μ2

� �
t + μ2t2

� �
× 13 cosh 2 x + ζð Þð Þ + 75 cosh 6 x + ζð Þð Þð
− 70 cosh 4 x + ζð Þð ÞÞ,⋮

ð45Þ

Substituting uCF
0 ðx, ζ, tÞ, uCF

1 ðx, ζ, tÞ, in (24), we obtain
the NTDMCF solution as

uCF x, ζ, tð Þ ≈ 4
3
λ sinh2 x + ζð Þ − 8

9
λ2 μ t − 1ð Þ + 1ð Þ

� 5 sinh 4 x + ζð Þð Þ − 4 sinh 2 x + ζð Þð Þð Þ
+
32
27

λ3 2 + 2μ2 − 4μ + 4μ − 4μ2
� �

t + μ2t2
� �

× 13 cosh 2 x + ζð Þð Þ + 75 cosh 6 x + ζð Þð Þð
− 70 cosh 4 x + ζð Þð ÞÞ:

ð46Þ

NTDMABC: By employing the NTDMABC, we get

uABC
0 x, ζ, tð Þ = 4

3
λ sinh2 x + ζð Þ,

uABC
1 x, ζ, tð Þ = −

8λ2 −μΓ μð Þ + Γ μð Þ + tμð Þ 5 sinh 4 x + ζð Þð Þð Þ
9Γ μð Þ − 4 sinh 2 x + ζð Þð Þ ,

uABC
2 x, ζ, tð Þ = 64λ3 13 cosh 2 x + yð Þð Þ − 70 cosh 4 x + yð Þð Þ + 75 cosh 6 x + yð Þð Þð Þ

27Γ μð ÞΓ 2μ + 1ð Þ
× μΓ μ + 1ð Þt2μ + μ − 1ð ÞΓ 2μ + 1ð Þ μ − 1ð ÞΓ μð Þ − 2tμð Þ� �

,⋮

ð47Þ

Substituting uABC
0 ðx, ζ, tÞ, uABC

1 ðx, ζ, tÞ, in (28), we obtain
the NTDMABC solution as

uABC x, ζ, tð Þ ≈ 4
3
λ sinh2 x + ζð Þ

−
8λ2 −μΓ μð Þ + Γ μð Þ + tμð Þ 5 sinh 4 x + ζð Þð Þ − 4 sinh 2 x + ζð Þð Þð Þ

9Γ μð Þ ,

� 64λ
3 13 cosh 2 x + yð Þð Þ − 70 cosh 4 x + yð Þð Þ + 75 cosh 6 x + yð Þð Þð Þ

27Γ μð ÞΓ 2μ + 1ð Þ
× μΓ μ + 1ð Þt2μ + μ − 1ð ÞΓ 2μ + 1ð Þ μ − 1ð ÞΓ μð Þ − 2tμð Þ� �

:

ð48Þ

Example 2. TFZKE (1) is considered with the following
parameters. Let ξ = η = δ = 3, a = 1,b = c = 2, and uðx, ζ, 0Þ
= ð3/2Þλ sinh ððx + ζÞ/6Þ [47, 48]. When μ = 1, exact solu-
tion [49] is given by uðx, ζ, tÞ = ð3/2Þλ sinh ððx + ζ − λtÞ/6Þ.

NTDMCF: By employing the NTDMCF, we get

uCF
0 x, ζ, tð Þ = 3

2
λ sinh

x + ζ

6

� �
,

uCF
1 x, ζ, tð Þ = 3

32
λ3 μ t − 1ð Þ + 1ð Þ 5 cosh

x + ζ

6

� �
− 9 cosh

x + ζ

2

� �� �
,

uCF
2 x, ζ, tð Þ = 3λ5

1024
−621 sinh

x + ζ

2

� �
+ 70 sinh

x + ζ

6

� ��

+ 765 sinh 5 x + ζð Þ
6

� ��
× μ2 t − 4ð Þt + 2ð Þ + 4μ t − 1ð Þ + 2
� �

,⋮

ð49Þ

Substituting uCF
0 ðx, ζ, tÞ, uCF

1 ðx, ζ, tÞ, in (24), we obtain
the NTDMCF solution as
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Figure 6: (a) NTDMCF and (b) NTDMABC, for x = 0:02, ζ = 0:02, and λ = 0:001 for Example 2 with various values of μ.
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uCF x, ζ, tð Þ ≈ 3
2
λ sinh

