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The paper deals with a one-dimensional porous-elastic system with thermoelasticity of type III and distributed delay term. This
model is dealing with dynamics of engineering structures and nonclassical problems of mathematical physics. We establish the
well posedness of the system, and by the energy method combined with Lyapunov functions, we discuss the stability of system
for both cases of equal and nonequal speeds of wave propagation.

1. Introduction and boundary conditions

Let # =(0,1) X (11, 7,) X (0,00), T;, T, > 0. For (x,s,t) € Z,
we consider the following porous-elastic system:

U (0,8) = u (1, 1) = (0, £) = $(1, £) =0, (0, £) =0,(1,£) =0, ¢ >0.

(3)

Prthy = pthy, + b,

Here, ¢ is the volume fraction of the solid elastic material,

Py, =0¢, —bu, —Ep— PO, — ¢, - J 2 |45 (5)| @, (x, t = 5)ds, u is the longitudinal displacement, and 0 is the difference in

n temperatures. The parameters p,, p,, p5, i, b, 6, &1y, B, k

P30s =10, = Yy + KO,y are positive constants with u& > b%. The integral represents

with the initial data

() (e} (=)
~
1]

(1) the distributed delay term withr,, 7,which are time delays,
W, is positive constant, and 4, is an L™ function such that
(Hypl) u, : [r,, 7,] — Risa bounded function satisfying

g (%), (%, 0)
(%), ¢,(x, 0)
0o (%), 0,(x, 0)

=y (), J Iy () lds < . 4)
=:(0) $,( ) =fo(x 1), (2) :

0,(x),x€(0,1), >0 This type of problem was mainly based on the following
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equations for one-dimensional theories of porous materials
with temperature

pruy — T, =0,
prpy —H,—G=0, (5)
P30, +q, + v, =0,

where (x, t) € (0, L) x (0,00).
According to Green and Naghdis theory, the constitutive
equations of system (5) are given by

T = pu, + b, (6)

G=—bu, ==~ [ Il (s t-9ds ()

L3l

H=06¢, - 6, (8)
q=-10, - k®,,, 9)

where [, k > 0 are the thermal conductivity and @ is the ther-
mal displacement whose time derivative is the empirical tem-
perature 0, that is @, = 6.

We substitute (9) in (5) with the condition b # 0, which
results in

plutt =Py + b(px’

Pri =0¢,, —bu, —&d—p, ¢, - JTZ |t (5) |, (%, t = 5)ds — 6,

T

p36t = Z(Dxx - y(ptx + kD

txx*

(10)

By using @, = 0 in the system (10), we find directly our
system (1).

By using the multiplier techniques, the exponential decay
results have been established. Next, in [1-3], the authors con-
sidered three types of thermoelastic theories based on an
entropy equality instead of the usual entropy inequality (see
[1-21] for more details).

According to the distributed delay, we mention, as a mat-
ter of course, the work by Nicaise and Pignotti in [16], where
the authors studied the following system with distributed
delay:

U, —Au=0,

u=0,

S0+ [ wsyno - 9ds - s =0 .

Ty

u(.,0) = ug,u, (,0) = uy, uy(x,-t) = fo (%, ),

and proved the exponential stability result with condition

|| s < (12)

T
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See for example [8, 22, 23]. Hao and Wei [24] considered
the following problem:

P1%: — K(¢x + Wx)x =0,
Pa¥i — by, + K(¢, +v) + B0 + iy, + oy, (t—s) + f(y,) =0,
p39tt - 69xx T VYPrix — kB, = 0,

txx =

(13)

and obtained the well-posedness and stability of system.

There are many other works done by the authors in this
context; our work differs from all of them, since we took
the delay in the second equation to make the distributed
delay in the rotation angle of the filament, which makes the
contributions clear and important. In addition, we estab-
lished the well-posedness of the system, and we obtain the
exponential decay rate when &/p, = u/p, and the energy takes
the algebraic rate for the case 8/p, # u/p,; these results are
mainly stated in Theorem 8.

