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We introduce the so-called extended Lagrangian symbols, and we prove that the C∗-algebra generated by Toeplitz operators
with these kind of symbols acting on the homogeneously poly-Fock space of the complex space ℂn is isomorphic and
isometric to the C∗-algebra of matrix-valued functions on a certain compactification of ℝn obtained by adding a sphere at
the infinity; moreover, the matrix values at the infinity points are equal to some scalar multiples of the identity matrix.

1. Introduction

Let m ∈ℕ, the one-dimensional m poly-Fock space F2
mðℂÞ

⊂ L2ðℂ, dμÞ consists of allm-analytic functions φwhich satisfy

∂
∂�z

� �m

φ = 1
2m

∂
∂x

+ i
∂
∂y

� �m

φ = 0, ð1Þ

where dμ = π−1e−z·�zdxdy is the Gaussian measure in ℂ and d
xdy is the Euclidian measure in ℝ2 =ℂ. Further, the one-
dimensional true poly-Fock space of order m is given by

F2
mð Þ ℂð Þ = F2

m ℂð Þ⊝F2
m−1 ℂð Þ: ð2Þ

In the case of several variables, for n ∈ℕ, the n-dimensional

Gaussian measure in ℂn is given by dμnðzÞ = π−ne−jzj
2
dxdy,

where dxdy is the Euclidian measure in ℝ2n. We have that
the space L2ðℂn, dμnÞ is the tensorial product of n components

L2 ℂn, dμnð Þ = L2 ℂ, dμð Þ ⊗⋯⊗ L2 ℂ, dμð Þ, ð3Þ

and the Fock space F2ðℂnÞ is

F2 ℂnð Þ = F2 ℂð Þ ⊗⋯ ⊗ F2 ℂð Þ: ð4Þ

Given a multi-index α = ðα1,⋯, αnÞ ∈ℤn
+, the poly-Fock

space F2
αðℂnÞ of order α is given by

F2
α ℂnð Þ = ⊗

j=1

n
F2
α j

ℂð Þ: ð5Þ

Similarly, the true poly-Fock space F2
ðαÞðℂnÞ is

F2
αð Þ ℂ

nð Þ = ⊗
j=1

n
F2

α jð Þ ℂð Þ: ð6Þ

In [1], Vasilevski introduced the poly-Fock spaces over ℂn

and he obtained the following decomposition formula:

L2 ℂn, dμnð Þ = ⊕
αj j=n
∞

F2
αð Þ ℂ

nð Þ: ð7Þ

Moreover, he showed that the true poly-Fock space
F2
ðαÞðℂnÞ is isomorphic and isometric to L2ðℝn, dxÞ ⊗ ~Hα−1,

where ~Hα−1 is the one-dimensional space generated by the
function
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~hα−1 yð Þ =
Yn
j=1

hα j−1 yj
� �

, ð8Þ

and each hα j−1ðyjÞ is a Hermite’s function in ℝ.

Another treatment of the poly-Fock spaces can be found
in [2], where the author characterized all lattice sampling
and interpolation sequences in the poly-Fock spaces. He
introduced the polyanalytic Bargmann transform from
vector-valued Hilbert spaces to poly-Fock spaces, and he
showed the duality between sampling and interpolation in
polyanalytic spaces and multiple interpolation and sampling
in analytic spaces.

The Toeplitz operators acting on the Fock space have
been investigated by several authors. For example, in [3],
the authors studied Toeplitz operators acting on the one-
dimensional Fock space and on true poly-Fock space whose
symbols are bounded radial functions that have a finite limit
at the infinity. They considered an orthonormal basis of nor-
malized complex Hermite polynomials to prove that the
radial operators are diagonal. In [4], the authors studied
Toeplitz operators acting on the one-dimensional poly-
Fock space with horizontal symbols such that the limit
values at x =∞ and x = −∞ exist. They proved that the
C∗-algebra generated with this class of symbols is isomor-
phic to the C∗-algebra of functions on �ℝ with values on
the m ×m matrices, whose limit value at x =∞ and x =
−∞ are equal to some scalar multiples of the identity
matrix. In [5], the authors introduced the Toeplitz opera-
tors with L-invariant symbols over the Fock space F2ðℂnÞ
for a Lagrangian plane L , and they proved that the corre-
sponding C∗-algebra generated is isometric to the C∗

-algebra generated by Toeplitz operators with horizontal
symbols.

On the other hand, the spaces of homogeneously polya-
nalytic functions have been studied recently. For example, in
[6], the authors computed the reproducing kernel of the
Bergman space of homogeneously polyanalytic functions
on the unit ball in ℂn and on the Siegel domain.

The main result of this paper is the following: the
C∗-algebra generated by Toeplitz operators with
extended Lagrangian symbols acting on the homoge-
neously poly-Fock space over ℂn is isomorphic and iso-
metric to the C∗-algebra of matrix-valued functions on a
certain compactification of ℝn with the sphere at the
infinity; moreover, the values at the infinity points are
scalar multiplies of the identity matrix.

This paper is organized as follows. In Section 2, we
define the so-called homogeneously poly-Fock space and
study some of its properties. In Section 3, we prove that
every Toeplitz operator with a horizontal symbol acting on
the poly-Fock (or homogeneously poly-Fock) space is uni-
tary equivalent to a multiplication operator by a matrix-
valued function. In Section 4, we introduce the concept of
extended horizontal symbol and we describe the C∗-alge-
bra generated by Toeplitz operators with this kind of sym-
bols acting on both the poly-Fock space and the
homogeneously poly-Fock space. Finally, in Section 5, we

define the extended Lagrangian symbols and we prove that
the C∗-algebra generate by Toeplitz operators with these
symbols acting on the homogeneously poly-Fock space is
isomorphic to the C∗-algebra generated by Toeplitz opera-
tors with horizontal symbols acting on the same space.

2. Poly-Fock Spaces over ℂn

In this section, we define the homogeneously poly-Fock
space and we review some facts about the classic poly-Fock
spaces.

For z = ðz1,⋯, znÞ ∈ℂn , we denote x = ðx1,⋯, xnÞ, y =
ðy1,⋯, ynÞ ∈ℝn , where zj = xj + iyj. The Fock space F2ðℂnÞ
is given by

F2 ℂnð Þ = F2 ℂð Þ ⊗⋯⊗ F2 ℂð Þ: ð9Þ

We have that F2ðℂnÞ is a Hilbert space with the usual
inner product of functions:

f , gh i = 1
πn

ð
ℂn
f zð Þ �g zð Þe− zj j2dxdy: ð10Þ

Moreover, the Fock space F2ðℂnÞ is a reproducing kernel
Hilbert Space, whose reproducing kernel is given by

K w, zð Þ = Kw zð Þ = ez· �w: ð11Þ

For the multi-index α = ðα1,⋯, αnÞ ∈ℤn
+, we recall the

operations jαj = α1 +⋯ + αn, α! = α1!⋯αn!, and zα = zα11 ⋯
zαnn , with z ∈ℂn: Also, for α, β ∈ℤn

+, we have α ± β = ðα1 ±
β1,⋯, αn ± βnÞ. We consider the set ℤn

+ with the lexico-
graphic order. Finally, for α = ðα1,⋯, αnÞ ∈ℤn

+, we write P
ðαÞ = α1 ⋯ αn. For the multi-index 1n = ð1,⋯, 1Þ, some-
times, we write 1 instead of 1n as long as no there is no
confusion.

Let α ∈ℤn
+ be a multi-index and consider the poly-Fock

space F2
αðℂnÞ defined in (5), since every one-dimensional

poly-Fock space F2
α j
ðℂÞ is a direct sum of true poly-Fock

spaces whose order is less than or equal to αj, see [1], p. 5-6,
we have

F2
α ℂnð Þ = ⊕

λ1=1

α1
F2

λ1ð Þ ℂð Þ
� �

⊗⋯⊗ ⊕
λn=1

αn
F2

λnð Þ ℂð Þ
� �

= ⊕
λi≤αi
λ∈ℤn

+

F2
λð Þ ℂ

nð Þ:

ð12Þ

Note that the number of components in (12) is equal to
PðαÞ = α1 ⋯ αn.

Now, let k ∈ℕ be a natural number such that k ≥ n.

Definition 1. The homogeneously poly-Fock space of order
k over ℂn is given by

F2
kð Þ ℂ

nð Þ = ⊕
αj j=k

F2
αð Þ ℂ

nð Þ: ð13Þ
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The number of multi-indices whose absolute value is

exactly k is equal to sðkÞ =
k − 1
n − 1

 !
.

