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We are concerned with the following nonlocal problem involving critical Sobolev exponent
−ða − b

Ð
Ω
j∇uj2dxÞΔu = λjujq−2u + δjuj2u, x ∈Ω,

u = 0, x ∈ ∂Ω,

(
where Ω is a smooth bounded domain in ℝ4, a, b > 0, 1 < q < 2, δ, and λ

are positive parameters. We prove the existence of two positive solutions and obtain uniform estimates of extremal values for
the problem. Moreover, the blow-up and the asymptotic behavior of these solutions are also discussed when b↘0 and δ↘0. In
the proofs, we apply variational methods.

1. Introduction and Main Results

In this paper, we study a new class of Kirchhoff type problem
with critical exponent and concave-convex nonlinearities

− a − b
ð
Ω

∇uj j2dx
� �

Δu = λ uj jq−2u + δ uj j2u, x ∈Ω,

u = 0, x ∈ ∂Ω,
P b,δð Þ

8><
>: ,

ð1Þ

where Ω is a smooth bounded domain in ℝ4 (2∗ = 4 is the
critical exponent in dimension four), a, b > 0, 1 < q < 2, δ,
and λ are positive parameters.

We call ðP b,δÞ a Kirchhoff type problem since the pres-

ence of the term
Ð
Ω
j∇uj2dx, which means that ðP b,δÞ is no

longer a pointwise identity. Such nonlocal problem arises
in various models concerning physical and biological sys-

tems, see, e.g., [1–3]. Among others, Kirchhoff [2] built a
model defined by the equation

ρ
∂2u
∂t2

−
P0
h

+ E
2L

ðL
0

∂u
∂x

����
����
2
dx

 !
∂2u
∂x2

= 0, ð2Þ

where u = uðx, tÞ represents the lateral displacement, ρ
denotes the mass density, P0 is the initial tension, h denotes
the area of the cross-section, E denotes the Young modulus
of the material, and L is the length of the string. This equa-
tion is an extension of the classical D’Alembert wave equa-
tion for free vibrations of elastic strings.

Different from the traditional Kirchhoff type problem,
the sign of nonlocal term included in ðP b,δÞ is negative,
which causes some interesting difficulties. In the past few
years, much attention has been paid to the existence, multi-
plicity, and the behaviour of solutions for this kind of
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nonlocal problem but without critical growth. In particular,
Yin and Liu [4] were concerned with the following problem

− a − b
ð
Ω

∇uj j2dx
� �

Δu = uj jp−2u, x ∈Ω,

u = 0, x ∈ ∂Ω,

8><
>: ð3Þ

where 1 < p < 2∗ and Ω is a bounded domain in ℝN with
N ≥ 1 and succeeded to find the problem (3) admits at least
two nontrivial solutions. In [5, 6], sign-changing solutions to
(3) were further obtained. When N = 3 and the nonlinear
term has an indefinite potential, Lei et al. [7] and Qian and
Chao [8] established the existence of positive solution of
(3) for 1 < p < 2 and 3 < p < 6, respectively. For the singular
nonlinearity, two positive solutions to (3) with N = 3 were
proved in [9]. In our previous work [10], we obtained two
positive solutions of ðP b,δÞ with δ = 0, as well as their
blow-up and asymptotic behavior when b↘0. For more
related results, we refer the interested readers to [11–15]
and the references therein.

In 1994, Ambrosetti et al. [16] first studied the following
critical local problem involving concave-convex nonlinear-
ities

−Δu = λ uj jq−2u + uj j2∗−1u, x ∈Ω,
u = 0, x ∈ ∂Ω,

(
ð4Þ

where 1 < q < 2 and Ω ⊂ℝN is a smooth bounded domain.
The authors proved that there exists λ0 > 0 such that the
problem (4) has two positive solutions for λ ∈ ð0, λ0Þ and
no positive solutions for λ > λ0. Since then, many scholars
have considered problems with critical exponent and
concave-convex nonlinearities, see, e.g., [7, 16–21]. Also,
the problem (4) of traditional Kirchhoff type is studied in
[22–26] and the reference therein. An interesting question
now is whether the same existence results as in [16] occur
to the nonlocal problem ðP b,δÞ with critical exponent. For
λ = 0 and δ = 1, Wang et al. [27] proved the existence of
two positive solutions of ðP b,δÞ with an additional inhomo-
geneous perturbation on the whole space ℝ4. When 2 < q
< 2∗ and δ is replaced by a nonnegative function QðxÞ,
[28] showed how the shape of the graph of QðxÞ affects the
number of positive solutions to ðP b,δÞ. However, there are
no known existence results for ðP b,δÞ provided λ > 0 and 1
< q < 2.

Motivated by the works described above, in the present
paper, we try to prove the existence and multiplicity of pos-
itive solutions of problem ðP b,δÞ when λ ∈ ð0, T−Þ for some
T− > 0 (see Theorem 1), provide uniform estimates of extre-
mal values λ∗ for problem ðP b,δÞ (see Theorem 2), and
obtain the blow-up and asymptotic behavior of these posi-
tive solutions when b↘0 and δ↘0 (see Theorem 3).

