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We study the existence of positive solutions for second-order nonlinear repulsive singular difference systems with periodic
boundary conditions. Our nonlinearity may be singular in its dependent variable. The proof of the main result relies on a fixed
point theorem in cones and a nonlinear alternative principle of Leray-Schauder; the result is applicable to the case of a weak
singularity as well as the case of a strong singularity. An example is given; some recent results in the literature are improved and
generalized.

1. Introduction

Difference systems are widely used in modeling real-life phe-
nomena [1] and references therein. In this paper, we establish
the existence positive solutions for the following nonlinear
difference systems:

−Δ p n − 1ð ÞΔx n − 1ð Þ½ � + q nð Þx nð Þ = f n, x nð Þð Þ + e nð Þ, ð1Þ

with the boundary conditions:

x 0ð Þ = x Tð Þ, p 0ð ÞΔx 0ð Þ = p Tð ÞΔx Tð Þ, ð2Þ

where qðnÞ = diag ðq1ðnÞ, q2ðnÞ,⋯, qNðnÞÞ, pðnÞ = diag ðp1ð
nÞ, p2ðnÞ,⋯, pNðnÞÞ, e = ðe1, e2,⋯, eNÞT , and f = ð f1, f2,⋯
, f NÞT , N ≥ 1: By a periodic solution, we mean a function x
= ðx1, x2,⋯, xNÞT , solving (1) and (2) and such that xðnÞ
≠ 0 for all n. We call boundary condition (2) the periodic
boundary conditions which are important representatives
of nonseparated boundary conditions. For convenience, we
denote byℤ,ℕ, andℝ the sets of all integer numbers, natural
numbers, and real numbers, respectively. For a, b ∈ℤ, let ℤ
ðaÞ = fa, a + 1,⋯g,ℤ½a, b� = fa, a + 1,⋯, bg when a ≤ b. As

usual, Δ denotes the forward difference operator defined by

Δx nð Þ = x n + 1ð Þ − x nð Þ: ð3Þ

In particular, the nonlinearity f ðx, xðnÞÞ: ℕ ×ℝN \ f0g
⟶ℝN may have a repulsive singularity at x = 0, from the
physical explanation, which means that lim

x⟶0
f iðn, xÞ = +∞,

uniformly in n ∈ℤ½1, T�, i = 1, 2,⋯,N .
Such repulsive singularity appears in many problems of

applications such as the Brillouin focusing systems and non-
linear elasticity [2].

System (1) can be viewed as a discretization of the follow-
ing more general class of the Sturm singular second-order
differential system:

− p tð Þy0ð Þ0 + q tð Þy = f t, yð Þ + e tð Þ: ð4Þ

Such systems, even in case p ≡ 1, where they are referred
to as being of Klein-Gordon or Schrödinger type, appear in
many scientific areas including fluid mechanics, gas dynam-
ics, and quantum field theory. During the last few decades,
the study of the existence of periodic solutions for singular
differential equations has deserved the attention of many
researchers [3–11]. Tracing back to 1987, Lazer and Solimini
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[5] investigated the singular model:

x′′ + h tð Þ
xλ

= g tð Þ, ð5Þ

where λ > 0, h, g are T-periodic functions and the mean
value of g is negative, �g < 0. One of the common conditions
to guarantee the existence of positive periodic solution is a
so-called strong force condition (corresponds to the case λ
≥ 1 in (5)) [11, 12]. For example, if we consider the system:

€x+∇Vx t, xð Þ = f tð Þ, ð6Þ

with Vðt, xÞ = 1/jxja; the strong force condition holds for α
≥ 2. On the other hand, the existence of positive periodic
solutions of the singular differential equations has been
established with a weak force condition (corresponds to the
case 0 < λ < 1 in (5)) [13–15].

From then on, some classical tools have been used to
study singular differential equations in the literature, includ-
ing the degree theory [6, 11, 16], the method of the upper and
lower solutions [8, 17], Schauder’s fixed point theorem [14],
some fixed point theorems in cones for completely continu-
ous operators [13, 18], and a nonlinear Leray-Schauder alter-
native principle [19].