x + ζ

6

� �
+

3
32

λ3 μ t − 1ð Þ + 1ð Þ

� 5 cosh
x + ζ

6

� �
− 9 cosh

x + ζ

2

� �� �

+
3λ5

1024
−621 sinh

x + ζ

2

� �
+ 70 sinh

x + ζ

6

� ��

+ 765 sinh
5 x + ζð Þ

6

� ��
× μ2 t − 4ð Þt + 2ð Þ + 4μ t − 1ð Þ + 2
� �

+:
ð50Þ

NTDMABC: By employing the NTDMABC, we get

uABC
0 x, ζ, tð Þ = 3

2
λ sinh

x + ζ

6

� �
,

uABC
1 x, ζ, tð Þ

= −
3λ3 −μΓ μð Þ + Γ μð Þ + tμð Þ cosh x + ζð Þ/6ð Þ 9 cosh x + ζð Þ/3ð Þ − 7ð Þ

16Γ μð Þ ,

uABC
2 x, ζ, tð Þ = 3λ5 μΓ μ + 1ð Þt2μ + μ − 1ð ÞΓ 2μ + 1ð Þ μ − 1ð ÞΓ μð Þ − 2tμð Þ� �

512Γ μð ÞΓ 2μ + 1ð Þ
× −621 sinh

x + ζ

2

� �
+ 70 sinh

x + ζ

6

� ��

+ 765 sinh
5 x + ζð Þ

6

� ��
,⋮

ð51Þ

Substituting uABC
0 ðx, ζ, tÞ uABC

1 ðx, ζ, tÞ, in (32), we obtain
the NTDMABC solution as

uABC x, ζ, tð Þ ≈ 3
2
λ sinh

x + ζ

6

� �

−
3λ3 −μΓ μð Þ + Γ μð Þ + tμð Þ cosh x + ζð Þ/6ð Þ 9 cosh x + ζð Þ/3ð Þ − 7ð Þ

16Γ μð Þ

+
3λ5 μΓ μ + 1ð Þt2μ + μ − 1ð ÞΓ 2μ + 1ð Þ μ − 1ð ÞΓ μð Þ − 2tμð Þ� �

512Γ μð ÞΓ 2μ + 1ð Þ
× −621 sinh

x + ζ

2

� �
+ 70 sinh

x + ζ

6

� �
+ 765 sinh

5 x + ζð Þ
6

� �� �
+:

ð52Þ

6. Numerical Results and Discussion

Tables 1 and 2 demonstrates the comparison of absolute
errors with the existing methods and approximate solutions
for different fractional orders with different fractional deriv-
atives, respectively, of Example 1. Absolute errors of Example
1 graphically represented in Figure 1 for fixed t when μ = 1.
In Figure 2, we plotted approximate solutions for different
values of μ for fixed t of Example 1. Figure 3 presents the
comparison of NTDMCF and NTDMABC solutions of Exam-
ple 1 with exact solution for different values of fractional
order μ for fixed x and ζ. In Table 3, we presented absolute
errors of two fractional derivative solutions and existing
results of Example 2. We have tabulated the approximate
solution of Example 2 for noninteger fractional values in

Table 4. For Example 2, NTDMCF and NTDMABC absolute
errors graphically represent in Figure 4 for fixed t when μ
= 1, and in Figure 5, we plotted approximate solutions for
different values of μ for specific value of t. Figure 6 presents
the comparison of NTDMCF and NTDMABC with exact solu-
tion for noninteger values of μ for fixed t and ζ of Example 2.
It is observed from tables and figures that the two-term
approximate solution is having good accordance with the
existing results and exact solution. For noninteger values,
NTDMCF and NTDMABC are showing same behavior.

7. Conclusions

In this paper, we have studied the TFZKE through natural
transformation by means of CF and ABC derivatives. We
compared numerical results with the existing results. It is
observed that the present method results are in accordance
with existing methods. The NTDM is simple in its principles;
also, NTDM is effective in solving nonlinear fractional differ-
ential equations, and promising method for a large varieties
of such equations arises in mathematical physics.
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