Denote by H1
0ðΩÞ the standard Sobolev space endowed

with the standard norm k·k. Let j·jp be the norm of the space
LsðΩÞ. Denote by ⟶ (⇀ ) the strong (weak) convergence.
C and Ci denote various positive constants whose exact

values are not important. Let μ1 be the positive principal
eigenvalue of the operator −Δ on Ω with corresponding pos-
itive principal eigenfunction e1. Denote by S the best con-
stant in the Sobolev embedding H1

0ðΩÞ°L2∗ðΩÞ, namely,

S = inf
u∈H1

0 Ωð Þ\ 0f g
uk k2
uj j24

> 0: ð5Þ

It is well known that the weak solutions of problem ð
P b,δÞ correspond to the critical points of the following
energy functional

Ib,δ uð Þ = a
2 uk k2 − b

4 uk k4 − λ

q
uj jqq −

δ

4 uj j44: ð6Þ

Moreover, we easily see that Ib,δ ∈ C1ðH1
0ðΩÞ,ℝÞ.

Define the manifold

Mb,δ = u ∈H1
0 Ωð Þ: I′b,δ uð Þ, u

D E
= 0

n o
= u ∈H1

0 Ωð Þ: a uk k2 = b uk k4 + λ uj jqq + δ uj j44
n o

,

ð7Þ

and decompose Mb,δ into three subsets as follows:

M0
b,δ = u ∈Mb,δ : a 2 − qð Þ uk k2 − b 4 − qð Þ uk k4 − δ 4 − qð Þ uj j44 = 0

� �
,

M+
b,δ = u ∈Mb,δ : a 2 − qð Þ uk k2 − b 4 − qð Þ uk k4 − δ 4 − qð Þ uj j44 > 0

� �
,

M−
b,δ = u ∈Mb,δ : a 2 − qð Þ uk k2 − b 4 − qð Þ uk k4 − δ 4 − qð Þ uj j44 < 0

� �
:

ð8Þ

Set

T1 =
2aSq/2

4 − qð Þ Ωj j 4−qð Þ/4
a 2 − qð Þ

b + δS−2
� �

4 − qð Þ

 ! 2−qð Þ/2
,

T2 =
2q aSð Þ 4−qð Þ/2

2 − qð Þ 4 − qð Þ bS2 + δ
� �

Ωj j 4−qð Þ/4
δ 2 − qð Þ

q

	 
q/2
,

T− =min T1, T2f g:

ð9Þ

Our main results are as follows.

Theorem 1. Assume that λ ∈ ð0, T−Þ, then problem ðP b,δÞ
has at least two positive solutions u∗ ∈M

+
b,δ and U∗ ∈M

−
b,δ

with ku∗k < kU∗k.

Theorem 2. Let

λ∗ = sup λ > 0 : P b,δð Þ has at least two positive solutions� �
:

ð10Þ
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Then, we have

0 < T− ≤ λ∗ ≤ T+ <∞, ð11Þ

where T− is defined as above and

T+ = 2aμ1
4 − q

2 − qð Þaμ1
4 − qð Þδ

	 
1/2
+ 1: ð12Þ

Theorem 3. Assume that fbng and fδng are two sequences
satisfying bn↘0 and δn↘0 as n⟶∞. Let un and Un be
the two positive solutions of ðP b,δÞ corresponding to bn and
δn obtained in Theorem 1 with un ∈M

+
bn ,δn and Un ∈M

−
bn ,δn

, then passing to a subsequence if necessary,

(i) kUnk⟶∞ as n⟶∞

(ii) un ⟶ �u in H1
0ðΩÞ as n⟶∞, where �u is a positive

ground state solution of the problem

−aΔu = λ uj jq−2u, x ∈Ω, P 0,0ð Þ,
u = 0, x ∈ ∂Ω:

(
ð13Þ

Remark 4. The multiplicity result of ðP b,δÞ with δ = 0 has
been proved by [10]. So, our result presented in Theorem 1
can be viewed as an extension of [10] considering the sub-
critical case where δ = 0. In particular, we provide uniform
estimates of extremal values λ∗ for the problem, which are
observed for the first time in the studies of such nonlocal
problem like ðP b,δÞ.

Remark 5. Comparing with [16], which considered problem
ðP b,δÞ with b = 0, we in this paper investigate the nonlocal
case of b ≠ 0. Moreover, unlike [22–24, 26], where the non-
local term is positive, here we study the case of negative sign
of nonlocal term and additionally obtain a bound from
above for the parameter.

The plan of this paper is as follows. In Section 2, we give
some preliminaries. Section 3 is devoted to the Proof of The-
orem 1. In Section 4, we prove Theorems 2 and 3. In the
proof of our main results, we use variational methods, and
they are inspired by [10, 16]. However, in the present paper,
we encounter some new difficulties due to the critical growth
and nonlocal term. Firstly, compared with [10], the calcula-
tions here are more delicate and difficult since we now face
the critical problem ðP b,δÞ. Secondly, to provide the bound
from above for λ∗ of ðP b,δÞ involving nonlocal term, we
need to develop some techniques applied in [16] where dealt
with local case. Thirdly, in order to obtain the asymptotic
behavior of the solutions of ðP b,δÞ as in the work of [10],
we add the condition of δ↘0 and conduct some new
analysis.