Definition 2. The poly-Fock space of order k in ℂn is given
by

F2
k ℂnð Þ = ⊕

∣α∣=n

k
F2

αð Þ ℂ
nð Þ: ð14Þ

The number of multi-indices whose absolute value is less

than or equal to k is equal to sk =
k

k − n

 !
.

Remark 3 (see [6], Proposition 2.7). The authors introduced
the concept of homogeneously polyanalytic function; this
concept is very important in the development of this paper.
Also, they proved that homogeneously polyanalytic spaces
are invariant under linear change of variables.

In [1], Vasilevski applied the “creation” and “annihila-
tion” operators in the Fock spaces and he proved the follow-
ing results:

(1) All true poly-Fock spaces are isomorphic one to each
other

(2) The explicit expression of the functions ψðzÞ in the
true poly-Fock space F2

ðαÞðℂnÞ is given by

ψ zð Þ = 〠
λ∈ℤn

+
λi≤αi

−1ð Þ λj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α − 1ð Þ!p

λ! α − 1 − λð Þ! �z
α−1−λ∂λφ zð Þ, ð15Þ

where φðzÞ ∈ F2ðℂnÞ and ∂λφ = ∂jλjφ/∂zλ11 ⋯ ∂zλnn :

(3) The reproducing kernel of the true poly-Fock space
F2
ðαÞðℂnÞ can be obtained applying the “creation”

operator to the reproducing kernel of the Fock space
F2ðℂnÞ

Remark 4. Using the creation operator defined in [1], we have
that the homogeneously poly-Fock space F2

ðkÞðℂnÞ and the

poly-Fock space F2
kðℂnÞ are reproducing kernel Hilbert spaces.

On the other hand, for α = ðα1,⋯, αnÞ ∈ℤn
+ and y = ðy1,

⋯, ynÞ ∈ℝn, consider the function introduced in (8):

~hα−1 yð Þ =
Yn
j=1

hα j−1 yj
� �

, ð16Þ

where α − 1 = ðα1 − 1,⋯, αn − 1Þ and each hα j−1ðyjÞ is Her-

mite’s function in ℝ. The set f~hα−1ðyÞg, with jαj = n,⋯,∞,

forms an ortonormal base in the space L2ðℝn, dyÞ. We denote
~Hα−1 ⊂ L2ðℝn, dyÞ to the one-dimensional space generated by
the function ~hα−1ðyÞ, whose orthogonal projection is given by

~P α−1ð Þψ
� �

yð Þ = ~hα−1 yð Þ
ð
ℝn
ψ ηð Þ~hα−1 ηð Þdη: ð17Þ

Now, we consider the operators

U1 : L2 ℂn, dμnð Þ⟶ L2 ℝ2n, dxdy
	 


, U1φð Þ x, yð Þ
= π−n/2e− x+iyð Þ x−iyð Þð Þ/2φ x + iyð Þ:

U2 = I ⊗ F : L2 ℝn, dxð Þ ⊗ L2 ℝn, dyð Þ⟶ L2 ℝn, dxð Þ ⊗ L2 ℝn, dyð Þ,
ð18Þ

with ðFψÞðyÞ = ð2πÞ−n/2Ðℝne−iηyψðηÞdη:

U3 : L2 ℝ2n	 

⟶ L2 ℝ2n	 


, U3 fð Þ x, yð Þ = f
1ffiffiffi
2
p x + yð Þ, 1ffiffiffi

2
p x − yð Þ

� �
,

ð19Þ

for z = ðz1,⋯, znÞ ∈ℂn, x = ðx1,⋯, xnÞ, and y = ðy1,⋯, ynÞ
∈ℝn. See [1], the operator U =U3U2U1 from the space
L2ðℂn, dμnÞ onto L2ðℝ2n, dxdyÞ = L2ðℝn, dxÞ ⊗ L2ðℝn, dyÞ
satisfies that the image of the true poly-Fock space F2

ðαÞðℂnÞ
is L2ðℝn, dxÞ ⊗ ~Hα−1 and the orthogonal projection BðαÞ of
L2ðℂn, dμnÞ onto F2

ðαÞðℂnÞ is unitary equivalent to the
operator

UB αð ÞU
−1 = I ⊗ ~P α−1ð Þ: ð20Þ

Analogously, for α ∈ℤn
+ and k ∈ℕ, we define the spaces

~H
⊕
α−1 = ⊕

λi≤αi
λ∈ℤn

+

~Hλ−1, ~H
⊕
kð Þ = ⊕

αj j=k
α∈ℤn

+

~Hα−1and~H
⊕
k = ⊕

∣α∣=n
α∈ℤn

+

k
~Hα−1,

ð21Þ

with respective orthogonal projections

~Pα−1ψ
	 


yð Þ = 〠
λi≤αi
λ∈ℤn

+

~hλ−1 yð Þ
ð
ℝn
ψ ηð Þ~hλ−1 ηð Þdη,

~P kð Þψ
� �

yð Þ = 〠
αj j=k
α∈ℤn

+

~hα−1 yð Þ
ð
ℝn
ψ ηð Þ~hα−1 ηð Þdη,

~Pkψ
	 


yð Þ = 〠
k

αj j=n
α∈ℤn

+

~hα−1 yð Þ
ð
ℝn
ψ ηð Þ~hα−1 ηð Þdη:

ð22Þ

If we denote by Bα, BðkÞ, and Bk the orthogonal projections

of L2ðℂn, dμnÞ onto F2
αðℂnÞ, F2

ðkÞðℂnÞ and F2
kðℂnÞ,
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respectively; thus,

UBαU
−1 = I ⊗ ~Pα−1,

UB kð ÞU
−1 = I ⊗ ~P kð Þ,

UBkU
−1 = I ⊗ ~Pk:

ð23Þ

Consider the isometric inmersion ~R0,ðαÞ : L2ðℝn, dxÞ
⟶ L2ðℝ2n, dxdyÞ, defined by ð~R0,ðαÞ f Þðx, yÞ = f ðxÞ~hα−1ðyÞ:
Whose adjoint operator ~R

∗
0,ðαÞ : L2ðℝ2n, dxdyÞ⟶ L2ðℝn,

dxÞ is given by ð~R∗
0,ðαÞφÞðxÞ =

Ð
ℝnφðx, ηÞ~hα−1ðηÞdη: These

operators satisfy the following relations:

~R
∗
0, αð Þ~R0, αð Þ = I : L2 ℝn, dxð Þ⟶ L2 ℝn, dxð Þ,

~R0, αð Þ~R
∗
0, αð Þ = I ⊗ ~P α−1ð Þ : L2 ℝ2n, dxdy

	 

⟶ L2 ℝ2n, dxdy

	 

:

ð24Þ

Now, we define the operator ~RðαÞ = ~R
∗
0,ðαÞU from L2ðℂn,

dμnÞ onto L2ðℝn, dxÞ, and the adjoint operator ~R
∗
ðαÞ =U∗

~R0,ðαÞ, which satisfy

~R
∗
αð Þ~R αð Þ = B αð Þ : L2 ℂn, dμnð Þ⟶ F2

αð Þ ℂ
nð Þ, ð25Þ

~R αð Þ~R
∗
αð Þ = I : L2 ℝn, dxð Þ⟶ L2 ℝn, dxð Þ: ð26Þ

For the multi-index α = ðα1,⋯, αnÞ ∈ℤn
+, remember that

PðαÞ = α1 ⋯ αn, so we introduce the isometric inmersion
~R0,α : ðL2ðℝn, dxÞÞPðαÞ⟶ L2ðℝn, dxÞ ⊗ L2ðℝn, dyÞ, defined
by

~R0,α f
	 


x, yð Þ = 〠
λi≤αi
λ∈ℤn

+

f λ xð Þ~hλ−1 yð Þ = f xð Þ Nα yð Þ½ �T ,

ð27Þ

where the PðαÞ-tuples f = ð f λÞλi≤αi , and NαðyÞ =
ð~hλ−1ðyÞÞλi≤αi are taken over all multi-indices λ = ðλ1,⋯, λnÞ
whose entries are less than or equal to each of the correspond-

ing entries of α. The adjoint operator ~R
∗
0,α : L2ðℝ2n, dxdyÞ

⟶ ðL2ðℝnÞ, dxÞPðαÞ is given by

~R
∗
0,αφ

� �
xð Þ =

ð
ℝn
φ x, yð Þ~hλ−1 yð Þdy

� �
λi≤αi
λ∈ℤn

+

=
ð
ℝn
φ x, yð ÞNα yð Þdy:

ð28Þ

We have

~R
∗
0,α~R0,α = I : L2 ℝn, dxð Þð ÞP αð Þ⟶ L2 ℝn, dxð Þð ÞP αð Þ,

~R0,α~R
∗
0,α = I ⊗ ~Pα−1 : L2 ℝ2n, dxdy

	 

⟶ L2 ℝn, dxð Þ ⊗ ~H

⊕
α−1:

ð29Þ

The operator ~Rα = ~R
∗
0,αU from L2ðℂn, dμnÞ onto

ðL2ðℝn, dxÞÞPðαÞ and its adjoint ~R
∗
α =U∗~R0,α satisfy

~R
∗
α
~Rα = Bα : L2 ℂn, dμnð Þ⟶ F2

α ℂnð Þ, ð30Þ

~Rα
~R
∗
α = I : L2 ℝn, dxð Þð ÞP αð Þ⟶ L2 ℝn, dxð Þð ÞP αð Þ: ð31Þ

Similarly to (27), we define the operators

~R0, kð Þ : L2 ℝn, dxð Þð Þs kð Þ ⟶ L2 ℝ2n, dxdy
	 


, ~R0, kð Þ f
� �

x, yð Þ = f xð Þ N kð Þ yð Þ
h iT

,

~R0,k : L2 ℝn, dxð Þð Þsk ⟶ L2 ℝ2n, dxdy
	 


, ~R0,k f
	 


x, yð Þ = f xð Þ Nk yð Þ½ �T :
ð32Þ

The arrangement NðkÞðyÞ is formed by the functions ~hα−1
ðyÞ over all multi-indices α such that jαj = k: Analogously,
the functions in NkðyÞ are indexed with the multi-indices
whose absolute value are less or equal to k. Remember that

sðkÞ =
k − 1
n − 1

 !
and sk =

k

k − n

 !
. The adjoint operators

~R
∗
0,ðkÞ and ~R

∗
0,k are defined similarly to (28). Finally, the opera-

tors ~RðkÞ = ~R
∗
0,ðkÞU , ~Rk = ~R

∗
0,kU , and its adjoint operators satisfy

~R
∗
kð Þ~R kð Þ = B kð Þ : L2 ℂn, dμnð Þ⟶ F2

kð Þ ℂ
nð Þ,

~R kð Þ~R
∗
kð Þ = I : L2 ℝn, dxð Þð Þs kð Þ ⟶ L2 ℝn, dxð Þð Þs kð Þ ,

~R
∗
k
~Rk = Bk : L2 ℂn, dμnð Þ⟶ F2

k ℂnð Þ,
~Rk
~R
∗
k = I : L2 ℝn, dxð Þð Þsk ⟶ L2 ℝn, dxð Þð Þsk :

ð33Þ

3. Toeplitz Operators with Horizontal Symbols

In this section, we define Toeplitz operators with certain
class of symbols acting on the poly-Fock, true poly-Fock,
and homogeneously poly-Fock spaces over ℂn. And, we
prove that this operators are unitary equivalent to certain
multiplication operators. Let aðzÞ = aðx1,⋯, xnÞ be a function
in L∞ðℝn, dxÞ depending only on x = ðRe z1,⋯, Re znÞ, we
call to this kind of functions horizontal symbols. Henceforth,
α ∈ℤn

+ denote a fixed multi-index and k ∈ℕ a fixed natural
number.

Definition 5. Let aðxÞ be a horizontal symbol. The Toeplitz
operator with symbol aðxÞ, acting on the true poly-Fock
space (or poly-Fock space) of order α is defined as

T αð Þ,a : φ ∈ F2
αð Þ ℂ

nð Þ↦ B αð Þ aφð Þ ∈ F2
αð Þ ℂ

nð Þ, ð34Þ
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Tα,a : φ ∈ F2
α ℂnð Þ↦ Bα aφð Þ ∈ F2

α ℂnð Þ: ð35Þ

Similarly, the Toeplitz operator with symbol aðxÞ, acting
on the homogeneously poly-Fock space (or poly-Fock space)
of order k is defined as

T kð Þ,a : φ ∈ F2
kð Þ ℂ

nð Þ↦ B kð Þ aφð Þ ∈ F2
kð Þ ℂ

nð Þ, ð36Þ

Tk,a : φ ∈ F2
k ℂnð Þ↦ Bk aφð Þ ∈ F2

k ℂnð Þ: ð37Þ

The following theorem characterizes the Toeplitz opera-
tors with horizontal symbols acting on the true poly-Fock
space F2

ðαÞðℂnÞ.

Theorem 6. Let aðxÞ ∈ L∞ðℝn, dxÞ be a horizontal symbol,
then the Toeplitz operator TðαÞ,a acting on F2

ðαÞðℂnÞ is unitary
equivalent to the multiplication operator γðαÞ,aI = ~RðαÞTðαÞ,a
~R
∗
ðαÞ acting on L2ðℝn, dxÞ where the function γðαÞ,a is given by

γ αð Þ,a xð Þ =
ð
ℝn
a

x + yffiffiffi
2
p

� �
~hα−1 yð Þ
� �

~hα−1 yð Þ
� �2

dy, ð38Þ

and ~hα−1ðyÞ is defined in (8).

Proof. Remember that ~RðαÞ = ~R
∗
0,ðαÞU and using (25) and (26),

we obtain

~R αð ÞT αð Þ,a~R
∗
αð Þ = ~R αð ÞB αð ÞaB αð Þ~R

∗
αð Þ = ~R αð Þ~R

∗
αð Þ~R αð Þa~R

∗
αð Þ~R αð Þ~R

∗
αð Þ

= ~R αð Þa~R
∗
αð Þ = ~R

∗
0, αð ÞU3U2U1a xð ÞU−1

1 U−1
2 U−1

3 ~R0, αð Þ

= ~R
∗
0, αð ÞU3a xð ÞU−1

3 ~R0, αð Þ = ~R
∗
0, αð Þa

x + yffiffiffi
2
p

� �
~R0, αð Þ:

ð39Þ

Explicitly for a function f ∈ L2ðℝnÞ, we have

~R
∗
0, αð Þa

x + yffiffiffi
2
p

� �
~R0, αð Þ f

� �
xð Þ =

ð
ℝn
a

x + yffiffiffi
2
p

� �
f xð Þ ~hα−1 yð Þ

� �2
� dy = γ αð Þ,a xð Þ · f xð Þ:

ð40Þ

We call to the function γðαÞ,aðxÞ the αth spectral function
for the Toeplitz operator with horizontal symbol a acting on
the true poly-Fock space F2

ðαÞðℂnÞ.
Naturally, we can extend the above result to the case of

the Toeplitz operator with horizontal symbols acting on
the poly-Fock space F2

αðℂnÞ.

Theorem 7. Let aðxÞ ∈ L∞ðℝn, dxÞ be a horizontal symbol;
thus, the Toeplitz operator Tα,a acting on F2

αðℂnÞ is unitary
equivalent to the multiplication operator γα,aðxÞI = ~RαTα,a
~R
∗
α , acting on ðL2ðℝn, dxÞÞPðαÞ, where the matrix γα,a is given

by

γα,a xð Þ =
ð
ℝn
a

x + yffiffiffi
2
p

� �
Nα yð Þ½ �TNα yð Þdy: ð41Þ

That is, each component function is equal to

γα,a½ �λμ xð Þ =
ð
ℝn
a

x + yffiffiffi
2
p

� �
~hλ−1 yð Þ~hμ−1 yð Þdy, ð42Þ

with λ, μ ∈ℤn
+ such that λi, μi ≤ αi andNαðyÞ is defined in (27).

Proof. Since ~Rα = ~R
∗
0,αU and using (30) and (31), we obtain

~RαTα,a~R
∗
α = ~RαBαaBα

~R
∗
α = ~Rα

~R
∗
α
~Rαa~R

∗
α
~Rα

~R
∗
α = ~Rαa~R

∗
α

= ~R
∗
0,αU3U2U1a xð ÞU−1

1 U−1
2 U−1

3 ~R0,α

= ~R
∗
0,αU3a xð ÞU−1

3 ~R0,α = ~R
∗
0,αa

x + yffiffiffi
2
p

� �
~R0,α:

ð43Þ

Calculating for a function f ∈ ðL2ðℝn, dxÞÞPðαÞ

~R
∗
0,αa

x + yffiffiffi
2
p

� �
~R0,α f

� �
xð Þ = ~R

∗
0,α a

x + yffiffiffi
2
p

� �
f xð Þ Nα yð Þ½ �T

� �
=
ð
ℝn

a
x + yffiffiffi

2
p

� �
f xð Þ Nα yð Þ½ �T

� �
Nα yð Þ

� dy =
ð
ℝn
a

x + yffiffiffi
2
p

� �
Nα yð Þ½ �TNα yð Þf xð Þdy = γα,a xð Þf xð Þ:

ð44Þ

We have the next two theorems, whose proofs are anal-
ogous to the above one.

Theorem 8. For a horizontal symbol aðxÞ ∈ L∞ðℝn, dxÞ, the
Toeplitz operator TðkÞ,a acting on the homogeneously poly-
Fock space F2

ðkÞðℂnÞ is unitary equivalent to the multiplica-

tion operator γðkÞ,aðxÞI = ~RðkÞTðkÞ,a~R
∗
ðkÞ, acting on

ðL2ðℝn, dxÞÞsðkÞ , where

γ kð Þ,a xð Þ =
ð
ℝn
a

x + yffiffiffi
2
p

� �
N kð Þ yð Þ
h iT

N kð Þ yð Þdy: ð45Þ

Theorem 9. For a horizontal symbol aðxÞ ∈ L∞ðℝn, dxÞ, the
Toeplitz operator Tk,a acting on the poly-Fock space F2

kðℂnÞ
is unitary equivalent to the multiplication operator γk,aðxÞI
= ~RkTk,a~R

∗
k , acting on ðL2ðℝn, dxÞÞsk , where

γk,a xð Þ =
ð
ℝn
a

x + yffiffiffi
2
p

� �
Nk yð Þ½ �TNk yð Þdy: ð46Þ

We call to the matrices γα,aðxÞ, γðkÞ,aðxÞ, and γk,aðxÞ the
spectral matrices correspondent to the Toeplitz operator
with horizontal symbol aðxÞ, acting on the poly-Fock space
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F2
αðℂnÞ, on the homogeneously poly-Fock space F2

ðkÞðℂnÞ,
and on the poly-Fock space F2

kðℂnÞ, respectively.

Remark 10. The components of the spectral matrices γα,aðxÞ,
γðkÞ,aðxÞ, and γk,aðxÞ can be expressed as a convolution of
functions �a ∗ ð~hλ~hμÞ, where �aðxÞ = aðx/ ffiffiffi

2
p Þ ∈ L∞ðℝnÞ. Since

~hλ~hμ ∈ L1ðℝnÞ, from [7], p. 283, we guaranteed that they
belong in the set of uniformily continuous functions CbðℝnÞ.

4. The C∗-Algebras Generated by Toeplitz
Operators with Extended
Horizontal Symbols

In this section, we introduce the concept of extended hori-
zontal symbol and we describe the C∗-algebras generated
by Toeplitz operators with these symbols acting on the
poly-Fock spaces and on the homogeneously poly-Fock
spaces. Following the terminology and the notation intro-
duced in [8], Section 3, we have the following.

Definition 11. Let aðxÞ ∈ L∞ðℝnÞ be a horizontal symbol. We
say that aðxÞ is an extended horizontal symbol if there exists
a function a∞ðxÞ ∈ CðSn−1Þ such that

lim
R⟶∞

sup
xk k>R

a xð Þ − a∞
x
xk k

� ����� ���� = 0: ð47Þ

We denote by HSðℝnÞ the set of extended horizontal
symbols. We note that HSðℝnÞ equipped with the supre-
mum norm is a C∗-subalgebra of L∞ðℝnÞ.

The compact of maximal ideals of the C∗-algebra HS
ðℝnÞ coincides with the compactification of ℝn, denoted
by eℝn =ℝn ∪ Sn−1

∞ , obtained by adding an “infinitely far”
n-sphere Sn−1

∞ . This compact space is isomorphic to �Dn:

We can identify the elements s∞ ∈ Sn−1
∞ with the points s ∈

Sn−1 as follows. For every extended horizontal symbol a ∈H
SðℝnÞ, we have

lim
t⟶∞

a tsð Þ = a s∞ð Þ = a∞ sð Þ: ð48Þ

We identify the extended horizontal symbols aðxÞ with its
extensions to the complex space ℂn, where x = Re z.

The following lemma shows that the different spectral
matrices γα,aðxÞ, γðkÞ,aðxÞ, and γk,aðxÞ, corresponding to Toe-
plitz operators with extended horizontal symbol aðxÞ, posses
a limit value to infinity in any direction. We write γ□,aðxÞ to
refer to any of this spectral matrices.

Lemma 12. Let aðxÞ be an extended horizontal symbol and
let x0 ∈ S

n−1. Then the spectral matrix γ□,aðxÞ satisfies

lim
t⟶∞

γ□,a xð Þ tx0ð Þ = a∞ x0ð ÞI: ð49Þ

Proof. We apply the dominated convergence theorem. Let
λ, μ ∈ℤn

+ be two multi-indices corresponding to some entry

of the spectral matrix. For each m ∈ℕ, we consider the func-
tion Fm : ℝn ⟶ℝ defined by

Fm yð Þ = a
mx0 + yffiffiffi

2
p

� �
~hλ−1 yð Þ~hμ−1 yð Þ: ð50Þ

Since ~hλ−1ðyÞ,~hμ−1ðyÞ ∈ L2ðℝnÞ, and aðxÞ ∈ L∞ðℝnÞ we
have FmðyÞ ∈ L1ðℝnÞ. Note that the integrable function
kak∞k~hλ−1ðyÞ~hμ−1ðyÞk limits to FmðyÞ for all m ∈ℕ: Since
the function a∞ is continuous, we have

lim
m⟶∞

a∞
x0 + 1/mð Þy
x0 + 1/mð Þyk k

� �
= a∞ x0ð Þ, ð51Þ

and using (48)

lim
m⟶∞

lim
t⟶∞

a
t x0 + 1/mð Þyð Þ
x0 + 1/mð Þyk k

� �� �
= lim

m⟶∞
lim

t⟶∞
a

t x0 + 1/mð Þyð Þffiffiffi
2
p

� �� �
= a∞ x0ð Þ:

ð52Þ

We can take this limit along the line t =m; thus,

lim
m⟶∞

a
mx0 + yffiffiffi

2
p

� �
= a∞ x0ð Þ, ð53Þ

and FmðyÞ⟶ a∞ðxÞ~hλ−1ðyÞ~hμ−1ðyÞ whenm⟶∞: There-
fore,

lim
m⟶∞

ð
ℝn
a

mx0 + yffiffiffi
2
p

� �
~hλ−1 yð Þ~hμ−1 yð Þdy

= a∞ xð Þ
ð
ℝn

~hλ−1 yð Þ~hμ−1 yð Þdy = a∞ xð Þδλμ:
ð54Þ

Let α = ðα1,⋯, αnÞ ∈ℤn
+ be a fixed multi-index and k ∈

ℕ be a fixed natural number.

Definition 13. We introduce the following C∗ algebras,
which are very useful to our study

(i) Denote GH
ðαÞ = fγðαÞ,a : aðxÞ ∈HSðℝnÞg to the set

of all horizontal spectral functions

(ii) Denote GH
α = fγα,a : aðxÞ ∈HSðℝnÞg to the set of

all horizontal spectral matrices of order α

(iii) Denote GH
ðkÞ = fγðkÞ,a : aðxÞ ∈HSðℝnÞg to the set of

all horizontal spectral matrices of order exactly k

(iv) Denote GH
k = fγk,a : aðxÞ ∈HSðℝnÞg to the set of

all horizontal spectral matrices of order at most k

(v) Denote by T ðαÞ∞ the C∗-algebra generated by the set
of Toeplitz operators TðαÞ,a acting on the true poly-
Fock space F2

ðαÞðℂnÞ, with aðxÞ ∈HSðℝnÞ
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(vi) Denote by T α
∞ the C∗-algebra generated by the set

of Toeplitz operators Tα,a acting in the poly-Fock
space F2

αðℂnÞ, with aðxÞ ∈HSðℝnÞ.
(vii) Denote by T ðkÞ∞ the C∗-algebra generated by the set

of Toeplitz operators TðkÞ,a acting on the homo-
geneously poly-Fock space F2

ðkÞðℂnÞ, with aðxÞ ∈
HSðℝnÞ

(viii) Denote by T k
∞ the C∗-algebra generated by the set

of Toeplitz operators Tk,a acting in the poly-Fock
space F2

kðℂnÞ, with aðxÞ ∈HSðℝnÞ

We have the following results.

Corollary 14. The C∗-algebra T ðαÞ∞ is isometrically isomor-
phic to the C∗-algebra GH

ðαÞ generated by GH
ðαÞ.

Corollary 15. The C∗ -algebra T α
∞ is isometrically isomor-

phic to the C∗ -algebra GH
α generated by GH

α .

Corollary 16. The C∗ -algebra T ðkÞ∞ is isometrically isomor-
phic to the C∗ -algebra GH

ðkÞ generated by GH
ðkÞ.

Corollary 17. The C∗ -algebra T k
∞ is isometrically isomor-

phic to the C∗ -algebra GH
k generated by GH

k .

Now, we describe the C∗-algebras GH
α , G

H
ðkÞ, and GH

k ,
generated by the different spectral matrices. First, we start
with GH

α . Consider the C∗-algebra defined by Cα =MPðαÞ
ðℂÞ ⊗ Cðℝn ∪ Sn−1

∞ Þ, which consists of the algebra of all P
ðαÞ × PðαÞ matrices with entries in Cðℝn ∪ Sn−1

∞ Þ, where
PðαÞ = α1 ⋯ αn. Now, we introduce the C∗-subalgebra Dα
given by

Dα = M ∈Cα : lim
t⟶∞

M txð Þ =M x∞ð Þ =ℂI, forallx ∈ Sn−1
n o

:

ð55Þ

We note that GH
α is a C∗-subalgebra of Dα. In fact, we

prove that GH
α =Dα. For this, we use a Stone-Weirstrass

theorem. We need to show that GH
α separates the pure

states of Dα.
Since Dα is a C∗-bundle, the set of all its pure states is

completely determined by the pure states on the fibers:

Dα xð Þ =
MP αð Þ ℂð Þ, if x ∈ℝn,

ℂ, if x = x∞ ∈ Sn−1
∞ :

(
ð56Þ

So each pure state of Dα has the form

f Mð Þ = f x M xð Þð Þ,M ∈Dα, ð57Þ

where x ∈ℝn ∪ Sn−1
∞ and f x is a pure state of DαðxÞ. Every

pure state in the matrix algebra MPðαÞðℂÞ is given by a func-
tional f v defined as

f v Qð Þ = Qv, vh i,Q ∈MP αð Þ ℂð Þ, ð58Þ

with v ∈ SPðαÞ = fz ∈ℂPðαÞ : jzj = 1g. Moreover, if v,w ∈ SPðαÞ

such that f v = f w; thus, v = tw where t ∈ℂ and jtj = 1, see [9]
for more details.

In consequence, the set of all pure states of Dα consists
of all functional of the form

f x,v Mð Þ = M xð Þv, vh i,M ∈Dα, ð59Þ

with x ∈ℝn ∪ Sn−1
∞ and v ∈ SPðαÞ.

In the cases of the C∗-algebras GH
ðkÞ and GH

k , we consider

the C∗-algebras CðkÞ =MsðkÞ ðℂÞ ⊗ Cðℝn ∪ Sn−1
∞ Þ and Ck =

MskðℂÞ ⊗ Cðℝn ∪ Sn−1
∞ Þ. And their corresponding C∗-subal-

gebras DðkÞ and Dk. For this two C∗-subalgebras, the pure
states are determined in a similar way to (59). Remember

that sðkÞ =
k − 1
n − 1

 !
and sk =

k

k − n

 !
.

Now to fixing ideas, we return to the previous case GH
α ;

the other ones are totally analogous, and we analyzed them
at the end of this section.

For each element x∞ ∈ Sn−1
∞ , we have only one pure state

for any v,w ∈ SPðαÞ, that is, f x∞ ,v = f x∞ ,w. To separate the
pure states corresponding to two different elements x0,∞
and x1,∞ in Sn−1

∞ , using the identification given by (48), we
note that the corresponding elements x0, x1 ∈ Sn−1 differ at
least one coordinate. Suppose that the jth coordinate of this
vectors is different, that is, x0,j ≠ x1,j: Thus, we consider the
horizontal extended symbol Cj : ℝn ⟶ℂ defined by

Cj xð Þ =
0, if x = 0 ∈ℝn,
xj
xk k , in otherwise:

8<: ð60Þ

For x = ðx1,⋯, xnÞ ∈ℝn with kxk = 1, we have Cj
∞ðxÞ

= limt⟶∞CjðtxÞ = xj: Clearly, C
j
∞ is a continuous function.

Now, consider the spectral matrix γα,C
j
, for every x∞, we

have

f x∞ ,v γα,C
j

� �
= γα,C

j
x∞ð Þv, v

D E
= Cj

∞ xð ÞIv, v� 

= xj: ð61Þ

Hence, for x0,∞ ≠ x1,∞, we have

f x0,∞ ,v γα,C
j
xð Þ

� �
≠ f x1,∞ ,v γα,C

j
xð Þ

� �
: ð62Þ

Thus, the spectral matrix γα,C
jðxÞ separates the corre-

sponding pure states.
In the case when we have the pure states correspond-

ing to the points x0 ∈ℝn and x1,∞ ∈ Sn−1
∞ , we consider the
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set ½0, p� = ½0, p1� ×⋯× ½0, pn� with p = ðp1,⋯, pnÞ ∈ ðℝ+Þn,
and the function cðxÞ = χ½0,p�ðxÞ. We have c∞ðxÞ ≡ 0. We
write γα,pðxÞ instead of γα,cðxÞ. Notice that

γα,p xð Þ =
ð ffiffi2p pn−xn

−xn
⋯
ð ffiffi2p p1−x1

−x1
Nα yð Þ Nα yð Þ½ �Tdy1 ⋯ dyn

=
ð

−x,
ffiffi
2
p

p−x½ �
Nα yð Þ Nα yð Þ½ �Tdy:

ð63Þ

For x0 ∈ℝn, we have

f x0,v γα,pð Þ = γα,px0v, vh i =
ð

−x,
ffiffi
2
p

p−x½ �
Nα yð Þ Nα yð Þ½ �Tdyv, v

* +

=
ð

−x,
ffiffi
2
p

p−x½ �
Nα yð Þ Nα yð Þ½ �Tv, v
D E

� dy =
ð

−x,
ffiffi
2
p

p−x½ �
v,Nα yð Þh i Nα yð Þ, vh i

� dy =
ð

−x,
ffiffi
2
p

p−x½ �
v,Nα yð Þh ij j2dy:

ð64Þ

Note that f x0,vðγα,pÞ > 0 because j<v,NαðyÞ > j2 ≥ 0,
except in a set of measure zero. On the other hand, if x1 ∈
Sn−1 is the corresponding element of x1,∞ ∈ Sn−1

∞ , we have

f x1,∞ ,v γα,pð Þ = γα,p x1,∞ð Þv, v� 

= c∞ x1ð ÞIv, vh i = 0: ð65Þ

Therefore, the spectral matrix γα,p separates the pure states
of the points x0 and x1,∞.

To separate the pure states corresponding to two points
x0, x1 ∈ℝn, we consider again the extended horizontal sym-
bol cðxÞ = χ½0,p�ðxÞ: From (64), we define the function hvðyÞ
= j<v,NαðyÞ > j2: We can express this function as hvðyÞ =
qvðyÞe−ðy

2
1+⋯+y2nÞ, with

qv yð Þ = 〠
λ∈ℤn

+
λi≤αi

vλ 2λλ!πn
2

� �−1/2
~Hλ−1 yð Þ

���������

���������
2

, ð66Þ

where ~Hλ−1ðyÞ is the product of the n one-dimensional
Hermite polynomials Hλ1−1ðy1Þ,⋯,Hλn−1ðynÞ, so qvðyÞ is a
nonnegative-valued polynomial of degree at most 2 ∣ α ∣ −2n.

The following lemma provides us a tool to prove that the
C∗-algebra GH

α separates the pure states of Dα of the form
f x0,v , f x1,w, where x0 ≠ x1 and v,w ∈ SPðαÞ:

Lemma 18. We assume that v,w ∈ SPðαÞ,x0, x1 ∈ℝn and
γα,p ∈GH

α with p ∈ ðℝ+Þn . If f x0 ,vðγα,pðxÞÞ = f x0 ,wðγα,pðxÞÞ

for all vector p, then x0 = x1. Moreover, jhv,NαðyÞij2 =
jhw,NαðyÞij2 for all y ∈ℝn.

Proof. The hypothesis f x0,vðγα,pðxÞÞ = f x1,wðγα,pðxÞÞ is equiv-
alent to the following equation:ð

−x0,
ffiffi
2
p

p−x0½ �
qv yð Þe− y21+⋯+y2nð Þdy =

ð
−x1,

ffiffi
2
p

p−x1½ �
qw yð Þe− y21+⋯+y2nð Þdy:

ð67Þ

Taking the partial derivative ∂n/∂p = ∂n/∂pn ⋯ ∂p1, we
obtain

qv
ffiffiffi
2
p

p − x0
� �

e−
ffiffi
2
p

p1−x0,1ð Þ2+⋯+
ffiffi
2
p

pn−x0,nð Þ2
� �

= qw
ffiffiffi
2
p

p − x1
� �

e−
ffiffi
2
p

p1−x1,1ð Þ2+⋯+
ffiffi
2
p

pn−x1,nð Þ2
� �

,
ð68Þ

thus,

qv
ffiffiffi
2
p

p − x0
� �

= qw
ffiffiffi
2
p

p − x1
� �

e

〠
n

j=1

ffiffiffi
2
p

pj−x0,j
� �2

−
ffiffiffi
2
p

pj−x1,j
� �2" #

= qw
ffiffiffi
2
p

p − x1
� �

e

〠
n

j=1
2 ffiffiffi

2
p

pj x1,j−x0,j
	 


+ x0,j
	 
2− x1,j

	 
2" #
:

ð69Þ

Since qv and qw are polynomials, this fact implies that
the exponential part in the above equation is constant for
all p ∈ ðℝ+Þn. Hence, x0,j = x1,j for all j; therefore, x0 = x1.

Using this fact, it is clear that qvð
ffiffiffi
2
p

p − x0Þ = qwð
ffiffiffi
2
p

p − x1Þ
, for all p, that is, jhv,NαðyÞij2 = jhw,NαðyÞij2 for all y ∈ℝn.

As consequence of the above lemma, if x0 ≠ x1 and v,w
∈ SPðαÞ, then there exists p0 ∈ ðℝ+Þn such that f x0,vðγα,p0ðxÞ
Þ ≠ f x1,wðγα,p0ðxÞÞ; hence, the spectral matrix γα,p0 separates
the pure states f x0,v and f x1,w.

To complete the proof of the fact that the C∗-algebraGH
k

separates all the pure states ofD, only missing step is to sep-
arate the pure states of the forms f x,v and f x,w, where v,w
∈ SPðαÞ and x ∈ℝn. For this, we need to deduce some useful
facts before.

For the multi-index α = ðα1,⋯, αnÞ, we consider NαðyÞ
= ð~hλ−1ðyÞÞλi≤αi . From (8), we have ~hλ−1ðyÞ = hλ1−1ðy1Þ⋯
hλn−1ðynÞ, where hλi−1ðyiÞ is a one-dimensional Hermite
function. We can consider that all correspondent one-
dimensional Hermite’s polynomials Hλi−1ðyiÞ, whose
degrees are equal to λi − 1, are monic polynomials. Hence,
for every multi-index λ such that λi ≤ αi, we can write

~hλ−1 yð Þ = 2 λ−1j j/2 λ − 1ð Þ!
ffiffiffiffiffi
πn
p� �−1/2

e− yk k2/2Hλ1−1 y1ð Þ⋯Hλn−1 ynð Þ:
ð70Þ
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Now, for y ∈ℝ − f0g, we construct the vector y ∈ℝn

with the form

y = yα2⋯αn , yα3⋯αn ,⋯, yαn−1·αn , yαn , yð Þ: ð71Þ

Evaluating this vector in Hermite’s polynomials corre-
sponding to the multi-index λ = ðλ1,⋯, λnÞ

Hλ1−1 yα2⋯αnð Þ ·Hλ2−1 yα3⋯αnð Þ⋯Hλn−1−1 yαnð Þ ·Hλn−1 yð Þ,
ð72Þ

we obtain a polynomial dependents on only one variable,
whose degree we can calculate with the equation:

pλ = 〠
n−1

j=1
λj − 1
	 


αj+1 ⋯ αn

" #
+ λn − 1ð Þ: ð73Þ

Consequently, evaluating y in ~hλ−1, we can write

~hλ−1 y 
� �

= 2 λ−1j j/2 λ − 1ð Þ!
ffiffiffiffiffi
πn
p� �−1/2

e−
∥ y ∥2
2 ypλ + aλ,1y

pλ−1+⋯+aλ,pλy + 1
� �

:

ð74Þ

From (73), we notice that for two different multi-
indices λ and μ, the corresponding degrees satisfy pλ ≠ pμ.
Moreover, for 1n = ð1,⋯, 1Þ, we have p1n = 0. And for α =
ðα1,⋯, αnÞ,

pα = 〠
n−1

j=1
αj − 1
	 


α j+1 ⋯ αn

" #
+ αn − 1ð Þ = α1 ⋯ αn − 1 = P αð Þ − 1:

ð75Þ

Therefore, the multi-indices λ ∈ℤn
+ such that λi ≤ αi for

every i generate different polynomials of degrees between 0
and PðαÞ − 1. Now, for each of these multi-indices λ, we
consider vectors yλ

 defined by (71), and we define the
matrix N whose dimension is PðαÞ × PðαÞ and the λth

row is equal to Nαðyλ Þ. Since the components of NαðyÞ
are sorted ascending by the lexicographic order, we claim
that the matrix N has the form:

N = Cα ·D ·
1 y1n + a0 y21n + b1y1n + b0 ⋯ yP αð Þ−1

1n +⋯
⋮ ⋮ ⋮ ⋮

1 yα + a0 y2α + b1yα + b0 ⋯ yP αð Þ−1
α +⋯

0BB@
1CCA,

ð76Þ

where

Cα =
Y
λ∈ℤn

+
λi≤αi

2 λ−1j j/2 λ − 1ð Þ!
ffiffiffiffiffi
πn
p� �−1/2

,D = diag e− y μk k2/2
� �

μ∈ℤn
+

μi≤αi

:

ð77Þ

We can calculate the determinant of N using multiline-

ality and the VandermondeÂ’s formula; we obtain

det N =
Y
λ∈ℤn

+
λi≤αi

2∣λ−1∣/2 λ − 1ð Þ!
ffiffiffiffiffi
πn
p� �−1/2

e
−〠

μ

∥yμ∥
2/2

�
Y

γ,δ∈ℤn
+

1n≤γ<δ≤α

yδ − yγ
� �

≠ 0:
ð78Þ

Example 1. Consider n = 3 and the multi-index α = ð2, 4, 1Þ.
We have PðαÞ = 8 and the multi-indices, arranged with the
lexicographic order, whose coordinates are less or equal to
the corresponding coordinates of α are

1n = λ1 = 1, 1, 1ð Þ, λ2 = 1, 2, 1ð Þ, λ3 = 1, 3, 1ð Þ, λ4 = 1, 4, 1ð Þ,
λ5 = 2, 1, 1ð Þ, λ6 = 2, 2, 1ð Þ, λ7 = 2, 3, 1ð Þ, λ8 = 2, 4, 1ð Þ = α:

ð79Þ

In this case, the vector y = ðy4, y, yÞ. From (73), we can
calculate the different degrees, for example for λ7 = ð2, 3, 1Þ,

pλ7 = 1 · 4 + 2 · 1 + 1 − 1 = 6: ð80Þ

And for the rest of multi-indices, we have

pλ1 = 0, pλ2 = 1, pλ3 = 2, pλ4 = 3,
pλ5 = 4, pλ6 = 5, pλ7 = 6, pλ8 = 7:

ð81Þ

Now, we can continue with the separation of the pure states.

Lemma 19. Given v,w ∈ SPðαÞ and x ∈ℝn being fixed, con-
sider the spectral matrices γα,p, γα,r . If f x,vðγα,pÞ = f x,wðγα,rÞ,
for all p, r ∈ ðℝ+Þn then v = tw, with t ∈ℂ and jtj = 1.

Proof. From Lemma 18, we have j<v,NαðyÞ > j2 =
j<w,NαðyÞ > j2 for all y ∈ℝn; thus, there exists a function
θ : ℝn ⟶ℂ such that

v,Nα yð Þh i = eiθ yð Þ w,Nα yð Þh i: ð82Þ

For u ∈ SPðαÞ, we define the function Hu : ðℝ+Þ2n ⟶
ℂ given by

Hu p, rð Þ = f x,u γα,pγα,rð Þ =
ð ffiffi2p p−x

−x
�uTNα yð Þ Nα yð Þ½ �T

� dy
ð ffiffi2p r−x

−x
Nα yð Þ Nα yð Þ½ �Tudy:

ð83Þ

Without loss of generality, we can assume that x =
ð0,⋯, 0Þ ∈ℝn, just to simplify the calculations. Taking
the derivative of order 2n of the function Hu, with
respect to p and r, we obtain
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∂2nHu

∂p∂r
pffiffiffi
2
p , rffiffiffi

2
p

� �
= �uTNα pð Þ Nα pð Þ½ �TNα rð Þ Nα rð Þ½ �Tu

= Nα pð Þ, uh i Nα rð Þ,Nα pð Þh i u,Nα rð Þh i:
ð84Þ

The hypothesis Hv =Hw implies that ∂2nHv/∂p∂r =
∂2nHw/∂p∂r. Using (82) and (84),

Nα pð Þ,wh i Nα rð Þ,Nα pð Þh i w,Nα rð Þh i
= ei θ rð Þ−θ pð Þð Þ Nα pð Þ,wh i × × Nα rð Þ,Nα pð Þh i w,Nα rð Þh i,

ð85Þ

for all p, r ∈ ðℝ+Þn: Clearly, there exists r0 ∈ ðℝ+Þn such
that hw,Nαðr0Þi ≠ 0: Thus,

1 − ei θ r0ð Þ−θ pð Þð Þ
� �

Nα pð Þ,wh i Nα r0ð Þ,Nα pð Þh i = 0: ð86Þ

Notice that hNαðpÞ,wihNαðr0Þ,NαðpÞi is a nonzero
polynomial with respect to p; thus, the above equation
implies that the function θ is constant. From (82), we
obtain that hv − eiθ0w,NαðyÞi = 0, for all y ∈ℝn. Using
(78), we have v − eiθ0w = 0 and v = eiθ0w:

Finally, we consider the case of the C∗-algebras GH
ðkÞ and

GH
k . Since the proof of the Lemma 19 is independent of the

dimension PðαÞ and the nature of the multi-indices λ and μ,
we can obtain the following analogous results.

Lemma 20. For v,w ∈ SsðkÞ ,x0, x1 ∈ℝn and γðkÞ,p ∈GH
ðkÞ with

p ∈ ðℝ+Þn. If f x0 ,vðγðkÞ,pðxÞÞ = f x0 ,wðγðkÞ,pðxÞÞ for all vector p,
then x0 = x1. Also, jhv,NðkÞðyÞij2 = jhw,NðkÞðyÞij2 for all y ∈
ℝn.

Lemma 21. For v,w ∈ Ssk ,x0, x1 ∈ℝn and γk,p ∈GH
k with p

∈ ðℝ+Þn. If f x0 ,vðγk,pðxÞÞ = f x0 ,wðγk,pðxÞÞ for all vector p, then
x0 = x1. Also, jhv,NkðyÞij2 = jhw,NkðyÞij2 for all y ∈ℝn.

On the other hand, we consider the C∗-algebra GH
ðkÞ and

the multi-index

kn = k − n − 1ð Þ,⋯, k − n − 1ð Þð Þ: ð87Þ

If α = ðα1,⋯, αnÞ is a multi-index such that ∣α ∣ = k then
all its components satisfy αi ≤ k − ðn − 1Þ. So, if we construct
the PðknÞ × PðknÞ invertible matrix N as in (76), correspond-
ing to the multi-index kn, and apply it to the vector

0,⋯, v − eiθ0w,⋯, 0
� �

, ð88Þ

where the coordinates of v − eiθ0w ∈ SsðkÞ occupy the same
positions that the multi-indices whose absolute value is
equal to k in the matrix N . Thus, we can prove the following.

Lemma 22. Given v,w ∈ SsðkÞ and x ∈ℝn being fixed, consider
the spectral matrices γðkÞ,p, γðkÞ,r . If f x,vðγðkÞ,pÞ = f x,wðγðkÞ,rÞ,
for all p, r ∈ ðℝ+Þn then v = tw, with t ∈ℂ and jtj = 1.

Analogously, for the case of the C∗-algebra GH
k and the

set of multi-indices with absolute value is less than or equal
to k, we have the following.

Lemma 23. Given v,w ∈ Ssk and x ∈ℝn being fixed, consider
the spectral matrices γk,p, γk,r. If f x,vðγk,pÞ = f x,wðγk,rÞ, for all
p, r ∈ ðℝ+Þn then v = tw, with t ∈ℂ and jtj = 1.

For the noncommutative Stone-Weierstrass conjecture,
let B be a C∗-subalgebra of a C∗-algebra A , and suppose
that B separates all the pure states of A (and 0 if A is non-
unital). Then, A =B.

In [10], Kaplansky proved this conjecture for a C∗

-algebra type I. In consequence, we prove that the algebra
GH

α is equal toDα. From Corollary 15, we have that the alge-
bra of Toeplitz operators T α

∞ is isometric and isomorphic to
the algebra Dα. Analogously, applying the Corollary 16 and
the Corollary 17, we have that T ðkÞ∞ and T k

∞ are isometric
and isomorphic to DðkÞ and Dk, respectively. In summary,
we have the following results.

Theorem 24. The C∗ -algebra T α
∞ is isomorphic and isomet-

ric to the C∗-algebra Dα. The isomorphism is given by

T α
∞ : Tα,a ↦ SymTα,að Þ xð Þ = γα,a xð Þ, ð89Þ

where γα,aðxÞ is given in (41).

Theorem 25. The C∗ -algebra T ðkÞ∞ is isomorphic and isomet-
ric to the C∗ -algebra DðkÞ. The isomorphism is given by

T kð Þ
∞ : T kð Þ,a ↦ SymT kð Þ,a

� �
xð Þ = γ kð Þ,a xð Þ, ð90Þ

where γðkÞ,aðxÞ is given in (45).

Theorem 26. The C∗-algebra T k
∞ is isomorphic and isomet-

ric to the C∗ -algebra Dk. The isomorphism is given by

T k
∞ : Tk,a ↦ SymTk,að Þ xð Þ = γk,a xð Þ, ð91Þ

where γk,aðxÞ is given in (46).

Corollary 27. The C∗-algebra T ðαÞ∞ is isomorphic and isomet-
ric to the commutative C∗ -algebra C½ℝn ∪ Sn−1

∞ �. The iso-
morphism is given by

T αð Þ
∞ : T αð Þ,a ↦ SymT αð Þ,a

� �
xð Þ = γ αð Þ,a xð Þ, ð92Þ

where γðαÞ,aðxÞ is given in (38).
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5. Toeplitz Operators with L-Invariant
Symbols

In this section, we introduce the extended Lagrangian sym-
bols, and we prove that the C∗-algebra generated by Toeplitz
operators with this kind of symbols acting on the homoge-
neously poly-Fock space is isomorphic and isometric to the
C∗-algebra generated by Toeplitz operators with extended
horizontal symbols acting on this same space.

We consider the standard symplectic form ω0 of ℂn =
ℝ2n given by ω0ðz,wÞ = Jz ·w, forallz,w, where

J =
0 In

−In 0

 !
: ð93Þ

Recall that a n-dimensional subspace L ⊂ℝ2n is called a
Lagrangian plane if for every z,w ∈L it satisfy ω0ðz,wÞ = 0:
Clearly, iℝn = f0g ×ℝn is a Lagrangian plane. We denote by
Lagð2n,ℝÞ the set of all Lagrangian planes in ℝ2n. If we con-
sider the transitive group action of Uð2n,ℝÞ onto
Lagð2n,ℝÞ defined by

X,Lð Þ↦ XL , ð94Þ

we have that for every Lagrangian plane L there is an uni-
tary matrix X such that XL = iℝn: For more details, see
[11], Proposition 43. Since the unitary group Uð2n,ℝÞ is
isomorphic to Uðn,ℂÞ, each Lagrangian plane L can be
identified with a subspace of ℂn; abusing the notation, we
denote this subspace with L too.

Let L be a Lagrangian plane, we say that a function φ
∈ L∞ðℂnÞ is L-invariant or Lagrangian invariant if for
every h ∈L it satisfies

φ z − hð Þ = φ zð Þ, for almost all z ∈ℂn, ð95Þ

so we can consider it like a function depending only on the
elements of L∁.

In [5], Esmeral and Vasilevski introduced the concept of
L-invariant functions and they provided the following crite-
rion for a function to be so.

Lemma 28. Consider a Lagrangian planeL and X ∈Uðn,ℂÞ
such that XL = iℝn. Then, a function φ ∈ L∞ðℂnÞ is L

-invariant if and only if there exists a ∈ L∞ðℝnÞ such that

φ X∗zð Þ = a Re z1,⋯, Re znð Þ, for almost all z ∈ℂn: ð96Þ

Moreover, they established the following result.

Proposition 29. The C∗ -algebra generated by Toeplitz oper-
ators with horizontal symbols acting on the Fock space F2ð
ℂnÞ is unitary equivalent to the C∗ -algebra generated by
Toeplitz operators with L-invariant symbols.

For this, they introduced the operator VX : L2ðℂn, dμnÞ
⟶ L2ðℂn, dμnÞ defined by

VX fð Þ zð Þ = f X∗zð Þ,with X ∈U 2n,ℝð Þ such that XL = iℝn:

ð97Þ

Since X∗ = X−1, this operator is unitary and V∗
X = VX−1 . It

too satisfies

VXKz = KXz , ð98Þ

where Kz is the reproducing kernel of F
2ðℂnÞ in the point z.

In the case of the poly-Fock space and the true poly-Fock
space, the above result could fail, because for some multi-
index α and some unitary matrix X; the spaces F2

αðℂnÞ and
F2
ðαÞðℂnÞ might not be invariant under the operator VX .

Example 1. Consider n = 2, α = ð2, 1Þ. Using (15), we have

ψ zð Þ = �z1 z1 + z2ð Þ ∈ F2
αð Þ ℂ

nð Þ, ð99Þ

however, if X∗ = ðaijÞ with i, j = 1, 2 is an unitary matrix, it is
clear that

ψ X∗zð Þ = �w1 w1 +w2ð Þ ∉ F2
αð Þ ℂ

nð Þ, ð100Þ

where w1 = a11z1 + a12z2, w2 = a21z1 + a22z2.

This is the main motivation for which we consider the
homogeneously poly-Fock space F2

ðkÞðℂnÞ and the poly-

Fock space F2
kðℂnÞ for k ∈ℕ.

Note that for L ∈ Lagð2n,ℝÞ, X ∈Uð2n,ℝÞ such that
XL = iℝn, and VX defined by (97), using the explicit form
of the elements in the true poly-Fock space given by (15),
from [6], Proposition 2.7, we have that the homogeneously
poly-Fock space F2

ðkÞðℂnÞ and the poly-Fock space F2
kðℂnÞ

are invariant under VX :
Now, we define the extended Lagrangian symbols; these

kind of symbols is related with the extended horizontal sym-
bols as follows.

Definition 30. For L ∈ Lagð2n,ℝÞ and X ∈Uð2n,ℝÞ such
that XL = iℝn, equivalently XL∁ =ℝn and X∗ℝn =L∁,
consider the following diagram.

Rn

a

XCn

𝜋

𝜋

C

Lc

𝜑

We say that the L-invariant symbol φ is an extended
Lagrangian symbol or an extended L-invariant symbol if
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its pullback by X∗ is an extended horizontal symbol. In other
words, if the function aðRe zÞ = φðX∗zÞ given in (96), it is an
extended horizontal symbol.

According to the above diagram, for z ∈L∁, there exists
w ∈ℂn such that z = X∗ Re w and jzj = kRe wk. If φ is an
extended Lagrangian symbol, using (96) and (48), we have

lim
t⟶∞

φ tzð Þ = lim
t⟶∞

φ t X∗ Re wð Þ = lim
t⟶∞

a t Re wð Þ

= a∞
Re w
Re wk k

� �
= a∞ X

z
zj j

� �� �
:

ð101Þ

If we define the continuous function φ∞ : S2n−1 ∩L∁

⟶ℂ given by

φ∞ zð Þ = a∞ Xzð Þ, ð102Þ

we have for z ∈L∁

lim
t⟶∞

φ tzð Þ = φ∞
z
zj j

� �
: ð103Þ

This function φ∞ is invariant under translations by
Lagrangians elements whose norm is equal to 1. Let h ∈L
such that jhj = 1, so Xh ∈ iℝn and kXhk = 1; thus, for z ∈
S2n−1 ∩L∁, we have

φ∞ zð Þ = a∞ Xzð Þ = a∞ Xz + Xhð Þ = a∞ X z + hð Þð Þ = φ∞ z + hð Þ:
ð104Þ

Lemma 31. Consider the unitary operator VX for X ∈Uð2n
,ℝÞ . If KðkÞðz,wÞ denotes the reproducing kernel of the true
homogeneously poly-Fock space F2

ðkÞðℂnÞ then VXK
ðkÞ
v = KðkÞXv .

Proof. Let φðzÞ ∈ F2
ðkÞðℂnÞ. Using the reproducing property,

we can express

φ zð Þ = 1
πn

ð
ℂn
φ wð Þ �K kð Þ z,wð Þe− wj j2dw: ð105Þ

Apply VX

VXφð Þ zð Þ = 1
πn

ð
ℂn
φ X∗wð Þ �K kð Þ z,wð Þe− wj j2dw, ð106Þ

since X∗ is unitary and taking v = X∗w, we have

VXφð Þ zð Þ = 1
πn

ð
ℂn
φ vð Þ �K kð Þ z, Xvð Þe− vj j2dv: ð107Þ

On the other hand,

φ X∗zð Þ = 1
πn

ð
ℂn
φ vð Þ �K kð Þ X∗z, vð Þe− vj j2dv, ð108Þ

for the uniqueness of the reproducing kernel, we have KðkÞ

ðv, X∗zÞ = KðkÞðXv, zÞ; therefore VXK
ðkÞ
v = KðkÞXv :

Corollary 32. The reproducing kernel Kkðz,wÞ of the poly-
Fock space F2

kðℂnÞ satisfies VXK
k
v = Kk

Xv.
Now, consider a ∈ L∞ðℂnÞ and X ∈Uð2n,ℝÞ. Using the

Lemma 31, we obtain that the Toeplitz operator Ta acting
on the true homogeneously poly-Fock space F2

ðkÞðℂnÞ is uni-
tary equivalent to

V−1
X TaVXφ

	 

zð Þ = V−1

X TaVXφ, K kð Þ
z

D E
= TaVXφ, VXK

kð Þ
z

D E
= aVXφ, K

kð Þ
Xz

D E
= aXφ, K kð Þ

z

D E
= TaX

φ
	 


zð Þ,
ð109Þ

where aXðzÞ = aðXzÞ. Analogously, by Corollary 32, the Toe-
plitz operator Ta acting in the poly-Fock space F2

kðℂnÞ is uni-
tary equivalent to TaX

.
Using the above results, we obtain the following general-

izations of Proposition 29.

Theorem 33. The C∗ -algebra T ðkÞ∞ generated by Toeplitz
operators with extended horizontal symbols acting on the true
homogeneously poly-Fock space F2

ðkÞðℂnÞ is unitary equiva-

lent to the C∗ -algebra T ðkÞL ,∞ generated by Toeplitz operators
with extended L -invariant symbols.

Theorem 34. The C∗-algebra T k
∞ generated by Toeplitz

operators with extended horizontal symbols acting in the
poly-Fock space F2

kðℂnÞ is unitary equivalent to the C∗ -alge-
bra T k

L ,∞ generated by Toeplitz operators with extended L

-invariant symbols.

Finally, using Theorems (25) and (26), we have the
following.

Corollary 35. The C∗-algebra T
ðkÞ
L ,∞ generated by Toeplitz

operators with extended L-invariant symbols acting on the
homogeneously poly-Fock space F2

ðkÞðℂnÞ is isomorphic and
isometric to the C∗-algebra DðkÞ.

Corollary 36. The C∗-algebra T k
L ,∞ generated by Toeplitz

operators with extended L-invariant symbols acting on the
poly-Fock space F2

kðℂnÞ is isomorphic and isometric to the
C∗-algebra Dk.
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