Hindawi

Journal of Function Spaces

Volume 2021, Article ID 9918243, 8 pages
https://doi.org/10.1155/2021/9918243

Research Article

Hindawi

A Study of the Anisotropic Static Elasticity System in Thin Domain

Yassine Letoufa,! Salah Mahmoud Boulaaras(,”> Hamid Benseridi,* Mourad Dilmi,*

and Asma Alharbi®?

"Department of Mathematics and Computer Sciences, University of El Oued, El Oued, PO Box 789 39000, Algeria
Department of Mathematics, College of Sciences and Arts, ArRass, Qassim University, Saudi Arabia

*Laboratory of Fundamental and Applied Mathematics of Oran (LMFAO), University of Oran 1, Oran, 31000 Oran, Algeria
*Applied Mathematics Laboratory, Department of Mathematics, Faculty of Sciences, University of Ferhat ABBAS-Sétif 1,

19000, Algeria

Correspondence should be addressed to Salah Mahmoud Boulaaras; s.boularas@qu.edu.sa

Received 7 June 2021; Accepted 16 July 2021; Published 31 July 2021

Academic Editor: Fanglei Wang

Copyright © 2021 Yassine Letoufa et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study the asymptotic behavior of solutions of the anisotropic heterogeneous linearized elasticity system in thin domain of R?
which has a fixed cross-section in the R? plane with Tresca friction condition. The novelty here is that stress tensor has given by the
most general form of Hooke’s law for anisotropic materials. We prove the convergence theorems for the transition 3D-2D when one
dimension of the domain tends to zero. The necessary mathematical framework and (2D) equation model with a specific weak form
of the Reynolds equation are determined. Finally, the properties of solution of the limit problem are given, in which it is confirmed

that the limit problem is well defined.

1. Introduction

In this paper, we are interested of the asymptotic behavior of
the linear elasticity system in a domain of R?® with a Tresca
friction condition where the boundary of this domain has a
fixed cross-section in dimension 2 and a small thickness.
One of the objectives of this study is to obtain two-
dimensional equation that allows a reasonable description
of the phenomenon occurring in the three-dimensional
domain by passing the limit to 0 on the small thickness of
the domain (3D). Let us mention for example [1-8] in which
the authors worked on the asymptotic behavior for the line-
arized elasticity system with different boundary conditions.
Some problems of Newtonian or non-Newtonian fluids are
considered in [9-11] where the authors proved a limit prob-
lem that gives a distribution of velocity and pressure through
the weak form of the Reynolds equation. In [6, 7], the authors
demonstrate the transition 3D-1D in anisotropic heteroge-
neous linearized elasticity; so, we mention here that this phe-
nomenon has been studied only about strong solutions,
without friction law. Benseridi in [2] investigated the asymp-
totic analysis of a dynamical problem of linear elasticity with

Tresca’s friction. The static case with a nonlinear term for lin-
ear elastic materials has been considered in [3]. See another
situation in [4] where the paper concerns asymptotic deriva-
tion of frictionless contact models for elastic rods on a foun-
dation with normal compliance. Recently, the authors in [5,
12] have proved the asymptotic behavior of a frictionless
contact problem between two elastic bodies, when the verti-
cal dimension of the two domain reaches zero. However, all
these papers have been only restricted in a homogeneous
and isotropic case of elastic materials.