2. Preliminaries

Lemma 6. Let λ ∈ ð0, T1Þ. Then, M±
b,δ ≠∅ and M0

b,δ = f0g.

Proof. A simple calculation shows that

∂Ib,δϕ∂t tuð Þ = tq−1 at2−q uk k2 − bt4−q uk k4 − λ uj jqq − δt4−q uj j44
� �

:

ð14Þ

For any u ∈H1
0ðΩÞ \ f0g, t > 0, set

ψ tð Þ = at2−q uk k2 − bt4−q uk k4 − δt4−q uj j44, t > 0,
ψ1 tð Þ = at2−q uk k2 − t4−q b + δS−2

� �
uk k4, t > 0:

ð15Þ

Since 1 < q < 2, it is clear that limt⟶0+ψ1ðtÞ = 0 and
limt⟶+∞ψ1ðtÞ = −∞. Moreover, ψ1ðtÞ is concave and

achieves its maximum at the point tmax =
½að2 − qÞkuk2/ðb + δS−2Þð4 − qÞkuk4�1/2 with

ψ1 tmaxð Þ = 24 − qð Þ 2 − q4 − qð Þ2−q/2 a uk k2� �4−q
b + δS−2
� �

uk k4� �2−q
" #1/2

:

ð16Þ

By Hölder and Sobolev inequalities, for λ ∈ ð0, T1Þ, we
obtain

λ uj jqq ≤ λ Ωj j4−q4S−q/2 uk kq < ψ1 tmaxð Þ ≤ ψ tmaxð Þ: ð17Þ

From which we infer that there exist two constants t+

= t+ðuÞ and t− = t−ðuÞ satisfying t+ > tmax > t− > 0 and

ψ t+ð Þ = λ uj jqq = ψ t−ð Þ,
ψ′ t+ð Þ < 0 < ψ′ t−ð Þ:

ð18Þ

This gives that t+u ∈M−
b,δ and t−u ∈M+

b,δ.
In what follows, we prove that M0

b,δ = f0g. Suppose to
the contrary that there is w ∈M0

b,δ with w ≠ 0. By w ∈M0
b,δ

, we have

a 2 − qð Þ wk k2 = b 4 − qð Þ wk k4 + δ 4 − qð Þ wj j44: ð19Þ

As a consequence, by Sobolev inequality,

a 2 − qð Þ wk k2 ≤ b 4 − qð Þ wk k4 + δ 4 − qð ÞS−2 wk k4
= b + δS−2
� �

4 − qð Þ wk k4:
ð20Þ

Moreover, we can also infer from w ∈M0
b,δ that −2a

kwk2 + λð4 − qÞjwjqq = 0 and so

λ wj jqq =
2a
4 − q

wk k2: ð21Þ
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Combining (20) and (21), for λ ∈ ð0, T1Þ, we conclude
that

0 < 2
4 − q

� � 2 − q
4 − q

� � 2−qð Þ/2 a wk k2� �4−q
b + δS−2
� �

wk k4� �2−q
" #1/2

− λ wj jqq ≤
2

4 − q

� � 2 − q
4 − q

� � 2−qð Þ/2

� a wk k2� �4−q
a 2 − qð Þ/ 4 − qð Þð Þ wk k2� �2−q

" #1/2

− λ wj jqq =
2a
4 − q

wk k2 − λ wj jqq = 0,

ð22Þ

which is absurd. The proof of Lemma 6 is completed.

Lemma 7. Assume that λ ∈ ð0, T1Þ, then there is a gap struc-
ture in Mb,δ:

uk k ≤ A λð Þ < A 0ð Þ ≤ Uk k,∀u ∈M+
b,δ,U ∈M−

b,δ, ð23Þ

where

A 0ð Þ = a 2 − qð Þ
4 − qð Þ b + δS−2

� �
 !1/2

,

A λð Þ = λ 4 − qð Þ Ωj j 4−qð Þ/4

2aSq/2

 !1/ 2−qð Þ
:

ð24Þ

Proof. In the case of U ∈M−
b,δ, using Sobolev inequality, we

have

a 2 − qð Þ Uk k2 < b 4 − qð Þ Uk k4 + δ 4 − qð Þ Uj j44 ≤ b + δS−2
� �

4 − qð Þ Uk k4,
ð25Þ

which yields kUk ≥ Að0Þ.
In the case of u ∈M+

b,δ, it holds

2a uk k2 < λ 4 − qð Þ uj jqq ≤ λ 4 − qð Þ Ωj j4−q/4S−q/2 uk kq, ð26Þ

which gives that kuk ≤ AðλÞ. Moreover, we easily check that
if λ ∈ ð0, T1Þ, then AðλÞ < Að0Þ.

