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In this article, we introduce the multi-additive-quartic and the multimixed additive-quartic mappings. We also describe and
characterize the structure of such mappings. In other words, we unify the system of functional equations defining a multi-
additive-quartic or a multimixed additive-quartic mapping to a single equation. We also show that under what conditions, a
multimixed additive-quartic mapping can be multiadditive, multiquartic, and multi-additive-quartic. Moreover, by using a
fixed point technique, we prove the Hyers-Ulam stability of multimixed additive-quartic functional equations thus generalizing
some known results.

1. Introduction

Let V be a commutative group, W be a linear space over
rational numbers, and n be an integer with n ≥ 2. A mapping
f : Vn ⟶W is called

(i) Multiadditive if it satisfies the Cauchy’s functional
equation Aðx + yÞ = AðxÞ + AðyÞ in each variable [1]

(ii) Multiquadratic if it fulfills quadratic functional
equation Qðx + yÞ +Qðx − yÞ = 2QðxÞ + 2QðyÞ in
each variable [2, 3]

(iii) Multicubic if it satisfies the cubic equation Cð2x +
yÞ + Cð2x − yÞ = 2Cðx + yÞ + 2Cðx − yÞ + 12CðxÞ in
each variable [4, 5]

(iv) Multiquartic if it satisfies the quartic equation

Q x + 2yð Þ +Q x − 2yð Þ = 4Q x + yð Þ + 4Q x − yð Þ
− 6Q xð Þ + 24Q yð Þ, ð1Þ

in each variable [6, 7].
We have the following observations about a several

variables mapping f : Vn ⟶W.

(i) f is multiadditive [1] if and only if it satisfies

f x1 + x2ð Þ = 〠
j1,⋯,jn∈ 1,2f g

f x1j1 ,⋯, xnjn
� �

: ð2Þ

(ii) f is multiquadratic [8] if and only if it satisfies
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〠
s∈ −1,1f gn

f x1 + sx2ð Þ = 2n 〠
j1,⋯,jn∈ 1,2f g

f x1j1 ,⋯, xnjn
� �

, ð3Þ

where xj = ðx1j, x2j,⋯, xnjÞ ∈ Vn with j ∈ f1, 2g. More
information about the structure of multiadditive and multi-
quadratic mappings, we refer for instance to [9, 10].

Bodaghi et al. [4] (resp., [6]) provided a characterization
of multicubic (resp., multiquartic) mappings, and they
showed that every multicubic (resp., multiquartic) mapping
can be shown a single functional equation and vice versa.

Lee et al. [11] introduced and obtained the general
solution of the quartic functional equation which somewhat
different from (1) as follows:

Q 2x + yð Þ +Q 2x − yð Þ = 4Q x + yð Þ + 4Q x − yð Þ + 24Q xð Þ − 6Q yð Þ:
ð4Þ

For the generalized forms of the quartic functional,
equations (1) and (4) refer to [12, 13]. Recently, in [14]
and motivated by (4), a new form of multiquartic mappings
was introduced, and the structure of such mappings was
described.

Speaking of the stability of a functional equation, we fol-
low the question raised in 1940 by Ulam [15] for group
homomorphisms. Hyers [16] presented a partial solution
to the problem of Ulam. Later, Hyers’ theorem was extended
and generalized in various forms by many mathematicians
such as Aoki [17] and Rassias [18]. Recall that a functional
equation F is said to be stable if any mapping ϕ fulfilling F

approximately; then, it is near to an exact solution of F.
Next, several stability problems of various functional equa-
tions and mappings have been investigated by many mathe-
maticians which can be found in literatures.

In the last two decades, the stability problem for several
variable mappings such as multiadditive, multi-Jensen, mul-
tiquadratic, multicubic, and multiquartic mappings by
applying direct and fixed point methods has been studied
by a number of authors which are available for example in
[1, 2, 4, 8, 9, 19–26].

In [27], Eshaghi Gordji introduced and obtained the
general solution of the following mixed type additive and
quartic functional equation

f 2x + yð Þ + f 2x − yð Þ = 4 f x + yð Þð + f x − yð Þ½ � − 3
7

� f 2yð Þ − 2f yð Þð Þ + 2f 2xð Þ − 8f xð Þ:
ð5Þ

He also established the Hyers-Ulam Rassias stability of
the above functional equation in real normed spaces. The
stability of (5) in non-Archimedean orthogonality spaces is
studied in [28]. A different and equivalent form of mixed
type additive and quartic functional equation from (5) was
introduced by the first author in [29] as follows:

f x + 2yð Þ − 4f x + yð Þ − 4f x − yð Þ + f x − 2yð Þ
= 12

7 f 2yð Þ − 2f yð Þð Þ − 6f xð Þ:
ð6Þ

It is easily verified that the function f ðxÞ = αx4 + βx is a
solution of equations (5) and (6); the generalized version
of equation (6) can be found in [30].

This paper is organized as follows: In the second section,
we firstly define multi-additive-quartic mappings and
include a characterization of such mappings. In fact, we
prove that every multi-additive-quartic mapping can be
shown a single functional equation and vice versa (under
some extra conditions). Section 3 is devoted to the study of
stricture of multimixed additive-quartic mappings. In other
words, motivated by equation (6), we introduce the multi-
mixed additive-quartic mappings and reduce the system of
n equations defining the multimixed additive-quartic map-
pings to a single equation, namely, the multimixed
additive-quartic functional equation. In Section 4, we prove
the Hyers-Ulam stability for the multi-additive-quartic and
the multimixed additive-quartic mappings in the setting of
Banach spaces by applying a fixed point method [31]. As
an application of this result, we establish the stability of
multi-additive-quartic mappings. Finally, we show that
under some mild conditions every multiadditive and multi-
quartic functional equations are δ-stable for a small positive
number δ.

2. Characterization of Multi-Additive-
Quartic Mappings

Throughout this paper, ℕ and ℚ stand for the set of all
positive integers and the rational numbers, respectively,
ℕ0 ≔ℕ ∪ f0g,ℝ+ ≔ ½0,∞Þ. For any l ∈ℕ0,m ∈ℕ, t = ðt1,
⋯, tmÞ ∈ f−1, 1gm, and x = ðx1,⋯, xmÞ ∈ Vm, we write lx≔
ðlx1,⋯, lxmÞ and tx≔ ðt1x1,⋯, tmxmÞ, where ra stands, as
usual, for the rth power of an element a of the commutative
group V .

Let V andW be linear spaces, n ∈ℕ and k ∈ f0,⋯, ng. A
mapping f : Vn ⟶W is called k-additive and n − k-quartic
(briefly, multi-additive-quartic) if f is additive in each of
some k variables and satisfies (4) in each of the other vari-
ables. In what follows, for simplicity, it is assume that f is
additive in each of the first k variables. Moreover, for k = n
(k = 0), the above definition leads to the so-called multiaddi-
tive (multiquartic) mappings.

In the sequel, we assume that V andW are vector spaces
over ℚ. Moreover, we identify x = ðx1,⋯, xnÞ ∈ Vn with
ðxk, xn−kÞ ∈ Vk ×Vn−k, where xk ≔ ðx1,⋯, xkÞ and xn−k ≔ ð
xk+1,⋯, xnÞ. Let n ∈ℕ with n ≥ 2 and xni = ðxi1, xi2,⋯, xinÞ
∈ Vn, where i ∈ f1, 2g. Throughout, we shall denote xni by
xi if there is no risk of mistake. Put also xki = ðxi1,⋯, xikÞ ∈
Vk and xn−ki = ðxi,k+1 ⋯ , xinÞ ∈ Vn−k. For x1, x2 ∈ Vn and pi
∈ℕ0 with 0 ≤ pi ≤ n and 0 ≤ k ≤ n − 1, set N n−k = fNn−k =
ðNk+1,⋯,NnÞ ∣Nj ∈ fx1j ± x2j, x1 j, x2jgg, where j ∈ fk + 1,
⋯, ng. Consider the subset N n−k

ðp1,p2Þ of N as follows:
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N n−k
p1,p2ð Þ ≔ Nn−k ∈N

n−k ∣ Card Nj : Nj = xij
� �

= pi i ∈ 1, 2f gð Þ
n o

:

ð7Þ

To achieve our aims, for the multi-additive-quartic
mappings, we use the oncoming notations:

f N n−k
p1,p2ð Þ

� �
≔ 〠

Nn−k∈N
n−k
p1 ,p2ð Þ

f Nnð Þ, ð8Þ

f z,N n−k
p1,p2ð Þ

� �
≔ 〠

Nn−k∈N
n−k
p1,p2ð Þ

f z,Nn−kð Þ z ∈ Vð Þ: ð9Þ

For each x1, x2 ∈ Vn, we consider the equation

〠
t∈ −1,1f gn−k

f xk1 + xk2, 2xn−k1 + txn−k2

� �

= 〠
n−k

p1=0
〠

n−k−p1

p2=0
〠

i∈ 1,2f g
4n−k−p1−p224p1 −6ð Þp2 f xki ,N n−k

p1,p2ð Þ
� �

,

ð10Þ

for all xki = ðxi1,⋯,xikÞ ∈ Vk and xn−ki = ðxi,k+1⋯,xinÞ ∈
Vn−k where i ∈ f1, 2g.

It is shown in Proposition 2.2 in [14] that if a mapping
f : Vn ⟶W is multiquartic, then it satisfies the equation

〠
t∈ −1,1f gn

f 2x1 + tx2ð Þ = 〠
n

p1=0
〠
n−p1

p2=0
4n−p1−p224p1 −6ð Þp2 f N n−k

p1,p2ð Þ
� �

:

ð11Þ

The next proposition shows that the system of n equa-
tions defining a multi-additive-quartic mapping can be
reduced to (10).

Proposition 1. Let n ∈ℕ and k ∈ f0,⋯, ng. Suppose that a
mapping f : Vn ⟶W is k-additive and n − k-quartic
(multi-additive-quartic) mapping. Then, f fulfills equation
(10).

Proof. For k ∈ f0, ng, the result follows from Proposition 2.2
in [14] and Theorem 2 in [1], and so we prove the assertion
for the case that k ∈ f1,⋯, n − 1g. For any xn−k ∈ Vn−k, con-
sider the mapping gxn−k : V

k ⟶W defined by gxn−kðxkÞ≔
f ðxk, xn−kÞ for xk ∈ Vk. The assumption shows that gxn−k is
k-additive, and thus, we can obtain from Theorem 2 in [1]
that

gxn−k xk1 + xk2
� �

= 〠
j1,j2,⋯,jk∈ 1,2f g

gxn−k xj11, xj22,⋯, xjkk
� �

, xk1, xk2 ∈ Vk
� �

:

ð12Þ

The above equality implies that

f xk1 + xk2, xn−k
� �

= 〠
j1,⋯,jk∈ 1,2f g

f xj11,⋯, xjkk, x
n−k

� �
, ð13Þ

for all xk1, xk2 ∈ Vk and xn−k ∈ Vn−k. Repeat the above
method, and for any xk ∈ Vk, define the mapping hxk : V

n−k

⟶W via hxkðxn−kÞ≔ f ðxk, xn−kÞ, xn−k ∈ Vn−k. This map-
ping is n − k-quartic, and hence, by Proposition 2.2 from
[14], we have

〠
t∈ −1,1f gn−k

hxk 2xn−k1 + txn−k2

� �

= 〠
n−k

p1=0
〠

n−k−p1

p2=0
4n−k−p1−p224p1 −6ð Þp2hxk N n−k

p1,p2ð Þ
� �

,
ð14Þ

for all xn−k1 , xn−k2 ∈ Vn−k. On the other hand, by the defini-
tion of hxk , relation (14) converts to

〠
t∈ −1,1f gn−k

f xk, 2xn−k1 + txn−k2

� �

= 〠
n−k

p1=0
〠

n−k−p1

p2=0
4n−k−p1−p224p1 −6ð Þp2 f xk,N n−k

p1,p2ð Þ
� �

,
ð15Þ

for all xn−k1 , xn−k2 ∈ Vn−k and xk ∈ Vk. It now follows
between (13) and (15) that

〠
t∈ −1,1f gn−k

f xk1 + xk2, 2xn−k1 + txn−k2

� �

= 〠
n−k

p1=0
〠

n−k−p1

p2=0
4n−k−p1−p224p1 −6ð Þp2 f xk1 + xk2,N n−k

p1,p2ð Þ
� �

= 〠
n−k

p1=0
〠

n−k−p1

p2=0
〠

j1,j2,⋯,jn∈ 1,2f g
4n−k−p1−p224p1 −6ð Þp2 f

· xj11, xj22,⋯, xjnn,N
n−k
p1,p2ð Þ

� �

= 〠
n−k

p1=0
〠

n−k−p1

p2=0
〠

i∈ 1,2f g
4n−k−p1−p224p1 −6ð Þp2 f xki ,N n−k

p1,p2ð Þ
� �

,

ð16Þ

for all xki = ðxi1,⋯, xikÞ ∈ Vk and xn−ki = ðxi,k+1 ⋯ , xinÞ ∈
Vn−k. This finishes the proof.

By Proposition 6, it is easily verified that the mapping
f ðz1,⋯, znÞ = c

Qk
i=1zi

Qn
j=k+1z

4
j satisfies (10), and so this

equation is said to be multi-additive-quartic functional
equation.

Definition 2. Let r ∈ℕ. Consider a mapping f : Vn ⟶W.
We say f
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(i) Satisfies (has) the r -power condition in the jth vari-
able if

f z1,⋯, zj−1, 2zj, zj+1,⋯, zn
� �

= 2r f z1,⋯,zj−1, zj, zj+1,⋯, zn
� �

,
ð17Þ

for all z1,⋯, zn ∈ Vn. Sometimes 4-power condition is called
quartic condition.

(ii) Has zero condition if f ðxÞ = 0 for any x ∈ Vn with at
least one component which is equal to zero

We remember that the binomial coefficient for all n, r

∈ℕ0 with n ≥ r is defined and denoted by
n

r

 !
≔ n!/r!ðn

− rÞ!.
We wish to show that if a mapping satisfies equation

(10), then it is multi-additive-quartic. For doing it, we need
the upcoming lemma. The method of the proof of Lemma
3 is similar to the proof of ([14], Lemma 2.5) and so we
include lemma without the proof.

Lemma 3. Suppose that a mapping f : Vn ⟶W satisfies
equation (10). Under one of the following assumptions, f sat-
isfying zero condition.

(i) f satisfies the quartic condition in the last n − k
variables

(ii) f is even in the last n − k variables

Theorem 4. Suppose that a mapping f : Vn ⟶W fulfilling
equation (10). Under one of the hypothesis of Lemma 3, f is
multi-additive-quartic.

Proof. It follows from Lemma 3; f satisfies zero condition.
Putting xn−k2 = ð0,⋯, 0Þ in the left side of (10) and applying
the hypothesis, we obtain

2n−k × 24 n−kð Þ f xk1 + xk2, xn−k1

� �
= 25 n−kð Þ f xk1 + xk2, 2xn−k1

� �
:

ð18Þ

On the other hand, by using Lemma 3, the right side of
(10) converts to

〠
n−k

p1=0

n − k

p1

 !
4n−k−p124p12n−k−p1 f xj11, xj22,⋯, xjkk, x

n−k
1

� �

= 〠
n−k

p1=0

n − k

p1

 !
8n−k−p124p1 f xj11, xj22,⋯, xjkk, x

n−k
1

� �

= 25 n−kð Þ 〠
j1,j2,⋯,jk∈ 1,2f g

f xj11, xj22,⋯, xjkk, x
n−k
1

� �
:

ð19Þ

Now, relations (18) and (19) necessitate that

f xk1 + xk2, xn−k1

� �
= 〠

j1,j2,⋯,jn∈ 1,2f g
f xj11, xj22,⋯, xjnn, x

n−k
1

� �
,

ð20Þ

for all xk1, xk2 ∈ Vn and xn−k1 ∈ Vn−k. In light of Theorem 2
in [1], we see that f is additive in each of the k first variables.
In addition, by considering xk2 = ð0,⋯,0Þ in (10) and apply-
ing again Lemma 3, we have

〠
t∈ −1,1f gn−k

f xk1, 2xn−k1 + txn−k2

� �

= 〠
n−k

p1=0
〠

n−k−p1

p2=0
4n−k−p1−p224p1 −6ð Þp2 f xk1,N n−k

p1,p2ð Þ
� �

,
ð21Þ

for all xk1 ∈ V
k and xn−k1 , xn−k2 ∈ Vn−k, and thus, by Theo-

rem 2.6 in [14], f is quartic in each of the last n − k variables.
The proof of second part is similar.

3. Characterization of Multimixed Additive-
Quartic Mappings

In this section, we introduce the multimixed additive-quartic
mappings and then characterize them as an equation. We
start this section with the definition of such mappings.

Definition 5. Let V and W be vector spaces over ℚ, n ∈ℕ. A
mapping f : Vn ⟶W is called n -multimixed additive-
quartic or briefly multimixed additive-quartic if f satisfies
mixed additive-quartic equation (6) in each variable.

Let n ∈ℕ with n ≥ 2 and xni = ðxi1, xi2,⋯, xinÞ ∈ Vn,
where i ∈ f1, 2g. For x1, x2 ∈ Vn and q ∈ℕ0 with 0 ≤ q ≤ n,
put

M = Mn = M1,⋯,Mnð Þ ∣Mj ∈ x1 j ± 2x2 j, 2x2j
� �

, j ∈ 1,⋯, nf g� �
:

ð22Þ

Consider the subset Mn
q of M as follows:

Mn
q ≔ Mn ∈M ∣ Card Mj : Mj = 2x2j

� �
= q

� �
: ð23Þ

Hereafter, for the multimixed additive-quartic map-
pings, we use the following notations:

f Mn
q

� �
≔ 〠

Mn∈Mn
q

f Mnð Þ, ð24Þ

f Mn
q , z

� �
≔ 〠

Mn∈Mn
q

f Mn, zð Þ z ∈ Vð Þ: ð25Þ

Next, we reduce the system of n equations defining the
multimixed additive-quartic mapping to obtain a single
functional equation.
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Proposition 6. If a mapping f : Vn ⟶W is multimixed
additive-quartic, it satisfies the equation

〠
n

q=0
−
12
7

� 	q

f Mn
q

� �
= 〠

n

p1=0
〠
n−p1

p2=0
4n−p1−p2 −6ð Þp1 −

24
7

� 	p2
f N n

p1 ,p2ð Þ
� �

,

ð26Þ

where f ðMn
qÞ and f ðN n

ðp1 ,p2ÞÞ are defined in (24) and (8),
respectively.

Proof. The proof is based on induction for n. For n = 1, it is
obvious that f satisfies (6). Assume that (26) holds for some
positive integer n > 1. Then

〠
n+1

q=0
−
12
7

� 	q+1
f Mn+1

q

� �

= 〠
n

q=0
〠

t∈ 1,−1f g
−
12
7

� 	q

f Mn
q , x1n+1 + 2tx2,n+1

� �

−
12
7 〠

n

q=0
−
12
7

� 	q

f Mn
q , 2x2,n+1

� �

= 〠
n

p1=0
〠
n−p1

p2=0
〠

t∈ 1,−1f g
4n−p1−p2 −6ð Þp1 −

24
7

� 	p2
f

· N n
p1,p2ð Þ, x1,n+1 + 2tx2,n+1

� �
−
12
7 〠

n

p1=0
〠
n−p1

p2=0
4n−p1−p2 −6ð Þp1

· −
24
7

� 	p2
f N n

p1,p2ð Þ, 2x2,n+1
� �

= 4 〠
n

p1=0
〠
n−p1

p2=0
〠

s∈ 1,−1f g
4n−p1−p2 −6ð Þp1 −

24
7

� 	p2
f

· N n
p1,p2ð Þ, x1,n+1 + sx1,n+1

� �
− 6 〠

n

p1=0
〠
n−p1

p2=0
4n−p1−p2 −6ð Þp1

· −
24
7

� 	p2
f N n

p1,p2ð Þ, x1,n+1
� ��

−
24
7 〠

n

p1=0
〠
n−p1

p2=0
4n−p1−p2 −6ð Þp1

· −
24
7

� 	p2
f N n

p1,p2ð Þ, x2,n+1
� �

= 〠
n+1

p1=0
〠

n+1−p1

p2=0
4n+1−p1−p2 −6ð Þp1

· −
24
7

� 	p2
f N n+1

p1,p2ð Þ
� �

:

ð27Þ

The assertion is now proved.

Since the mapping f ðz1,⋯, znÞ =
Qn

j=1ðajz4j + bjzjÞ is

multimixed additive-quartic, it satisfies (26) by proposition
above, and so this equation is called multimixed additive-
quartic functional equation.

Here, we bring an elementary lemma without proof.

Lemma 7. Let n, k, pl ∈ℕ0, such that k +∑m
l=1pl ≤ n, where l

∈ f1,⋯,mg. Then

n − k

n − k − 〠
m

l=1
pl

0
B@

1
CA

〠
m

l=1
pl

〠
m−1

l=1
pl

0
BBBBB@

1
CCCCCA⋯

p1 + p2

p1

 !

=
n − k

p1

 !
n − k − p1

p2

 !
⋯

n − k − 〠
m−1

l=1
pl

pm

0
BB@

1
CCA:

ð28Þ

Similar to Lemma 2.1 from [6], we need the following
lemma in obtaining our goal in this section. The proof is
similar, but we include some parts for the sake of
completeness.

Lemma 8. If a mapping f : Vn ⟶W satisfies equation (26),
then it has zero condition.

Proof. Putting x1 = x2 = ð0,⋯,0Þ in (26), we have

〠
n

q=0

n

n − q

 !
−
12
7

� 	q

2n−q
" #

f 0,⋯, 0ð Þ

= 〠
n

p2=0
〠
n−p2

p1=0

n

n − p1 − p2

 !
p1 + p2

p1

 !
2n−p1−p24n−p1−p2 −6ð Þp1

"

· −
24
7

� 	p2
#
f 0,⋯, 0ð Þ:

ð29Þ

Using Lemma 7 for k = 0 and p1, p2, the right side of (29)
will be as follows:

〠
n

p2=0
〠
n−p2

p1=0

n

n − p1 − p2

 !
p1 + p2

p1

 !
2n−p1−p24n−p1−p2 −6ð Þp1 −

24
7

� 	p2
" #

f 0,⋯, 0ð Þ

= 2n 〠
n

p2=0

n

p2

 !
−
12
7

� 	p2
〠
n−p2

p1=0

n − p2

p1

 !
4n−p1−p2 −3ð Þp1

" #
f 0,⋯, 0ð Þ

= 2n 〠
n

p2=0

n

p2

 !
−
12
7

� 	p2
4 − 3ð Þn−p2

" #
f 0,⋯, 0ð Þ = 2n −

12
7 + 1

� 	n

f 0,⋯,0ð Þ

= −
10
7

� 	n

f 0,⋯, 0ð Þ:

ð30Þ

On the other hand, by a simple computation, the left side
of (29) is

2
7

� 	n

f 0,⋯, 0ð Þ: ð31Þ

It follows from relations (29), (30), and (31) that f ð0,
⋯, 0Þ = 0. One can continue this method to show that f
has zero condition.
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Definition 9. A mapping f : Vn ⟶W is

(iii) Odd in the jth variable if

f z1,⋯, zj−1,−zj, zj+1,⋯, zn
� �

= −f z1,⋯, zj−1, zj, zj+1,⋯, zn
� �

:

ð32Þ

(iv) Even in the jth variable if

f z1,⋯, zj−1,−zj, zj+1,⋯, zn
� �

= f z1,⋯, zj−1, zj, zj+1,⋯, zn
� �

:

ð33Þ

Proposition 10. Suppose that a mapping f : Vn ⟶W sat-
isfies equation (26). Then, it is multimixed additive-quartic.
Moreover,

(i) If f is odd in a variable, then it is additive in the same
variable

(ii) If f is even in a variable, then it is quartic in the same
variable

Proof. Let j ∈ f1,⋯, ng be arbitrary and fixed. Set

f ∗j zð Þ≔ f z1,⋯, zj−1, z, zj+1,⋯, zn
� �

: ð34Þ

Putting x2k = 0 for all k ∈ f1,⋯,ng \ fjg in (26) and using
Lemma 8, we get

2n−1 f ∗j z + 2wð Þ + f ∗j z − 2wð Þ − 12
7 f ∗j 2wð Þ


 �

= 〠
n−1

p1=0

n − 1

p1

 !
4n−p1 −6ð Þp12n−p1−1

" #
f ∗j z +wð Þ + f ∗j z −wð Þ
� �

+ 〠
n

p1=1

n − 1

p1 − 1

 !
4n−p1 −6ð Þp12n−p1

" #
f ∗j zð Þ

+ 〠
n

p1=0

n − 1

p1

 !
4n−p1−1 −6ð Þp1 −

24
7

� 	
2n−p1−1

" #
f ∗j wð Þ

= 4 2n−1 〠
n−1

p1=0

n − 1

p1

 !
4n−1−p1 −3ð Þp1

" #
f ∗j z +wð Þ + f ∗j z −wð Þ
� �

− 6 2n−1 〠
n−1

p1=0

n − 1

p1

 !
4n−1−p1 −3ð Þp1

" #
f ∗j zð Þ − 24

7

· 2n−1 〠
n−1

p1=0

n − 1

p1

 !
4n−1−p1 −3ð Þp1

" #
f ∗j wð Þ

= 4 × 2n−1 f ∗j z +wð Þ + f ∗j z −wð Þ
� �

− 6 × 2n−1 f ∗j zð Þ

−
24
7 × 2n−1 f ∗j wð Þ:

ð35Þ

The above equalities show that

f ∗j z + 2wð Þ + f ∗j z − 2wð Þ − 12
7 f ∗j 2wð Þ

= 4 f ∗j z +wð Þ + f ∗j z −wð Þ
h i

− 6f ∗j zð Þ − 24
7 f ∗j wð Þ:

ð36Þ

In other words, (6) is true for f ∗j . Since j is arbitrary, f is
a multimixed additive-quartic mapping.

(i) Repeating the proof of Lemma 2.1 (i) from [29] for
f ∗j , we see that f ∗j ðz +wÞ = f ∗j ðzÞ + f ∗j ðwÞ. This
means that f is additive in the jth variable

(ii) Similar to the previous part, it follows from the proof
of part (ii) of Lemma 2.1 in [29] that

f ∗j 2z +wð Þ + f ∗j 2z −wð Þ = 4 f ∗j z +wð Þ + f ∗j z −wð Þ
h i
+ 24f ∗j zð Þ − 6f ∗j wð Þ:

ð37Þ

Therefore, f is quartic in the jth variable.

Corollary 11. Suppose a mapping f : Vn ⟶W satisfies
equation (26).

(i) If f is odd in each variable, then it is multiadditive.
Moreover, it satisfies (2)

(ii) If f is even in each variable, then it is multiquartic.
In particular, it fulfills (11)

(iii) If f is odd in each of some k variables and is even in
each of the other variables, then it is multi-additive-
quartic. In addition, (10) is valid for f

4. Various Stability Results

In this section, we prove some Hyers-Ulam stability results
by a fixed point method in the setting of Banach spaces. In
what follows, we denote the set of all mappings from E to
F by FE . We remember the following theorem which is an
essential result in fixed point theory ([23], Theorem 1). This
achievement is a key tool in obtaining our aim in this
section.

Theorem 12. Let the hypotheses
(A1) Y is a Banach space, E is a nonempty set, j ∈ℕ,

g1,⋯, gj : E⟶ E, and L1,⋯, Lj : E⟶ℝ+
(A2) T : YE ⟶ YE is an operator satisfying the

inequality

T λ xð Þ −T μ xð Þk k ≤ 〠
j

i=1
Li xð Þ λ gi xð Þð Þ − μ gi xð Þð Þk k, λ, μ ∈ YE, x ∈ E,

ð38Þ
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(A3) Λ : ℝE
+ ⟶ℝE

+ is an operator defined through

Λδ xð Þ≔ 〠
j

i=1
Li xð Þδ gi xð Þð Þδ ∈ℝE

+, x ∈ E, ð39Þ

hold, and a function θ : E⟶ℝ+ and a mapping ϕ : E
⟶ Y fulfill the following two conditions:

T ϕ xð Þ − ϕ xð Þk k ≤ θ xð Þ, θ∗ xð Þ≔ 〠
∞

l=0
Λlθ xð Þ <∞ x ∈ Eð Þ:

ð40Þ

Then, there exists a unique fixed point ψ of T such
that

ϕ xð Þ − ψ xð Þk k ≤ θ∗ xð Þ x ∈ Eð Þ: ð41Þ

Moreover, ψðxÞ = liml⟶∞T lϕðxÞ for all x ∈ E.

For the rest of this paper and for each mapping f : Vn

⟶W, we consider the difference operator ΓAQf : V
n ×

Vn ⟶W defined via

ΓAQf x1, x2ð Þ≔ 〠
n

q=0
−
12
7

� 	q

f Mn
q

� �
− 〠

n

p1=0
〠
n−p1

p2=0
4n−p1−p2 −6ð Þp1

� −
24
7

� 	p2
f N n

p1,p2ð Þ
� �

,

ð42Þ

where f ðMn
qÞ and f ðN n

ðp1,p2ÞÞ are defined in (24) and (8),
respectively. In the sequel, all mappings f : Vn ⟶W are
assumed that satisfy zero condition. With this assumption,
we have the next stability result for functional equation
(26) in the odd case.

Theorem 13. Let β ∈ f−1, 1g be fixed, V be a linear space,
and W be a Banach space. Suppose that ϕ : Vn ×Vn ⟶
ℝ+ is a mapping satisfying

lim
l⟶∞

1

2nβ

� 	l

ϕ 2βlx1, 2βlx2
� �

= 0, ð43Þ

for all x1, x2 ∈ Vn and

Φ xð Þ≕ 7
12

� 	n 1

2n β+1ð Þ/2ð Þ 〠
∞

l=0

1

2nβ

� 	l

ϕ 0, 2βl+ β−1ð Þ/2ð Þx
� �

<∞,

ð44Þ

for all x ∈ Vn. Assume also f : Vn ⟶W is a mapping
fulfilling the inequality

ΓAQf x1, x2ð Þ�� �� ≤ ϕ x1, x2ð Þ, ð45Þ

for all x1, x2 ∈ Vn. If f is odd in each variable, then there
exists a unique multiadditive mapping A : Vn ⟶W such
that

f xð Þ −A xð Þk k ≤Φ xð Þ, ð46Þ

for all x ∈ Vn.

Proof. Replacing ðx1, x2Þ by ð0, x1Þ in (45) and using the
assumptions, we have

−
12
7

� 	n

f 2xð Þ − −
24
7

� 	n

f xð Þ
����

���� ≤ ϕ 0, xð Þ, ð47Þ

for all x = x1 ∈ Vn (here and the rest of the proof) and so

f xð Þ − 1
2n f 2xð Þ

����
���� ≤ 7

24

� 	n

ϕ 0, xð Þ: ð48Þ

Set

θ xð Þ≔ 7
12

� 	n 1
2n β+1ð Þ/2ð Þ ϕ 0, 2 β−1ð Þ/2x

� �
, andT θ xð Þ

≔
1
2nβ

θ 2βx
� �

θ ∈WVn
� �

:

ð49Þ

Then, relation (48) can be modified as

f xð Þ −T f xð Þk k ≤ θ xð Þ x ∈ Vnð Þ: ð50Þ

Define ΛηðxÞ≔ ð1/2nβÞηð2βxÞ for all η ∈ℝVn

+ . It is seen
that Λ has the form (A3) of Theorem 12 for which E =Vn,
g1ðxÞ = 2βx, and L1ðxÞ = 1/2nβ. Furthermore, for each λ, μ
∈WVn

, we get

T λ xð Þ −T μ xð Þk k = 1
2nβ

λ 2βx
� �

− μ 2βx
� �h i����

����
≤ L1 xð Þ λ g1 xð Þð Þ − μ g1 xð Þð Þk k:

ð51Þ

The above relation portrays that the hypothesis (A2)
holds. By induction on l, one can check that for any l ∈ℕ0,
we have

Λlθ xð Þ≔ 1
2nβ
� 	l

θ 2βlx
� �

= 7
12

� 	n 1
2n β+1ð Þ/2ð Þ

� 	l

ϕ 0, 2βl+ β−1ð Þ/2ð Þx
� �

:

ð52Þ

Now, relations (44) and (52) necessitate that all assump-
tions of Theorem 12 are satisfied. Hence, there exists a
unique mapping A : Vn ⟶W such that

A xð Þ = lim
l⟶∞

T l f
� �

xð Þ = 1
2nβ

A 2βx
� �

x ∈ Vnð Þ, ð53Þ
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and (46) holds. In continuation, we prove that

ΓAQ T l f
� �

x1, x2ð Þ
��� ��� ≤ 1

2nβ
� 	l

ϕ 2βlx1, 2βlx2
� �

, ð54Þ

for all x1, x2 ∈ Vn and l ∈ℕ0. We argue by induction on l
. Clearly, inequality (54) is valid for l = 0 by (45). Assume
that (54) is true for an l ∈ℕ0. Then

∥ΓAQ T l+1 f
� �

x1, x2ð Þ∥

= 〠
n

q=0
−
12
7

� 	q

T l+1 f
� �

Mn
q

� �
− 〠

n

p1=0
〠
n−p1

p2=0
4n−p1−p2 −6ð Þp1

�����
· −

24
7

� 	p2
T l+1 f
� �

N n
p1,p2ð Þ

� �����
= 1
2nβ

〠
n

q=0
−
12
7

� 	q

T l+1 f
� �

2βMn
q

� �
− 〠

n

p1=0
〠
n−p1

p2=0
4n−p1−p2 −6ð Þp1

�����
· −

24
7

� 	p2
T l+1 f
� �

2βN n
p1,p2ð Þ

� �����
= 1
2nβ

ΓAQ T l f
� �

2βx1, 2βx2
� ����� ���

≤
1
2nβ
� 	l+1

ϕ 2β l+1ð Þx1, 2β l+1ð Þx2
� �

,

ð55Þ

for all x1, x2 ∈ Vn. Letting l⟶∞ in (54) and applying
(43), we arrive at ΓAQAðx1, x2Þ = 0 for all x1, x2 ∈ Vn. This
means that the mapping A satisfies (26), and so it is multi-
additive by Corollary 11. This finishes the proof.

Here, in analogy with Theorem 13, we bring the next sta-
bility result for functional equation (26) in the even case.

Theorem 14. Let β ∈ f−1, 1g be fixed, V be a linear space,
and W be a Banach space. Suppose that ϕ : Vn ×Vn ⟶
ℝ+ is a mapping satisfying

lim
l⟶∞

1

24nβ

� 	l

ϕ 2βlx1, 2βlx2
� �

= 0, ð56Þ

for all x1, x2 ∈ Vn and

Ψ xð Þ≕ 7
2

� 	n 1

24n β+1ð Þ/2ð Þ 〠
∞

l=0

1

24nβ

� 	l

ϕ 2βl+ β+1ð Þ/2ð Þx, 0
� �

<∞,

ð57Þ

for all x ∈ Vn. Assume also f : Vn ⟶W is a mapping fulfill-
ing the inequality

ΓAQf x1, x2ð Þ�� �� ≤ ϕ x1, x2ð Þ, ð58Þ

for all x1, x2 ∈ Vn. If f is even in each variable, then there
exists a unique solution Q : Vn ⟶W of (26) such that

∥f xð Þ −Q xð Þ∥ ≤Ψ xð Þ, ð59Þ

for all x ∈ Vn. In particular, if Q is even mapping in each var-
iable, then it is multiquartic.

Proof. Replacing ðx1, x2Þ by ð0, x1Þ in (58) and applying the
hypotheses, we obtain

〠
n

q=0

n

q

 !
−
12
7

� 	q

2n−q f 2xð Þ − 〠
n

p2=0

n

p2

 !
−
24
7

� 	p2
4n−p2 × 2n−p2 f xð Þ

�����
�����

≤ ϕ 0, xð Þ,
ð60Þ

where x = x1 ∈ Vn (here and the rest of the proof). On the
other hand

〠
n

q=0

n

q

 !
−
12
7

� 	q

2n−q = −
12
7 + 2

� 	n

= 2
7

� 	n

,

〠
n

p2=0

n

p2

 !
−
24
7

� 	p2
4n−p2 × 2n−p2 = −

24
7 + 8

� 	n

= 32
7

� 	n

:

ð61Þ

By the relations above (60) will be

2
7

� 	n

f 2xð Þ − 32
7

� 	n

f xð Þ
����

���� ≤ ϕ 0, xð Þ, ð62Þ

and so

f xð Þ − 1
24n f 2xð Þ

����
���� ≤ 7

32

� 	n

ϕ 0, xð Þ: ð63Þ

One can rewrite (63) as

f xð Þ −T f xð Þk k ≤ θ xð Þ x ∈ Vnð Þ, ð64Þ

where

θ xð Þ≔ 7
2

� 	n 1
24n β+1ð Þ/2ð Þ ϕ 0, 2 β−1ð Þ/2x

� �
,

T θ xð Þ≔ 1
24nβ

θ 2βx
� �

θ ∈WVn
� �

:

ð65Þ

Similar to the proof of Theorem 13, consider ΛηðxÞ≔
ð1/24nβÞηð2βxÞ for all η ∈ℝVn

+ , and hence, Λ satisfies (A3)
of Theorem 12 with E =Vn, g1ðxÞ = 2βx, and L1ðxÞ = 1/
24nβ. Moreover, for each λ, μ ∈WVn

, we obtain

T λ xð Þ −T μ xð Þk k = 1
24nβ

λ 2βx
� �

− μ 2βx
� �h i����

����
≤ L1 xð Þ λ g1 xð Þð Þ − μ g1 xð Þð Þk k:

ð66Þ
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The last relation implies that the hypothesis (A2) is
true. It is easily checked by induction on l that for any
l ∈ℕ0 and x ∈ Vn

Λlθ xð Þ≔ 1
24nβ
� 	l

θ 2βlx
� �

= 7
32

� 	n 1
24n β+1ð Þ/2ð Þ

� 	l

ψ

� 0, 2βl+ β−1ð Þ/2ð Þx
� �

:

ð67Þ

It now follows between (57) and (67) that all assump-
tions of Theorem 12 hold, and thus, there exists a unique
mapping Q : Vn ⟶W such that

Q xð Þ = lim
l⟶∞

T l f
� �

xð Þ = 1
24nβ

Q 2βx
� �

x ∈ Vnð Þ, ð68Þ

and (46) is valid. Similar to the proof of Theorem 13, one
can show that

ΓAQ T l f
� �

x1, x2ð Þ
��� ��� ≤ 1

24nβ
� 	l

ψ 2βlx1, 2βlx2
� �

, ð69Þ

for all x1, x2 ∈ Vn and l ∈ℕ0. Letting l⟶∞ in (69) and
applying (56), we arrive at ΓAQQðx1, x2Þ = 0 for all x1, x2
∈ Vn, and therefore, the mapping Q satisfies (26). The last
part follows from part (ii) of Corollary 11.

Here and subsequently, it is assumed that V is a normed
space and W is a Banach space unless otherwise stated
explicitly. In the following corollary, we show that the multi-
additive and multiquartic mappings are stable. Since the
proof is routine, we include it without proof.

Corollary 15. Given α ∈ℝ. Suppose that f : Vn ⟶W is a
mapping satisfying the inequality

∥ΓAQf x1, x2ð Þ∥ ≤ 〠
2

i=1
〠
n

j=1
∥xij∥

α, ð70Þ

for all x1, x2 ∈ Vn.

(i) If α ≠ n and f is odd in each variable, then there exists
a unique multiadditive mapping A : Vn ⟶W such
that

∥f xð Þ −A xð Þ∥ ≤ 7
12

� 	n 1
2α − 2nj j〠

n

j=1
∥x1j∥

α: ð71Þ

(ii) If α ≠ 4n and f is even in each variable, then there
exists a unique solution Q : Vn ⟶W of (26) such
that

∥f xð Þ −Q xð Þ∥ ≤ 7
2

� 	n 1

2α − 24n


 

〠

n

j=1
∥x1j∥

α, ð72Þ

for all x = x1 ∈ Vn. Moreover, if Q is even mapping in each
variable, then it is multiquartic.

The upcoming corollaries are direct consequences of
Theorems 13 and 14 when the functional equation (26) is
controlled by a small positive number δ.

Corollary 16. Let δ > 0 and f : Vn ⟶W be a mapping sat-
isfying the inequality

∥ΓAQf x1, x2ð Þ∥ ≤ δ, ð73Þ

for all x1, x2 ∈ Vn.

(i) If f is odd in each variable, then there exists a unique
multiadditive mapping A : Vn ⟶W such that

∥f xð Þ −A xð Þ∥ ≤ 7
12

� 	n δ

2n − 1
, ð74Þ

for all x ∈ Vn

(ii) If f is even in each variable, then there exists a unique
solution Q : Vn ⟶W of (26) such that

∥f xð Þ −Q xð Þ∥ ≤ 7
2

� 	n δ

24n − 1
, ð75Þ

for all x ∈ Vn. Furthemore, if Q is even mapping in each var-
iable, then it is multiquartic.

Proof. Letting the constant function ϕðx1, x2Þ = δ for all x1,
x2 ∈ Vn and using Theorem 13 and Theorem 14 in the case
β = 1, one can obtain the desired result.

Given the mapping f : Vn ⟶W, we define the opera-
tor Γf : Vn ×Vn ⟶W through

Γf x1, x2ð Þ≔ 〠
t∈ −1,1f gn−k

f xk1 + xk2, 2xn−k1 + txn−k2

� �

− 〠
n−k

p1=0
〠

n−k−p1

p2=0
〠

i∈ 1,2f g
4n−k−p1−p224p1 −6ð Þp2 f

� xki ,N n−k
p1,p2ð Þ

� �
,

ð76Þ

for all xki = ðxi1,⋯, xikÞ ∈ Vk and xn−ki = ðxi,k+1 ⋯ , xinÞ ∈
Vn−k where i ∈ f1, 2g and f ðN n−k

ðp1,p2ÞÞ are defined in (8).
In the next result, we show that the functional equation

(10) can be stable.
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Theorem 17. Let β ∈ f−1, 1g be fixed, V be a linear space,
and W be a Banach space. Suppose that ϕ : Vn ×Vn ⟶
ℝ+ is a mapping satisfying the inequality

〠
∞

l=0

1

2 4n−3kð Þβ

� 	l

ϕ 2βl− ∣β−1∣/2ð Þx1, 2βl− ∣β−1∣/2ð Þx2
� �

<∞, ð77Þ

for all x1, x2 ∈ Vn. Assume also f : Vn ⟶W is a mapping
satisfying the inequality

∥Γf x1, x2ð Þ∥ ≤ ϕ x1, x2ð Þ, ð78Þ

for all x1, x2 ∈ Vn. Then, there exists a unique solution F

: Vn ⟶W of (10) such that

∥f xð Þ −F xð Þ∥ ≤Φ xð Þ, ð79Þ

for all x = ðxk, xn−kÞ ∈ Vn, where

Φ xð Þ = 1

2 4n−3kð Þ ∣β+1∣/2ð Þ+n−k 〠
∞

l=0

1

2 4n−3kð Þβ

� 	l

ϕ

� 2βl− ∣β−1∣/2ð Þx, 2βl− ∣β−1∣/2ð Þxk, 0
� �� �

:

ð80Þ

Proof. Putting xk1 = xk2 = xk and xn−k1 = xn−k, xn−k2 = 0 in (79),
we have

2n−k f 2xð Þ − 〠
n

p1=0

n − k

p1

 !
2k4n−k−p124p12n−k−p1 f xð Þ

�����
�����

≤ ϕ x, xk, 0
� �� �

,

ð81Þ

in which x = ðxk, xn−kÞ. A computation shows that (81) can
be rewritten as follows:

2n−k f 2xð Þ − 25n−4k f xð Þ
��� ��� ≤ ϕ x, xk, 0

� �� �
, ð82Þ

and so

f 2xð Þ − 24n−3k f xð Þ
��� ��� ≤ 1

2n−k
ϕ x, xk, 0

� �� �
: ð83Þ

Set

ξ xð Þ≔ 1
2 4n−3kð Þ β+1j j/2ð Þ+n−k ϕ

x

2 β−1j j/2ð Þ ,
xk

2 β−1j j/2ð Þ , 0
� 	� 	

,

ð84Þ

and T ξðxÞ≔ ð1/2ð4n−3kÞβÞξð2βxÞ where ξ ∈WVn
. Then, rela-

tion (83) can be modified as

f xð Þ −T f xð Þk k ≤ ξ xð Þ x ∈ Vnð Þ: ð85Þ

Define ΛηðxÞ≔ ð1/2ð4n−3kÞβÞηð2βxÞ for all η ∈ℝVn

+ , x =
ðxk, xn−kÞ ∈ Vn. The rest of the proof is similar to the proof
of Theorem 13.

Corollary 18. Let δ > 0. If f : Vn ⟶W is a mapping satis-
fying the inequality

∥Γf x1, x2ð Þ∥ ≤ δ, ð86Þ

for all x1, x2 ∈ Vn, then there exists a unique solution F

: Vn ⟶W of (10) such that

∥f xð Þ −F xð Þ∥ ≤ δ

2n−k 24n−3k − 1
� � , ð87Þ

for all x ∈ Vn.

Proof. Setting the constant function ϕðx1, x2Þ = δ for all x1,
x2 ∈ Vn and applying Theorem 17 in the case β = 1, the
result can be found.

5. Conclusion

In the present paper, we introduced the multi-additive-
quartic and multimixed additive-quartic mappings. Indeed,
we characterized the mentioned mappings and then unified
the system of functional equations defining a multi-
additive-quartic or a multimixed additive-quartic mapping
to a single equation. We also showed that under which con-
ditions a multimixed additive-quartic mapping is multiaddi-
tive, multiquartic, and multi-additive-quartic. Finally, we
applied a fixed point theorem to establish the Hyers-Ulam
stability of multi-additive-quartic mappings and multimixed
additive-quartic functional equations.
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