The present work is a follow-up of [2, 3, 5] to study the
heterogeneous and anisotropic situation with Tresca’s friction.
Here, the stress tensor with its components is given by the gen-
eralized Hooke’s law (see [13]): 0© = A®e(u®), where u® denotes
the displacement vector, e(u®) is the linearized strain tensor,
and A°® is the fourth order tensor which describes the elastic
properties of the material. Many materials that follow the lin-
ear elastic model, although they are well made, are not subject
to the assumptions of isotropy, for example, wood, reinforced
concrete, composite materials, and many biological materials,
where the mechanical properties of these materials differ
according to the directions of space; in that case, the elasticity
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operator depends on the location of the point (see [14, 15]).
Necas in [7] and Sofonea in [16] established the existence of
a weak solution for the static frictional contact problem
involving linearly elastic and viscoelastic materials, by using
a results of convex optimization [17], and numerical approxi-
mation of this problem was studied in [18]. For the variational
analysis of various contact problems, we mention excellent ref-
erences in [14, 15]. Mathematically, the asymptotic analysis is
more difficult since in general, the limit problem involves an
equation that takes into account the anisotropy of the
medium, and it is thus important to identify the elastic com-
ponents of A® that appear in the (2D) equation model.

The paper is organized as follows; in section 2, the strong
and weak formulation of the problem is given in terms of u*
and also the related existence and uniqueness of the weak solu-
tion. In section 3, we introduce a scaling, and we find some
estimates on the displacement which are independent of the
parameter ¢. In section 4, we state the main results concerning
the existence of a weak limit u* of u?, the (2D) equation model
with a specific weak form of the Reynolds equation is proved,
the limit form of the Tresca boundary conditions is formu-
lated, and finally, the uniqueness of u* is given.

2. Mathematical Formulation

Let w be an open set in R with Lipschitz boundary, and we
consider a smooth function % : w — R be a class C! such
that 0 <h,, <h(x)<h,,,. for all x€w, where h_;, and
h_. are constants. We define the smooth bounded domain

max

O whose boundary has a flat part w,
Q={(xz2)eRxcw 0<z<h(x)}. (1)

We denote by I'; is the upper boundary of the equation
z=h(x), and I'; is the lateral boundary.

Let € > 0 be a small parameter, and we define Q° be the
change of scale z = x;/¢ and the points of €,

O ={(xx;) eR*,x €w, 0<x; <eh(x)}. (2)

We have I'* =@ UT; UT; which its boundary of Qf and
where I'{ is the upper surface defined by x; = eh(x), and I'}
is the lateral boundary. The unit outward normal to I'® is
denoted by v. It follows that there is correspondence between
the functions ¢: Q° — R" and ¢ : Q — R*(n=1,2,3)
given by é(x,2) = ¢(x, x3).

Let H'(I')’ be the space of traces of functions on I' of
functions from H'(02)’, and we use the vector function g €
HY(I')? such that

Lg.vds — 0. (3)

We denote by S, the space of symmetric tensors on R”
and |.| the Euclidean norm on R” and S,. Here and below,
the indices 4, j, k, [ run between 1 and 3, and the summation
convention overrepeated indices is adopted.
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The basic equations of frictionless contact problem for
the anisotropic heterogeneous elastic body occupy the
domain QF as follows:

The equations of equilibrium are as follows:

ao’fj € s e
axj + f7 = 0in’, (4)
05(u°) = Afyy g (u°)inQ’, (5)

where the vector f°=(f{,f5,f5) represents the forces of
density, u® = (uf, u5, u5) is the displacement field, the ele-
ments Ajy; denote the components of elasticity tensor A®,
and ¢;;(u%) is the rate of deformation operator,

us out
e;i(u) = (e(u%)),; = % <a Ly a;). (6)

0x; ;

On I}, the displacement is known:
u® = gonl;. (7)
On I'{, we assume that the elastic body is held fixed:
u® = g° =0onl?. (8)
On the surface w, we assume that the contact is bilateral:
wyv=g-v=0 9)

and satisfies the Tresca boundary condition [7] with friction
function k%;

{ lof| < kful =5,

|Uj| =k53) > Osuchthatu® = s — Ao%,

(10)

where s = g° on w. u$, 0%, and 07, are the tangential displace-
ment, the tangential, and the normal stress tensor, respec-
tively, with

Uy =ui — UV, 0L =05y, = (0)).v, 0, = (0%.v).v. (11)