Lemma 8. For any u ∈M±
b,δ, there exist ρu > 0 and a differen-

tial functional gρu
: Bρu

ð0Þ⟶ℝ+ such that

Proof. Fix u ∈M−
b,δ and define F : ℝ+ ×H⟶ℝ by

F t,wð Þ = at2−q u −wk k2 − bt4−q u −wk k4 − λ u −wj jqq − δt4−q u −wj j44:
ð28Þ

Since for u ∈M−
b,δ ⊂Mb,δ, one has Fð1, 0Þ = 0 and

Ft 1, 0ð Þ = a 2 − qð Þ uk k2 − b 4 − qð Þ uk k4 − δ 4 − qð Þ uj j44 < 0,
ð29Þ

then we can employ the implicit function theorem for F at
the point ð1, 0Þ and derive �ρ > 0 and a differential functional
g = gðwÞ > 0 defined for w ∈H1

0ðΩÞ, kwk < �ρ such that

g 0ð Þ = 1, g wð Þ u −wð Þ ∈Mb,δ,∀w ∈H, wk k < �ρ: ð30Þ

In view of the continuity of g, we may choose ρ > 0 pos-
sibly smaller (ρ < �ρ) such that for any w ∈H1

0ðΩÞ, kwk < ρ, it

holds

g wð Þ u −wð Þ ∈M−
b,δ: ð31Þ

In a similar way, we can prove the case of u ∈M+
b,δ, and

thus, Lemma 8 follows.

Lemma 9. If λ ∈ ð0, T1Þ, then we have

(i) The functional Ib,δ is coercive and bounded from
below on Mb,δ

(ii) infM+
b,δ∪M

0
b,δ
Ib,δ = infM+

b,δ
Ib,δ ∈ ð−∞,0Þ

Proof.

(i) For u ∈Mb,δ, using Hölder’s inequality, we obtain

gρu 0ð Þ = 1, gρu wð Þ u −wð Þ ∈M±
b,δ,

gρu
′ 0ð Þ, ϕ

D E
= 2a − 4b uk k2� �Ð

Ω
∇u∇ϕdx − qλ

Ð
Ω
uj jq−2uϕdx − 4δ

Ð
Ω
uj j2uϕdx

a 2 − qð Þ uk k2 − b 4 − qð Þ uk k4 − δ 4 − qð Þ uj j44
:

ð27Þ
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Ib,δ uð Þ = Ib,δ uð Þ − 1
4 I′b,δ uð Þ, u
D E

= a
4 uk k2

− λ
1
q
−
1
4

� �
uj jqq ≥

a
4 uk k2

− λ
1
q
−
1
4

� �
Ωj j 4−qð Þ/4S−q/2 uk kq:

ð32Þ

This proves the conclusion (i).

(ii) For u ∈M+
b,δ, it holds

Ib,δ uð Þ = Ib,δ uð Þ − 1
q

I′b,δ uð Þ, u
D E

= a
1
2 −

1
q

� �
uk k2

+ b
1
q
−
1
4

� �
uk k4 + δ

1
q
−
1
4

� �
uj j44

< −a 2 − qð Þ uk k2 + b 4 − qð Þ uk k4 + δ 4 − qð Þ uj j44
4q < 0:

ð33Þ

Combining this and Lemma 6, we have that infM+
b,δ∪M

0
b,δ

Ib,δ = infM+
b,δ
Ib,δ < 0. Furthermore, we deduce from (i) that

infM+
b,δ∪M

0
b,δ
Ib,δ ≠ −∞. Thus, infM+

b,δ∪M
0
b,δ
Ib,δ ∈ ð−∞,0Þ.

Lemma 10. If λ ∈ ð0, T1Þ, then M+
b,δ ∪M0

b,δ and M−
b,δ are

closed.

Proof. Let fUng be a sequence in M−
b,δ such that Un ⟶U0

in H1
0ðΩÞ. Since fUng ⊂M−

b,δ ⊂Mb,δ, we have

a U0k k2 − b U0k k4 = lim
n⟶∞

a Unk k2 − b Unk k4� �
= lim

n⟶∞
λ Unj jqq + δ Unj j4
� �

= λ U0j jqq + δ U0j j4,

a 2 − qð Þ U0k k2 − b 4 − qð Þ U0k k4 − δ 4 − qð Þ U0j j4
= lim

n⟶∞
a 2 − qð Þ Unk k2 − b 4 − qð Þ Unk k4


− δ 4 − qð Þ Unj j4� ≤ 0,
ð34Þ

namely, U0 ∈M
−
b,δ ∪M0

b,δ. For λ ∈ ð0, T1Þ, it then follows
from Lemma 7 that U0 ∉M

0
b,δ. In turn, we obtain U0 ∈

M−
b,δ, and so, M−

b,δ is closed for λ ∈ ð0, T1Þ. The same argu-
ment can prove that M0

b,δ ∪M+
b,δ is closed. This completes

the proof of Lemma 10.

3. Proof of Theorem 1

Lemma 11. Suppose that λ ∈ ð0, T1Þ, then problem ðP b,δÞ
admits a positive solution u∗ with u∗ ∈M

+
b .

Proof. By Lemmas 9 and 10, we can apply Ekeland varia-
tional principle to get a minimizing sequence fung ⊂M+

b,δ

∪M0
b,δ such that

lim
n⟶∞

Ib,δ unð Þ = inf
M+

b,δ∪M
0
b,δ

Ib,δ < 0, ð35Þ

Ib,δ zð Þ ≥ Ib,δ unð Þ − 1
n

z − unk k,∀z ∈M+
b,δ ∪M0

b,δ: ð36Þ

Since Ib,δðjujÞ = Ib,δðuÞ, we can assume that un ≥ 0 in Ω.
By Lemma 9, fung is bounded in H1

0ðΩÞ, and so, we may
assume that

un ⇀ u∗, in H1
0 Ωð Þ,

un ⟶ u∗, in Ls Ωð Þ, 1 ≤ s < 4,
un ⟶ u∗, a:e:in Ω:

8>><
>>: ð37Þ

In the following, we prove that u∗ is a positive solution
to ðP b,δÞ. To this purpose, we divide the proof into five
steps.

