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In this paper, we have established and proved fixed point theorems for the Boyd-Wong-type contraction in metric spaces. In
particular, we have generalized the existing results for a pair of mappings that possess a fixed point but not continuous at the
fixed point. We can apply this result for both continuous and discontinuous mappings. We have concluded our results by
providing an illustrative example for each case and an application to the existence and uniqueness of a solution of nonlinear
Volterra integral equations.

1. Introduction and Preliminaries

Continuity is an ideal property which is sometimes difficult to
be fulfilled especially in some daily life applications. For
instance, most neural network systems like bar code scanning,
speech recognition, and handwritten digit recognition lack the
continuity property. These neural network systems are some
excellent prototypes for learning discontinuity phenomena.
Here, we transform different kinds of day to day real-world
phenomena into threshold functions which satisfies our desir-
able continuity of the weaker form and a new type of contrac-
tion to provide a solution to some daily life applications.
Therefore, it is desirable to relax continuity assumptions
because, in some applications, the functionmay not be contin-
uous. One can see more literature on the topic [1–5].

In 1969, Kannan [6] proved the following fixed point the-
orem for discontinuous mapping:

Theorem 1 [6]. If a self mapping T of a complete metric space
ðX, dÞ satisfies the condition

d Tx, Tyð Þ ≤ a d x, Txð Þ + d y, Tyð Þ½ �, 0 ≤ a < 1
2
, ð1Þ

for each x, y ∈ X, then, T has a unique fixed point.

This theorem gave rise to the question of continuity
of contractive mappings at their fixed points. In the Kan-
nan contractive condition, continuity of mapping T was
not required for the existence of a fixed point.

In 1971, Ciric [7] (see also [8]) introduced the notion of
orbital continuity, which is as follows:

Definition 2 (see [7]). Let ðX, dÞ be a metric space and
T : X⟶ X be a self mapping. Then, the set Oðx, TÞ =
fTnx : n = 0, 1, 2, 3,⋯,g is called the orbit of T at x
and T is called orbitally continuous if for any sequence
fxn ⊂Oðx, TÞg, xn ⟶ z implies that Txn ⟶ Tz as n
⟶∞.

In 2017, Pant and Pant [9] introduced the notion of k
-continuity which is as follows:

Definition 3 [9]. A mapping T : X ⟶ X is called k-contin-
uous for k = 1, 2, 3,⋯, if Tkxn ⟶ Tt whenever a sequence
fxng is in X such that Tk−1xn ⟶ t.

Continuity of T implies orbital continuity, but the con-
verse is not true (see [7]).

The following are the examples of k-continuity:
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Example 1. Let X = ½0, 3� be equipped with the usual metric
and T : X⟶ X be defined by

Tx =
1, if 0 ≤ x ≤ 1,
0, if x ∈ 1,ð 3�:

(
ð2Þ

Then, Txn ⟶ t⇒ T2xn ⟶ t, since Txn ⟶ t implies
that t = 0 or t = 1 and T2xn = 1 for all n, that is, T2xn ⟶ 1
= Tt: Hence, T is 2-continuous. However, T is discontinu-
ous at x = 1.

Example 2. Let X = ½0, 5� be equipped with the usual metric
and T : X⟶ X be defined by

Tx =

1, if 0 ≤ x ≤ 1,
0, if 1 < x ≤ 4,
x
4 , if 4 < x ≤ 5:

8>>><
>>>:

ð3Þ

Then, T2xn ⟶ t⇒ T3xn ⟶ Tt, since T2xn ⟶ t
implies t = 0 or t = 1 and T3xn = 1 = Tt for each n. Hence,
T is 3-continuous. However, Txn ⟶ t does not imply that
T2xn ⟶ Tt, that is, T is not 2-continuous.

Example 3 [9]. Let X = ½0, 2� be equipped with the usual met-
ric and T : X ⟶ X be defined by

Tx =
1 + xð Þ
2 , if 0 ≤ x ≤ 1,

0, if x > 1:

8<
: ð4Þ

Then, it can be verified that T is 2-continuous but not
continuous. Moreover, Tk is discontinuous for each positive
integer k. Thus 2-continuity of T does not imply continuity
of T2. In general, k-continuity of T does not imply continuity
of Tn.

Example 4 [9]. Let X = ½0, 3� ∪ ð4, 5Þ be equipped with the
usual metric and T : X⟶ X be defined by

Tx =

1, if 0 ≤ x ≤ 1,
0, if 1 < x ≤ 3,
x
4 , if 4 < x < 5:

8>>><
>>>:

ð5Þ

Then, T2 is continuous but T is not 2-continuous. If we
consider the sequence fxng given by xn = 4 + 1/n, then, Txn
⟶ 1 but T2xn ⟶ 0 ≠ T1: Hence, T is not 2-continuous.

From the above examples, one can see that continuity of
Tk and k-continuity of T are independent conditions when
k > 1. It is easy to see that 1-continuity is equivalent to conti-
nuity and

Continuity⇒ 2 − continuity⇒ 3 − continuity⇒⋯: ð6Þ

Definition 4 [10]. Let fxng be a sequence in a metric space ð
X, dÞ. Then,

(i) A sequence fxng in X converges to a point x ∈ X if
and only if lim

n⟶∞
dðx, xnÞ = lim

n⟶∞
dðxn, xnÞ

(ii) A sequence fxng is called a Cauchy sequence if there
exists ε > 0 such that for all n,m >N , we have dðxn
, xmÞ < ε for some integers N ≥ 0, that is lim

n,m⟶+∞
dð

xn, xmÞ exists and it is finite

(iii) A metric space ðX, dÞ is complete if every Cauchy
sequence fxng converges to a point x ∈ X such that
dðx, xÞ = lim

n,m⟶+∞
dðxn, xmÞ

Pant and Pant [9] proved the following theorem by
employing a new type of ðε − δÞ condition.

Theorem 5 [9]. Let f be a self mapping of a complete metric
space ðX, dÞ such that

(i) dð f x, f yÞ <max fdðx, f xÞ, dðy, f yÞg, max fdðx, f xÞ,
dðy, f yÞg > 0

(ii) Given that ε > 0, there exists a δ > 0 such that ε <
max fdðx, f xÞ, dðy, f yÞg ≤ ε + δ⇒ dð f x, f yÞ ≤ ε

If f is k-continuous or f k is continuous for some k ≥ 1 or f
is orbitally continuous, then, f possesses a unique fixed point.

2. Main Results

Pant and Pant [9] used ε − δ and k-continuity property to
prove the above fixed point theorem for one self map. In this
section, we are extending Theorem 5 for a pair of self maps
using ε − δ conditions as follows:

Theorem 6. Let X be a nonempty set and let d to be a metric
on X. Let T and S be self mappings of a complete metric space
ðX, dÞ satisfying

(i) dðTx, SyÞ <Mðx, yÞ, where

M x, yð Þ =max d x, yð Þ, d x, Txð Þ, d y, Syð Þ, d x, Syð Þ + d y, Txð Þ
2

� �
:

ð7Þ

(ii) Given that ε > 0, there exists a δ > 0 such that ε <M
ðx, yÞ ≤ ε + δ⇒ dðTx, SyÞ ≤ ε

If T and S are k-continuous or Tk and Sk are continuous
for some k ≥ 1 or T and S are orbitally continuous, then, T
and S have a unique common fixed point.

Proof. Let x0 be any point in X. Define a sequence fxng inX
for n = 0, 1, 2,⋯, as x2n+1 = Tx2n and x2n+2 = Sx2n+1, for all
integers n ≥ 0.
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If x2n = x2n+1 for some n, then, x2n = Tx2n, that is x2n is a
fixed point of T . Similarly, if there exists an integer N ≥ 0
such that x2N+1 = x2N+2, then, x2n+1 is a fixed point of S. This
concludes the proof. ☐

Otherwise, we suppose that x2n ≠ x2n+1, for all integers n
≥ 0. Let d2n = dðx2n, x2n+1Þ; obviously, d2n+1 = dðx2n+1, x2n+2Þ.

Then, by using equation (7) with x = x2n and y = x2n+1, we
have

d x2n+1, x2n+2ð Þ <M x2n, x2n+1ð Þ, ð8Þ

where

Since,

d x2n, x2n+2ð Þ + d x2n+1, x2n+1ð Þ
2

≤
d x2n, x2n+1ð Þ + d x2n+1, x2n+2ð Þ + d x2n+1, x2n+1ð Þ

2
= d x2n, x2n+1ð Þ + d x2n+1, x2n+2ð Þ

2 ,

ð10Þ

then,

M x2n, x2n+1ð Þ =max d x2n, x2n+1ð Þ, d x2n+1, x2n+2ð Þf g: ð11Þ

Thus,

d x2n+1, x2n+2ð Þ = d Tx2n, Sx2n+1ð Þ
≤max d x2n, x2n+1ð Þ, d x2n+1, x2n+2ð Þf g: ð12Þ

Obviously, if max fdðx2n, x2n+1Þ, dðx2n+1, x2n+2Þg = dð
x2n+1, x2n+2Þ, we have a contradiction and so max fdðx2n,
x2n+1Þ, dðx2n+1, x2n+2Þg = dðx2n, x2n+1Þ. Therefore,

d x2n+1, x2n+2ð Þ < d x2n, x2n+1ð Þ, ð13Þ

which implies that the sequence fd2ng is decreasing to a non-
negative real number, say ε, for all integers n ≥ 0. We claim that
ε = 0. In contrary, suppose that ε > 0. Taking the limit as n
⟶∞ in (13), we obtain

ε < d2n ≤ ε + δ⟹ d2n+1 ≤ ε, ð14Þ

which is a contradiction; hence, we conclude that ε = 0 and

lim
n⟶∞

d2nð Þ = lim
n⟶∞

d x2n, x2n+1ð Þ = 0: ð15Þ

Now, we need to show that a sequence fx2ng inX is a Cau-
chy sequence. In equation (15), it is sufficient to show that a
subsequence fx2nðrÞg is a Cauchy sequence. On the contrary,
we claim that fx2nðrÞg is not a Cauchy sequence. Therefore,

there exists ε > 0 and a sequence of integers mðrÞ, nðrÞ such
that

d x2n rð Þ, x2m rð Þ
� �

≥ ε, ð16Þ

for all nðrÞ >mðrÞ ≥ r for some r ≥ 0.
Furthermore, suppose that mðrÞ is the smallest integer

which is chosen in such away that (16) holds so that we have

dx2n rð Þ = d x2n rð Þ, x2m rð Þ−1
� �

< ε: ð17Þ

Now, for all nðrÞ >mðrÞ, we have

d x2n rð Þ, x2m rð Þ
� �

≤ d x2n rð Þ, x2m rð Þ−1
� �

+ d x2m rð Þ−1, x2m rð Þ
� �

:

ð18Þ

As r⟶∞ in (18) and considering (15) and (17), we see
that

d x2n rð Þ, x2m rð Þ
� �

⟶ ε: ð19Þ

By similar computations, we see that,

dx2n rð Þ−1 = d x2n rð Þ−1, x2m rð Þ−1
� �

⟶ ε: ð20Þ

To show it, we shall prove that Mðx2nðrÞ−1, x2mðrÞ−1Þ ≤ ε

+ δ. Then, by using equation (7) with x = x2nðrÞ−1 and y =
x2mðrÞ−1, we have

d x2n rð Þ, x2m rð Þ
� �

= d Tx2n rð Þ−1, Sx2m rð Þ−1
� �

≤M x2n rð Þ−1, x2m rð Þ−1
� �

,
ð21Þ

M x2n, x2n+1ð Þ =max d x2n, x2n+1ð Þ, d x2n, Tx2nð Þ, d x2n+1, Sx2n+1ð Þ, d x2n, Sx2n+1ð Þ + d x2n+1, Tx2nð Þ
2

� �
,

= max d x2n, x2n+1ð Þ, d x2n, x2n+1ð Þ, d x2n+1, x2n+2ð Þ, d x2n, x2n+2ð Þ + d x2n+1, x2n+1ð Þ
2

� �
:

ð9Þ
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where

M x2n rð Þ−1, x2m rð Þ−1
� �

=max d x2n rð Þ−1, x2m rð Þ−1
� �

,

8<
:

d x2n rð Þ−1, Tx2n rð Þ−1
� �

, d x2m rð Þ−1, Sx2m rð Þ−1
� �

,

d x2n rð Þ−1, Sx2m rð Þ−1
� �

+ d x2m rð Þ−1, Tx2n rð Þ−1
� �

2

9=
;

=max d x2n rð Þ−1, x2m rð Þ−1
� �

,

8<
:

d x2n rð Þ−1, x2n rð Þ
� �

, d x2m rð Þ−1, x2m rð Þ
� �

,

d x2n rð Þ−1, x2m rð Þ
� �

+ d x2m rð Þ−1, x2n rð Þ
� �

2

9=
;

= d x2n rð Þ−1, x2m rð Þ−1
� �

:

ð22Þ

As r⟶∞ in (22) and considering (19) and (20), then,
(21) becomes

ε < d2n rð Þ−1 ≤ ε + δ⟹ d2nr ≤ ε, ð23Þ

which is a contradiction. Hence, fx2ng inX is a Cauchy
sequence and

lim
n,m⟶∞

d x2n, x2mð Þ = 0: ð24Þ

Since X is complete, there exists a point t ∈ X such that
x2n ⟶ t. Furtheremore, for each k ≥ 1, we have Tkx2n ⟶
Tt. Thus, t = Tt as Tkx2n ⟶ t. Hence, t is a fixed point of
T .

Again, for x2n+1 ⟶ t and for each k ≥ 1, we have Sk

x2n+1 ⟶ St. Hence, t = St as Skx2n+1 ⟶ t. Therefore, t is a
fixed point of S.

In addition, assume that Tk and Sk are k-continuous for
some positive integer k. Then, we have lim

n⟶∞
dðx2n, tÞ = 0.

Therefore,

lim
n⟶∞

Tkx2n = lim
n⟶∞

Tx2n = lim
n⟶∞

x2n+1 = t,

lim
n⟶∞

Skx2n+1 = lim
n⟶∞

Sx2n+1 = lim
n⟶∞

x2n+2 = t:
ð25Þ

Here, we will prove that t is a fixed point of S. Contrarily,
suppose that t ≠ St.

Now,

d x2n+1, Stð Þ = d Tx2n, Stð Þ ≤M x2n, tð Þ, ð26Þ

where

M x2n, tð Þ =max d x2n, tð Þ, d x2n, Tx2nð Þ, d t, Stð Þ, d x2n, Stð Þ + d t, Tx2nð Þ
2

� �

=max d x2n, tð Þ, d x2n, x2n+1ð Þ, d t, Stð Þ, d x2n, Stð Þ + d t, x2n+1ð Þ
2

� �
:

ð27Þ

As n⟶∞ in (27), we see that

M x2n, tð Þ⟶ d t, Stð Þ: ð28Þ

Applying the limit as n⟶∞ in (26), we have

d t, Stð Þ ≤ d t, Stð Þ < d t, Stð Þ, ð29Þ

which is a contradiction. Hence, St = t.
Now, suppose that T is orbitally continuous. Since x2n

⟶ t, orbital continuity implies that Tx2n ⟶ Tt or Sx2n+1
⟶ St. This gives t = Tt as Tx2n ⟶ t or t = St as Sx2n+1
⟶ t. Thus, t is a fixed point of T and S.

Next, we will show that a point t is a unique common
fixed of T and S. In contrary, suppose that t ∈ X and y∗ ∈ X
are two different common fixed points of T and S, respec-
tively. Thus, dðt, y∗Þ > 0.

Now,

d = d ≤M, ð30Þ

where

M t, y∗ð Þ =max d t, y∗ð Þ, d t, Ttð Þ, d y∗, Sy∗ð Þ, d t, Sy∗ð Þ + d y∗, Ttð Þ
2

� �

=max d t, y∗ð Þ, d t, tð Þ, d y∗, y∗ð Þ, d t, y∗ð Þ + d y∗, tð Þ
2

� �
= d x∗, y∗ð Þ:

ð31Þ

Hence,

d t, y∗ð Þ = d Tt, Sy∗ð Þ <Md t, y∗ð Þ < d t, y∗ð Þ, ð32Þ

which is a contradiction. Therefore, T and S have a unique
common fixed point, that is t = y∗.

To prove that any fixed point of T is also a fixed point of S
, conversely, we suppose to the contrary that t = Tt and t ≠ St.
Now,

d Tt, Stð Þ = d t, Stð Þ ≤M t, Stð Þ, ð33Þ
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where

M t, Stð Þ =max d t, Stð Þ, d t, Ttð Þ, d St, S2t
� �

, d t, S2t
� �

+ d St, Ttð Þ
2

( )

=max d t, Stð Þ, d t, tð Þ, d St, S2t
� �

, d t, S2t
� �

+ d St, tð Þ
2

( )

= d t, Stð Þ:
ð34Þ

Thus,

d Tt, Stð Þ = d t, Stð Þ ≤M t, Stð Þ < d t, Stð Þ, ð35Þ

which is a contradiction. Therefore, t = Tt = St. In a similar
way, it is easy to show that any fixed point of S is also a fixed
point of T .

Remark 7. If we set S = T , we get an improved version of the
Bisht and Pant [11] theorem as a corollary for the case a = 1
as follows:

Corollary 8. Let X be a nonempty set and let d to be a metric
on X. Let T be self mapping of a complete metric space ðX, dÞ
satisfying

(i) dðTx, TyÞ <Mðx, yÞ, where

M x, yð Þ =max d x, yð Þ, d x, Txð Þ, d y, Tyð Þ, d x, Tyð Þ + d y, Txð Þ
2

� �
:

ð36Þ

(ii) Given that ε > 0, there exists a δ > 0 such that ε <M
ðx, yÞ ≤ ε + δ⇒ dðTx, TyÞ ≤ ε

If T is k-continuous or Tk is continuous for some k ≥ 1 or
T is orbitally continuous, then, T has a fixed point.

Corollary 9. The conclusions of Theorem 6 remain true, if we
replace Mðx, yÞ in the contractive equation (7) by any one of
the following:

(i) Mðx, yÞ =max fdðx, yÞ, dðx, TxÞ, dðy, SyÞg:
(ii) Mðx, yÞ =max fdðx, yÞ, dðx, TxÞ, dðy, SyÞ,

dðx, SyÞ + dðy, TxÞ
2 g:

(iii) Mðx, yÞ =max fdðx, yÞ, dðx, SxÞ, dðy, TyÞ,
dðx, TxÞ + dðy, SyÞ

2 g:
The following example shows the generality of Theorem 6

over Theorem 5.

Example 5. Let X = ½0, 3� be equipped with the usual metric.
Let S and T be self mappings onX, i.e., T , S : X⟶ X defined
by

Tx =
1 + x
2 , if 0 ≤ x ≤ 1,

0, if x ∈ 1,ð 3�:

8<
:

Sx =

x2, if 0 ≤ x ≤ 1,
0, if 1 < x ≤ 2,
x
2 , if 2 < x ≤ 3:

8>>><
>>>:

ð37Þ

Hence, T and S satisfy all the conditions of the above the-
orem and have a unique fixed point x = 1; and S and T are
discontinuous at x = 1: The mapping T is 2-continuous and
S is 3-continuous at x = 1. S and T are orbitally continuous.
Tt can be easily verified using the following cases:

Case 1. Now, we have

d Tx, Syð Þ <M x, yð Þ ð38Þ

where

M x, yð Þ =max d x, yð Þ, d x, Txð Þ, d y, Syð Þ, d x, Syð Þ + d y, Txð Þ
2

� �
:

ð39Þ

For x, y ≤ 1 and 0 ≤ x ≤ 1, we get

d Tx, Syð Þ = d
1 + x
2 , y2

� 	
= 1 + x

2 − y2










 = x − 2y2 + 1
2










,

d x, yð Þ = d x, yð Þ = x − yj j,

d x, Txð Þ = d x, 1 + x
2

� 	
= x −

1 + x
2










 = x − 1

2










,

d y, Syð Þ = d y, y2
� �

= y − y2


 

,

d x, Syð Þ = d x, y2
� �

= x − y2


 

,

d y, Txð Þ = d y, 1 + x
2

� 	
= y −

1 + x
2










 = 2y − x − 1

2










,

M x, yð Þ =max x − yj j, x − 1
2










, y − y2


 

, 2 x − y2



 

 + 2y − x − 1j j
4

( )

= x − yj j:
ð40Þ

By using ðiÞ of Theorem 6, we have

d Tx, Syð Þ <M x, yð Þ⟹ x − 2y2 + 1
2










 < x − yj j, ð41Þ

which is a contradiction. Hence, T and S are discontinuous at
x = 1.
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Remark 10. In case of x = 1 and y = 1, both functions are dis-
continuous at this point but have the property of k-conti-
nuity. For more details, see Example 1.

Case 2. Next we have,

d Tx, Syð Þ <M x, yð Þ ð42Þ

where

M x, yð Þ =max d x, yð Þ, d x, Txð Þ, d y, Syð Þ, d x, Syð Þ + d y, Txð Þ
2

� �
:

ð43Þ

For x, y > 2⟹ 2 < x ≤ 3, we get

d Tx, Syð Þ = d 0, y2
� �

= 0 − y
2




 


 = y
2 ,

d x, yð Þ = d x, yð Þ = x − yj j,
d x, Txð Þ = d x, 0ð Þ = x − 0j j = xj j,
d y, Syð Þ = d y, y2

� �
= y −

y
2




 


 = y
2 ,

d x, Syð Þ = d x, y2
� �

= x −
y
2




 


 = 2x − y
2 ,

d y, Txð Þ = d y, 0ð Þ = y − 0j j = y,

M x, yð Þ =max d x, yð Þ, d x, 0ð Þ, d y, y2
� �

, d x, y/2ð Þð Þ + d y, 0ð Þ
2

� �
,

= max x − yj j, x, y2 ,
2x − yð Þ/2ð Þ + y

2

� �

=max x − yj j, x, y2 ,
2x + y
4

� �
= x:

ð44Þ

By using ðiÞ of Theorem 6, we have

d Tx, Syð Þ <M x, yð Þ⟹ y
2 < x: ð45Þ

Thus, conditions ðiÞ of Theorem 6 satisfy for all x, y > 2.
This shows that T and S are continuous.

Case 3. Next, we have

d Tx, Syð Þ <M x, yð Þ ð46Þ

where

M x, yð Þ =max d x, yð Þ, d x, Txð Þ, d y, Syð Þ, d x, Syð Þ + d y, Txð Þ
2

� �
:

ð47Þ

For x ≤ 1⟹ y ≤ 2, we have

d Tx, Syð Þ = d
1 + x
2 , 0

� 	
= 1 + x

2 − 0










 = x + 1
2 ,

d x, yð Þ = d x, yð Þ = x − yj j,

d x, Txð Þ = d x, 1 + x
2

� 	
= x −

1 + x
2










 = x − 1

2 ,

d y, Syð Þ = d y, 0ð Þ = y − 0j j = y,
d x, Syð Þ = d x, 0ð Þ = x − 0j j = x,

d y, Txð Þ = d y, 1 + x
2

� 	
= y −

1 + x
2










 = 2y − x − 1

2 ,

M x, yð Þ =max d x, yð Þ, d x, 1 + x
2

� 	
, d y, 0ð Þ, d x, 0ð Þ + d y, 1 + xð Þ/2ð Þð Þ

2

� �
,

= max x − yj j, x − 1
2 , y, x + 2y − x − 1ð Þ/2ð Þ

2

� �
,

= max x − yj j, x − 1
2 , y, x + 2y − 1

4

� �
= y:

ð48Þ

By using ðiÞ of Theorem 6, we have

d Tx, Syð Þ <M x, yð Þ⟹ x + 1
2 < y: ð49Þ

Thus, conditions ðiÞ of Theorem 6 satisfy for all x ≤ 1, y
≤ 2. This shows that T and S are continuous. Also, T1 = 1
and S2 = 0. Then, TSx2n ⟶ t⟹ T2Sx2n ⟶ 1 = TSt for
each n. Hence, TS is 3-continuous.

Therefore, T and S satisfy condition ðiiÞ of Theorem 6
with δ = 1 − ε if ε < 1 and δ = 1 for ε ≥ 1. To see this, consider
Case 1, Case 2, and Case 3 as follows:

By Case 1, using condition ðiiÞ of Theorem 6, ε < 1 and
δ = 1 − ε, we get

ε <M x, yð Þ < ε + δ⇒ d Tx, Syð Þ < ε,

⇒ε < x − 1
2 < ε + δ⇒ x − 2y2 + 1

2










 < ε,

⇒ε < x − 1
2 < ε + 1 − ε⇒ x − 2y2 + 1

2










 < ε,

⇒ε < 0 < 1⇒ 0 < ε:

ð50Þ

which is a contradiction.
By Case 2, using ðiiÞ of Theorem 6, δ = 1 for ε ≥ 1, we get

ε <M x, yð Þ < ε + δ⇒ d Tx, Syð Þ < ε,

⇒ε < x < ε + δ⇒ y
2



 


 < ε,

⇒ε < x < ε + 1⇒ y
2



 


 < ε,

ð51Þ

satisfying for all x, y > 2.
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However, this example is not applicable to the conditions
imposed in Theorem 5.

Remark 11. It can be seen from the above example that T and
S are threshold operation that models firing of a neuron, a
function of two diodes, and also a low-pass filter that allows
low voltages to pass but not higher voltages (e.g., noise in
music systems).

One of the fundamental tools for nonlinear analysis is the
Banach fixed point theorem [12]. As a result of its usefulness
and applications, this theorem has been massively investi-
gated and generalized by different researchers. One of the
important generalization of the Banach fixed point theorem
is the Boyd and Wong [13] fixed point theorem. A mapping
T satisfying

d Tx, Tyð Þ ≤ ϕ d x, yð Þð Þ, ∀x, y ∈M, ð52Þ

whereby ðM, dÞ is a complete metric space and a mapping
ϕ : ½0,∞Þ⟶ ½0,∞Þ is upper semicontinuous from the right
on ½0,∞Þ such that ϕðtÞ < t, ∀t > 0. Consequently, T has a
unique fixed point z ∈M and dðTnx, zÞ⟶ 0 as n⟶∞,
∀x ∈M. Pant and Pant [9] proved the following theorem
for the Boyd andWong type fixed point theorem in complete
metric spaces:

Theorem 12 [9]. Let T be a mapping of a complete metric
space ðX, dÞ into itself satisfying

d Tx, Tyð Þ ≤ ϕ max d x, Txð Þ, d y, Tyð Þf gð Þ, ð53Þ

for all x, y ∈ X, where the function ϕ : ½0,∞Þ⟶ ½0,∞Þ is such
that ϕðtÞ < t for each t > 0. If ϕ is upper semicontinuous in the
open interval ð0, dðTkðXÞÞÞ, then, T has a unique fixed point.

Now, we will demonstrate an example to explain the
above theorem:

Example 6. Let X = ½0, 3� with usual metric dðx, yÞ = ∣x − y ∣
for all x, y ∈ X. Let a mapping T : X⟶ X be defined by

Tx =
0, x ∈ 0, 1½ Þ
1, x ∈ 1, 3½ �:

(
ð54Þ

Also, define ϕ : ½0,∞Þ⟶ ½0,∞Þ as

ϕ tð Þ =
1 + t
2 , t > 1,

t
2 , t ≤ 1:

8>><
>>: ð55Þ

It is clear that the mapping T satisfies the criteria of The-
orem 12 with a unique fixed point T = 1 but it is discontinu-
ous at this fixed point. Also, we observe that dðTðXÞÞ = 1 and
ϕ is continuous on ð0, 1Þ.

Here, we present an extension of Theorem 12 for a pair of
maps to obtain a unique common fixed point.

Theorem 13. Let X be a nonempty set and let d be a metric
on X. Let T and S be self mappings of a complete metric
space ðX, dÞ satisfying

d Tx, Syð Þ ≤ ϕ M x, yð Þf g, ð56Þ

for all x, y ∈ X, where the mapping ϕ : ½0,∞Þ⟶ ½0,∞Þ is
such that ϕðtÞ < t for all t > 0 and

M x, yð Þ =max d x, yð Þ, d x, Txð Þ, d y, Syð Þ, d x, Syð Þ + d y, Txð Þ
2

� �
:

ð57Þ

If ϕ is upper semicontinuous on ð0, dðTkðXÞÞÞ and ð0
, dðSkðXÞÞÞ for k = 0, 1, 2,⋯, then, T and S have a unique
common fixed point.

Proof. Let x0 ∈ X. Define a sequence fxng inX as x2n+1 = Tx2n
and x2n+2 = Sx2n+1, for all integers n ≥ 0. If we assume that
there exists a nonnegative integer n0 such that, x2n0 = x2n0+1,
then, x2n = x2n+1 = Tx2n; this implies that x2n is a fixed point
of T . Similarly, if there exists an integer N ≥ 0 such that
x2N+1 = x2N+2, then, x2n+1 is a fixed point of S. This concludes
the proof. ☐

Otherwise, we suppose that x2n ≠ x2n+1, for all integers n
≥ 0. Let μ2n = dðx2n, x2n+1Þ, obviously, μ2n+1 = dðx2n+1, x2n+2Þ.

From (84), we have

d x2n+1, x2n+2ð Þ = d Tx2n, Sx2n+1ð Þ ≤ ϕ M x2n, x2n+1ð Þð Þ, ð58Þ

where

M x2n, x2n+1ð Þ =max d x2n, x2n+1ð Þ, d x2n, Tx2nð Þ, d x2n+1, Sx2n+1ð Þ, d x2n, Sx2n+1ð Þ + d x2n+1, Tx2nð Þ
2

� �
, ð59Þ

7Journal of Function Spaces



Using equations (8) and (12), we have the following:

M x2n, x2n+1ð Þ =max d x2n, x2n+1ð Þ, d x2n+1, x2n+2ð Þf g: ð60Þ

Thus,

d x2n+1, x2n+2ð Þ = d Tx2n, Sx2n+1ð Þ
≤ ϕ max d x2n, x2n+1ð Þ, d x2n+1, x2n+2ð Þf gð Þ:

ð61Þ

If we take max fdðx2n, x2n+1Þ, dðx2n+1, x2n+2Þg = dðx2n+1,
x2n+2Þ, then,

d x2n+1, x2n+2ð Þ = d Tx2n, Sx2n+1ð Þ
≤ ϕ d x2n+1, x2n+2ð Þf g
< d x2n+1, x2n+2ð Þ,

ð62Þ

which is a contradiction. Hence, max = fdðx2n, x2n+1Þg, dð
x2n+1, x2n+2Þ = dðx2n, x2n+1Þ:Therefore,

d x2n+1, x2n+2ð Þ = d Tx2n, Sx2n+1ð Þ ≤ ϕ d x2n, x2n+1ð Þf g < d x2n, x2n+1ð Þ,
ð63Þ

which implies that the sequence fμ2ng is decreasing to a non-
negative real number say δ, for all integers n ≥ 0. We claim
that δ = 0. In contrary, suppose that δ > 0. Taking the limit
as n⟶∞ in (63), we obtain

0 < δ ≤ ϕ δð Þ < δ, ð64Þ

which is a contradiction; hence, we conclude that δ = 0 and

lim
n⟶∞

μ2nð Þ = lim
n⟶∞

d x2n, x2n+1ð Þ = 0: ð65Þ

Now, we need to show that a sequence fxng inX is a Cau-
chy sequence. We claim otherwise. Therefore, there exists ε > 0
and a sequence of integers mðrÞ, nðrÞ such that

d xn rð Þ, xm rð Þ
� �

≥ ε, ð66Þ

for all nðrÞ >mðrÞ ≥ r for some r ≥ 0.
Furthermore, suppose that mðrÞ is the smallest integer

which is chosen in such a way that (66) holds so that we have

d x rð Þ, xm rð Þ−1
� �

< ε: ð67Þ

Now, for all nðrÞ >mðrÞ, we have

d xn rð Þ, xm rð Þ
� �

≤ d xn rð Þ, xm rð Þ−1
� �

+ d xm rð Þ−1, xm rð Þ
� �

≤ d xn rð Þ, xm rð Þ−1
� �

+ d xm rð Þ−1, xm rð Þ
� �

:

ð68Þ

As r⟶∞ in (68) and considering (65) and (67), we see
that

d xn rð Þ, xm rð Þ
� �

⟶ ε: ð69Þ

By similar computations, we see that

d xn rð Þ−1, xm rð Þ−1
� �

⟶ ε: ð70Þ

Thus,

d xn rð Þ, xm rð Þ
� �

= d Txn rð Þ−1, Sxm rð Þ−1
� �

≤ ϕ M xn rð Þ−1, xm rð Þ−1
� �� �

,

ð71Þ

where

M xn rð Þ−1, xm rð Þ−1
� �

=max d xn rð Þ−1, xm rð Þ−1
� �

, d xn rð Þ−1, Txn rð Þ−1
� �

, d xm rð Þ−1, Sxm rð Þ−1
� �

,
d xn rð Þ−1, Sxm rð Þ−1
� �

+ d xm rð Þ−1, Txn rð Þ−1
� �

2
o8<

:
=max d xn rð Þ−1, xm rð Þ−1

� �
, d xn rð Þ−1, xn rð Þ−1
� �

d xm rð Þ−1, xm rð Þ−1
� �

,
d xn rð Þ−1, xm rð Þ−1
� �

+ d xm rð Þ−1, xn rð Þ−1
� �

2
o
,

8<
:

ð72Þ
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As r⟶∞ in (72) and considering (69) and (70), then, (71)
becomes

0 < ε ≤ ϕ εð Þ < ε, ð73Þ

which is a contradiction. Hence, fxng inX is a Cauchy
sequence and lim

n,m⟶∞
dðxn, xmÞ = 0.

Because X is complete, we can pick a point z ∈ X such
that lim

n⟶∞
dðx2n, zÞ = 0. Here, we will prove that z is a fixed

point of S. In contrary, suppose that z ≠ Sz.
Now,

d x2n+1, Szð Þ = ϕ d Tx2n, Szð Þð Þ ≤ ϕ M x2n, zð Þð Þ: ð74Þ

where

M x2n, zð Þ =max d x2n, zð Þ, d x2n, Tx2nð Þ, d z, Szð Þ, d x2n, Szð Þ + d z, Tx2nð Þ
2

� �

=max d x2n, zð Þ, d x2n, Tx2nð Þ, d z, Szð Þ, d x2n, Szð Þ + d z, x2n+1ð Þ
2

� �
:

ð75Þ

As n⟶∞ in (75), we see that

M x2n, zð Þ⟶ d z, Szð Þ: ð76Þ

Applying the limit as n⟶∞ in (74), we have

d z, Szð Þ ≤ ϕ d z, Szð Þð Þ < d z, Szð Þ, ð77Þ

which is a contradiction. Hence, Sz = z.
Now, we will show that a point z is a unique common fix

of T and S. In contrary, suppose that z ∈ X and w ∈ X are two
different common fixed points of T and S, respectively. Thus,
dðz,wÞ > 0.

Now,

d z, zð Þ = d Tz, Swð Þ ≤ ϕ M z,wð Þð Þ ð78Þ

where

M z,wð Þ =max d z,wð Þ, d z, Tzð Þ, d w, Swð Þ, d z, Swð Þ + d w, Tzð Þ
2

� �

=max d z,wð Þ, d z, zð Þ, d w,wð Þ, d z,wð Þ + d w, zð Þ
2

� �
= d z,wð Þ:

ð79Þ

Hence,

d z,wð Þ = d Tz, Swð Þ ≤ ϕ d z,wð Þð Þ < d z,wð Þ, ð80Þ

which is a contradiction. Therefore, T and S have a unique
common fixed point, that is z =w.

To prove that any fixed point of T is also a fixed point of S
, conversely, we suppose to the contrary that z = Tz and z
≠ Sz.

Now,

d Tz, Szð Þ = d z, Szð Þ ≤ ϕ M z, Swð Þð Þ ð81Þ

where

M z, Swð Þ =max d z, Szð Þ, d z, Tzð Þ, d Sz, S2z
� �

, d z, S2z
� �

+ d Sz, Tzð Þ
2

( )

=max d z, Szð Þ, d z, zð Þ, d Sz, S2z
� �

, d z, S2z
� �

+ d Sz, zð Þ
2

( )

= d z, Szð Þ:
ð82Þ

Thus,

d Tz, Szð Þ = d z, Szð Þ ≤ ϕ d z, Szð Þð Þ < d z, Szð Þ, ð83Þ

which is a contradiction. Therefore, z = Tz = Sz. In a similar
way, it is easy to show that any fixed point of S is also a fixed
point of T .

On setting S = T , we get the following corollary:

Corollary 14. Let X be a nonempty set and let d be a metric on
X. Let T be a self mapping of a complete metric space ðX, dÞ
satisfying

d Tx, Tyð Þ ≤ ϕ M x, yð Þf g, ð84Þ

for all x, y ∈ X, where the mapping ϕ : ½0,∞Þ⟶ ½0,∞Þ is
such that ϕðtÞ < t for all t > 0 and

M x, yð Þ =max d x, yð Þ, d x, Txð Þ, d y, Tyð Þ, d x, Tyð Þ + d y, Txð Þ
2

� �
:

ð85Þ

If ϕ is upper semicontinuous on ð0, dðTkðXÞÞÞ for k = 0,
1, 2,⋯, then, T has a fixed point.

Example 7. Let X = ½0, 3� be equipped with the usual metric.
Let S and T be self mappings on X, i.e., T , S : X⟶ X defined
by

Tx =
1 + x
2 , if 0 ≤ x ≤ 1,

0, if x ∈ 1,ð 3�,

8<
:

Sx =

x2, if 0 ≤ x ≤ 1,
0, if 1 < x ≤ 2,
x
2 , if 2 < x ≤ 3:

8>>><
>>>:

ð86Þ

Define ϕ = ð1 + tÞ/2.

Now, we have

d Tx, Syð Þ < ϕ M x, yð Þf g, ð87Þ
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where

M x, yð Þ =max d x, yð Þ, d x, Txð Þ, d y, Syð Þ, d x, Syð Þ + d y, Txð Þ
2

� �
,

ð88Þ

For x, y ≤ 1, using ϕ = ð1 + tÞ/2, we have

d Tx, Syð Þ = x − 2y2 + 1
2










,

M x, yð Þ = x − 1
2










,

d Tx, Syð Þ ≤ ϕ M x, yð Þð Þ,
x − 2y2 + 1

2










 ≤ ϕ

x − 1
2












� 	
,

0 ≤ 1 + x
2 ,

ð89Þ

which is true.
For x, y > 2, 2 ≤ x ≤ 3 and using ϕ = ð1 + tÞ/2, we have

d Tx, Syð Þ = y
2 ,

M x, yð Þ = x,
d Tx, Syð Þ ≤ ϕ M x, yð Þð Þ,

y
2 ≤ ϕ xð Þ, y

2 ≤
1 + x
2 : ð90Þ

For x ≤ 1, y ≤ 2 and using ϕ = ð1 + tÞ/2, we have

d Tx, Syð Þ = x + 1
2 ,

M x, yð Þ = y,
d Tx, Syð Þ ≤ ϕ M x, yð Þð Þ,

x + 1
2 ≤ ϕ yð Þ,

x + 1
2 ≤

1 + y
2 ,

ð91Þ

Hence, all conditions imposed in Theorem 13 are satis-
fied. Thus, T and S satisfy all the conditions of the above the-
orem and has a unique fixed point x = 1; S and T are
discontinuous at x = 1: The mapping T is 2-continuous and
S is 3-continuous at x = 1.

3. Fixed Points of Nonexpansive Mappings

Bisht and Pant [11] proved a fixed point theorem (see Theo-
rem 15 [11]) for nonexpansive mapping. In this section, we
are extending the result due to Bisht and Pant [11] for a pair
of self mappings.

In what follows, we shall denote

We will use this expression in the following theorem.

Theorem 15. Let X be a nonempty set and let d be a metric on
X. Let T and S be self mappings of a complete metric space ð
X, dÞ such that for any x, y ∈ X

(i) For any given ε > 0, there exists a δðεÞ > 0 such that
ε < Pðx, yÞ < ε + δ implies dðTx, SyÞ ≤ ε

(ii) dðTx, SyÞ ≤ Pðx, yÞ
Then, T and S have a unique common fixed point, say z

and Tnx⟶ z as well as Snx⟶ z for each x ∈ X:

Proof. Let x0 be any point in X. Define a sequence fxn
g inX as x2n+1 = Tnx0 = Tx2n and x2n+2 = Sx2n+1 for all
integers n ≥ 0: Then, on following the proof of Theorem
6, we can easily prove that fxng is a Cauchy sequence
in X. Since X is complete, there exists a point z ∈ X
such that xn ⟶ z as n⟶∞: Also, Txn ⟶ z and S

xn ⟶ z as n⟶∞: We claim that Tz = z. For if Tz
≠ z, we get

d Tz, Sxnð Þ ≤max
�
d z, xnð Þ, d z, Txnð Þ, d xn, Sxnð Þ,

a
d z, Tzð Þ + d xn, Sxnð Þ

2

� �
, b d z, Sxnð Þ + d xn, Tzð Þ

2

� ��
:

ð93Þ

On letting n⟶∞, this yields, dðTz, SzÞ ≤max fa½d
ðTz, zÞ + dðz, SzÞ�/2, b½dðSz, zÞ + dðz, TzÞ�/2g <max fdðz, T
zÞ, dðz, SzÞg, which is a contradiction since 0 ≤ a, b < 1:
Thus, z is a common fixed point of T and S: ☐

Remark 16. By setting S = T , one can get Theorem 15 of Bist
and Pant [11].

P x, yð Þð Þ =max d x, yð Þ, d x, Txð Þ, d y, Syð Þ, a d x, Txð Þ + d y, Syð Þ
2

� �
, b d x, Syð Þ + d y, Txð Þ

2

� �� �
, 0 ≤ a, b < 1: ð92Þ
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Corollary 17. Let X be a nonempty set and let d be a metric on
X. Let T be a self mapping of a complete metric space ðX, dÞ
such that for any x, y ∈ X

(i) For any given ε > 0, there exists a δðεÞ > 0 such that
ε < Pðx, yÞ < ε + δ implies dðTx, TyÞ ≤ ε

(ii) dðTx, TyÞ ≤ Pðx, yÞ
Then, T has a unique fixed point, say z and Tnx⟶ z for

each x ∈ X:

Example 8. Let X = ½−1, 1� be equipped with usual metric and
T , S : X⟶ X be defined by

Tx =
0, if x ∈ −1, 0½ �,
−1
2 , if x ∈ 0,ð 1�,

8<
:

Sx =

x
2 , if x ∈ −1, 0½ �,
−1
4 , if x ∈ 0,ð 1�:

8><
>:

ð94Þ

To verify our contraction condition, let us consider the
following two cases:

Case 1. For x, y ∈ ½−1, 0�, we have

d x, yð Þ = x − yj j,
d x, Txð Þ = d x, 0ð Þ = x − 0j j = x,

d y, Syð Þ = y, y2



 


 = y −

y
2




 


 = y
2 ,

d x, Syð Þ = d x, y2
� �

= x −
y
2




 


 = 2x − y
2 ,

d y, Txð Þ = d y, 0ð Þ = y − 0j j = y,

d Tx, Syð Þ = d 0, y2
� �

= y
2 :

ð95Þ

Thus, we have,

Using ðiÞ and ðiiÞ of Theorem 15, we have

ε < P x, yð Þ < ε + δ⇒ d Tx, Syð Þ ≤ ε,

ε < x − yj j < ε + δ⇒ y
2 ≤ ε,

d Tx, Syð Þ ≤ P x, yð Þ⇒ y
2 ≤ x − yj j:

ð97Þ

Case 2. For x, y ∈ ½0, 1�, we have

d x, yð Þ = x − yj j = 1 − 0j j = 1,

d x, Txð Þ = d 1, T 0ð Þð Þ = 1 − −1
2

� 	








 = 3

2 ,

d y, Syð Þ = 0 − S0j j = 0 − −
1
4

� 	








 = 1

4 ,

d x, Syð Þ = d 1, S0ð Þ = 1 − −
1
4

� 	








 = 5

4 ,

d y, Txð Þ = d 0, T 1ð Þð Þ = 0 − −
1
2

� 	








 = 1

2 ,

d Tx, Syð Þ = d T 1ð Þ, S0ð Þ = d
−1
2 , −1

4

� 	� 	
= 1
4 :

ð98Þ

Thus, we get

P x, yð Þ =
�
d x, yð Þ, d x, Txð Þ, d y, Syð Þ,

a
d x, Txð Þ + d y, Syð Þ

2

� �
, b d x, Syð Þ + d y, Txð Þ

2

� ��
,

P 1, 0ð Þ =max 1, 32 ,
1
4 , a

3/2ð Þ + 1/4ð Þ
2

� �
, b 5/4ð Þ + 1/2ð Þ

2

� �� �
,

P x, yð Þ = P 1, 0ð Þ, = max 1, 32 ,
1
4 ,

7
8a ,

7
8b

� �
, = 3

2 , 0 ≤ a, b ≤ 1:

ð99Þ

Finally, by ðiÞ and ðiiÞ of Theorem 15, we get

ε < P x, yð Þ < ε + δ⇒ d Tx, Syð Þ ≤ ε,

ε < 3
2 < ε + δ⇒ 1

4 ≤ ε,

d Tx, Syð Þ ≤ P x, yð Þ⇒ 1
4 ≤

3
2 :

ð100Þ

P x, yð Þ =max d x, yð Þ, d x, Txð Þ, d y, Syð Þ, a d x, Txð Þ + d y, Syð Þ
2

� �
, b d x, Syð Þ + d y, Txð Þ

2

� �� �
,

P x, yð Þ =max x − yj j, x, y2 , a
x + y/2ð Þ

2

� �
, b 2x − y/2ð Þ + y

2

� �� �
,

P x, yð Þ =max x − yj j, x, y2 , a
2x + y
4

� �
, b 2x + y

4

� �� �
,= x − yj j,  for 0 ≤ a, b ≤ 1: ð96Þ
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Thus, we have dðTx, SyÞ ≤ Pðx, yÞ: Hence, the contrac-
tion condition of Theorem 15 is satisfied, and 0 is the com-
mon fixed point of T and S. Also, T is not continuous but
is 2-continuous. Similarly, S is not continuous at 0 but is 2-
continuous.

4. The Existence Solution of Nonlinear Volterra
Integral Equation

The integral equation method is very useful for solving many
problems in several applied fields like mathematical econom-
ics and optimal control theory because problems in these
areas are often reduced to integral equations.

Integral equations appear in several forms. However, in
this section, we are interested in the integral equation,
namely, the Volterra integral differential equation which is
of the form

un t, xð Þ = f t, xð Þ +
ðx
a
K x, t, u tð Þð Þdt, ð101Þ

where un = dnu/dxn:
Now, we present the application of Theorem 6 to study

the existence and uniqueness of the solution to nonlinear
Volterra integral equations.

The following integral equation is inspired by [14–17].

u x, yð Þ = f x, yð Þ +
ðx
0
g x, y, ε, u ε, yð Þð Þdε

+
ðx
0

ðy
0
h x, y, σ, τ, u σ, τð Þð Þdεdσ,

ð102Þ

where f , g, h are given functions and u is the unknown func-
tion to be found.

Let CðT , SÞ be the class of continuous functions from set
T to set S. We denote E =ℝ+ ×ℝ+, E1 = f f ðx, y, sÞ: 0 ≤ s ≤ x
<∞,y ∈ℝ+g and E2 = f f ðx, y, s, tÞ: 0 ≤ s ≤ x<∞,0 ≤ t ≤ y<∞
g. We denote that f ∈ CðE,ℝÞ,g ∈ CðE1 ×ℝ,ℝÞ, and h ∈ Cð
E2 ×ℝ,ℝÞ:

Let X be the space of functions z ∈ Cðℝ+ ×ℝ+,ℝÞ satisfy-
ing

z x, tð Þj j =O eλ x+yð Þ
� �

, ð103Þ

where λ is a positive constant, that is,

z x, yð Þj j ≤M0 eλ x+yð Þ
� �

, ð104Þ

for constantM0 > 0. Let ðX, k:kÞ be a Banach space. Define a
norm in the space X by

zj jX = sup
x,yð Þ∈X

z x, yð Þj je −λ x+yð Þð Þ
h i

: ð105Þ

Define the mapping T , S : X × X⟶ ½0,∞Þ by

Tku x, yð Þ = f x, yð Þ +
ðx
0
g x, y, ε, u ε, yð Þð Þdε

+
ðx
0

ðy
0
h x, y, σ, τ, u σ, τð Þð Þdεdσ,

ð106Þ

Sku x, yð Þ = f x, yð Þ +
ðx
0
g x, y, ε, v ε, yð Þð Þdε

+
ðx
0

ðy
0
h x, y, σ, τ, v σ, τð Þð Þdεdσ,

ð107Þ

for u, v ∈ X. We assume that Tk and Sk are k-continuous for
some positive integer k. For sufficiently large values of k,
the mappings Tk and Sk are contraction, where T and S are
noncontraction if ðx − aÞ > 1, for x > a.

Now, we prove our results by establishing the existence of
a common fixed point for a pair of self mappings:

Theorem 18. Suppose that equation (102) satisfies the follow-
ing conditions:

(i) For the continuous functions f , g ∈ X, we have

g x, y, ε, u ε, yð Þð Þ − g x, y, ε, v ε, yð Þð Þj j ≤ L1 x, y, εð Þ u − vj j,
h x, y, σ, τ, u σ, τð Þð Þ − h x, y, σ, τ, v σ, τð Þð Þj j ≤ L2 x, y, σ, τð Þ u − vj j,

ð108Þ

where L1 ∈ CðE1, ½0,∞ÞÞ and L2 ∈ CðE2, ½0,∞ÞÞ

(ii) There exist a nonnegative constant γ such that γ < 1
and

ðx
0
L1 x, y, εð Þeλ x+yð Þ +

ðx
0

ðy
0
L2 x, y, σ, τð Þeλ σ+τð Þ ≤ δ, ð109Þ

for all x, y, ε, σ, τ ∈ E1 ∪ E2, and

γ = λL1 + L2½ �eλ x+yð Þ − L1λe
λy − 2L2e

λx + L2
λ2

: ð110Þ

Then, the nonlinear Volterra integral equation (102) has a
unique common solution in E1 ∪ E2.

Proof. Let Tk, Sk : X⟶ X be two operators such that Tk ∈ X
and Sk ∈ X. Now, we verify that Tk and Sk are contractive
maps in X. Let u, v ∈ X. On the contrary, we claim that nei-
ther Tk nor Sk are contractive maps in X. From (106) and
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(107), using condition ðiÞ and ðiiÞ of Theorem 18, we have

Tku − Skv
  = f x, yð Þ +

ðx
0
g x, y, ε, u ε, yð Þð Þdε

+
ðx
0

ðy
0
h x, y, σ, τ, u σ, τð Þð Þdεdσ

− f x, yð Þ −
ðx
0
g x, y, ε, v ε, yð Þð Þdε

−
ðx
0

ðy
0
h x, y, σ, τ, v σ, τð Þð Þdεdσ,

≤
ðt
0
g x, y, ε, u ε, yð Þð Þ − g x, y, ε, v ε, yð Þð Þj jdε

+
ðx
0

ðy
0
h x, y, σ, τ, u σ, τð Þð Þ − h x, y, σ, τ, v σ, τð Þð Þj j,

≤
ðx
0
L1 x, y, εð Þeλ x+yð Þ +

ðx
0

ðy
0
L2 x, y, σ, τð Þeλ σ+τð Þ

� �
∥u − v∥X ,

≤
1
λ
L1 eλ x+yð Þ − eλy
h i

+ 1
λ2

L2 eλ x+yð Þ − 2eλx + 1
h i� �

∥u − v∥X ,

≤
λL1 + L2½ �eλ x+yð Þ − L1λe

λy − 2L2eλx + L2
λ2

� �
∥u − v∥X ,

⇒ Tku − Skv
  ≤ γ∥u − v∥X

⇒ d Tu, Svð Þ ≤ γM u, vð Þ,
ð111Þ

which is a contradiction. Hence, u is a common fix of T and S
and also a solution to integral equation (102).

From (111), let γ = 1 and using ðiÞ of Theorem 6, where

M u, vð Þ =max d u, vð Þ, d u, Tvð Þ, d v, Svð Þ, d u, Svð Þ + d v, Tuð Þ
2

� �
,

ð112Þ

we have

d Tu, Svð Þ <M u, vð Þ: ð113Þ

Thus, Theorem 6 is satisfied. ☐
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