Consider now the following closed convex subset of H'
(©2°)’ given by

K®= {qﬁ e H'(OF)’ : ¢=gonlt UTE, ¢.v:00nw}. (12)

Let us introduce the form a: K®* x K — R and the
functional J® : K* — R" defined by

a(u’, ¢) = J eAfjkzekz(”g)eij(¢)dxdx3’
(13)
(9)= | Klo-sidx

w
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In the study of the mechanical problem (3)-(10), we
assume that all components A, belong to L*(22°) and sat-
isfy the usual properties of symmetry and ellipticity [19], i.e.,

Ajjg = Ay = Agij € L7 (), (14)
and there exists a constant g > 0 such that

A ()& 2 uEVE €Sy aey e . (15)

Remark 1. It follows from previous properties and by Korn’ s
inequality (see [16], pp. 79), that the bilinear form a is coer-
cive and continuous, i.e.,

a(¢, ¢) 2 uCx||V9| 72 o) Yo € K, (16)

|a(@, w)| < M|[VO| 200 V¥l 2 ) Y ¥ € K5, (17)

where M = max
1<i,jk,I<3

constant depends on Q°,I'{, and I'5.

A%l o @) and Cy denoting a positive

Lemma 2. Assuming that f€ € L*(Q)’ and k® € L (w), the
variational formulation of problem (3)-(10) is equivalent to
Find u® € K* satisfying

a(uf, ¢ —uf) + J5(d) — JE(u°) = Jﬂefs.(qﬁ - u)dxdx;V¢ € KF,
(18)

for every € small fixed.

Moreover, if the assumptions of (14) and (15) hold, then
the variational inequality (18) has a unique solution u*® € K*.

Remark 3. A problem of the form (18) is called an elliptic var-
iational inequality of the second kind ([17]). The following
theorem (see [19], Theorem 6) allows us to replace the vari-
ational inequality (18) by a minimization problem. Thus,
we will not repeat the proof, but our goal is to study the
asymptotic behavior.

3. Some Estimates in Fixed Domain

To be able to study the asymptotic behavior of the solutions
of (18), we use the change of variable z = x,/¢, to return to
the fixed domain (2, and then we define the following func-
tions in :

U (x,z) = u;(x,x;) fori=1,2,3. (19)

For the data Aijkl’ f,» and k, we have the following rela-
tions:

3
Aijkl(x’ z) = Afjkl(x’ X3)s JA[i(x’ 2) =€ f; (% x3) and k = ek,
(20)
(for 1 <i,j,k, 1<3).
Let
K={veH'(Q)’:v=gonl'  UT,,v.v=0onw},
ov;
sz{V=(V1,V2,V3>EL2(Q)3 Za—z (21)

€l*(Q),i= 1,2,3;v=00nr1}.

V, is a Banach space for the following norm:

3 e 12
Vi
Vlly, = [Z(HWHEZ(Q) + )] : (22)
Q)

i1 0z
Everywhere in the sequel, the indexes «, 5,y and § run
from 1 to 2, and summation over repeated indices is implied.
Follow the same steps as in [6,12], passing to the fixed
domain (2, and using the symmetry of o; and Afy,, after mul-

tiplication by &, we have (18) that is equivalent to
Find #° € K, such that

a(ai 6 - a€> + LIQ

> il Lﬁ (@ - a) dxdz$ €K,

6 - s‘dx - J k| — s|dx
‘ (23)

where

~

99q dxdz
aXﬁ

a (aﬂ @) = ¢ JQF\aﬁye’éy@(as)

~

- 0
+ ZSJ Azy9,0(1°) a¢z"‘ dxdz
Q

A = (=€ d o
+ ZSZJQAaﬁweﬁ(” ) a—z/;dxdz

o~

- 0
+ 4€J A3)3,3(1°) % dxdz
Q

_ ¢
+e2J A 33233 (0°) 222 dxdz (24)
a3 33( )axﬁ
_ ¢
Asz58,5(0°) == dxd
+€JQ 33aﬁeaﬁ(u) s xdz
+ ZSJ A 333855 (U) aata dxdz
Q