Step 1. u∗ ≠ 0.
If, to the contrary, we have u∗ = 0. Since un ∈M

+
b,δ ∪

M0
b,δ, it follows that for n large,

a unk k2 ≥ 4 − q
2 − q

b unk k4 + 4 − q
2 − q

δ unj j44, ð38Þ

and hence,

Ib,δ unð Þ = 1
2 a unk k2 − 1

4 b unk k4 − 1
4 δ unj j44 + o 1ð Þ >

� 4 − q
2 2 − qð Þ −

1
4

� �
b unk k4

+ 4 − q
2 2 − qð Þ −

1
4

� �
δ unj j44 + o 1ð Þ > 0,

ð39Þ

which contradicts with (35). Therefore, u∗ ≠ 0.
Step 2. There is a positive constant C1 satisfying

2a unk k2 − λ 4 − qð Þ unj jqq < −C1: ð40Þ

To prove that, it suffices to check that

2alimsup
n⟶∞

unk k2 < λ 4 − qð Þ u∗j jqq: ð41Þ

In view of un ∈M
+
b,δ ∪M0

b,δ, one has

2alimsup
n⟶∞

unk k2 ≤ λ 4 − qð Þ u∗j jqq: ð42Þ

Assume to the contrary that

2alimsup
n⟶∞

unk k2 = λ 4 − qð Þ u∗j jqq: ð43Þ

Then, we can suppose kunk2 ⟶ A > 0 as n⟶∞,
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where A satisfies

λ u∗j jqq =
2aA
4 − q

: ð44Þ

From this, we have that for λ ∈ ð0, T1Þ,

0 ≤ 2
4 − q

� � 2 − q
4 − q

� � 2−qð Þ/2 a 4−qð Þ/2

b + δS−2
� � 2−qð Þ/2 − λ Ωj j 4−qð Þ/4S−q/2

" #

� unk kq ≤ 2
4 − q

� � 2 − q
4 − q

� � 2−qð Þ/2

� a unk k2� �4−q
b + δS−2
� �

unk k4� �2−q
" #1/2

− λ unj jqq ≤
2

4 − q

� � 2 − q
4 − q

� � 2−qð Þ/2

� a unk k2� �4−q
a unk k2 − λ unj jqq
� �2−q
2
64

3
75
1/2

− λ unj jqq ⟶
2

4 − q

� � 2 − q
4 − q

� � 2−qð Þ/2

� aAð Þ4−q
2 − qð Þ/ 4 − qð Þð ÞaAð Þ2−q

" #1/2
−

2aA
4 − q

= 0,

ð45Þ

which implies that un ⟶ 0 in H1
0ðΩÞ, contradicting u∗ ≠ 0.

In turn, we deduce that (40) holds.
Step 3. kI′b,δðunÞk⟶ 0 as n⟶∞.
Let 0 < ρ < ρn ≡ ρun , gn ≡ gun , where ρun and gun are

defined as Lemma 8 with u = un. Let wρ = ρv with v = u/ku
k. Fix n and set zρ = gnðwρÞðun −wρÞ. Since zρ ∈M+

b,δ, it fol-
lows from (36) that

Ib,δ zρ
� �

− Ib,δ unð Þ ≥ −
1
n

zρ − un
�� ��: ð46Þ

By the definition of Fréchet derivative, we obtain

Ib,δ′ unð Þ, zρ − un
D E

+ o zρ − un
�� ��� �

≥ −
1
n

zρ − un
�� ��: ð47Þ

Then,

Ib,δ′ unð Þ,−wρ + gn wρ

� �
− 1

� �
un −wρ

� �D E
≥ −

1
n

zρ − un
�� �� + o zρ − un

�� ��� �
,

ð48Þ

and hence,

−ρ Ib,δ′ unð Þ, v
D E

+ gn wρ

� �
− 1

� �
Ib,δ′ unð Þ, un −wρ

D E
≥

−
1
n

zρ − un
�� �� + o zρ − un

�� ��� �
,

ð49Þ

which yields that

Ib,δ′ unð Þ, v
D E

≤
1
n

zρ − un
�� ��

ρ
+ o

zρ − un
�� ��� �

ρ
+
gn wρ

� �
− 1

ρ

� I′b,δ unð Þ, un −wρ

D E
:

ð50Þ

From Step 2, Lemma 8, and the boundedness of fung, we
also have

zρ − un
�� �� = gn wρ

� �
− 1

� �
un −wρ

� �
−wρ

�� �� ≤ gn wρ

� �
− 1

�� ��C2 + ρ,

lim
ρ⟶0

gn wρ

� �
− 1

�� ��
ρ

= gn′ 0ð Þ, vh i ≤ g′n 0ð Þ�� �� ≤ C3,

I′b,δ unð Þ, un −wρ

D E
= I′b,δ unð Þ,−wρ

D E
= −ρ I′b,δ unð Þ, v

D E
:

ð51Þ

As a consequence, for fixed n, we can derive letting ρ
⟶ 0 in (50) that

I′b,δ unð Þ, v
D E

≤
C
n
, ð52Þ

which implies that kI′b,δðunÞk⟶ 0 as n⟶∞.
Step 4. un ⟶ u∗ in H1

0ðΩÞ.
Set vn = un − u∗. If kvnk⟶ 0, we are done, thus assume

kvnk⟶ L > 0. By hI′b,δðunÞ, u∗i = oð1Þ and (37),

0 = a u∗k k2 − b L2 + u∗k k2� �
u∗k k2 − λ u∗j jqq − δ u∗j j44: ð53Þ

Moreover, from I′b,δðunÞ⟶ 0, the boundedness of fun
g, and Brézis-Lieb lemma, we have that

o 1ð Þ = Ib,δ′ unð Þ, un
D E

= a vnk k2 + u∗k k2� �
− b vnk k4 + 2 vnk k2 u∗k k2 + u∗k k4� �
− λ u∗j jqq − δ vnj j44 − δ u∗j j44 + o 1ð Þ:

ð54Þ

Combining this and (53), we get

o 1ð Þ = a vnk k2 − b vnk k4 − b vnk k2 u∗k k2 − δ vnj j44: ð55Þ

It then follows from Sobolev inequality that

a vnk k2 − b vnk k4 − b vnk k2 u∗k k2 = δ vnj j44 + o 1ð Þ ≤ δS−2 vnk k4 + o 1ð Þ:
ð56Þ

Passing the limit as n⟶∞, we obtain that

L2 ≥
S2 a − b u∗k k2� �

bS2 + δ
> 0: ð57Þ
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By (53), (57), and Hölder inequality,

Ib,δ u∗ð Þ = a
2 u∗k k2 − b

4 u∗k k4 − λ

q

ð
u∗j jqdx − δ

4 u∗j j44

= a
4 u∗k k2 + b

4 L
2 u∗k k2 − λ

1
q
−
1
4

� �
u∗j jqq

≥
abS2 u∗k k2
4 bS2 + δ
� � + b

4 L
2 u∗k k2 + aδ

4 bS2 + δ
� � u∗k k2

− λ
1
q
−
1
4

� �
Ωj j 4−qð Þ/4S−q/2 u∗k kq:

ð58Þ

For ξ≔ aδ/4ðbS2 + δÞ and η≔ λðð1/qÞ − ð1/4ÞÞjΩj4−q/4
S−q/2, define

f tð Þ = ξt2 − ηtq: ð59Þ

By easy calculation, we have that f ðtÞ achieves its mini-

mum value at tmin = ðqη/2ξÞ1/ð2−qÞ and

f tminð Þ = −
2 − q
2 η2/ 2−qð Þ q

2ξ

� �q/ 2−qð Þ
: ð60Þ

Therefore, we obtain

Ib,δ u∗ð Þ ≥ abS2 u∗k k2
4 bS2 + δ
� � + b

4 L
2 u∗k k2 + f tminð Þ = abS2 u∗k k2

4 bS2 + δ
� �

+ b
4 L

2 u∗k k2 − 2 − q
2

λ 4 − qð Þ
4q Ωj j 4−qð Þ/4S−q/2

� �2/ 2−qð Þ

� 2q bS2 + δ
� �
aδ

" #q/ 2−qð Þ
:

ð61Þ

Using (37), (53), and (61), we deduce that for λ ∈ ð0, T1Þ,

Ib,δ unð Þ = Ib,δ u∗ð Þ + a
4 vnk k2 − b

4 vnk k2 u∗k k2 + o 1ð Þ

≥
abS2 u∗k k2
4 bS2 + δ
� � + a

4 L
2 −

2 − q
2

� 4 − qð Þ
4q Ωj j 4−qð Þ/4S−q/2

� �2/ 2−qð Þ

� 2q bS2 + δ
� �
aδ

" #q/ 2−qð Þ
λ2/ 2−qð Þ + o 1ð Þ ≥ a2S2

4 bS2 + δ
� �

−
2 − q
2

4 − qð Þ
4q Ωj j 4−qð Þ/4S−q/2

� �2/ 2−qð Þ

� 2q bS2 + δ
� �
aδ

" #q/ 2−qð Þ
λ2/ 2−qð Þ + o 1ð Þ > 0,

ð62Þ

which is a contradiction since limn⟶∞Ib,δðunÞ < 0. This
implies that kvnk⟶ L > 0 is impossible. Hence, kvnk⟶
0; that is, un ⟶ u∗ in H1

0ðΩÞ.
Step 5. u∗ is a positive solution of problem ðP b,δÞ and

u∗ ∈M
+
b,δ.

From (35) and Steps 3 and 4, we have that, up to a sub-
sequence, un ⟶ u∗ in H1

0ðΩÞ with Ib,δðu∗Þ < 0 and I′b,δð
u∗Þ = 0. Namely, u∗ ≥ 0 is a weak nontrivial solution of
problem ðP b,δÞ. Moreover, by Lemmas 6 and 10, we know
u∗ ∈M

+
b,δ. Standard elliptic regularity argument and strong

maximum principle provide that u∗ is positive. Therefore,
the proof of Lemma 11 is completed.

Lemma 12. Let λ ∈ ð0, T1Þ, then problem ðP b,δÞ has a posi-
tive solution U∗ with U∗ ∈M

−
b .

Proof. As in the proof of Lemma 11, we can prove that there
exists a bounded and nonnegative sequence fUng ⊂M−

b,δ
with the properties

(i) lim
n⟶∞

Ib,δðUnÞ = inf
M−

b,δ
Ib,δ

(ii) Ib,δðzÞ ≥ Ib,δðUnÞ − 1nkz − unk, ∀z ∈M−
b,δ

(iii) Un ⇀U∗ inH1
0ðΩÞ

(iv) Un ⟶U∗ in LsðΩÞ, 2 ≤ s < 4
(v) Un ⟶U∗ a:e:inΩ

Without loss of generality, we may assume that 0 ∈Ω.
Let φðxÞ ∈ C∞

0 ðΩÞ be a cut-off function such that 0 ≤ φ ≤ 1
in Ω and φðxÞ ≡ 1 near zero. Set

vε xð Þ = φ xð Þ 8ð Þ1/2ε
ε2 + xj j2 : ð63Þ

By [29, 30], one has for ε > 0 small,

vεk k2 = S2 +O ε2
� �

,

vεj j44 = S2 +O ε4
� �

,

vεj j33 =O εð Þ:

8>><
>>: ð64Þ

In the first place, we prove the following upper bound for
infM−

b,δ
Ib,δ,

inf
M−

b,δ
Ib,δ ≤ sup

t>0
Ib,δ u∗ + tvεð Þ < Ib,δ u∗ð Þ + a2S2

4 bS2 + δ
� � , ð65Þ

where u∗ is the positive solution obtained in Lemma 11.
Since u∗ ∈M

+
b,δ, it is easy to verify that a − bku∗k2 > 0. By
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the fact that hIb,δ ′ðu∗Þ, tvεi = 0, we also have

0 = t a − b u∗k k2� �ð
Ω

∇u∗∇vεdx − tλ
ð
Ω

uq−1∗ vεdx − tδ
ð
Ω

u3∗vεdx,

ð66Þ

and hence,

ð
Ω

∇u∗∇vεdx =
λ
Ð
Ω
uq−1∗ vεdx + δ

Ð
Ω
u3∗vεdx

a − b u∗k k2 > 0: ð67Þ

Let wε = u∗ + Rvε with R > 1. It follows from (67) that

wεk k2 = u∗k k2 + 2R
ð
Ω

∇u∗∇vεdx + R2 vεk k2 ≥ u∗k k2 + R2S2 +O ε2
� �

:

ð68Þ

Let ψðtÞ be given by Lemma 6. As can be seen from the
proof of Lemma 6, there exist ψðtεÞ = λjwε/kwεkjqq and ψ′ð
tεÞ < 0, where tε = t+ðwε/kwεkÞ. From the structure of ψ
and the fact of jwε/kwεkjqq > 0, we easily see that tε is uni-
formly bounded by a suitable constant C1 > 0, ∀R ≥ 1, and
∀ε > 0.

Moreover, we have from (68) that there is ε1 > 0 satisfy-
ing

wεk k2 ≥ u∗k k2 + 1
2R

2S2,∀ε ∈ 0, ε1ð Þ: ð69Þ

Therefore, we may find R1 ≥ 1 such that kwεk > C1, ∀R
≥ R1, and ∀ε ∈ ð0, ε1Þ.

Define

E1 = u : u = 0 or uk k < t+
u
uk k

� �� �
,

E2 = u : uk k > t+
u
uk k

� �� �
:

ð70Þ

Notice that H1
0ðΩÞ −M−

b,δ = E1 ∪ E2 and M+
b,δ ⊂ E1.

Because u∗ ∈M
+
b,δ and the continuity of t+ðuÞ, we have that

u∗ + tR1vε for t ∈ ð0, 1Þ must intersect M−
b,δ. As a conse-

quence,

inf
M−

b,δ
Ib,δ ≤ sup

t>0
Ib,δ u∗ + tvεð Þ: ð71Þ

Thus, to complete the proof of (65), it suffices to show
that

sup
t>0

Ib,δ u∗ + tvεð Þ < Ib,δ u∗ð Þ + a2S2

4 bS2 + δ
� � : ð72Þ

By mean value theorem, there exists δðxÞ ∈ ½0, 1� such
that

u∗ xð Þ + tvε xð Þð Þq − uq∗ xð Þ = q u∗ xð Þ + δ xð Þtvε xð Þð Þq−1tvε xð Þ
≥ qtuq−1∗ xð Þvε xð Þ,

ð73Þ

for any x ∈Ω. Using (66), (67), and (73), we obtain

Ib,δ u∗ + tvεð Þ = a
2 u∗k k2 + at

ð
Ω

∇u∗∇vεdx +
a
2 t

2 vεk k2 − b
4

� u∗k k4 − bt2
ð
Ω

∇u∗∇vεdx
� �2

−
b
4 t

4 vεk k4

− bt u∗k k2
ð
Ω

∇u∗∇vεdx −
b
2 t

2 u∗k k2 vεk k2

− bt3 vεk k2
ð
Ω

∇u∗∇vεdx − λq
ð
Ω

u∗ + tvεð Þqdx

−
δ

4

ð
Ω

u∗ + tvεð Þ4dx ≤ Ib,δ u∗ð Þ + a
2 t

2 vεk k2

−
b
4 t

4 vεk k4 − b
2 t

2 u∗k k2 vεk k2 − λ

q

ð
Ω

� u∗ + tvεð Þq − uq∗ − qtuq−1∗ vε

 �

dx −
δ

4

ð
Ω

� u∗ + tvεð Þ4 − u4∗ − 4tu3∗vε

 �

dx ≤ Ib,δ u∗ð Þ
+ a
2 t

2 vεk k2 − b
4 t

4 vεk k4 − b
2 t

2 u∗k k2 vεk k2

−
δ

4

ð
Ω

u∗ + tvεð Þ4 − u4∗ − 4tu3∗vε

 �

dx:

ð74Þ

To proceed, we set

J vð Þ = a
2 vk k2 − b

4 vk k4 − b
2 u∗k k2 vk k2 − δ

4

ð
Ω

u∗ + vð Þ4 − u4∗ − 4u3∗v

 �

dx:

ð75Þ

Recall that, for r, s ≥ 1, it holds

r + sð Þ4 − r4 − 4r3s ≥ s4 + C1rs
3, ð76Þ

for some C1 > 0. By (73) and (76), we have that

J tvεð Þ = a
2 t

2 vεk k2 − b
4 t

4 vεk k4 − b
2 t

2 u∗k k2 vεk k2 − δ

4

ð
Ω

� u∗ + tvεð Þ4 − u4∗ − 4tu3∗vε

 �

dx ≤
a
2 t

2 vεk k2 − b
4 t

4

� vεk k4 − b
2 t

2 u∗k k2 vεk k2 − δ

4

ð
Ω

tvεð Þ4 + C1u∗ tvεð Þ3
 �
dx

= a
2 t

2 vεk k2 − b
2 t

2 u∗k k2 vεk k2 − b
4 t

4 vεk k4 − δ

4 t
4 vεj j44

−
δ

4C1t
3
ð
Ω

u∗v
3
εdx,

ð77Þ
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which implies that there exists a constant t1 > 0 small
enough such that

sup
0<t<t1

Ib,δ u∗ + tvεð Þ < a2

4b : ð78Þ

Thus, we only need to consider the case of t ≥ t1. By the
same argument of Lemma 11 of [21], we have

ð
Ω

u∗v
3
εdx = 8ð Þ3/2εu∗ 0ð Þ

ð
ℝ4

1
1 + xj j2� �3 dx + o εð Þ: ð79Þ

Combining this and (64), we have for ε > 0 sufficiently
small,

sup
t≥t1

J tvεð Þ ≤ sup
t>0

a
2 t

2 vεk k2 − b
2 t

2 u∗k k2 vεk k2 − b
4 t

4 vεk k4 vεk k4 − δ

4 t
4 vεj j44

� �

−
δ

4C1t
3
1

ð
Ω

u∗v
3
εdx ≤

a vεk k2 − b u∗k k2 vεk k2� �2
4 b vεk k4 + vεj j44
� �

− C2ε + o εð Þ = aS2 − bS2 u∗k k2� �2
4 bS4 + δS2
� � +O ε2

� �
− C2ε + o εð Þ

< S2 a − b u∗k k2� �2
4 bS2 + δ
� � < a2S2

4 bS2 + δ
� � ,

ð80Þ

where C2 > 0 is a positive constant independent of ε. This
together with (74) implies that (65) holds.

In the second place, we claim that U∗ ≠ 0. If, to the con-
trary, we have U∗ ≡ 0. Since Un ∈M

−
b,δ ⊂Mb,δ, it follows that

a Unk k2 − b Unk k4 − λ Unj jqq − δ Unj j44 = 0, ð81Þ

and so, by Sobolev inequality

a Unk k2 = b Unk k4 + δ Unj j44 + o 1ð Þ ≤ b + δS−2
� �

Unk k4:
ð82Þ

Assume that kUnk2 ⟶ ι2. By fUng ⊂M−
b,δ and Lemma

7, we obtain that ι2 > 0. Taking n⟶∞ in (82), we have ι2

≥ aS2/ðbS2 + δÞ, and thus

inf
M−

b,δ
Ib,δ = lim

n⟶∞
Ib,δ Unð Þ = lim

n⟶∞
Ib,δ Unð Þ − 1

4 Ib,δ ′ Unð Þ,Unð
D E	 


= lim
n⟶∞

a
4 Unk k2 − λ

1
q
−
1
4

� �
Unj jqq

	 

= a
4 ι

2

≥
a2S2

4 bS2 + δ
� � ,

ð83Þ

which is a contradiction with (65). Therefore, the claim fol-
lows. At this point, we may proceed as in the proof of
Lemma 11 and conclude that U∗ is a positive solution of
problem ðP b,δÞ with U∗ ∈M

−
b,δ. This completes the proof

of Lemma 12.

Proof of Theorem 1. Theorem 1 is an immediate conse-
quence of Lemmas 7, 11, and 12.

4. Proofs of Theorems 2 and 3

Proof of Theorem 2. By the definition of λ∗ and Theorem 1,
we easily see that λ∗ ≥ T−. