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We study the asymptotic behavior of solutions of the anisotropic heterogeneous linearized elasticity system in thin domain of ℝ3

which has a fixed cross-section in theℝ2 plane with Tresca friction condition. The novelty here is that stress tensor has given by the
most general form of Hooke’s law for anisotropic materials. We prove the convergence theorems for the transition 3D-2Dwhen one
dimension of the domain tends to zero. The necessary mathematical framework and (2D) equation model with a specific weak form
of the Reynolds equation are determined. Finally, the properties of solution of the limit problem are given, in which it is confirmed
that the limit problem is well defined.

1. Introduction

In this paper, we are interested of the asymptotic behavior of
the linear elasticity system in a domain of ℝ3 with a Tresca
friction condition where the boundary of this domain has a
fixed cross-section in dimension 2 and a small thickness.
One of the objectives of this study is to obtain two-
dimensional equation that allows a reasonable description
of the phenomenon occurring in the three-dimensional
domain by passing the limit to 0 on the small thickness of
the domain (3D). Let us mention for example [1–8] in which
the authors worked on the asymptotic behavior for the line-
arized elasticity system with different boundary conditions.
Some problems of Newtonian or non-Newtonian fluids are
considered in [9–11] where the authors proved a limit prob-
lem that gives a distribution of velocity and pressure through
the weak form of the Reynolds equation. In [6, 7], the authors
demonstrate the transition 3D-1D in anisotropic heteroge-
neous linearized elasticity; so, we mention here that this phe-
nomenon has been studied only about strong solutions,
without friction law. Benseridi in [2] investigated the asymp-
totic analysis of a dynamical problem of linear elasticity with

Tresca’s friction. The static case with a nonlinear term for lin-
ear elastic materials has been considered in [3]. See another
situation in [4] where the paper concerns asymptotic deriva-
tion of frictionless contact models for elastic rods on a foun-
dation with normal compliance. Recently, the authors in [5,
12] have proved the asymptotic behavior of a frictionless
contact problem between two elastic bodies, when the verti-
cal dimension of the two domain reaches zero. However, all
these papers have been only restricted in a homogeneous
and isotropic case of elastic materials.

The present work is a follow-up of [2, 3, 5] to study the
heterogeneous and anisotropic situation with Tresca’s friction.
Here, the stress tensor with its components is given by the gen-
eralizedHooke’s law (see [13]): σε = AεeðuεÞ, where uε denotes
the displacement vector, eðuεÞ is the linearized strain tensor,
and Aε is the fourth order tensor which describes the elastic
properties of the material. Many materials that follow the lin-
ear elastic model, although they are well made, are not subject
to the assumptions of isotropy, for example, wood, reinforced
concrete, composite materials, and many biological materials,
where the mechanical properties of these materials differ
according to the directions of space; in that case, the elasticity
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operator depends on the location of the point (see [14, 15]).
Necas in [7] and Sofonea in [16] established the existence of
a weak solution for the static frictional contact problem
involving linearly elastic and viscoelastic materials, by using
a results of convex optimization [17], and numerical approxi-
mation of this problem was studied in [18]. For the variational
analysis of various contact problems, wemention excellent ref-
erences in [14, 15]. Mathematically, the asymptotic analysis is
more difficult since in general, the limit problem involves an
equation that takes into account the anisotropy of the
medium, and it is thus important to identify the elastic com-
ponents of Aε that appear in the (2D) equation model.

The paper is organized as follows; in section 2, the strong
and weak formulation of the problem is given in terms of uε

and also the related existence and uniqueness of the weak solu-
tion. In section 3, we introduce a scaling, and we find some
estimates on the displacement which are independent of the
parameter ε. In section 4, we state the main results concerning
the existence of a weak limit u∗ of uε, the (2D) equation model
with a specific weak form of the Reynolds equation is proved,
the limit form of the Tresca boundary conditions is formu-
lated, and finally, the uniqueness of u∗ is given.

2. Mathematical Formulation

Let ω be an open set in ℝ with Lipschitz boundary, and we
consider a smooth function h : ω⟶ℝ be a class C1 such
that 0 < hmin ≤ hðxÞ ≤ hmax, for all x ∈ ω, where hmin and
hmax are constants. We define the smooth bounded domain
Ω whose boundary has a flat part ω,

Ω = x, zð Þ ∈ℝ3, x ∈ ω, 0 < z < h xð Þ� �
: ð1Þ

We denote by Γ1 is the upper boundary of the equation
z = hðxÞ, and ΓL is the lateral boundary.

Let ε > 0 be a small parameter, and we define Ωε be the
change of scale z = x3/ε and the points of Ω,

Ωε = x, x3ð Þ ∈ℝ3, x ∈ ω, 0 < x3 < εh xð Þ� �
: ð2Þ

We have Γε = �ω ∪ Γ
ε
1 ∪ Γ

ε
L which its boundary of Ωε and

where Γε
1 is the upper surface defined by x3 = εhðxÞ, and Γε

L
is the lateral boundary. The unit outward normal to Γε is
denoted by ν. It follows that there is correspondence between
the functions ϕ : Ωε ⟶ℝn and bϕ : Ω⟶ℝnðn = 1, 2, 3Þ
given by bϕðx, zÞ = ϕðx, x3Þ.

Let H1/2ðΓÞ3 be the space of traces of functions on Γ of
functions from H1ðΩÞ3, and we use the vector function g ∈
H1/2ðΓÞ3 such that

ð
Γ

g:νds = 0: ð3Þ

We denote by Sn the space of symmetric tensors on ℝn

and j:j the Euclidean norm on ℝn and Sn. Here and below,
the indices i, j, k, l run between 1 and 3, and the summation
convention overrepeated indices is adopted.

The basic equations of frictionless contact problem for
the anisotropic heterogeneous elastic body occupy the
domain Ωε as follows:

The equations of equilibrium are as follows:

∂σεij
∂xj

+ f εi = 0inΩε, ð4Þ

σε
ij u

εð Þ = Aε
ijkl ekl u

εð ÞinΩε, ð5Þ
where the vector f ε = ð f ε1, f ε2, f ε3Þ represents the forces of
density, uε = ðuε1, uε2, uε3Þ is the displacement field, the ele-
ments Aε

ijkl denote the components of elasticity tensor Aε,
and eijðuεÞ is the rate of deformation operator,

eij u
εð Þ = e uεð Þð Þij =

1
2

∂uεi
∂xj

+
∂uεj
∂xi

 !
: ð6Þ

On Γε
L, the displacement is known:

uε = gεonΓε
L: ð7Þ

On Γε
1, we assume that the elastic body is held fixed:

uε = gε = 0onΓε
1: ð8Þ

On the surface ω, we assume that the contact is bilateral:

uε:ν = gε:ν = 0 ð9Þ

and satisfies the Tresca boundary condition [7] with friction
function kε;

σε
τj j < kεuετ = s, 

σε
τj j = kε∃λ ≥ 0suchthatuετ = s − λσε

τ,

(
ð10Þ

where s = gε on ω. uετ, σ
ε
τ, and σεν are the tangential displace-

ment, the tangential, and the normal stress tensor, respec-
tively, with

uετi = uεi − uεjνjνi, σετi = σε
ij:νj − σενð Þ:νi, σεν = σε:νð Þ:ν: ð11Þ

Consider now the following closed convex subset of H1

ðΩεÞ3 given by

Kε = ϕ ∈H1 Ωεð Þ3 : ϕ = gεonΓε
1 ∪ Γε

L, ϕ:ν = 0onω
n o

: ð12Þ

Let us introduce the form a : Kε × Kε ⟶ℝ and the
functional Jε : Kε ⟶ℝ+ defined by

a uε, ϕð Þ =
ð
Ωε

Aε
ijklekl u

εð Þeij ϕð Þdxdx3,

Jε ϕð Þ =
ð
ω

kε ϕ − sj j dx:
ð13Þ
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In the study of the mechanical problem (3)–(10), we
assume that all components Aε

ijkl belong to L∞ðΩεÞ and sat-
isfy the usual properties of symmetry and ellipticity [19], i.e.,

Aε
ijkl = Aε

jikl = Aε
klij ∈ L

∞ Ωεð Þ, ð14Þ

and there exists a constant μ > 0 such that

 Aε
ijkl yð Þξklξij ≥ μ ξj j2∀ξ ∈ S3, a:e:y ∈Ωε: ð15Þ

Remark 1. It follows from previous properties and by Korn’ s
inequality (see [16], pp. 79), that the bilinear form a is coer-
cive and continuous, i.e.,

a ϕ, ϕð Þ ≥ μCK ∇ϕk k2L2 Ωεð Þ ∀ϕ ∈ Kε, ð16Þ

a φ, ψð Þj j ≤M ∇ϕk kL2 Ωεð Þ ∇ψk kL2 Ωεð Þ∀ϕ, ψ ∈ Kε, ð17Þ

where M = max
1≤i,j,k,l≤3

kAε
ijklkL∞ðΩεÞ and CK denoting a positive

constant depends on Ωε,Γε
1, and Γε

L.

Lemma 2. Assuming that f ε ∈ L2ðΩεÞ3 and kε ∈ L∞ðωÞ, the
variational formulation of problem (3)–(10) is equivalent to

Find uε ∈ Kε satisfying

a uε, ϕ − uεð Þ + Jε ϕð Þ − Jε uεð Þ ≥
ð
Ωε

f ε: ϕ − uεð Þdxdx3∀ϕ ∈ Kε,

ð18Þ

for every ε small fixed.

Moreover, if the assumptions of (14) and (15) hold, then
the variational inequality (18) has a unique solution uε ∈ Kε.

Remark 3.A problem of the form (18) is called an elliptic var-
iational inequality of the second kind ([17]). The following
theorem (see [19], Theorem 6) allows us to replace the vari-
ational inequality (18) by a minimization problem. Thus,
we will not repeat the proof, but our goal is to study the
asymptotic behavior.

3. Some Estimates in Fixed Domain

To be able to study the asymptotic behavior of the solutions
of (18), we use the change of variable z = x3/ε, to return to
the fixed domain Ω, and then we define the following func-
tions in Ω:

ûεi x, zð Þ = uεi x, x3ð Þ fori = 1, 2, 3: ð19Þ

For the data Âijkl , f̂ i, and k̂, we have the following rela-
tions:

Âijkl x, zð Þ = Aε
ijkl x, x3ð Þ,  f̂ i x, zð Þ = ε2 f εi x, x3ð Þ and k̂ = εkε,

ð20Þ

(for 1 ≤ i, j, k, l ≤ 3).
Let

K = v ∈H1 Ωð Þ3 : v = gonΓL ∪ Γ1, v:ν = 0onω
� �

,

Vz =
�
v = v1, v2, v3ð Þ ∈ L2 Ωð Þ3 : ∂vi∂z

∈ L2 Ωð Þ, i = 1, 2, 3 ; v = 0onΓ1

�
:

ð21Þ

Vz is a Banach space for the following norm:

vk kVz
= 〠

3

i=1
vik k2L2 Ωð Þ +

∂vi
∂z

����
����
2

L2 Ωð Þ

 !" #1/2
: ð22Þ

Everywhere in the sequel, the indexes α, β, γ and δ run
from 1 to 2, and summation over repeated indices is implied.
Follow the same steps as in ½6, 12�, passing to the fixed
domainΩ, and using the symmetry of σεij and A

ε
ijkl , after mul-

tiplication by ε, we have (18) that is equivalent to
Find ûε ∈ K , such that

â ûε, bϕ − ûε
� �

+
ð
ω

k̂ bϕ − s
			 			dx − ð

ω

k̂ ûε − sj jdx

≥ 〠
3

i=1

ð
Ω

f̂ i bϕ i − ûεi
� �

dxdz,∀bϕ ∈ K ,
ð23Þ

where

â ûε, bϕ� �
= ε2

ð
Ω

Âαβγθêγθ ûεð Þ ∂
bϕα

∂xβ
dxdz

+ 2ε
ð
Ω

Âα3γθêγθ ûεð Þ ∂
bϕα

∂z
dxdz

+ 2ε2
ð
Ω

Âαβγ3êγ3 ûεð Þ ∂
bϕα

∂xβ
dxdz

+ 4ε
ð
Ω

Âα3γ3êγ3 ûεð Þ ∂
bϕα

∂z
dxdz

+ ε2
ð
Ω

Âαβ33ê33 ûεð Þ ∂
bϕα

∂xβ
dxdz

+ ε
ð
Ω

Â33αβêαβ ûεð Þ ∂
bϕ3
∂z

dxdz

+ 2ε
ð
Ω

Âα333ê33 ûεð Þ ∂
bϕα

∂z
dxdz

+ 2ε
ð
Ω

Â33α3êα3 ûεð Þ ∂
bϕ3
∂z

dxdz

+ ε
ð
Ω

Â3333ê33 ûεð Þ ∂
bϕ3
∂z

dxdz,

ð24Þ
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and êðûεÞ = ðêijðûεÞÞij is given by the relations

êij û
εð Þ = 1

2
∂ûεi
∂xj

+
∂ûεj
∂xi

 !
, i, j = 1, 2,

êi3 ûεð Þ = ê3i û
εð Þ = 1

2
1
ε

∂ûεi
∂z

+ ∂ûε3
∂xi


 �
, i = 1, 2:

ê33 ûεð Þ = 1
ε

∂ûε3
∂z

,

ð25Þ

Lemma 4. Under the assumptions of Lemma 2, there exists a
constant C > 0 independent of ε, such that

〠
3

i=1

∂ûεi
∂z

����
����
2

L2 Ωð Þ
+ ε2 〠

2

i,j=1

∂ûεi
∂xj

�����
�����
2

L2 Ωð Þ
+ ε2 〠

2

j=1

∂ûε3
∂xj

�����
�����
2

L2 Ωð Þ
≤ C:

ð26Þ

Proof. Assume that uε is a solution of ð2:12Þ. As JεðuεÞ ≥ 0,
then

a uε, uεð Þ ≤ a uε, ϕð Þ + Jε ϕð Þ +
ð
Ωε

f ε:uεdxdx3

−
ð
Ωε

f ε:ϕdxdx3, ∀ϕ ∈ Kε:

ð27Þ

Using the Young’s inequality

ab ≤ η2
a2

2 + η−2
b2

2 ð28Þ

in (17) for η =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
μCK /2

p
, we find

a uε, ϕð Þj j ≤ μCK

4 ∇uεk k2L2 Ωεð Þ +
M
μCK

∇ϕk k2L2 Ωεð Þ: ð29Þ

Also, by the Cauchy-Schwarz and Poincaré’s inequalities,
we get

ð
Ωε

f ε:ϕdxdx3

				
				 ≤ εhmax f εk kL2 Ωεð Þ ∇ϕk kL2 Ωεð Þ, ð30Þ

then using Young’s inequality for η =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1/μCK

p
to obtain

ð
Ωε

f ε:uεdxdx3

				
				 ≤ εhmaxð Þ2

2μCK
f εk k2L2 Ωεð Þ +

μCK

2 ∇ϕk k2L2 Ωεð Þ:

ð31Þ

Using (16), (29), and (31) in (27), we get

μCK

4 ∇uεk k2L2 Ωεð Þ ≤
M
μCK

∇ϕk k2L2 Ωεð Þ +
εhmaxð Þ2
μCK

f εk k2L2 Ωεð Þ

+ μCK

2 ∇ϕk k2L2 Ωεð Þ +
ð
ω

kε ϕ − sj jdx:

ð32Þ

Taking into account the g function introduced in (5) and
using [20] (lemma 2 pp.24), there exists a function ~g ∈H1

ðΩÞ3 such that

~g = gonΓLand ~g:ν = 0onω ∪ Γ1: ð33Þ

Thus, choosing bϕ = ~g in ð3:6Þ, then multiplying product
inequality by ε, and the fact that g = s on ω, we obtain

μCK

4 ε ∇uεk k2L2 Ωεð Þ ≤
hmaxð Þ2
μCK

f̂
��� ���2

L2 Ωð Þ

+ M
μCK

+ μCK

2


 �
∇~gk k2L2 Ωð Þ:

ð34Þ

From ½6�, we can see the constant Korn CK contained in
Remark 1 does not depend on ε and ϕ, for ε ∈ �0, 1�; more-
over, by changing the data of Aε, remark that μ and M are
independent of ε. Therefore, passing to the fixed domain Ω,
we get

ε ∇uεk k2L2 Ωεð Þ = 〠
3

i=1

∂ûεi
∂z

����
����
2

L2 Ωð Þ
+ ε2 〠

2

i,j=1

∂ûεi
∂xj

�����
�����
2

L2 Ωð Þ

0
@

+ 〠
2

j=1

∂ûε3
∂xj

�����
�����
2

L2 Ωð Þ

1
A ≤ C,

ð35Þ

with

C = 4
μCK

hmaxð Þ2
μCK

f̂
��� ���2

L2 Ωð Þ
+ M

μCK
+ μCK

2


 �
∇~gk k2L2 Ωð Þ

" #
:

ð36Þ

☐

Lemma 5. Under the assumptions of Lemma 4, there exists
u∗ = ðu∗1 , u∗2 , u∗3 Þ ∈ Vz such that

ûε ⇀ u∗weaklyinVz , ð37Þ

ε
∂ûεi
∂xα

⇀ 0weaklyinL2 Ωð Þ i = 1, 2, 3andα = 1, 2ð Þ, ð38Þ

εêαβ ûεð Þ⇀ 0,weaklyinL2 Ωð Þ α, β = 1, 2ð Þ, ð39Þ

εêγ3 ûεð Þ⇀ 1
2

∂u∗γ
∂z

weaklyinL2 Ωð Þ γ = 1, 2ð Þ, ð40Þ

εê33 ûεð Þ⇀ ∂u∗3
∂z

weaklyinL2 Ωð Þ: ð41Þ

Proof. From (26), there exists a fixed constant C > 0 such that

∂ûεi
∂z

����
����
2

L2 Ωð Þ
≤ C, fori = 1, 2, 3: ð42Þ
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Using Poincaré’s inequality in the domain Ω

ûεik kL2 Ωð Þ ≤ hmax
∂ûεi
∂z

����
����
L2 Ωð Þ

, fori = 1, 2, 3, ð43Þ

we deduce that ûε is bounded in Vz . From the last two esti-
mates, there exists u∗ = ðu∗1 , u∗2 , u∗3 Þ ∈ Vz and satisfies (37).
From (26), we can extract a subsequence such that εð∂ûεi /∂
xαÞ⇀ η in L2ðΩÞ; on the other hand, from (37), we deduce
(38). Also, (39)–(41) follow from (37) and (38). ☐

4. Limit Problem and Main Result

At the limit ε = 0, we give the satisfactory equations of u∗ and
the properties of solution of the limit problem for the system
(3)-(10).

Theorem 6.With the same assumptions as Lemma 5, u∗ sat-
isfies

A∗ ∂u∗

∂z
, ∂
∂z

bϕ − u∗
� � �

L2 Ωð Þ
+
ð
ω

k̂ bϕ − s
			 			 − u∗ − sj j
� �

dx

≥
ð
Ω

f̂ : bϕ − u∗
� �

dxdz, ∀bϕ ∈ K ,

ð44Þ

where the symmetric matrix A∗ is given by

A∗ =
4Â1313 4Â1323 2Â1333

4Â2313 4Â2323 2Â2333

2Â3313 2Â3323 Â3333

0
BB@

1
CCA: ð45Þ

Moreover, we have

−
∂
∂z

4Âα3γ3

∂u∗γ
∂z

+ 2Âα333
∂u∗3
∂z

� �
= f̂ α, α = 1, 2ð Þ

−
∂
∂z

2Â33α3
∂u∗α
∂z

+ Â3333
∂u∗3
∂z

� �
= f̂ 3

9>>>=
>>>;
inL2 Ωð Þ:

ð46Þ

Proof. As (23) can be written,

â ûε, bϕ� �
+
ð
ω

k̂ bϕ − s
			 			dx − 〠

3

i=1

ð
Ω

f̂ i bϕ i − ûεi
� �

dxdz

≥ â ûε, ûεð Þ +
ð
ω

k̂ ûε − sj jdx:
ð47Þ

Since the form âð:, :Þ is a symmetry and K-elliptic, and
the fact that bϕ ⟶

Ð
ω
k̂jbϕ − sjdx is convex and lower semi-

continuous, we deduce

liminf ε⟶0 â ûε, ûεð Þ +
ð
ω

k̂ ûε − sj jdx
� �

≥ â u∗, u∗ð Þ +
ð
ω

k̂ u∗ − sj jdx:
ð48Þ

Using Lemma 5, we let ε tend to 0 in (47), to obtain

4
ð
Ω

Âα3γ3
∂u∗γ
∂z

∂
∂z

bϕα − u∗α
� �

dxdz

+ 2
ð
Ω

Âα333
∂u∗3
∂z

∂
∂z

bϕα − u∗α
� �

dxdz

+ 2
ð
Ω

Â33α3
∂u∗α
∂z

∂
∂z

bϕ3 − u∗3
� �

dxdz

+
ð
Ω

Â3333
∂u∗3
∂z

∂
∂z

bϕ3 − u∗3
� �

dxdz

+
ð
ω

k̂ bϕ − s
			 			 − u∗ − sj j
� �

dx

≥ 〠
3

i=1

ð
Ω

f̂ i bϕ i − u∗i
� �

dxdz:

ð49Þ

This completes the proof of (44) if we cross (49) in the
matrix form A∗: We choose in the variational inequation
(49) bϕ i = u∗i ± ψi, where ψi ∈H

1
0ðΩÞ (for i = 1, 2, 3), and

using Green’s formula, we find

−
ð
Ω

∂
∂z

4Âα3γ3
∂u∗γ
∂z

+ 2Âα333
∂u∗3
∂z

� �
ψαdxdz

−
ð
Ω

∂
∂z

2Â33α3
∂u∗α
∂z

+ Â3333
∂u∗3
∂z

� �
ψ3dxdz

= 〠
3

i=1

ð
Ω

f̂ iψidxdz,

ð50Þ

choosing ψ3 = 0 and ψα ∈H
1
0ðΩÞ; then, ψα = 0 and ψ3 ∈

H1
0ðΩÞ, we get (59). ☐

Theorem 7. Under the assumptions of Theorem 6 then, the
solution of the limit problem (44)–(46) is unique in Vz .

Proof. Suppose that there exists two solutions u∗ and v∗ of the
variational inequality (44), and taking bϕ = v∗ in (44), thenbϕ = u∗ in the inequality relating to v∗: By subtracting the
two obtained inequalities, we have

A∗:
∂
∂z

v∗ − u∗ð Þ, ∂
∂z

v∗ − u∗ð Þ
 �

L2 Ωð Þ
≤ 0: ð51Þ

Wemust now check that A∗ is ellipticity. So, we return to
the properties of Âmentioned in (14) and (15); in particular,
we choose symmetric tensors ζ that are given by ξαβ = 0 (for
α, β = 1, 2); otherwise, the rest of the components ðξi3Þ let it
be whatever. Putting ηi = ξi3, for i = 1, 2, 3, we will get
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Âijklξklξij = 4Âα3β3ηβηα + 2Âα333η3ηα

+ 2Â33α3ηαη3 + Â3333η3η3 = A∗
ijηjηi:

ð52Þ

Consequently, and as jξj2 ≥ jηj2, there exists a positive
constant μ, and for all vectors η in ℝ3, we have

A∗
ijηjηi ≥ μ ηj j2: ð53Þ

So, A∗ is ellipticity. Thus, the relation (44) implies that

μ
∂
∂z

v∗ − u∗ð Þ
����

����
2

L2 Ωð Þ
≤ 0: ð54Þ

Using Poincaré’s inequality, we obtain

v∗ − u∗k k2L2 Ωð Þ ≤ hmaxð Þ2 ∂
∂z

v∗ − u∗ð Þ
����

����
2

L2 Ωð Þ
= 0, ð55Þ

and the proof of uniqueness of u∗ is complete. ☐

Theorem 8. Under the assumptions of Theorem 7, the traces
ðs∗, π∗Þ with s∗ = ðs∗i Þ1≤i≤3 and π∗ = ðπ∗

i Þ1≤i≤3 defined by

s∗i xð Þ = u∗i x, 0ð Þ,

π∗
α xð Þ = 4Âα3γ3

∂u∗γ
∂z

+ 2Âα333
∂u∗3
∂z

� �
x, 0ð Þ ; π∗

3 xð Þ

= 2Â33γ3

∂u∗γ
∂z

+ Â3333
∂u∗3
∂z

� �
x, 0ð Þ,

ð56Þ

satisfy the following limit form of the Tresca boundary condi-
tions:ð
ω

k̂ ψ + s∗ − sj j − s∗ − sj jdx −
ð
ω

π∗:ψdx ≥ 0 ∀ψ ∈ L2 ωð Þ3, ð57Þ

π∗j j < k̂⇒ s∗ = s

π∗j j = k̂⇒∃λ > 0suchthat s∗ = s + λπ∗

)
a:e:inω: ð58Þ

Moreover, if the coefficients Âi3j3 for 1 ≤ i, j ≤ 3, depending
only on the variable x, we have the following weak form of the
Reynolds equation:

ð
ω

~F −
h
2
s∗ +

ðh
0
u∗ x, zð Þdz


 �
:∇ψ xð Þdx = 0, ∀ψ ∈H1 ωð Þ,

ð59Þ

where InvA∗ðxÞ denotes the inverse of A∗ðxÞ and

~F xð Þ =
ðh
0

~F x, ρð Þdρ − h
2
~F x, hð Þ, ð60Þ

~F x, ρð Þ = InvA∗ xð Þ:
ðρ
0

ðθ
0
f̂ x, yð Þdydθ: ð61Þ

Proof. We now choose in the variational inequality (49) bϕ i
= u∗i + ψi, where ψi ∈H

1
Γ1∪ΓL

ðΩÞ for i = 1, 2, 3, and then
using Green’s formula, we obtain

−
ð
Ω

∂
∂z

4Âα3γ3
∂u∗γ
∂z

+ 2Âα333
∂u∗3
∂z

� �
ψαdxdz

−
ð
ω

4Âα3γ3
∂u∗γ
∂z

+ 2Âα333
∂u∗3
∂z


 �
ψα x, 0ð Þdx

−
ð
Ω

∂
∂z

2Â33γ3
∂u∗γ
∂z

+ Â3333
∂u∗3
∂z

� �
ψ3dxdz

−
ð
ω

2Â33γ3
∂u∗γ
∂z

+ Â3333
∂u∗3
∂z


 �
ψ3 x, 0ð Þdx

+
ð
ω

k̂ ψ + s∗ − sj j − u∗ − sj jð Þdx

≥ 〠
3

i=1

ð
Ω

f̂ iψidxdz:

ð62Þ

On the other hand, from (46), we have

ð
ω

k̂ ψ + s∗ − sj j − s∗ − sj jð Þdx −
ð
ω

〠
α

π∗
αψα + π∗

3ψ3

 !
dx ≥ 0:

ð63Þ

By density theorems, we find (57). For (58), we use the ana-
logue of [10].

To prove (59), we use those similar steps as in [2, 5, 9–
11], by integrating (46) from 0 to z, and taking into account
Âi3j3 depending only on x, we obtain

− 4Âα3γ3 xð Þ ∂u
∗
γ

∂z
x, zð Þ + 2Âα333 xð Þ ∂u

∗
3

∂z
x, zð Þ

� �
+ π∗

α xð Þ =
ðz
0
f̂ α x, yð Þdy,

− 2Â33γ3 xð Þ ∂u
∗
γ

∂z
x, zð Þ + Â3333 xð Þ ∂u

∗
3

∂z
x, zð Þ

� �
+ π∗

3 xð Þ =
ðz
0
f̂ 3 x, yð Þdy,

8>>><
>>>:

ð64Þ

−A∗ xð Þ: ∂u
∗

∂z
+ π∗ xð Þ =

ðz
0
f̂ x, yð Þdy: ð65Þ
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It follows from (51) that it is a invertible matrix A∗ðxÞ, for
almost every x ∈ ω. Therefore,

−
∂u∗

∂z
+ InvA∗ xð Þ:π∗ xð Þ = InvA∗ xð Þ:

ðz
0
f̂ x, yð Þdy: ð66Þ

By integrating between 0 and z, we obtain

−u∗ x, zð Þ + s∗ xð Þ + zInvA∗ xð Þ:π∗ xð Þ = ~F x, zð Þ: ð67Þ

As u∗i ðx, hðxÞÞ = 0, we have

s∗ xð Þ + h xð ÞInvA∗ xð Þ:π∗ xð Þ =
ðh xð Þ

0
~F x, yð Þdy: ð68Þ

We integrate (67) from 0 to hðxÞ, and we obtain

−
ðh xð Þ

0
u∗ x, zð Þdz + hs∗ xð Þ + h xð Þ2

2 InvA∗ xð Þ:π∗ xð Þ

=
ðh xð Þ

0
~F x, yð Þdy,

ð69Þ

and by (68), we deduce that

−
ðh xð Þ

0
u∗ x, zð Þdz + h xð Þ

2 s∗ xð Þ − ~F xð Þ = 0, ð70Þ

such that ~F is already defined in (61), and let us finally get the
weak form (59) after multiplying (70) by ∇ψðxÞ and integrate
it in ω. ☐

5. Conclusions

We were able to find a framework to conclude that solving
our original problem leads to solving a well-defined problem
as in (44),(46) and (57)–(59) for the “small” parameter ε.

The key of the problem lies in the relation between the
matrices Aε and A∗. Note that they have the same properties
despite the difference in dimensions, therefore it played a key
role in the transition from uε to u∗.

Indeed, the special case

Aε
ijkl = με δikδjl + δilδjk

� �
+ λεδijδkl ð71Þ

where λε, με > 0 are the Lamé coefficients (see [13] pp. 102-
103) corresponds to the homogeneous and isotropic case of
elastic materials, and has been studied in [2, 3, 5]. Thus also,
the Stokes flow in [11] can be recovered when λε tends to 0.
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