S . 00,
2e| A £ 2 dxd
+ SL) 3303803 () 9z xaz

~

_ ¢
Asyyes (U°) =2 dxdz,
+€JQ 3333633 (U°) 9z xaz



and e(u°) = (Eij(ﬁs))ij is given by the relations

5 ﬁ‘“‘—l aa§+aa; 1

l]( )_5 ax] axi > s ] =14,

o en - e L lout 0w 25
e(U°) =ey(u") = 5 (g 9z a;>, i=1,2. (25)
e 103

ey (U°) = . 8z3

Lemma 4. Under the assumptions of Lemma 2, there exists a
constant C > 0 independent of ¢, such that

2 2

3

2|5

i=1

2 2

+e )13

@

As As
oi <C.

2(9)

ZZ

i,j=1

J J

(26)

Proof. Assume that u° is a solution of (2.12). As J*(u°) >0,
then

a(uf, uf) <a(uf, §) + J5(¢) + ‘[Qefs‘uedxdx3

(27)
- J ff.pdxdx;,, V¢ eKE
o
Using the Young’s inequality
2 b2
ab<n’ % +17? 5 (28)

in (17) for = /uCx/2, we find
¢ HCk o e M
la(u’, ¢)| < TK [V HIZ}(QS) + uCx ”V(pHiZ(Qf)' (29)

Also, by the Cauchy-Schwarz and Poincaré’s inequalities,
we get

JQE fE.pdxdx,

< ol 20y VOl 2 e (30)

then using Young’s inequality for 77 = /1/uCy to obtain

(ehmax)”
2uCy

2 uC
155122 ) + TK ||V¢||%2(Qf)~

(31)

J feufdxdx,| <
Qf

Using (16), (29), and (31) in (27), we get

(ehmax)”
uCx

K 2
F 9 2 <

M €112
TKHV‘#Hil(Qs) + 1N ey

C €
+ 9|12 ) +J K| - sldx.
(32)
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Taking into account the g function introduced in (5) and
using [20] (lemma 2 pp.24), there exists a function g€ H 1
() such that

g=gonl';and g.v=0onwUT},. (33)

Thus, choosing ¢ = g in (3.6), then multiplying product
inequality by ¢, and the fact that g = s on w, we obtain

2 2

M K (hmax)

uCx fﬁ(ﬂ)
M u

+ (ot + 155 el
IS

From [6], we can see the constant Korn Cy contained in
Remark 1 does not depend on ¢ and ¢, for ¢ €]0, 1]; more-
over, by changing the data of A%, remark that 4 and M are
independent of e. Therefore, passing to the fixed domain (2,
we get

B ]Vt ey <

(34)

3 2

aAs 2 aas
€]|Vi|f2 ) = Z Z
=1 j=1 J 2
12(Q) 35)
2 |0
+Zl 3. <C,
L @)
with
4 (hm x)z =||? M [/lC
- Sl I+ (s + 5 ) 1l |
ulyg | plg L*(Q) u
(36)
O

Lemma 5. Under the assumptions of Lemma 4, there exists
u* = (uj, uy,u;) € V, such that

U — u*weaklyinV ,, (37)

8% — Oweaklyinl(Q) (i= 1,2, 3anda=1,2),  (38)
X

8,p3(U°) — 0, weaklyinL*(Q) (o, f=1,2), (39)

*

. 1 auy —
ge,3(u) — 35 weaklyinL*(Q) (y =1, 2), (40)

*

E)u; weaklyinL*(Q). (41)

€ey3(u°) —

Proof. From (26), there exists a fixed constant C > 0 such that

ozt ||

0z

<C, fori=1,2,3. (42)
L}(Q)
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Using Poincaré’s inequality in the domain Q

on
171112 ) = Pmax % , fori=1,2,3,  (43)

X0

we deduce that % is bounded in V. From the last two esti-
mates, there exists u* = (u}, u;,u;) € V, and satisfies (37).
From (26), we can extract a subsequence such that e(0%;/0
x,) — 1 in L*(Q); on the other hand, from (37), we deduce
(38). Also, (39)-(41) follow from (37) and (38). O

4. Limit Problem and Main Result

At the limit & = 0, we give the satisfactory equations of #* and
the properties of solution of the limit problem for the system

(3)-(10).

