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We introduce the so-called extended Lagrangian symbols, and we prove that the C*-algebra generated by Toeplitz operators
with these kind of symbols acting on the homogeneously poly-Fock space of the complex space C" is isomorphic and
isometric to the C*-algebra of matrix-valued functions on a certain compactification of R" obtained by adding a sphere at

the infinity; moreover, the matrix values at the infinity points are equal to some scalar multiples of the identity matrix.

1. Introduction

Let m € N, the one-dimensional m poly-Fock space F2 (C)
C L,(C, du) consists of all m-analytic functions ¢ which satisfy

IV L (2,9 0 (1)
5z) Yo \ax T'ey) T

where dy = e *%dxdy is the Gaussian measure in C and d
xdy is the Euclidian measure in R*=C. Further, the one-
dimensional true poly-Fock space of order m is given by

F(,)(C) = F,,(C)oF;, ,(C). (2)
In the case of several variables, for n € N, the n-dimensional
Gaussian measure in C" is given by du,(z) = n’”e"z‘zdxdy,
where dxdy is the Euclidian measure in R*". We have that
the space L, (C", du,,) is the tensorial product of # components
Ly(C" du,) = L,(C, dp) ® --- ® L, (C, dy), 3)

and the Fock space F?(C") is

F*(C")=F*(C)® - ® F*(C). (4)

Given a multi-index a = (ay, -
space F2(C") of order a is given by

-, a,) € Z!, the poly-Fock

(€)= & F(©) (5)

—

Similarly, the true poly-Fock space F %a) (C")is

Fly(€")= & F},\(C). (6)

—_

In [1], Vasilevski introduced the poly-Fock spaces over C"
and he obtained the following decomposition formula:

Ly(C'du,) = & Fiy(C),. (7)

loj=n

Moreover, he showed that the true poly-Fock space
F%a)((C”) is isomorphic and isometric to L,(R",dx) ® H,_;,
where H,_, is the one-dimensional space generated by the
function
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and each h, _,(y;) is a Hermite’s function in R.
]

Another treatment of the poly-Fock spaces can be found
in [2], where the author characterized all lattice sampling
and interpolation sequences in the poly-Fock spaces. He
introduced the polyanalytic Bargmann transform from
vector-valued Hilbert spaces to poly-Fock spaces, and he
showed the duality between sampling and interpolation in
polyanalytic spaces and multiple interpolation and sampling
in analytic spaces.

The Toeplitz operators acting on the Fock space have
been investigated by several authors. For example, in [3],
the authors studied Toeplitz operators acting on the one-
dimensional Fock space and on true poly-Fock space whose
symbols are bounded radial functions that have a finite limit
at the infinity. They considered an orthonormal basis of nor-
malized complex Hermite polynomials to prove that the
radial operators are diagonal. In [4], the authors studied
Toeplitz operators acting on the one-dimensional poly-
Fock space with horizontal symbols such that the limit
values at x=00 and x=-00 exist. They proved that the
C~-algebra generated with this class of symbols is isomor-
phic to the C*-algebra of functions on R with values on
the m x m matrices, whose limit value at x=00 and x=
—0o are equal to some scalar multiples of the identity
matrix. In [5], the authors introduced the Toeplitz opera-
tors with Z-invariant symbols over the Fock space F?(C")
for a Lagrangian plane Z, and they proved that the corre-
sponding C*-algebra generated is isometric to the C*
-algebra generated by Toeplitz operators with horizontal
symbols.

On the other hand, the spaces of homogeneously polya-
nalytic functions have been studied recently. For example, in
[6], the authors computed the reproducing kernel of the
Bergman space of homogeneously polyanalytic functions
on the unit ball in C" and on the Siegel domain.

The main result of this paper is the following: the
C~-algebra generated by Toeplitz operators with
extended Lagrangian symbols acting on the homoge-
neously poly-Fock space over C" is isomorphic and iso-
metric to the C*-algebra of matrix-valued functions on a
certain compactification of R" with the sphere at the
infinity; moreover, the values at the infinity points are
scalar multiplies of the identity matrix.

This paper is organized as follows. In Section 2, we
define the so-called homogeneously poly-Fock space and
study some of its properties. In Section 3, we prove that
every Toeplitz operator with a horizontal symbol acting on
the poly-Fock (or homogeneously poly-Fock) space is uni-
tary equivalent to a multiplication operator by a matrix-
valued function. In Section 4, we introduce the concept of
extended horizontal symbol and we describe the C*-alge-
bra generated by Toeplitz operators with this kind of sym-
bols acting on both the poly-Fock space and the
homogeneously poly-Fock space. Finally, in Section 5, we
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define the extended Lagrangian symbols and we prove that
the C*-algebra generate by Toeplitz operators with these
symbols acting on the homogeneously poly-Fock space is
isomorphic to the C*-algebra generated by Toeplitz opera-
tors with horizontal symbols acting on the same space.

2. Poly-Fock Spaces over C"

In this section, we define the homogeneously poly-Fock
space and we review some facts about the classic poly-Fock
spaces.

For z=(z,+,z,) € C", we denote x = (x|, -, x,,), y =
(71> y,) € R", where z; = x; + iy;. The Fock space F*(C")
is given by

F*(C")=F*(C)® - ® F*(C). (9)

We have that F?(C") is a Hilbert space with the usual

inner product of functions:

1

:ﬁ

t0)= 2 | sfo@eassy. o)

Moreover, the Fock space F?(C") is a reproducing kernel
Hilbert Space, whose reproducing kernel is given by

K(w,z) =K, (z) =Y. (11)

For the multi-index «a = (ay, -+, «,) € Z", we recall the
operations |a|=a; + - +a,, a!=a,!---a,!, and z%=2z]" -
zy", with z € C". Also, for a, B € Z", we have a+ 3= (a, +
B> a, £ B,). We consider the set Z" with the lexico-
graphic order. Finally, for a = (a,, -+, a,,) € Z, we write P
(a)=a, -+~ a,. For the multi-index 1,=(1,-:-,1), some-
times, we write 1 instead of 1, as long as no there is no
confusion.