In order to show the dissipativity of systems (1)-(3), we
introduce the new variables ¢ = u, and y = ¢,. So, problems
(1)-(3) take the form

P19y = PP, +bY,,

¥ =00~ =&y, | 1)y 0= )= O,

T
P39tt = lexx AL ketxx’
(14)

with the initial data

9(50) = 95(x), 9,3, 0) = 9, (1), Y(x, 0) = Yo (),
Yi(35,0) =y, (), 005,0) = 0,(x),0,(6,0) =0, (x), (15
Vst =~fy(o 1), x€(0,1)

and boundary conditions

9.(0.1) =9, (L) =y(0,0) =y(1,1) =60,(0,1) =0,(1,1) =0, £20.

(16)
First, as in [16], taking the following new variable:
25 P8, 1) =¥, (£~ ), (17)
then we obtain

sz, (%, py 5, 1) +z (%, p,5,t) =0,
{t<p RERCYIY) )

Z(x, 0,5, ) =y, (x, t).
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Consequently, the problem was rewritten as

P19y = UP,, + by,

PV = 80— b, — W~y - j iy (5) |23 1,5, £)ds — 6,

Ty

pSGtt = lexx AT ketxx’
$2,(%, S 1) + 2,(%, p, 5, 1) =0,

(19)
where

(x,p»s,t) € (0,1) X , (20)

with the boundary and the initial conditions

9.(0,1) =0, (1,1) =9(0,6) = y(1,1) =0,(0,1) =0,(1,1) =0, £20.

(21)
P(x,0) = @y (%), @, (%, 0) = 9y (x), ¥ (x, 0) = Yy (%), (22)
¥,(5,0) = ¥, (x), 05, 0) = 0, (x), 6, (1,0) =0, (x), x€(0,1),
(23)
z(x, p,5,0) = —f (x, ps) = hy(x, ps),  x€(0.1), p€(0.1),s€(0,7,).
(24)
Meanwhile, from (19) and (24), it follows that
a !
WJO @(x, t)dx=0. (25)

So, by solving (25) and using (24), we get
1 1 1
J o(x, t)dx = tJ @, (x)dx + J @, (x)dx. (26)
0 0 0

Consequently, if we let

o) =000 | pite- [ e @)
we get

1
J o(x,t)dx=0, Vt=0, (28)

0
and from (19), we have
d (!
7 Jo 0(x, t)dx=0. (29)
So, by solving (29) and using (24), we get
1

Jl 0(x, t)dx = tJl 0, (x)dx + J 0, (x)dx. (30)

0 0 0

Consequently, if we let
_ 1 1
O(x,t)=0(x,t) - tJ 0, (x)dx - J 0y(x)dx,  (31)
we get
1 —
J B(x, t)dx =0, V>0, (32)

0

Then, the Poincaré’s inequality was used for ¢ and 6~
which are justified. A simple substitution shows that (¢, y,

0) satisfies system (19) with initial data for ¢ and 6 given as

1

Po(x) = p(x) — . Py (x)dx,
¢1(x) = ¢, (x) ¢, (x)dx,

: @)
00(x) =By (x) = | 6y (x)dx,
0,(3)=0,(6) - | 0,0

Now, we use ¢, 0 instead of ¢,6 and writing ¢,0 for
simplicity.

2. Well-Posedness

In this section, we give the existence and uniqueness result of
the system (19)-(24) using the semigroup theory.
First, we introduce the vector function

U= (090> 9,0,0,2)", (34)

and the new dependent variables u=¢,, v=1v,, w =0,; then
the system (19) can be written as follows:

{U[:WU,

r (35)
U(0)=Ugy = (90> 1> Voo V1,00, 61, hg) "

where of : D(o)CH : —FH is the linear operator
defined by

u
: (49, + by, ]
Pl lbl(pxx X.

v

1 &
A e M OIECA L
2

L)

AU =
w

Xx]

1
— [0 — yv, + kw
Ps[ 4

1

--z
5P




and 7 is the energy space given by

¥ =H. xL2(0,1) x Hy x L*(0,1) x H, x L*(0, 1)

2 (37)

x L2((0,1) x (0, 1) x (11, T5))s

where
L2(0,1) = {w =0},
Jy (x)dx
HL(0,1)=H'(0,1)nL2(0,1), (38)
) _ [ ¢eH*(0,1) _
- {550 -0}
For every
U:((p,u,w,v,e,w,z)TG%, (39)

U = (oA uh, yA VA, ON WA, 2N) T € .,

we equip # with the inner product defined by

1

1 1
<U,U>y = ypIJ ulidx + YPzJ vodx + )/SJ vy dx
0 0

0
1 1 1
+ ﬁpsj wibdx + wJ P Pdx + Y5J v, Y, dx
0 0 0
1 1
+ be (P ¥ +y@)dx+ lﬁJ 0.0, dx
0 0
1l p7,
+ yJ J J sly, (s)lzzdsdpdx.
0J0Jr,

(40)
The domain of ¢ is given by
Uedip,0eH(0,1)nHL(0,1),y € H*(0,1) N Hy(0,1)

U, w e Hi(O, 1),ve H(l)(O, 1),2(x,0,s,t)=v
z,z, € L*((0,1) % (0,1) X (71, 7,))

D(ed) =
(41)

Clearly, 2(&/) is dense in #. Now, we can give the
following existence result.

Theorem 1. Let U, € # and assume that (4) holds. Then,

there exists a unique solution U € €(R,, Z) of problem (19).
Moreover, if Uy € D(H), then

UeB(R,, 2() NG (R,, 7). (42)
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Proof. First, we prove that the operator &/ is dissipative. For
any U, € Z() and by using (40), we have

1 1 r7,
<HU,U>g = —yylj vidx - yJ J leey (s)|vz(x, 1,s, t)dsdx
0

0Jr
1l n 1
—yj J J |‘u2(s)|zpzdsdpdx—ﬁkj wldx.
0Jole, 0

(43)

For the third term of the right-hand side of (43), we have

1l 1, 1o d
_J J J |‘uz(5)|zpzdsdpdx:—§J J L |y2(s)|d—Pz dpdsdx

0J0JT, 0Jr1,

1 r1,
:_%J J |[,¢2(s)|22(x,1,s, t)dsdx

0Jr,
1 1 p1,
+ —J J |ty (5)12° (x, 0, s, t)dsdx.
2 0JT,

(44)

By using Young’s inequality, we get

1 p7, 1 T, 1
—J J lety () lvz(x, 1, s, t)dsdx < — J | py(s) | ds J Vidx
0Jr1, 2 T 0

1 1 7,
+ EJ J i, (5)12%(x, 1, 5, t)dsdx.

0Jr,

(45)

Substituting (44) and (45) into (43), using the fact that
z(x,0,s,t) =v(x, t) and (4), we obtained

T

) o 1
<dU,U>g <~y <,ul —J [ gy (s) | ds)J vzdx—ﬁkJ wldx<0.
0

T 0
(46)
Hence, the operator « is dissipative.

Next, we prove the operator of is maximal. It is sufficient
to show that the operator (Id — &f) is surjective.

Indeed, for any F = (fl,fz,f3,f4,f5,f6,f7)T € I, we prove
that there exists a unique V=(¢,u,v,v,0,w,z) € D()

such that
(Id- )V =F. (47)

That is

p-u=f,
PIM_M(Pxx_bWx:Ple’
y-v=f,

°T,

|ty (5) |2 (%, 1, s, t)ds = p,fys

L

PZV_(SV/xx+h¢x+fw+ﬁwx+MlV+J
0-w=f,

psw — lexx TYVx— kwxx = p3f6’

sz,(x, p, s, t) + zp(x, P s, t) =sf,,
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We note that the last equation in (48) with z(x,0,s, t) =
v(x, t) has a unique solution given by

P
zZ(x, py 5, t) =€ Pv+ seSPJ e“f,(x,0,s,t)do, (49)
0

then

1
z(x, 1,5, t)=e" v+ seSJ e“f,(x, 0,5, t)do, (50)
0

4 T2 _
Py=pytEtp + §V+J [t (s)]eds,

hy=py(f; + )

Ty

h3 =P3(f5 +f6) +Yf3x_kf5xx'

We multiply (52) by ¢, v, 0, respectively, and integrate
their sum over (0, 1) to get the following variational formula-
tion:

B((p.v:0). (99.0)=1(99.8). (9
where
B: (HL(0,1)xH)(0, 1) x H (0,1))" — R (55)
is the bilinear form defined by
B((%w)@)) (fp, v, 9) =mj <P<de+VﬂJ PP dx
0 0
1
+ VbL (Vo +ov,)dx
1 N 1 N
+W4J wwdxwéj v, Y dx
0 0
'l SEE
+V:3J Gx?/dHﬁYJ v, Odx
0 0
1 1 R
+ ﬁp3J 00dx + ﬁ(l+k)2J 0,6 dx,
0 0
I': (H,(0,1)x Hy(0,1) x H,(0,1)) — R (56)

is the linear functional given by

= 1 1 1
r(a,@,e) =J hladﬁj h217/dx+J hfdx.  (57)

0 0 0

By = py(fy + )+t - j (5) %) s -

we have
u=@-frv=y-frw=0-f,. (51)

Inserting (50) and (51) into (48), (48), and (48), we get

P1P — HPyy — bl//x = hl’
U - avjxx + b(Px + :Bex = hZ’ (52)
rhoy0 — (1+ k)0, + yy, = hs,

where

i X (53)
| stscole | e a5 ndods +

T

Now, for V=H!(0,L)x H}(0,L) x H! (0, L), equipped
with the norm

(@, 9, O)I5, = oI5+l I3+ 115 +ly I5-+1O13+16,13,  (58)

then, we have

1 1
B((9, v, 0), (9, ¥,0)) = mJO ¢dx + WJO @ldx
1

+ypy | yldx+ Y5J ydx
0

1
0
1 1
+pB| Gdx+ B+ k)J 0% dx
0 0
1

+2yb| @ vdx,
0

we have

Ul + gy’ + 2bg y =

N =
L —
<
A/~
-
=
+
Tl
<
~

(3]
+
=
N
A/
<
+
NS
2
-
(3]



by assuming € — b* > 0, we get
v v
- —>0,pu,—— >0, (61)
# Yy . U

then, for some M, > 0,

B((¢, ¥, 0), (¢, v,0)) = Ml (9, v, O) I3 (62)

Thus, B is coercive. Consequently, using the Lax-
Milgram theorem, we conclude that the existence of a unique
solution ((¢, ¥, 0)) in V satisfies

u=¢-f, eHL(0,1),
v=y - f3 € Hy(0,1), (63)
w=0-f;€HL(0,1).

Substituting ¢, y, 0 into (50) and (51), respectively, we
have
u,0 e HL(0, 1),
y e H}(0,1), (64)
2,2, € L*((0,1) x (0, 1) X (1, 7,)).

Let ¢ € H}(0,1) and denote

1

$=¢wyi[¢@wa (65)

0

which gives us @ € H'(0,1). Now, we replace (¢, ¥, 8) by
(9,0,0) in (54) to obtain

1 ~ 1 -~ 1 o~ 1 =~
mJ svs?dﬁwj %%dwaj wx<de=J h, pdx.
0 0 0

O (66)

We get

1

1 = 2
WJ ¢, 9 dx = J (hy —yp,p —yby,) pdx,  (67)
0

0
which yields
VHQ, = VPP — by, — by € L2(0,1). (68)

Thus,

e H*(0,1). (69)
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Moreover, (52) also holds for any every @ € C'([0, 1]).
Then, by using integration by parts, we obtain

1 1
WJ <Px¢xdx=J (hi —ypi@ = yby,)pdx.  (70)
0 0

Then, we get for any ¢ € C'(]0, 1])
¢.(1)9(1) — ¢, (0)9(0) =0. (71)

Since ¢ is arbitrary, we get that ¢, (0) = ¢, (1) = 0. Hence,
@ € H2(0,1). Using similar arguments as above, we can
obtain

v e H*(0,1) N Hy(0,1),

6 € H2(0,1). 72)

Finally, the application of regularity theory for the linear
elliptic equations guarantees the existence of unique U € 9( /)
such that (47) is satisfied.

Consequently, we conclude that </ is a maximal dissipative
operator. Hence, by Lumer-Philips theorem (see [25, 26]), we
have the well-posedness result. This completes the proof.

3. Stability Results

We prepare the next lemmas (Lemmas 2-7) which will be
useful to introduce the Lyapunov function in (104).

Lemma 2. The energy functional E associated with our prob-

lem defined by

+ BIT (165 + p;67 ] dx
2 0 X 3Vt
y 1 ¢l pr,
+ fj J J sluy(s)12° (x, p, s, t)dsdpdx
2 0J0JT,;
(73)
satisfies
1 1
E'(t)S—kﬁJ fodx—yr]OJ yidx <0, (74)
0 0

where 1, =p, — f:j | u,(s) | ds>0.
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Proof. Multiplying (19) by yg,, (19) by yy,, and (19) by f30,
then integration by parts over (0, 1), we get

d 1
Vab | o0 gty oy ey 2k ]
0

i d
+W1J ydx+ gd_J [16 + p,07] dx (75)
0

1 T,
+ VJ th |."‘2(5)|Z(x) 1,s, t)dsdx =0.
0

T

Now, multiplying (19) by z | u,(s) | and integrating the
result over (0,1) % (0,1) x (7, 7,), we get

d)/ 1 pl 7y
o ||| i1 pos dsdpa

0JoJr

1 ¢l p7,
=—yJ J J 1y (5)lzz,,(x, p> 5, t)dsdpdx

0J0Jr,

y 1 ¢l p7, d )

:_5[ J J ety (s )|dpz (x, p, s, t)dsdpdx
1 r7y
J J |1, (5)

T, 1 r7y
J | 1, (s) | ds)J ylidx - ;/J J |1, (8)12%(x, 1, s, t)dsdx.

x,O s, 1) - (x, 1,s, t))dsdx

N\‘ﬁ

N~

T 0J1

(76)

From (75) and (76), we get (73) and (74).
Now, using Young’s inequality, (74) can be written as

T2

1
| (5) | d)j yidx.
1 0

(77)

E'(t) < —k/J’J:) Oredx —y (#1 - J

T

Then, by (4), there exists a positive constant #, such that

1 1
E'(0) kB Gdx—yn, | vide (78)
0 0

Thus, the functional E is nonincreasing.

Lemma 3. The function

F(t)= rwtwdﬂbﬁleJ:%(y)dydﬁ Jv/dx
(79)

satisfies

Fi(t) <

S (! 1 1
_EJO yldx - /43L yldx + elL @rdx

1 1 1
+ c(] + Ez) JO wfdx + CJO Gfxdx (80)

1 g1,
+CJ J Iyz(s)lzz(x,l,s, t)dsdx,

0Jr,

where i, =& — (b*/u) > 0

Proof. Direct computation, using integration by parts and
Young’s inequality, for & > 0, yields

F’ _ ! 2 bz ! 2 ! 2
(1) =-0 ‘/’xdx— 5_; O‘I/dx+P2 Oll’zdx
b 1
- 2 J wtj e >dydx—ﬁj0 Y6, dx

1 T, 1
-J WJ 4, ($)1z(x, 1, 5, t)dsdx < —6J yldx
0

T 0

(E— b—2>J 2dx+c<1+ ;)Jl yidx
0 1/ Jo
e (oo

1 T,
- J WJ ety (5)|z(x, 1, s, t)dsdx.

0 T

By Cauchy-Schwartz’s inequality, it is clear that

J; (JO f/)t(y)dy> e J; <J: <p,dx> zdx < J: 0dx. (82)

So, estimate (81) becomes

F’ ! 2 bz ! 2 1 ! 2
(<=8 yidx—[E—— || yidx+c(1+— || ydx
0 /o &/ Jo

1 1 1 T,
+ 81J ¢, dx — ﬁj Y0, dx - J IIIJ e, (8)|z(x, 1, s, t)dsdx,
0 0 0

T

(83)
where the Cauchy-Schwartz, Young, and Poincaré’s inequal-

ities have been used, for &, > 0.
By the fact that u& > b%, we get the desired result (80).

Lemma 4. Assume that ((4)) holds. Then, the function

1 1
Fit)= | vipds+ | viguds (84)
0 0



satisfies

b
Fi(t)<- J xdx+cJ
A1) 2p, %

1 & u\ (!
+CJ J Iyz(s)lzz(x, Ls, t)dx + (— - —)J oV, dx.
0Jr, P> P1/Jo

(85)

Proof. By differentiating F,, then using (19), integration by

parts gives
! 0 b
2dx+<—— y)J dx+—J 2dx
JO q)x pz Pl q)xWxx Pl wx

Hq J B Jl
-—— Vv (dex -—| 0 x(dex
Prlo ! prlo

2J0
%J 2 |ty (5)12°(x, 1, s, t)dsdlx.
0 T

(86)

Thanks to Young, Cauchy-Schwartz, and Poincaré’s
inequalities to estimate terms in RHS of (86). For §,, ,, 85,
8, >0, we have

£ 1 c
-2 | @ydx< 81J @ldx + TJ vdx, (87)
P2 Jo 0 1Jo
(! b c [t
-— . dx <0 J “dx + —J dx, (88)
P2 0 I//t(P 2 0 ¢ 462 0 lllt
B b ¢ 2
= — 89
o, 0, dx < 83J0 @rdx + 1, J 0; dx, (89)

1 1 T, 1
——J (ij lpty (5)|z(x, 1, s, t)dsdxs84J <p§dx
P2 Jo T 0

c 1 p7, (90)
2

bl 1’ bl .

+ 1, JO JTI ey (s)|z" (x, 1,5, t)ds

The replacement of (87)-(90) into (86) and
settingd, = 8, =05 = 8, = b/8p,helps to obtain (85).

Lemma 5. The function

F3(0==-—P1J0q%¢dx (o1)

satisfies
) 1 3[" 1
Fy(t) < _P1J @7 dx + 7J @ldx + CJ yldx. (92)
0 0

Proof. Direct computations give

Fi(t) = —p, J gotdx+‘uj (pzdx+bJ @, ydx. (93)
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Estimate (92) easily follows by using Young’s and Poin-
caré’s inequalities

1 1
Fi(t) S—plj (pfdx+[4J cpidx+65J 2 dx + —J yldx,
0 0

(94)
setting 85 = p/2 to obtain (92).
Lemma 6. The function
1
F (t) = p3J 0,0dx (95)

satisfies
/ L g 2
Ft) < -5 Jo Odx + CJ yidx + CJ 0, dx. (96)
Proof. Direct computations give

1 1 1 1
Fi(t) = —lJ 0%dx + yJ 0,y dx - kJ 0.0,.dx+ p3J 0 dx.
0 0 0 0
(97)
By using Young and Poincaré’s inequalities, we get (96).

Lemma 7. The function

&@=fjj”wﬂm@wuwmnm@m (98)

0J0Jr,
satisfies

Il gty 1
Fi(t) < _'lzj J J sluy(s)12° (x, p, s, t)dsdpdx + yIJ yldx
0

0J0J1,;

1 r7,
| [ 1 s s,

0Jr,
(99)
where 1, is a given positive constant.

Proof. By differentiating F. with respect to ¢ and using the
last equation in (Hyp1l), we have

1 1 pry
o= | |
0J0Jr
d 1 pl pry
:——J J J se” Py, (s)|2% (x, p, s, t)dsdpdx
dp Jo Jo 7,

—ﬂﬁwwmf

e Pl (s)lzz,(x, p; s, t)dsdpdx

Z(x,1,5t) -2 (x,0,5, t)] dsdx.

(100)
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Using the fact that z(x,0,s,t) =
e <1, forall 0 < p <1, we obtain

—s) and e~ <

v, (x, t

1 ¢l p7,
Fio =, [ || s pus dsdpd

0J0JT
Jl JTZ
0Jr

T, 1
+ J /7% (s)ldsJ yrdx.
0

Ty

el (s)12% (%, 1, s, t)dsdx (101)

We have —e™* <
(4), we get (99).
We state and prove the decay result in Theorem 8.

—e Vs €1y, T,]. Set n, =¢ ™, and by

Theorem 8. Let ((4)) hold. Then, there exist positive constants
A, and A, such that the function ((73)) satisfies, for any t > 0

E(t) < Ae™™, zf — =

(102)
2P1

E(t) < C(E,(0)+ Ey(0) L, if &2 2.

(103)
P2 Pi

Proof. We define a class of an appropriate Lyapunov func-
tion as

Z(t)=NE(t) + N, F,(t) + N,F,(t) + F5(t) + F(t) + N5 F;5(t),

(104)

where N, N;, N,, and N; are positive constants to be
selected later.

Differentiating (104) and by (74), (80), (85), (92), (96),
and (99), we have

1 N, o e
Z (1)<~ T_CNz_C yedx—[py =Ny ]| ¢rdx
Jo 0

1 ',
YN 1+ — ) = Nye—pNs—c J yidx
£ 0
bN, _3u 2 o
{2—‘02 2” @dx — N“u3JOt// dx

1

—[Ns#, —cN, - ch}J J iy (5)12%(x, 1,5, t)dsdx

0

1 o1 1 pl o7,
_EJ Oidx—qulJ J J slu,y (5)12% (%, p, s, t)dsdpdx
0 0Jo

1
—[NKB—cN, —cN, - ] [ 6% dx + N, (i ”) [ 0., dx.
Jo P2 P1
(105)

By setting &, = p;/2N, we obtain

Sf/(t)g—{@—ch—c}J wzdx—&J @rdx
0
1
- %_3_'” @rdx
2p, 200077
1
_[Y’/ION_CNI(l+N1)_CN2_AM1N5_C}‘[ yydx
0

1 1y
— [N51, —cNy - ch]J I |ty (5)|2% (x, 1, 5, t)dsdx

0Jr,

o1 1
—N1y3J y?dx — [Nk —cN, — cN, — C]J 67 dx
0 0

1 1 ¢l 7,
- %J Gidx—NSmJ J J slyz(s)lzz(x, p, s, t)dsdpdx
0

0J0J1,

ol
+N,(— - — W A%
2<P2 pi))o?

Next, we carefully choose the constants, starting by N, to
be large enough such that

(106)

1 bz_l\;z s, (107)
and N, so that
ocZ:@—CNZ—(»O, (108)
and N large enough such that
a3 =Ngn, —cN; —cN, > 0. (109)

We arrive at

1 1 1
.SZ"(t)s—(xz[ wﬁdx—ocoj yidx - gJ (pfdx—oclj @ldx
Jo 0 0

1
- [ynoN - c]J yidx — [kBN — C}J 07 dx — - : j 0dx
0

(110)

1 p1,y 1
—043J J |‘uz(s)|zz(x, 1,s, t)dsdx+ocsj QW dx
T, 0

0
e )
—(x4J J J sluy (5)12% (x, p s, t)dsdpdx,
0Jr,
where g =p,N, = (£~ (V/u))Ny, &, = Nsny, a5 = Nykg =

Nz((5/p2) - (P‘/P1))-
Now, let us define the related function

L(t) = Ny Fy () + Ny Fy (1) + F5 (1) + Fy (1) + N5 Fs(1),
(112)
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then

18(1)] < dx

1 b N 1
NIJ [y, |dx + LJ
0 g 0

+ N,
2

1 1
+ plL o, pldx + P3J0 10,0|dx

wJO ¢ (y)dy

1 1
J wzdx+NzJ W, @, + @, |dx
0 0

1 ¢l 1,
+N5J J J Se‘SPhuz(S)lzz(x,p’ s, t)dsdpdx.

0JoJr
(113)

Thanks to Young, Cauchy-Schwartz, and Poincaré’s
inequalities, we get

1
ISUNScJ(¢f+wf+wi+¢i+w2+93+9®dx
0

1 pl p17,
+cJ J J sluy (5)12% (x, p, s, t)dsdp < cE(t).

0J0Jr,

(114)
Then,
1(6)| = | Z(t) - NE(t)| < cE(1). (115)
Thus,
(N=-c)E(t) < Z(t) < (N +c)E(t). (116)
One can nowNlarge enough such that
N—-¢>0,kfN —c>0,Nyn, —c>0. (117)
We get
LE(t) < ZL(t) < c;E(t), V=0, (118)
and using (73), (110), and (116), and the fact that
1 1
J efdng 6; dx, (119)
0 0
which gives
1
L' (t) <k E(t) + “SJO @Y, dx, V0. (120)

for some k, c,, ¢; > 0.

Case 1. If ky = (8/p,) —
the form

(plpy) =0, in this case, ((120)) takes

L'(t) < -k,E(t), Vt=0. (121)
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The combination of (118) and (121) gives

LNty <-MZ(t), Vt=0,A =2 (122)

Finally, by integrating (122) and recalling (118), we
obtain the first result of (103).

Case 2. If ky = (8/p,) — (ulp,) #0, then

kyp?yd .
AT /710 f b
ANy vy 7
(123)
2
kol < Y g <o,
2N,p,
Let
E(t) = Elg v..0,2) = Ey (1), (124)
be denoted by
Ey(t) = E(9p v, 0, 2,). (125)
Then, we have
<wk4aMme%M (126)

The last term in (120), by using (19), and Young’s
inequality, and by setting K = —p, a5/, we have

‘x5J1 (PxWXde == S—PIJ qu’ttdx + b_J IVX
0 U u

=-K < d Ul Y, dx — J; wt%dx] >

ba
J (Pthtdx+ MSJ V’x

d 1
<-K (dt U l//(/’xtdx Jo Wt(dex] >

1
b“5j WRdx + @J %dx+|1<|J
U

(127)

Let

1

1
N(t) = J Yo, dx — J v, dx, (128)
0 0
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then (120)

Z(t)+ KN (t) < —k,E\(t) + E’Z‘SJ yldx + 'K'J vl dx

0
1

! K
+IKI[ gideskoro) + B[ i
0 0

(129)
where
bas
ky =k, - o <|K| 3 ) (130)
Let
G(t) = Z(t) + KN (t) + N;(E,(t) + E,(1)). (131)

If Ny > max {C, | K|-c,,|K|,|K|/4C}, indeed,

1

1
wml:lj wsoxtdxmj Yol < © j P+ | j Y2

IJ vidx + - J @dx < E,(t) + CyE, (1),

(132)
where C, = max {2/y&, 2/yu, 2/yp, }. By (118), we obtain

G(t) < ¢ Ey (1) = IKI(Ey(£) + CoE (1)) + N3 (Eq (£) + Ey (1))

< (N3y+¢;, = Cy | K|)E (t) + (N3—|K | )E,(t).
(133)
It is not hard to prove
my (i (8) + By (1)) < G(1) <my (B, (1) + Ex(t),  (134)

where my, m, > 0. By using (129) and (128), we obtain

G'(t)= 2" (1) + K (1) + N3 (Ey(t) + Ex(1))
< —k,E, (t) + <—CN3 + 4>J Y, dx
0
Choosing N; such that
K
CN, - % >0, (136)
we have

G'(t) < —k,E, () (137)

11

Integrating (137), we get

[ By < (600~ 6l1) = - 6(0) = 2 (E0) + B0,
(138)
using the fact that
(tE (1)) =tE|(t) + E, (t) < E,(¢). (139)
We get that
E, () < ”C“_j(El(O) + E,(0)), (140)

which is desired to be the second result of (103). This com-
pletes the proof.

4. Conclusion

This paper studied the asymptotic behavior of a one-
dimensional thermoelastic system with distributed time
delay; namely, an integral damping term on a time interval
[t -1, t—1,] is taken into account. Beside the distributed
delay term, a standard undelayed damping is included in
the model (—u,¢,). We established the well-posedness of
the system, and we proved stability estimates by means of
appropriate Lyapunov functions. Exponential decay esti-
mates are proved by nonclassical condition between the delay
damping coefficient and the coeflicient of the undelayed one
which is satisfied. Several papers have been proposed for
models including both undelayed and delayed damping of
the same form, and exponential stability results have been
obtained if the coefficient of the delay is smaller than the
one of the undelayed term. This analysis has been extended
to the case of a distributed delay in [16]. Also in this case,
there are now a few literature, dealing with different PDE
models, including thermoelastic systems. Typically, under
the assumption (4), the system keeps the same properties,
the one without delay but only with a standard frictional
damping c¢,, for some coefficient c. Then, this paper intro-
duced a considerable novelties different from those of [15].
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