For the existence of periodic solutions of difference
equations, some results have been obtained using the var-
iational methods or the topological methods [1, 20–25].
For example, by minimax principle, Guo and Yu [23] dis-
cussed the existence of periodic solutions for difference

equation:

−Δ2x n − 1ð Þ + f n, x nð Þð Þ = 0, ð7Þ

where the nonlinearity f is of superlinear or sublinear
growth at infinity. Based on the method of the upper
and lower solutions, Atici and Cabada [21] studied the
existence of periodic solutions for difference equation:

−Δ2x n − 1ð Þ + q nð Þx nð Þ = f n, x nð Þð Þ: ð8Þ

In [26], Zhou and Liu investigated the following
autonomous difference equations:

Δ2x n − 1ð Þ + f x nð Þð Þ = 0: ð9Þ

By Conley index theory, the author showed that the
suitable assumptions of asymptotically linear nonlinear
are enough to guarantee the existence of periodic
solutions.

In this paper, we establish two different existence results
of positive periodic solutions for (1) and (2) and proof of
the existence of positive solutions; the first one is based on
an application of a nonlinear alternative of Leray-Schauder,
which has been used by many authors [19, 27, 28] and refer-
ences therein; the second one is based on a fixed point theo-
rem in cones. Our main motivation is to obtain new existence
results for positive periodic solutions of the system:

Here, we emphasize that the new results are applicable to
the case of a strong singularity as well as the case of a weak
singularity and that e does not need to be positive.

The rest of this paper is organized as follows. In Section 2,
some preliminary results will be given. In Section 3, we will
state and prove the main results. We will use the notation
ℝN

+ = fx ∈ ℝN : xi ≥ 0 for each i = 1, 2,⋯,Ng, for x = ðx1,
⋯, xNÞ, y = ðy1,⋯, yNÞ, we write x ≥ y, if x − y = ðx1 − y1,⋯
, xN − YNÞ ∈ℝN

+ . We say that a function φ : ℝN ⟶ℝ is
nondecreasing if φðxÞ ≥ φðyÞ for x, y ∈ℝN with x ≥ y. For a
given function p defined on ℤ½0, T�, we denote its maximum
and minimum by p∗ and p∗, respectively.

2. Preliminaries

For i = 1, 2,⋯,N , let us denote by φiðnÞ and ψiðnÞ the solu-
tions of the corresponding homogeneous equations:

−Δ pi n − 1ð ÞΔx n − 1ð Þ½ � + qi nð Þx nð Þ = 0, n ∈ℤ 1, T½ �, ð11Þ

satisfying the initial conditions:

φi 0ð Þ = φi 1ð Þ = 0 ; ψi 0ð Þ = 0, pi 0ð Þψi 1ð Þ = 1: ð12Þ

Let

Di = φi Tð Þ + pi Tð ÞΔψi Tð Þ − 2: ð13Þ

Throughout this paper, we always assume that
(H) For each i = 1, 2,⋯,N , piðnÞ > 0, qiðnÞ ≥ 0, qið·Þ6 ≢ 0

, n ∈ Z½1, T�

Lemma 1 (see [29]). If (H) holds, then Di > 0.

−Δ p1 n − 1ð ÞΔx n − 1ð Þ½ � + q1 nð Þx nð Þ = x2 + y2
� �−a/2 + μ x2 + y2

� �β/2 + e1 nð Þ,

−Δ p2 n − 1ð ÞΔy n − 1ð Þ½ � + q2 nð Þy nð Þ = x2 + y2
� �−a/2 + μ x2 + y2

� �β/2 + e2 nð Þ:

8<: ð10Þ
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Lemma 2 (see [29]). Assume (H) holds. For the solution of the
problem:

−Δ pi n − 1ð ÞΔx n − 1ð Þ½ � + qi nð Þx nð Þ = ei nð Þ, n ∈ℤ 1, T½ �,
x 0ð Þ = x Tð Þ, pi 0ð ÞΔx 0ð Þ = pi Tð ÞΔx Tð Þ,

(
ð14Þ

the formula

x nð Þ = 〠
T

s=1
Gi n, sð Þei sð Þ, ð15Þ

holds, where

is the Green’s function; the number Di is defined by (13).

Lemma 3 (see [29]). Under condition (H), the Green’s func-
tion Giðn, sÞ of the boundary value problem (14) is positive,
i.e., Giðn, sÞ > 0 for n, s ∈ Z½0, T�.

We denote

Ai = min
n,s∈Z 0,T½ �

Gi n, sð Þ, Bi = max
n,s∈Z 0,T½ �

Gi n, sð Þ, σ = Ai/Bi: ð17Þ

Obviously, Bi > Ai > 0 and 0 < σi < 1.

Remark 4. If piðtÞ = 1, qiðtÞ = α > 0, then Green’s function
Giðn, sÞ of the boundary value problem (14) has the form:

Gi n, sð Þ =

βn−s + βs−n+N

β − β−1� �
βn − 1ð Þ

, 0 ≤ s ≤ n ≤ T + 1,

βs−n + βn−s+N

β − β−1� �
βn − 1ð Þ

, 0 ≤ n ≤ s ≤ T + 1,

8>>>><>>>>:
ð18Þ

where β = ðα + 2 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αðα + 2Þp Þ/2. If n is even, a direct calcu-

lation shows that

Ai =
2βT/2

β − β−1� �
βT − 1

� � ,

Bi =
1 + βT

β − β−1� �
βT − 1

� � ,

σi =
2βT/2

1 + βT
< 1:

ð19Þ

3. Main Results

In this section, we state and prove the new existence results
for (1). In order to prove our main results, the following non-
linear alternative of Leray-Schauder is needed, which can be
found in [30].

Lemma 5. AssumeΩ is a relatively compact subset of a convex
set E in a normed space X. LetA : �Ω⟶ E be a compact map
with 0 ∈Ω: Then, one of the following two conclusions holds:

(i) T has at least one fixed point in Ω

(ii) There exist u ∈ ∂Ω and 0 < λ < 1 such that u = λAu

Let

X1 = x : ℤ 0, T + 1½ �⟶ℝ x 0ð Þ = x Tð Þ, p 0ð ÞΔx 0ð Þjf
= p Tð ÞΔx Tð Þg: ð20Þ

Then, X1 is a Banach space with the norm

xk k = max
n∈Z 1,T½ �

x nð Þ: ð21Þ

We take

X = X1 × X1 ×⋯ × X1 N copiesð Þ, ð22Þ

with the norm

xj j =max x1k k, x2k k,⋯, xNk kf g: ð23Þ

Define

γi nð Þ = 〠
T

s=1
Gi n, sð Þei sð Þ, ð24Þ

which corresponds to the unique solution of (14), and the

Gi n, sð Þ = ψi Tð Þ
Di

φi nð Þφi sð Þ −
pi Tð ÞΔφi Tð Þ

Di
ψi nð Þψi sð Þ +

pi Tð ÞΔψi Tð Þ − 1
Di

φi nð Þψi sð Þ −
φi Tð Þ − 1

Di
φi sð Þψi nð Þ, 0 ≤ s ≤ n ≤ T + 1,

pi Tð ÞΔψi Tð Þ − 1
Di

φi sð Þψi nð Þ − φi Tð Þ − 1
Di

φi nð Þψi sð Þ, 0 ≤ n ≤ s ≤ T + 1,

8>>><>>>:
ð16Þ
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operator A : X ⟶ X by Ax = ðA1x,A2x,⋯,ANxÞT , where

A ixð Þ nð Þ = 〠
T

s=1
Gi n, sð Þf i s, x sð Þ + γ sð Þð Þ, i = 1, 2,⋯,N: ð25Þ

Now, we present the first existence result of the positive
solution to problem (1).

Theorem 6. Suppose that condition (H) holds and γ∗ ≥ 0. Fur-
thermore, we assume that

(H1) For each constant L > 0, there exists a function φLð
nÞ > 0 for all n ∈ℤ½1, T� such that each component f i of f sat-
isfies f iðn, xÞ ≥∅LðnÞ for all ðn, jxjÞ ∈ℤ½1, T� × ð0, L�

(H2) For each component f i of f , there exist nonnegative
functions giðxÞ, hiðxÞ, and kiðnÞ such that

0 ≤ f i n, xð Þ ≤ gi xð Þ + hi xð Þf gki nð Þ for all n, xð Þ ∈ℤ 1, T½ � ×ℝN
+ 0f g,
ð26Þ

and giðxÞ > 0 is nonincreasing and hiðxÞ/giðxÞ is nondecreas-
ing in x

(H3) There exists a positive number r such that σr + γ∗ > 0
and

for all i = 1, 2,⋯,N . Here,

Ki nð Þ = 〠
T

s=1
Gi n, sð Þki sð Þ,

σ = min
i=1,2,⋯,N

σif g,

γ∗ =min
i,n

γ nð Þ,

γ∗ =max
i,n

γ nð Þ:

ð28Þ

Then, (1) and (2) has at least one positive periodic solu-
tion x with xðnÞ > γðnÞ for all n ∈ Z½0, T� and 0 < jx − γj < r.

Proof. We first show that

−Δ p n − 1ð ÞΔx n − 1ð Þ½ � + q nð Þx nð Þ = f n, x nð Þ + γ nð Þð Þ,
ð29Þ

together with (2) has a positive solution x satisfying xðnÞ +
γðnÞ for n ∈ Z½0, T� and 0 < jxj < r. If this is true, it is easy
to see that uðnÞ = xðnÞ + γðnÞ will be a positive solution of
(1) and (2) with 0 < ju − γj < r since

−Δ p n − 1ð ÞΔu n − 1ð Þ½ � + q nð Þu nð Þ = −Δ p n − 1ð ÞΔ x n − 1ð Þð½
+ γ n − 1ð ÞÞ� + q nð Þ x nð Þ + γ nð Þð Þ = f n, x nð Þ + γ nð Þð Þ
+ e nð Þ = f n, u nð Þð Þ + e nð Þ:

ð30Þ

Since (H3) holds, let J0 = fj0, j0 + 1,⋯g, we can choose

j0 ∈ f1, 2,⋯g such that 1/J0 ≤ σr + γ∗ and

gi γ∗,⋯, γ∗, σir + γ∗, γ∗,⋯, γ∗ð Þ 1 + hi r + γ∗,⋯, r + γ∗ð Þ
gi r + γ∗,⋯, r + γ∗ð Þ

� �
K∗

i +
1
j0

< r,

ð31Þ

for all i = 1, 2,⋯,N .
Fix j ∈ J0. Consider the family of systems

−Δ p n − 1ð ÞΔx n − 1ð Þ½ � + q nð Þx nð Þ = λf j n, x nð Þ + γ nð Þð Þ
+ q nð Þ

j
, n ∈ℤ 1,N½ �,

ð32Þ

where λ ∈ ½0, 1� and for each i = 1, 2,⋯,N ,

f ji n, xð Þ =
f i n, xð Þ, if x ≥ 1

j
,

f i n, x1,⋯, xi−1,
1
j
, xi + 1,⋯, xN

	 

, if x ≤ 1

j
:

8>>><>>>:
ð33Þ

Problem (29) and (2) are equivalent to the following fixed
point problem:

xi nð Þ = λ〠
T

s=1
Gi n, sð Þf ji s, x sð Þ + γ sð Þð Þ + 1

j
= λ A

j
ix

� �
nð Þ + 1

j
,

ð34Þ

for each i = 1, 2,⋯,N , here, we used the fact

〠
T

s=1
Gi n, sð Þqi sð Þ ≡ 1, i = 1, 2,⋯,N: ð35Þ

r
gi γ∗,⋯, γ∗, σir + γ∗, γ∗,⋯, γ∗ð Þ 1 + hi r + γ∗,⋯, r + γ∗ð Þð Þ/ gi r + γ∗,⋯, r + γ∗ð Þð Þð Þf g > K∗

i , ð27Þ

4 Journal of Function Spaces



We claim that any fixed point x of (34) for any λ ∈ ½0, 1�
must satisfy jxj ≠ r. Otherwise, assume that x is a fixed point
of (34) for some λ ∈ ½0, 1� such that jxj = r. Without loss of
generality, we assume that jxlj = r for some l = 1, 2,⋯,N .

Thus, we have

xl nð Þ − 1
j
= λ〠

N

s=1
Gl n, sð Þf jl n, x sð Þ + γ sð Þð Þds ≥ λAl 〠

T

s=1
f jl n, x sð Þð

+ γ sð ÞÞds = σlBlλ〠
T

s=1
f jl n, x sð Þð

+ γ sð ÞÞds ≥ σl max
n

λ〠
T

s=1
Gl n, sð Þf jl n, x sð Þ + γ sð Þð Þds

( )

= σl xl −
1
j

���� ����:
ð36Þ

Hence, for all n ∈ Z½1, T�, we have

xl nð Þ ≥ σl xl −
1
j

���� ���� + 1
j
≥ σl xlk k − 1

j

	 

+ 1

j
≥ σlr: ð37Þ

Therefore,

xl nð Þ + γl nð Þ ≥ σlr + γ∗ >
1
j
: ð38Þ

Using (34), we have from condition (H2), for all n ∈ Z½1
, T�,

xl nð Þ = λ〠
T

s=1
Gl n, sð Þf jl s, x sð Þ + γ sð Þð Þ + 1

j

= λ〠
T

s=1
Gl n, sð Þf l s, x sð Þ + γ sð Þð Þ + 1

j

≤ 〠
T

s=1
Gl n, sð Þf l s, x sð Þ + γ sð Þð Þ + 1

j

≤ 〠
T

s=1
Gl n, sð Þkl sð Þgl x sð Þ + γ sð Þð Þ 1 + h1 x sð Þ + γ sð Þð Þ

g1 x sð Þ + γ sð Þð Þ
� �

≤ gl γ∗,⋯, γ∗, σlr + γ∗, γ∗,⋯, γ∗ð Þ
� 1 + hl r + γ∗,⋯, r + γ∗ð Þ

gl r + γ∗,⋯, r + γ∗ð Þ
� �

K∗
l +

1
j0
:

ð39Þ

Therefore,

r = xlj j ≤ gl γ∗,⋯, γ∗, σlr + γ∗, γ∗,⋯, γ∗ð Þ
� 1 + hl r + γ∗,⋯, r + γ∗ð Þ

gl r + γ∗,⋯, r + γ∗ð Þ
� �

K∗
l +

1
j0
:

ð40Þ

This is a contradiction to the choice of j0, and the claim is
proved.

From this claim, the nonlinear alternative of Leray-
Schauder guarantees that

x nð Þ = A jx
� �

nð Þ + 1
j
, ð41Þ

has a fixed point, denoted by xjðnÞ, in Br = fx ∈ X : jxj < rg,
i.e.,

−Δ p n − 1ð ÞΔx n − 1ð Þ½ � + q nð Þx nð Þ = f j n, x nð Þ + γ nð Þð Þ + q nð Þ
j

,

ð42Þ

has a periodic solution xj with jxjj < r.
Next, we claim that these solutions xjðnÞ + γðnÞ have a

uniform positive lower bound, that is, there exists a constant
δ > 0, independent of j ∈ J0, such that

min
i,n

xji nð Þ + γi nð Þ
n o

≥ δ, ð43Þ

for all j ∈ J0. To see this, we know from (H1) that there exists
a continuous function ϕr + γ∗ðnÞ such that each component
f i of f satisfies f iðn, xÞ ≥ ϕr+γ∗ðnÞ for all ðn, jxjÞ ∈ℤ½1, T� ×
ð0, r + γ∗�. Now, let xr+γ∗ðnÞ be the unique solution to

−Δ p n − 1ð ÞΔx n − 1ð Þ½ � + q nð Þx nð Þ =Φ nð Þ, ð44Þ

with (2), here ΦðnÞ = ðϕr+γ∗ðnÞ,⋯, ϕr+γ∗ðnÞÞT . Then, we
have

xr+γ
∗

i nð Þ + γi nð Þ = 〠
T

s=1
Gi n, sð Þϕr+γ∗ sð Þ + γi nð Þ ≥Φ∗ + γ∗ > 0

ð45Þ

for each i = 1,⋯,N , here

Φ∗ = inf
n
Φi nð Þ, Φi nð Þ = 〠

T

s=1
Gi n, sð Þϕr+γ∗ sð Þ: ð46Þ

Next, we show that (43) holds for δ =Φ∗ + γ∗ > 0. To see
this, for each i = 1,⋯,N , since xjiðnÞ + γiðnÞ ≤ r + γ∗ and xji
ðnÞ + γ∗ ≥ 1/j, we have

xji nð Þ + γi nð Þ = 〠
T

s=1
Gi n, sð Þf ji s, xj sð Þ + γ sð Þ� �

+ γi nð Þ

+ 1
j
≥ 〠

T

s=1
Gi n, sð Þ∅r+γ∗ + γi nð Þ ≥Φ∗ + γ∗ ≔ δ:

ð47Þ

The fact jxðnÞj < r and (43) show that for each i = 1, 2,
⋯,N , fxjigj∈J0 is a bounded family on ℤ½1, T�. Moreover,
we have

xji 0ð Þ = xji Tð Þ, pi 0ð ÞΔxji 0ð Þ = pi Tð ÞΔxji Tð Þ, ð48Þ
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which implies that

xji T + 1ð Þ = pi 0ð Þ
pi Tð ÞΔx

j
i 0ð Þ + xji Tð Þ, j ∈ J0: ð49Þ

Thus, the Arzela–Ascoli theorem guarantees that fxjig
j ∈ J0 has a subsequence, fxjki gjk ∈ J0, k ∈N converging
uniformly on ℤ½0, T + 1� to a function xi. Let x = ðx1,⋯,
xNÞ, xðnÞ satisfies δ ≤ xiðnÞ + γiðnÞ < r + γ∗ for all n ∈ℤ½1
, T� and i = 1,⋯,N . Moreover, xjki satisfies the integral
equation:

xjki nð Þ = 〠
T

s=1
Gi n, sð Þf i s, xjk sð Þ + γ sð Þ

� �
+ 1

jk
, i = 1,⋯,N:

ð50Þ

Letting k⟶∞, we arrive at

xi nð Þ = 〠
T

s=1
Gi n, sð Þf i s, x sð Þ + γ sð Þð Þ, i = 1, 2,⋯,N , ð51Þ

here, we have used the fact that f ðn, xÞ is with respect to
ðn, xÞ with n ∈ℤ½1, T� and x > 0 satisfying δ ≤ jxj ≤ r + γ∗.
Therefore, x is a positive periodic solution of (1) and sat-
isfies 0 < ∣x ∣ ≤r

Corollary 7. Assume that (H) holds, α > 0, β ≥ 0. Then, for
each e1, e2 with γ∗ ≥ 0, we have

(i) if β < 1, then (10) has at least one positive periodic
solution for each μ > 0

(ii) if β ≥ 1, then (10) has at least one positive periodic
solution for each 0 < μ < μ1, where μ1 is some positive
constant

Proof. We will apply Theorem 6. To this end, assumption
(H1) is fulfilled by ∅L = ð ffiffiffiffiffi

2L
p Þ−α. If we take

g1 x, yð Þ = g2 x, yð Þ = x2 + y2
� �−α/2,

h1 x, yð Þ = h2 x, yð Þ = μ x2 + y2
� �β/2, ð52Þ

and k1ðnÞ = k2ðnÞ = 1, then (H2) is satisfied.
Let

ω1 nð Þ = 〠
T

s=1
G1 n, sð Þ, ω2 nð Þ = 〠

T

s=1
G2 n, sð Þ: ð53Þ

Then, the existence condition (H3) becomes

μ < r σir + γ∗ð Þ2 + γ2∗
� 2/α − ω∗

i

2 α+βð Þ/2 r + γ∗ð Þα+β
, i = 1, 2, ð54Þ

for some r > 0. So, (10) has at least one positive periodic
solution for

0 < μ < μ1 ≔min
i=1,2

sup
r>0

r σir + γ∗ð Þ2 + γ2∗
� 2/α − ω∗

i

2 α+βð Þ/2 r + γ∗ð Þα+β
, i = 1, 2:

ð55Þ

Note that μ1 =∞ if β < 1 and μ1 <∞ if β ≥ 1. We
have (i) and (ii).

In more general, we can obtain the following result.

Corollary 8. Assume that (H) holds and there exist functions
a, â, b, b̂ and α, β > 0 such that, for i = 1, 2,⋯,N ,

α nð Þ
xj jα + b nð Þ xj jβ ≤ f i n, xð Þ ≤ bα nð Þ

xj jα + μb̂ nð Þ xj jβ: ð56Þ

Then, for each e with γ∗ ≥ 0, we have

(i) if β < 1, then (10) has at least one positive periodic
solution for each μ > 0

(ii) if β ≥ 1, then (10) has at least one positive periodic
solution for each 0 < μ < μ2, where μ2 is some positive
constant

By using a fixed point theorem for compact maps on
conical shells [31], we established the second positive peri-
odic solution for (1). Recall that a compact operator
means an operator which transforms every bounded set
into a relatively compact set and introducing the definition
of a cone.

Definition 9. Let X be a Banach space and let K be a closed,
nonempty subset of X. K is a cone if

(i) αu + βv ∈ K for all u, v ∈ K and all α, β > 0
(ii) u, −u ∈ K implies u = 0

Lemma 10 (see [31]). Let X be a Banach space and K a cone
in X. Assume Ω1,Ω2 are open subsets of X with 0 ∈Ω1, �Ω1
∈Ω2. Let

Φ : K ∩ �Ω2 \Ω1

� �
⟶ K ð57Þ

be a continuous and completely continuous operator such that

(i)

Φxk k ≤ xk k for x ∈ K ∩ ∂Ω1 ð58Þ

(ii) There exist ψ ∈ K \ f0g such that x ≠Φx + λψ for x
∈ K ∩ ∂Ω2 and λ > 0
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Then, F has a fixed point in K ∩ ð�Ω2 \Ω1Þ. The same con-
clusion remains valid if (i) holds on K ∩ ∂Ω2, and (ii) holds on
K ∩ ∂Ω1.

Define

K = x = x1,⋯, xNð Þ ∈ X : min
0≤n≤T

xi nð Þ
n

≥ σi xik kg for all n ∈ Z 0, T½ �, i = 1,⋯,Ng:
ð59Þ

Then, one can readily verify that K is a cone in X.

Theorem 11. Suppose conditions (H), (H1)–(H3) hold. Fur-
thermore, assume that the following two conditions are
satisfied:

(H4) There exist continuous, nonnegative functions g
1ðxÞ,

h1ðxÞ and k1ðnÞ such that

f i n, xð Þ ≥ g1i xð Þ + h1i xð Þ� �
k1i nð Þ for all n, xð Þ ∈ 0, T½ � ×ℝn

+ 0f g,
ð60Þ

where g1
i ðxÞ > 0 is nonincreasing and h1i ðxÞ/g1i ðxÞ is nonde-

creasing in x
(H5) There exists R > r such that

Then, problems (1) and (2) have another one positive peri-
odic solution ~x with r < j~x − γj ≤ R.

Proof. Let Ax = ðA1x,⋯,ANxÞT , A ix is given by (25), then,
it is easy to verify that A is well defined and maps X into K .
Moreover, A is continuous and completely continuous, and
let K be a cone in X defined by (59). Define the

Ω1 = x ∈ X : ∣x∣<rf g,Ω2 = x ∈ X : xj j < Rf g: ð62Þ

As in the proof of Theorem 3.1, we only need to show
that (29) has a positive periodic solution u ∈ X with uðnÞ +
γðnÞ > 0 and r < juj ≤ R. We claim that

(i)

Axj j ≤ xj j for x ∈ K ∩ ∂Ω1 ð63Þ

(ii) There exist ψ ∈ K \ f0g such that x ≠Ax + λψ for x
∈ K ∩ ∂Ω2 and λ > 0

We start with (i). In fact, if x ∈ K ∩ ∂Ω1, then jxj = r and
σir + γ∗ ≤ xiðnÞ + γðnÞ ≤ r + γ∗ for all t ∈ ½0, T�. Fix i ∈ f1, 2,
⋯,Ng, thus, we have

A ixð Þ tð Þ = 〠
T

s=1
Gi n, sð Þf i s, x sð Þ + γ sð Þð Þ ≤ 〠

T

s=1
Gi n, sð Þki sð Þgi x sð Þð

+ γ sð ÞÞ 1 + hi x sð Þ + γ sð Þð Þ
gi x sð Þ + γ sð Þð Þ

� �
≤ gi x sð Þð

+ γ sð ÞÞ 1 + hi x sð Þ + γ sð Þð Þ
gi x sð Þ + γ sð Þð Þ

� �
〠
T

s=1
Gi n, sð Þki sð Þ

≤ gi γ∗,⋯, γ∗, σir + γ∗, γ∗,⋯, γ∗ð Þ
� 1 + hi r + γ∗,⋯, r + γ∗ð Þ

gi r + γ∗,⋯, r + γ∗ð Þ
� �

Ki∗ < r = xj j:

ð64Þ

Therefore, kA ixk ≤ jxj for each i = 1, 2 ,...,N. This implies
that (i) holds.

Next, we show that (ii) holds. Let ψ ≡ ð1,⋯, 1Þ, then
ψ ∈ K \ f0g. Suppose that there exists x ∈ K ∩ ∂Ω2 and
λ > 0 such that x =Ax + λψ. Since x ∈ K ∩ ∂Ω2, then σi
R + γ∗ ≤ xiðnÞ + γðnÞ ≤ R + γ∗ for all n ∈ Z½0, T�. As a
result, it follows from (H4) and (H5) that, for all n ∈ Z½
0, T�,

xi nð Þ = A ixð Þ nð Þ + λ = 〠
T

s=1
Gi n, sð Þf i s, x sð Þ + γ sð Þð Þds + λ

≥ 〠
T

s=1
Gi n, sð Þkli sð Þgl

1 x sð Þ + γ sð Þð Þ 1 + hli x sð Þ + γ sð Þð Þ
gli x sð Þ + γ sð Þð Þ

( )

+ λ ≥ gl
i x sð Þ + γ sð Þð Þ 1 + hli x sð Þ + γ sð Þð Þ

gli x sð Þ + γ sð Þð Þ

( )
〠
T

s=1
Gi n, sð Þkli sð Þ

+ λ ≥ gl
i R + γ∗,⋯, R + γ∗ð Þ 1 + hli σ1R + γ∗,⋯, σNR + γ∗ð Þ

gl
i σ1R + γ∗,⋯, σNR + γ∗ð Þ

( )
Ki∗

+ λ ≥ σR + λ:

ð65Þ

Hence, min
0≤n≤T

xiðnÞ > σR; this is a contradiction and we

prove the claim.
Now, Lemma 3.7 guarantees that A has at least one fixed

point x ∈ K ∩ ð�Ω2 \Ω1Þ with r ≤ jxj ≤ R.

Let us consider again the example (10) in Corollary 7 for
the superlinear case.

Corollary 12. Assume in (10) that pi, qiði = 1, 2Þ satisfy (H),
for each e1, e2 with γ∗ ≥ 0, β > 1. Then, for each μ with 0
< μ < μ1, where μ1 is given as in Corollary 7, problem
(10) has at least two different positive solutions. To verify

σR

g1
i R + γ∗,⋯, R + γ∗ð Þ 1 + h1i σ1R + γ∗,⋯, σnR + γ∗ð Þ� �

/ g1i σ1R + γ∗,⋯, σnR + γ∗ð Þ� �� �� � ≤ Ki∗: ð61Þ
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(H4), one may take

g1
1 x, yð Þ = g12 x, yð Þ = 1

2
x2 + y2
� �−α/2,

h12 x, yð Þ = 1
2

x2 + y2
� �β/2, ð66Þ

and k1ðnÞ1 = k12ðnÞ = 1. If β > 1, then the existence condi-
tion (H5) becomes

μ ≥
2 α+2ð Þ/2 R + γ ∗ð ÞασR − 2ωi∗

σ1R + γ∗ð Þ2 + σ2R + γ∗ð Þ2�  α+βð Þ/2
ωi∗

, i = 1, 2: ð67Þ

Since β > 1, the right-hand side goes to 0 as R⟶ +
∞. Thus, for any given 0 < μ < μ1, it is always possible
to find such R≫ r that (67) is satisfied. Thus, (10) has
an additional positive periodic solution ~x.

Remark 13. We emphasize that our results are applicable to
the case of a strong singularity as well as the case of a weak
singularity since we only need α > 0. Moreover, e does not
need to be positive. In fact, using the assumption that the
Green function is positive, one may readily verify that γ∗ ≥
0 is equivalent to the ∑N

i=1eiðnÞ ≥ 0, i = 1, 2,⋯,N .
Let us consider the 2-dimensional system

−Δ2x n − 1ð Þ + x nð Þ = α nð Þ
xj jα + μb nð Þ xj jβ + e1 nð Þ,

−Δ2y n − 1ð Þ + y nð Þ = α nð Þ
xj jα + μb nð Þ xj jβ + e2 nð Þ,

8>>><>>>:
ð68Þ

with

ei nð Þ = n di − nð Þ, di ∈ℝ, i = 1, 2: ð69Þ

Example 1. Assume that α > 0, β > 1, aðnÞ, and bðnÞ are pos-
itive functions, eiðnÞ, i = 1, 2 are given by (69) with

d1 + 2d2 ≥ 5: ð70Þ

Then, the results in Corollary 12 hold.

Proof. We only need show γ∗ ≥ 0, which is equivalent to

〠
2

i=1
ei nð Þ ≥ 0, ð71Þ

Since d1 + 2d2 ≥ 5, a direct computation show that

〠
2

i=1
ei nð Þ ≥ 0 〠

2

i=1
= n di − nð Þ ≥ 0: ð72Þ

4. Conclusions

In this paper, we study the periodic problem for nonlinear
difference systems with a singularity of repulsive type in the
case of γ∗ ≥ 0. The proofs of main results are based on a non-
linear alternative principle of Leray-Schauder and a fixed
point theorem in cones. It is interesting that the singularity
f is applicable to the case of a weak singularity as well as
the case of a strong singularity. In the next research, we will
continue to study the periodic problem to the difference sys-
tems like (10) where f may have attractive singularity at x = 0
, and whether the condition γ∗ ≥ 0 can be removed.
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