Let « € Z" be a multi-index and consider the poly-Fock
space F2(C") defined in (5), since every one-dimensional
poly-Fock space Fﬁj((C) is a direct sum of true poly-Fock

spaces whose order is less than or equal to a;, see [1], p. 5-6,
we have

F:(C") = ® F(ZM((C"),

AeZ!

+

(12)

Note that the number of components in (12) is equal to
Pla)=a; - a,.
Now, let k € N be a natural number such that k > n.

Definition 1. The homogeneously poly-Fock space of order
k over C" is given by

Fiy(C") = ‘;I‘ikFia)(Cn)' (13)
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The number of multi-indices whose absolute value is

k-1
exactly k is equal to sy = < )
n-1

Definition 2. The poly-Fock space of order k in C" is given
by

" k
F{(C") = 2,

F%a) (c. (14)

The number of multi-indices whose absolute value is less
k
k-n)

Remark 3 (see [6], Proposition 2.7). The authors introduced
the concept of homogeneously polyanalytic function; this
concept is very important in the development of this paper.
Also, they proved that homogeneously polyanalytic spaces
are invariant under linear change of variables.

than or equal to k is equal to s; = (

In [1], Vasilevski applied the “creation” and “annihila-
tion” operators in the Fock spaces and he proved the follow-
ing results:

(1) All true poly-Fock spaces are isomorphic one to each
other

(2) The explicit expression of the functions y(z) in the
true poly-Fock space F%a)((C”) is given by

a-1)!
y(2) = Aezzn ()M ﬁz““—*akp(z),
/\,50;;

(15)

where ¢(z) € F>(C") and 0"¢ = alM(p/az'l\1 Yo

(3) The reproducing kernel of the true poly-Fock space
F%a) (C") can be obtained applying the “creation”
operator to the reproducing kernel of the Fock space
F*(C")

Remark 4. Using the creation operator defined in [1], we have
that the homogeneously poly-Fock space F(Zk)((C”) and the

poly-Fock space F;(C") are reproducing kernel Hilbert spaces.

On the other hand, for a = (a;, ---, ) € Z] and y = (y,,
-+, ¥,) € R", consider the function introduced in (8):

A0= [ (), (16)
j=1

where a —1=(a; - 1, -+,

—1) and each haj,l(yj) is Her-
mite’s function in R. The set {iza,l(y)}, with |a|=n, -+, 00,

forms an ortonormal base in the space L, (R", dy). We denote
H, ,  L,(R", dy) to the one-dimensional space generated by
the function h,_, (y), whose orthogonal projection is given by

(Pa¥) ) =hea )] v0histmdn. (17)

Now, we consider the operators

Uy : L(C" dy,) — Ly (R™, dxdy), (U,9)(x. y)
— n—n/Ze—((xHy)(x—iy))/2(p(x + 1)/)
U,=1®F : L,(R", dx)® L,(R", dy) — L,(R", dx) ® L,(R", dy),

(18)

with (Fy)(y) = (27r) ™ [ pue ™y (n)dn

1 1

Ui + Ly (B) — Ly(R¥). (Usf) ) = (5 6 09), 5 (6-9) ).

(19)
for 2= (21,+1,2,) €€, = (x5, and y= (1, -+,3,)
€ R". See [1], the operator U=U,U,U,; from the space
L,(C", du,) onto L,(R*,dxdy)=L,(R" dx)® L,(R", dy)
satisfies that the ~image of the true poly-Fock space F%a)((C”)
is L,(R", dx) ® H,_; and the orthogonal projection B, of
L,(C" du,) onto Fix) (C") is unitary equivalent to the
operator

UB(O() U71 =I®ﬁ<0€—1)' (20)
Analogously, for « € Z7 and k € N, we define the spaces

® k

H,_, = /\? Hy ,Hy= H, landH = @ H, |,
iSQ; |a|=k laj=n
AeZ} acZ! acZ!

(21)

with respective orthogonal projections

Eet))= Y sy J ()i ()
A<«
/XEZ”
P = i:ltx—l i:l(x—l d:
(Pow) ) “|Zk 0] vk e )
ocEZ”

Fa)o)= Y h,“(yj YD) hor (7).
L"é'zn

If we denote by B, B|y), and B, the orthogonal projections
of L,(C" du,) onto F(C"), ka) (C") and Fi(C"),



respectively; thus,

UB,U'=I®P

a1
UByU ™' =1®P, (23)
UBU'=I1®P,.

Consider the isometric inmersion Ro,(a) : L(R", dx)
— L, (R, ddy), defined by (Ry q1f)(5.9) =S (0)h, 1 ().
(R*", dxdy) — L,(R",

P)(x) = [pup(x, Tl)fl,xfl(n)dn. These
operators satisfy the following relations:

Whose adjoint operator Rg’(a) L,
dx) is given by (R O(a

Ry oy Ro o =1 Ly(R", dx) — Ly(R", dx),
RO’(@R;)(‘X) =1® P : L,(R™, dxdy) — L, (R™, dxdy).
(24)
Now, we define the operator fQ(a) =R, (U from L,(C",

du,) onto L,(R",dx), and the adjoint operator INZ?“) =U*
IQO,(“), which satisfy

L,(C", du,) — Fiyy (C"), (25)

L,(R", dx) — L,(R", dx). (26)

For the multi-index a = (ay, ---, ,,) € Z", remember that

P(a)=a, --- a,, so we introduce the isometric inmersion
Ry : (L, (R, dx))P — L, (R", dx) ® L,(R", dy), defined
by
(Roof)(m3)= X f1®) = f@)IN ()]
Ai<a;
AeZﬁ
(27)
where the P(a)-tuples f=(f,),_, and N, (y)=

(M1 (¥)); <, are taken over all multi-indices A = (A,, ---, A,,)
whose entries are less than or equal to each of the correspond-
ing entries of . The adjoint operator R(;,zx : L,(R*, dxdy)

— (L,(R"), )"

is given by

(RS,M) (x)= (J an(x))’)’;Aq()’)dJ’) Ai<a;
R AeZ" (28)

= qu)(x’ YNy (y)dy.
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We have

Ry Ry =1 (Ly(R", )" — (Ly(R", dx))",

Ry Ry, =1®P, | : L,(R™, dxdy) — L,(R", dx) ® H_|
(29)
The operator R, = ﬁ;)a U from L,(C",du,) onto
(L,(R", dx))*® and its adjoint R, = U*R,,, satisfy
R.R, =B, : L,(C",du,) — F*(C"), (30)

R.R. =1: (L,(R", dx))*® — (L,(R", dx))*@.  (31)

Similarly to (27), we define the operators

Fog ¢ (La(R" )"0 — L (R, dxdy), (Rogf ) () = 09 [Ny )]

Roy : (Ly(R", dx))% — Ly (R*", dxdy), (Ryif) (x ) = f(x) [N (7)] "
(32)

The arrangement N ;) (y) is formed by the functions h,
(y) over all multi-indices « such that || =k. Analogously,
the functions in N, (y) are indexed with the multi-indices
whose absolute value are less or equal to k. Remember that

k-1 k
Stk = and s, = . The adjoint operators
n-1 k-n

¥ and Ro y are defined similarly to (28). Finally, the opera-
tors R( K= R o Us R, = R0 U, and its adjoint operators satisfy

R Ry = B+ Lo(C" dp,) — F3 (C),
R(k)R< k)= =1: (LZ(]R” dx)) k) — (LZ(IR",dx))SU‘), (33)
RkRk :Bk : Lz((cn, dt"ln) SN Fﬁ((cn),

ReR, =1 : (Ly(R", dx))% — (L,(R", dx))*%.

3. Toeplitz Operators with Horizontal Symbols

In this section, we define Toeplitz operators with certain
class of symbols acting on the poly-Fock, true poly-Fock,
and homogeneously poly-Fock spaces over C". And, we
prove that this operators are unitary equivalent to certain
multiplication operators. Let a(z) = a(x;, -+, x,,) be a function
in L (R", dx) depending only on x=(Rez,, -, Rez,), we
call to this kind of functions horizontal symbols. Henceforth,
a € Z! denote a fixed multi-index and k € N a fixed natural
number.

Definition 5. Let a(x) be a horizontal symbol. The Toeplitz

operator with symbol a(x), acting on the true poly-Fock
space (or poly-Fock space) of order « is defined as

<p€F2 (C") = B, (a<p)eF2 (c"), (34)
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Toq @ € Fo(C") > By(ag) € Fo(C"). (35)

Similarly, the Toeplitz operator with symbol a(x), acting
on the homogeneously poly-Fock space (or poly-Fock space)
of order k is defined as

ot ¢ € Fliy (C") > By (ag) € Fy (C"), (36)

Ty, : @ € Fi(C") = By(ag) € Fy(C"). (37)

The following theorem characterizes the Toeplitz opera-
tors with horizontal symbols acting on the true poly-Fock
space F(,, (C").

Theorem 6. Let a(x) € L (R", dx) be a horizontal symbol,
then the Toeplitz operator T ) , acting on Ffu) (C") is unitary

equivalent to the multiplication operator y(“)’“lzﬁ(a)T@)a

ﬁ;a) acting on L,(R", dx) where the function y\¥ is given by

y )= | a(52) (hea) (ust0) (o9

and h,_,(y) is defined in (8).

Proof. Remember that ﬁ(a) = Rg,(a) U and using (25) and (26),
we obtain

Ry T @R a) = Rieg Be) @B R ) = Rioy Rigy Ry R Ry Ry
=R, 0 UsUaUga(x)UT U UG Ry

1]
P>l

a) aR<

@)=

(
* 1% ~ % X+ y
0. U3a(%) U3 Ry ) = Ry (9@ ( 7 )Ro (@

Il
>

(39)

Explicitly for a function f € L,(R"), we have

(Biwa (52 ol ) 91= [ a2 )0 (hucs)’
~dy =y (x) - f(x).
(40

We call to the function p{*»%(x) the a spectral function
for the Toeplitz operator with horizontal symbol a acting on
the true poly-Fock space F{,,(C").

Naturally, we can extend the above result to the case of
the Toeplitz operator with horizontal symbols acting on

the poly-Fock space F2(C"). O

Theorem 7. Let a(x) € L (R", dx) be a horizontal symbol;

thus, the Toeplitz operator T, , acting on F.(C") is unitary
equivalent to the multiplication operator y**(x)I =R,T,,
R, acting on (L,(R", dx))"®

), where the matrix y&e is given

=] a2 NN )

That is, each component function is equal to

= [ a2 bk @)

with A, p € 7/} such that A;, y; < a; and N, (y) is defined in (27).
Proof. Since I~2a = ﬁ;’aU and using (30) and (31), we obtain

R,T, R RBaBR =R,R'R,aR.R.R RaR

o oat o Qoo a”at o

= RO,oc U;U,U,a(x) U1 Uz Us lRo,a

~ % 15 ~ % X+y\~
=R, Usa(x)U; Ry, =Ry ,a W Royq-

(43)

Ly(R", dx))""

Boua (2 ) Roaf | )= s (o (72 s, 00
= [ () st | vt
dy= | a(S2)NTNLOU Iy =10 )
(a4

Calculating for a function f € (

We have the next two theorems, whose proofs are anal-
ogous to the above one. O

Theorem 8. For a horizontal symbol a(x) € L,

Toeplitz operator T

Fock space ka)((C”) is unitary equivalent to the multiplica-

YO ()T = Ry T 1y R
, where

(R", dx), the
)a acting on the homogeneously poly-

tion  operator

(L,(R", dx))™®

acting  on

P = | a(S2) 0] N0 @)

Theorem 9. For a horizontal symbol a(x) € L (R", dx), the

Toeplitz operator Ty, acting on the poly-Fock space F;(C")
is unitary equivalent to the multiplication operator y**(x)I
(R, dx))*

=R, T} .R;, acting on (L, ¥, where

#w=] o2 Mo

We call to the matrices y*“(x), y%(x), and y%%(x) the
spectral matrices correspondent to the Toeplitz operator
with horizontal symbol a(x), acting on the poly-Fock space



F;(C"), on the homogeneously poly-Fock space Ff(C"),
and on the poly-Fock space F;(C"), respectively.

Remark 10. The components of the spectral matrices y**(x),
y%4(x), and y*“(x) can be expressed as a convolution of

functions a = (szsz), where a(x) = a(x/v/2) € L, (R"). Since
IZAfz# €L, (R"), from [7], p. 283, we guaranteed that they
belong in the set of uniformily continuous functions C,(R").

4. The C*-Algebras Generated by Toeplitz
Operators with Extended
Horizontal Symbols

In this section, we introduce the concept of extended hori-
zontal symbol and we describe the C*-algebras generated
by Toeplitz operators with these symbols acting on the
poly-Fock spaces and on the homogeneously poly-Fock
spaces. Following the terminology and the notation intro-
duced in [8], Section 3, we have the following.

Definition 11. Let a(x) € L (R") be a horizontal symbol. We
say that a(x) is an extended horizontal symbol if there exists
a function a_, (x) € C(S") such that

a(x) - ag, (ﬁ) ‘ 0. (47)

We denote by HS(R") the set of extended horizontal
symbols. We note that HS(IR") equipped with the supre-
mum norm is a C*-subalgebra of L_ (R").

lim sup
R=00)>r

The compact of maximal ideals of the C*-algebra HS
(R") coincides with the compactification of R”, denoted
by R =R"U S, obtained by adding an “infinitely far”
n-sphere S™;'. This compact space is isomorphic to D".
We can identify the elements s., € S”." with the points s €

$"! as follows. For every extended horizontal symbol a € H
S(R"), we have

lim a(ts) = a(se) = o). (48)

We identify the extended horizontal symbols a(x) with its
extensions to the complex space C", where x = Re z.

The following lemma shows that the different spectral
matrices y**(x), y¥¢(x), and y*(x), corresponding to Toe-
plitz operators with extended horizontal symbol a(x), posses
a limit value to infinity in any direction. We write y=(x) to
refer to any of this spectral matrices.

Lemma 12. Let a(x) be an extended horizontal symbol and
let x, € S"™L. Then the spectral matrix y>*(x) satisfies

lim 5 (x) (1) = 4o (%)1- (49)

t—00

Proof. We apply the dominated convergence theorem. Let
A, p € Z7 be two multi-indices corresponding to some entry
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of the spectral matrix. For each m € IN, we consider the func-
tion F,, : R” — R defined by

Since /1y (y):h, 1 (y) € L,(R"), and a(x) € Ly, (R") we
have F,,(y)e€L,(R"). Note that the integrable function
lalloollr_y (7)1, ()] limits to F,,(y) for all m € N. Since
the function a,, is continuous, we have

lim a
m—00 0

( Xo + (1/m)y

o+ <1/m>y||> =) G1)

and using (48)

lim | lim a(w)}

o0 [f—’oo 1% + (Lm)y]|

- lim [nma(wﬂ — gy (x0).

m—00 [ t—00 \/E

(52)

We can take this limit along the line t = m; thus,

and F,,(y) — aoo(x)lal,l(y)fly,l(y) when m — 00. There-
fore,

lim j(’”é Y ) o ) ()

m—00

X i (54)
=00 )] I 0 9y = 0 ()3

Let a= (e}, -, ) € Z" be a fixed multi-index and k €
N be a fixed natural number. O

Definition 13. We introduce the following C* algebras,
which are very useful to our study

(i) Denote ?g‘) ={y@4: a(x) e HS(R")} to the set
of all horizontal spectral functions
(ii) Denote & = {y*® : a(x) e HS(R")} to the set of
all horizontal spectral matrices of order «
(iii) Denote ?% = {p® . a(x) e HS(R™)} to the set of
all horizontal spectral matrices of order exactly k

(iv) Denote @ = {y*? : a(x) e HS(R")} to the set of
all horizontal spectral matrices of order at most k

(v) Denote by 7*) the C*-algebra generated by the set
of Toeplitz operators T ), acting on the true poly-

Fock space F(Z‘x)((C“), with a(x) € HS(R")
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(vi) Denote by 77 the C*-algebra generated by the set
of Toeplitz operators T, acting in the poly-Fock
space F2(C"), with a(x) € HS(R").

(vii) Denote by 7) the C*-algebra generated by the set
of Toeplitz operators Ty, acting on the homo-

geneously poly-Fock space F%k)((C"), with a(x) €
HS(R")

(viii) Denote by 7 the C*-algebra generated by the set
of Toeplitz operators T} , acting in the poly-Fock
space F(C"), with a(x) € HS(R")

We have the following results.

Corollary 14. The C*-algebra T is isometrically isomor-

[ee)

phic to the C*-algebra (SSZ) generated by ?g‘).

Corollary 15. The C* -algebra T2 is isometrically isomor-
phic to the C* -algebra ® generated by G

Corollary 16. The C* -algebra TX) is isometrically isomor-

(o)

phic to the C* -algebra (35() generated by ?5{).
Corollary 17. The C* -algebra T* is isometrically isomor-
phic to the C* -algebra & generated by G

Now, we describe the C*-algebras @55 R (555{), and (SikH,
generated by the different spectral matrices. First, we start
with 6. Consider the C*-algebra defined by G, =Mp(y
(C)® C(R"USL"), which consists of the algebra of all P
(a) x P(«) matrices with entries in C(R"US!"), where
P(a)=ay -+ a,. Now, we introduce the C*-subalgebra D,
given by

D, = {M €G, : lim M(tx) = M(x,) = CI, forallx € S" " }

t—00

(55)

We note that % is a C*-subalgebra of D,. In fact, we
prove that G =®,_. For this, we use a Stone-Weirstrass
theorem. We need to show that & separates the pure
states of D,.

Since D, is a C*-bundle, the set of all its pure states is
completely determined by the pure states on the fibers:

Mp(C), ifxeR",
o,x)=4 (56)
C, ifxzxooeg’g;l.
So each pure state of D, has the form
f(M)=f,(M(x)), M €D,, (57)

where x € R"US” ! and f, is a pure state of D, (x). Every

pure state in the matrix algebra Mp,)(C) is given by a func-
tional f, defined as

f,(Q)=(Qv,v), Q € Mp(,(C), (58)

with v € SP@ = {z ¢ C*@ : |z| = 1}. Moreover, if v, w € S**)
such that f = f ; thus, v = fw where t € C and |t| = 1, see [9]
for more details.

In consequence, the set of all pure states of D, consists
of all functional of the form

frop(M) = (M(x)v,v), M €Dy, (59)

with x € R" U S"! and v € SP@,

In the cases of the C*-algebras (ng) and ®;, we consider
the C"-algebras €)= M, (C)® C(R"US') and G, =
M, (C)® C(R"U S 1). And their corresponding C*-subal-
gebras D ;) and D,. For this two C*-subalgebras, the pure
states are determined in a similar way to (59). Remember

N k-1 d k
that s, = and §; = .
® n—-1 ¢ k—n

Now to fixing ideas, we return to the previous case ®~;
the other ones are totally analogous, and we analyzed them
at the end of this section.

For each element x, € S!, we have only one pure state

for any v, w € SP@, that is, Jrow=FSx_w To separate the
pure states corresponding to two different elements x,
and x, o, in S/, using the identification given by (48), we
note that the corresponding elements x,, x; € S"™! differ at
least one coordinate. Suppose that the j coordinate of this
vectors is different, that is, x,; # x, ;. Thus, we consider the

horizontal extended symbol C/ : R" — C defined by

0, ifx=0eR",

Cj(x) = (60)

X
7. inotherwise.
&

For x=(x, - x,) € R" with x| =1, we have C/_(x)
=lim, . ,C/(tx) = x;. Clearly, C!, is a continuous function.

Now, consider the spectral matrix y*“, for every x,, we
have

I

0’V

(1) = (7 G v) = () = (61)

Hence, for x, , # X, o, We have

o (@) (@) (62)

0,00

Thus, the spectral matrix y*¢ (x) separates the corre-
sponding pure states.

In the case when we have the pure states correspond-
ing to the points x, € R" and x, , € S/, we consider the



set [0,p] = [0,p,] % --x[0,p,] with p=(p},-p,) € (R")",
and the function c(x) = ¥, ,(x). We have c,(x)=

write y*P(x) instead of y*(x). Notice that

Y (x) = )" dy, - dy,

V2p,—x, V2p, -,
[ N

~Xn X1

j N, () [Ny ()] dy.
[-xV2p-x]

(63)

For x, € R", we have
Sa (™) = (¥ xevv) = <J No()INo()] " dyv, V>
[~ev2p~]

- j[_x,ﬁp_x] (N )N )]

-dy=J (1 Ny () (No (), V)
[xvap—]

~dy= W\ 2dy.
Y J[—x,\/ip—x] [(vs No(0))|"dy
(64)

Note that f, (y*)>0 because |<v,N,(y)> > >0,
except in a set of measure zero. On the other hand, if x; €

S"! is the corresponding element of x, ., € S/.!, we have

Lo (V) = (VP (¥1,00)1 V) = (oo () Ivs ) = 0. (65)

Loos
Therefore, the spectral matrix y** separates the pure states
of the points x, and x, .
To separate the pure states corresponding to two points
Xy, X, € R", we consider again the extended horizontal sym-
bol c(x) = x, P]( x). From (64), we define the function h,(y)

= |<v, N (y) > |>. We can express this function as h,(y) =
qv(y)e’(yf*“‘%), with

-1/2

a.0)=| ¥ v(@ar) THL0)], (66)

AeZ?
Ai<a;

where H,_,(y) is the product of the n one-dimensional
Hermite polynomials H) _,(y,), - H _1(y,), s0 q,(y) is a
nonnegative-valued polynomial of degree at most 2 | &t | —21.
The following lemma provides us a tool to prove that the
C*-algebra ®! separates the pure states of D, of the form

fywr f o Where X #x) and v,w € SP@)

Lemma 18. We assume that v,w€§P<“),x0, x; €R" and
Y e®y with pe (RN . If f (y*P(x)) =1, ,(y*(x))
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for all vector p, then x,=x,. Moreover, |(v,N,(y))|° =
|(w, N,(y))|° for all y € R™.

Proof. The hypothesis f, ,(y**(x)) =f,
alent to the following equation:

»(Y*P(x)) is equiv-

1>

J a,0)e Oy = | 4,0)e VT dy.
[’Xox\/zp’xo] [’Xlxﬁp’xl}
(67)
Taking the partial derivative 0"/0p =0"/dp, --- 0p,, we
obtain
q, <\/_p X ) [ (V2p,=%0,) 4+ +(\/_P _X()n) ]
(68)

(VI [t s

thus,

M=

(\/Epj—xovj) B (\/ij—xU) 2}

0.(V2p-x) =4, (V2p -, )e L‘

M:

2V2p; (x5 x01)+(xoyj)2‘(x1yj)2}

=qw(ﬂp-xl>i

(69)

Since g, and g, are polynomials, this fact implies that
the exponential part in the above equation is constant for
all p e (R")". Hence, xo,j=xy; for all j; therefore, x, =x,.
Using this fact, it is clear that q,(v/2p —x,) = q,(V2p — x;)
, for all p, that is, |(v, N, (y))|* = |(w, N, (y))|* for all y € R".

As consequence of the above lemma, if x;, # x; and v, w
€ SP@, then there exists p, € (R*)" such that F g (Y00 ()
) #f 1, (Y*P2(x)); hence, the spectral matrix y*Po separates
the pure states f, , and f,

To complete the proof of the fact that the C*-algebra &
separates all the pure states of D, only missing step is to sep-
arate the pure states of the forms f and f, w where v, w
€ SP@ and x € R”. For this, we need to deduce some useful
facts before. O

For the multi-index a=(«;, -+-, ), we consider N(y)

= (1 (7)),ca,- From (8), we have by, (y) =y, (7,) -
hy, _1(y,), where hy_,(y;) is a one-dimensional Hermite

function. We can consider that all correspondent one-
dimensional Hermite’s polynomials H, _;(y;), whose

degrees are equal to A; — 1, are monic polynomials. Hence,
for every multi-index A such that A; < «;, we can write

Ry R
n") i /ZH,\,-1()’1) o Hy ()
(70)

ha() =222 (- 1)!
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Now, for y € R— {0}, we construct the vector y € R"
with the form

‘)7 — (ytxz...aﬂ’y%...{xn’ '-‘,y‘x”’l'“",yu",)’)- (71)

Evaluating this vector in Hermite’s polynomials corre-
sponding to the multi-index A = (4, -+, A,)

H/\I—l()’azmw") ’H)Lz—l()’%ma") H/\n,l—l(}’“") “Hy 1(»),
(72)

we obtain a polynomial dependents on only one variable,
whose degree we can calculate with the equation:

ph= [nZI(M -

=1

Da,, - ocn] +(A,-1). (73)

Consequently, evaluating y in /1, |, we can write

-172

Moy (?) = ZWWZ((A— ! 77”) e @Q"’* +ay P tay, y + 1).
(74)

From (73), we notice that for two different multi-
indices A and y, the corresponding degrees satisfy p, #p,,.

Moreover, for 1,=(1,---,1), we have p; =0. And for a=

a’-.-)a N
( 1 n)

Pa= {Z(“j_l)“ﬂl "'“n} +(a,=1)=a; - a,-1=P(a) - 1.
(75)

Therefore, the multi-indices A € Z' such that A; < «; for
every i generate different polynomials of degrees between 0
and P(«)— 1. Now, for each of these multi-indices A, we
consider vectors ﬁ defined by (71), and we define the
matrix N whose dimension is P(«) x P(«) and the A™
row is equal to N,(y;). Since the components of N,(y)
are sorted ascending by the lexicographic order, we claim
that the matrix N has the form:

Ly, +ay y1 +by, +b Ao
N=C,-D- : : ,
L yatay  ya+by,+b /AR
(76)
where
-1/2 — 2
- U2 (A1), D=diag 4 e 1742 .
C, Al;n (( )V > iag {e “ ez
/\E<(X+ .“ig“i
(77)

We can calculate the determinant of N using multiline-

9
ality and the VandermondeA’s formula; we obtain
Ly 2
detN=T] z‘HW((A— 1)! ﬂ”) e ¥
AeZ?
Ai<a; (78)
[I (-»)*o
yoeZ!
1,<y<é<a

Example 1. Consider n =3 and the multi-index a = (2,4, 1).
We have P(«) =8 and the multi-indices, arranged with the
lexicographic order, whose coordinates are less or equal to
the corresponding coordinates of « are

1,=A=(L11),

n

As=(2,1,1),

A =(1,2,1),
Ae=(22,1),

A =(1,3,1),
A =(2,3,1),

A= (1,4,1),
Ae=(241)=a
(79

In this case, the vector y = (y*,y, ). From (73), we can
calculate the different degrees, for example for A, = (2,3, 1),

pL=1-4+2-1+1-1=6. (80)
And for the rest of multi-indices, we have

Py =0 py, =L py =2, py =3
Py, =4 P =5 Py, =6, Py =7

(81)

Now, we can continue with the separation of the pure states.

Lemma 19. Given v,w € S*@ and x € R" being fixed, con-
sider the spectral matrices y*P,y*" If f_ (y*P) = f ., (¥*"),
for all p,r € (R*)" then v =tw, with t € C and |t| = 1.

Proof. From Lemma 18, we have |<v, N (y)>[ =

|<w, N,(y) > |* for all y € R"; thus, there exists a function
0 : R" — C such that

(v, No (7)) =7 (w, N (). (82)

For u € S*®, we define the function H, : (R*)”" —
C given by

V2p-x
1N, () [N, ()]
- (83)

V2r—x
-dyj No () [N, ()] dy.

—X

Hu (P’ T) :fx,u (yd,pytx,r) = J

Without loss of generality, we can assume that x=
(0,--+,0) e R", just to simplify the calculations. Taking
the derivative of order 2nm of the function H,, with
respect to p and r, we obtain
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aanu p r\ - . AT
o (L5 25) N NN N )

= <Nzx(p)’ u><Noc(r)’le(p)><u’ Ntx(r)>‘
(84)

The hypothesis H,=H, implies that 9*"H,/dpdr =
0*"H,/dpdr. Using (82) and (84),

(Na(p), w)(No(r), No(p)) (w, Ny (1))
= ¢ OPPNN, (p), w) X X (No(r), No(p)) (w, Ny (1),
(85)

for all p,re(R")". Clearly, there exists r, € (R*)" such
that (w, N, (ry)) #0. Thus,

(1= €D ) (N (p), w) (N (1), Ne(p)) =0 (86)

Notice that (N, (p), w)(N,(r,), N,(p)) is a nonzero
polynomial with respect to p; thus, the above equation
implies that the function 6 is constant. From (82), we
obtain that (v—e®w,N,(y)) =0, for all yeR". Using
(78), we have v—eow=0 and v=e%w. O

Finally, we consider the case of the C*-algebras (Sif,% and

©}. Since the proof of the Lemma 19 is independent of the
dimension P(«) and the nature of the multi-indices A and y,
we can obtain the following analogous results.

Lemma 20. For v,w € S* x,, x, € R" and y¥? ¢ (‘55() with
pe®).Iff, (yWP()=f, ,(y"(x)) for all vector p,
then x,=x;. Also, [(v, N N = (w, N (W) forall y e
R"

Lemma 21. For v,w € S%,x),x, € R" and y* € &} with p
€ (RY)" Iff, , (Y (x)) = £y, (y** (x)) for all vector p, then

o
X, =x,. Also,

(v NI = [{w, N(9))I” for all y € R".

On the other hand, we consider the C*-algebra &5{) and
the multi-index

k,=(k—(n-1),-, k- (n-1)). (87)

If a=(a, -+, a,) is a multi-index such that |« | = k then
all its components satisfy a; <k — (n—1). So, if we construct
the P(k,) x P(k,) invertible matrix N as in (76), correspond-
ing to the multi-index k,, and apply it to the vector

(0,~-~,v—ei90w,--~,0), (88)

where the coordinates of v —ew € S occupy the same
positions that the multi-indices whose absolute value is
equal to k in the matrix N. Thus, we can prove the following.
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Lemma 22. Given v, w € S* and x € R" being fixed, consider
the spectral matrices y*2, p{k)r, Iffx’v(y(k“’) :fx’w(y(k”),
for all p,r € (R*)" then v=tw, with t € C and |t| = 1.

Analogously, for the case of the C*-algebra ®f and the
set of multi-indices with absolute value is less than or equal
to k, we have the following.

Lemma 23. Given v,w € S% and x € R" being fixed, consider
the spectral matrices y*P, Y If f _ (Y*P) = f ., (y*"), for all
p.re(RY)" then v=tw, with t € C and |t| = L.

For the noncommutative Stone-Weierstrass conjecture,
let & be a C*-subalgebra of a C*-algebra ¢/, and suppose
that & separates all the pure states of & (and 0 if & is non-
unital). Then, of = A.

In [10], Kaplansky proved this conjecture for a C*
-algebra type L. In consequence, we prove that the algebra
6" is equal to D,. From Corollary 15, we have that the alge-
bra of Toeplitz operators I is isometric and isomorphic to
the algebra ®,. Analogously, applying the Corollary 16 and
the Corollary 17, we have that 7 and 7%  are isometric
and isomorphic to D) and Dy, respectively. In summary,
we have the following results.

Theorem 24. The C* -algebra T is isomorphic and isomet-
ric to the C*-algebra D,. The isomorphism is given by

T oot Taa = (SymToa)(x) =y™(x), (89)
where y*?(x) is given in (41).

Theorem 25. The C* -algebra T gf)) is isomorphic and isomet-
ric to the C* -algebra D ;. The isomorphism is given by

TE Ty (gym T(k)ﬂ) (x)=p®a(x),  (90)

where y4(x) is given in (45).

Theorem 26. The C*-algebra T* is isomorphic and isomet-
ric to the C* -algebra ®D,. The isomorphism is given by

T oot Tia = (Sym Tieg) (x) =y (%), (91)
where Y4 (x) is given in (46).

Corollary 27. The C*-algebra %) is isomorphic and isomet-
ric to the commutative C* -algebra C[R" US!']. The iso-
morphism is given by

T Tar (m Ta) (¥) =¥ (), (92)

where Y9 (x) is given in (38).
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5. Toeplitz Operators with Z-Invariant
Symbols

In this section, we introduce the extended Lagrangian sym-
bols, and we prove that the C*-algebra generated by Toeplitz
operators with this kind of symbols acting on the homoge-
neously poly-Fock space is isomorphic and isometric to the
C*-algebra generated by Toeplitz operators with extended
horizontal symbols acting on this same space.

We consider the standard symplectic form w, of C" =
R*" given by w,(z, w) = Jz - w, forallz, w, where

0 I,
J= ( ) . (93)
-1, 0

Recall that a n-dimensional subspace . ¢ R*" is called a
Lagrangian plane if for every z, w € & it satisfy w,(z, w) = 0.
Clearly, iR" = {0} x R" is a Lagrangian plane. We denote by
Lag(2n, R) the set of all Lagrangian planes in R*". If we con-
sider the transitive group action of U(2n,R) onto
Lag(2n, R) defined by

(X, Z) - XZ, (94)

we have that for every Lagrangian plane Z there is an uni-
tary matrix X such that X&' =iR". For more details, see
[11], Proposition 43. Since the unitary group U(2n, R) is
isomorphic to U(n, C), each Lagrangian plane & can be
identified with a subspace of C”"; abusing the notation, we
denote this subspace with Z too.

Let & be a Lagrangian plane, we say that a function ¢
€L (C") is Z-invariant or Lagrangian invariant if for
every h € & it satisfies

¢(z—h) = ¢(z), foralmostallz € C", (95)

so we can consider it like a function depending only on the
elements of #'.

In [5], Esmeral and Vasilevski introduced the concept of
&-invariant functions and they provided the following crite-
rion for a function to be so.

Lemma 28. Consider a Lagrangian plane & and X € U(n, C)
such that X% =iR". Then, a function ¢ € L,(C") is &
-invariant if and only if there exists a € L., (R") such that

¢(X"z)=a(Rez,;, -+, Re z,), foralmost allz € C".  (96)

Moreover, they established the following result.

Proposition 29. The C* -algebra generated by Toeplitz oper-
ators with horizontal symbols acting on the Fock space F*(
C") is unitary equivalent to the C* -algebra generated by
Toeplitz operators with ZL-invariant symbols.
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For this, they introduced the operator Vy : L,(C", du,)
— L,(C", dy,,) defined by

(Vif)(2) = f(X"2), withX € U(2n, R) such that XZ = iR".
(97)

Since X* = X!, this operator is unitary and Vi = Vy-1. It
too satisfies

VXKZ = KXZ’ (98)

where K, is the reproducing kernel of F?(C") in the point z.
In the case of the poly-Fock space and the true poly-Fock
space, the above result could fail, because for some multi-
index a and some unitary matrix X; the spaces F2(C") and
Ffa)((C”) might not be invariant under the operator Vy.

Example 1. Consider n =2, a = (2,1). Using (15), we have
V(z)=2,(2,+2y) € F(Za)((cn)’ (99)

however, if X* = (aij) with i, j =1, 2 is an unitary matrix, it is
clear that

Y(Xz) =w, (w; +w,) ¢ F%oc) (€, (100)

where w, =a,,2; +a,,2,, W, = ay,2; + a,2,.

This is the main motivation for which we consider the
homogeneously poly-Fock space F%@((C”) and the poly-

Fock space F;(C") for k € N.

Note that for & € Lag(2n,R), X € U(2n, R) such that
X =iR", and Vy defined by (97), using the explicit form
of the elements in the true poly-Fock space given by (15),
from [6], Proposition 2.7, we have that the homogeneously
poly-Fock space F{;,(C") and the poly-Fock space F(C")
are invariant under V.

Now, we define the extended Lagrangian symbols; these
kind of symbols is related with the extended horizontal sym-
bols as follows.

Definition 30. For & € Lag(2n,R) and X € U(2n, R) such
that XZ =iR", equivalently X' =R" and X*R"= 2%,
consider the following diagram.

Rn
T a
ct X C
0 ¢
LC

We say that the Z-invariant symbol ¢ is an extended
Lagrangian symbol or an extended Z-invariant symbol if
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its pullback by X* is an extended horizontal symbol. In other
words, if the function a(Rez) = (X *z) given in (96), it is an
extended horizontal symbol.

According to the above diagram, for z € Z*, there exists
w € C" such that z=X* Re w and |z| = ||Re w]|. If ¢ is an
extended Lagrangian symbol, using (96) and (48), we have

lim ¢(tz) :tlim ¢(tX" Re w) :tlim a(t Re w)

A =am<||§273||> =aoo(X(é))'

If we define the continuous function ¢ : $**' n Zt
— C given by

(101)

Poo(2) = 00 (X2), (102)

we have for z € #*
lim ¢(tz) = i 103
Am 212) = P\ 177 ) (103)

This function ¢, is invariant under translations by
Lagrangians elements whose norm is equal to 1. Let h € &
such that |h|=1, so Xh €iR" and ||Xh|| = 1; thus, for z €
S 10 L we have

9 (2) =ay(Xz) =a, (Xz+Xh)=a,(X(z+h)) =@ (z+h).
(104)

Lemma 31. Consider the unitary operator Vy for X € U(2n
,R) . If K (z,w) denotes the reproducing kernel of the true

homogeneously poly-Fock space ka> (C") then V(K® = K§§3

Proof. Let ¢(z) € F%k)((C”). Using the reproducing property,
we can express

9(z) = % Jcn¢(w)K(k) (_z, w)e"w‘zdw. (105)
Apply Vi
(Vx9)@)= 5 |_oX KOz wpeldu,  (106)
since X* is unitary and taking v = X*w, we have
(Vxo)(z) = %Jcn(p(v)K(k) (;, Xv)e_Mzdv. (107)
On the other hand,
p(X*z) = %Jcngo(v)K(k) ()_(*z v)e“v‘zdv, (108)
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for the uniqueness of the reproducing kernel, we have K(¥
(v, X*z) = K¥(Xv, z); therefore VK = Kgfv) O
Corollary 32. The reproducing kernel K*(z,w) of the poly-
Fock space F2(C") satisfies V(K* =KX .

Now, consider a€ L (C") and X € U(2n, R). Using the
Lemma 31, we obtain that the Toeplitz operator T, acting
on the true homogeneously poly-Fock space ka>((C") is uni-

tary equivalent to

(VX' T, Vx9)(2) = < Vi T, Vyp, K > = <Ta Vg, ViKY >

= <aVX(P’ K§2> = <aX§0> K§k>> = (Tax(P) (2),
(109)

where ay(z) = a(Xz). Analogously, by Corollary 32, the Toe-
plitz operator T, acting in the poly-Fock space F{(C") is uni-
tary equivalent to T, .

Using the above results, we obtain the following general-
izations of Proposition 29.

Theorem 33. The C* -algebra T generated by Toeplitz
operators with extended horizontal symbols acting on the true
homogeneously poly-Fock space ka)(C”) is unitary equiva-
lent to the C* -algebra T ECQOO generated by Toeplitz operators
with extended & -invariant symbols.

Theorem 34. The C*-algebra T generated by Toeplitz
operators with extended horizontal symbols acting in the
poly-Fock space F;(C") is unitary equivalent to the C* -alge-
bra I {‘ZOO generated by Toeplitz operators with extended &
-invariant symbols.

Finally, using Theorems (25) and (26), we have the
following.

Corollary 35. The C*-algebra EQOO generated by Toeplitz
operators with extended Z-invariant symbols acting on the
homogeneously poly-Fock space ka)((C”) is isomorphic and

isometric to the C*-algebra D .

Corollary 36. The C*-algebra T 12[’00 generated by Toeplitz
operators with extended Z-invariant symbols acting on the
poly-Fock space Fi(C") is isomorphic and isometric to the
C*-algebra D,.
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