Theorem 6. With the same assumptions as Lemma 5, u* sat-

isfies

I

> JQ]A‘ ($ - u*) dxdz, V;ﬁ €k,

(44)
where the symmetric matrix A* is given by
4;‘1313 4;‘1323 2;‘1333
A® = 4;\2313 432323 2;\2333 : (45)
21713313 2;‘3323 ;\3333
Moreover, we have
0 ) ou’
- A zys + 24 5552 =fo (@=1,2)
0 0 0 5
5 5 5 inL*(Q)
u, u;] -
5z {2A33asaz +Aszzz 83} e
(46)
Proof. As (23) can be written,
~ o~ ~ 3 -~ ~
a(as’ ¢) + J k|- s’dx - Z J fi(gbi - ﬁf)dxdz
@ =140 (47)

> a(u, ) + J k@ — s|dx.

Since the form a(.,.) is a symmetry and K-elliptic, and
the fact that ¢ — [ k[¢ — s|dx is convex and lower semi-
continuous, we deduce

liminf, [a(as, )+ J k|a© - s|dx]

>a(u”,u") +J 75|u* — s|dx.

w

(48)

Using Lemma 5, we let & tend to 0 in (47), to obtain
. our o /s~
4 A, —L— —u
JQ a3y3 az az (¢oc utx>dXdZ
~ ous 0 /~
2| A2 —u’ )dxd
+ JQ w33 35 (¢a ”a) xaz

~  0u; 0 [/~
2| Ay —=o=— —uj |dxd
" JQ 39 5z az( ’ u3) e

ouj 0 [~
R —ul)dxd
+JQ 3375, 37 (¢3 ”3) xaz

+J E(‘@—s’ - |u” —s|)dx
. ®
=1

> Z JQ_]A‘i (@1 - u:‘) dxdz.

(49)

)

This completes the proof of (44) if we cross (49) in the
matrix form A*. We choose in the variational inequation

(49) ai =uf vy, where y,¢ H}(Q) (for i=1,2,3), and
using Green’s formula, we find

o0 ( ~ Ouy . Ouj
_JQ 5 {4Aa3y3 = +24A 335 E}y/adxdz

0 ~ ou* ous:
| =124, . ¢ + A~ \y.dxd
JQ 82{ 3303 73, + Asz33 5z }‘/’3 Xxaz (50)

choosing v, =0 and v, € Hy(Q); then, y, =0 and y, €
Hy(Q), we get (59). a

Theorem 7. Under the assumptions of Theorem 6 then, the
solution of the limit problem (44)-(46) is unique in V ,.

Proof. Suppose that there exists two solutions «* and v* of the
variational inequality (44), and taking @: v* in (44), then
az u* in the inequality relating to v*. By subtracting the
two obtained inequalities, we have

<A*.a%(v* —u), (%(v* - u*)> <0.  (51)

15(0)

We must now check that A™ is ellipticity. So, we return to
the properties of A mentioned in (14) and (15); in particular,
we choose symmetric tensors ¢ that are given by §,; =0 (for
a, =1, 2); otherwise, the rest of the components (&;) let it
be whatever. Putting 1, = &5, for i = 1, 2, 3, we will get



A\ijklfklgij = 420(3[33’7[3’70( + 220‘3337]3’1“

~ _ (52)
+ 2A3303M, 15 + Asszallzl; =

At

Consequently, and as |&]> > ||, there exists a positive
constant , and for all vectors 7 in R?, we have

Atz |’ (53)

So, A™ is ellipticity. Thus, the relation (44) implies that

2 <0. (54)

and the proof of uniqueness of u* is complete. O

Theorem 8. Under the assumptions of Theorem 7, the traces
(s*,m*) with s* = () ;o and m* = (11} ), _,_; defined by

I<i<

s;(x) =uf (x,0),

1

S~ oul .
)= [y 52 + s o 05T (5

*

au ou;
|:2A33y3 92 + Az oz ](x, 0)s

satisfy the following limit form of the Tresca boundary condi-
tions:

J EW+$* —s|—s" —s|dx—J m*ydx > 0y € L (w)’, (57)

w

In*|<k=s"=s
a.e.inw. (58)

|n*| = k=3A > Osuchthat s* = s + A"

Moreover, if the coefficients Ai3j3for 1<, j< 3, depending
only on the variable x, we have the following weak form of the
Reynolds equation:
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L (F - gs* + Jhu*(x’ Z)dZ> Vy(x)dx =0, Vy € H' (w),

(59)
where InvA* (x) denotes the inverse of A*(x) and
h
F(x)= J F(x, p)dp - g?(x, h), (60)
GA
E(x, p) :InvA*(x).JZLf(x,y)dde. (61)

Proof. We now choose in the variational inequality (49) ai
=u; +y,, where y,€Hp . (Q) for i=1,2,3, and then
using Green’s formula, we obtain

0 ouy ouj
_J 3z {4A¢x3y3 5z + 240333 a—;}l//adxdz

- - 0u;
- <4Aa3y3 azy + 244333 a_;> Vo (%, 0)dx

0 8u*
a 33]}3 a
- ( Assya

| Rt of = s

ou;
+ Ay == 92 }wsdxdz
(©2)

ou;
Assz 5z >1//3(x, 0)dx

3
> ZJ fiwidxdz.

i=1JQ

On the other hand, from (46), we have

<Z”Z‘/’a + 713*%) dx>0

(63)

J k(ly+s* —s| - |s" —s\)dx—J

w

By density theorems, we find (57). For (58), we use the ana-
logue of [10].

To prove (59), we use those similar steps as in [2, 5, 9-
11], by integrating (46) from 0 to z, and taking into account
AB 73 depending only on x, we obtain

(64)
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It follows from (51) that it is a invertible matrix A* (x), for
almost every x € w. Therefore,

_ aa—f +InvA* (x).n* (x) =InvA* (x) .J:f(x, y)dy. (66)

By integrating between 0 and z, we obtain

—u"(x,2) + 5" (x) + zInvA* (x).7" (x) = F(x, 2). (67)

As u? (x, h(x)) =0, we have

h(x)
s*(x) + h(x)InvA* (x).7" (x) = JO F(x,y)dy. (68)

We integrate (67) from 0 to h(x), and we obtain

h(x) )2
—L u*(x,z)dz + hs* (x) + h(z) InvA* (x).7" (x)

h)
=J F(x, y)dy,
0

and by (68), we deduce that

h(x) .
—J u*(x,z)dz + @s* (x) — F(x) =0, (70)

0

such that F is already defined in (61), and let us finally get the
weak form (59) after multiplying (70) by Vy/(x) and integrate
itin w. O

5. Conclusions

We were able to find a framework to conclude that solving
our original problem leads to solving a well-defined problem
as in (44),(46) and (57)-(59) for the “small” parameter .

The key of the problem lies in the relation between the
matrices A® and A*. Note that they have the same properties
despite the difference in dimensions, therefore it played a key
role in the transition from u® to u*.

Indeed, the special case

Al = (801 + 830) + X760 (71)

where A°, y® > 0 are the Lamé coefficients (see [13] pp. 102-
103) corresponds to the homogeneous and isotropic case of
elastic materials, and has been studied in [2, 3, 5]. Thus also,
the Stokes flow in [11] can be recovered when A® tends to 0.
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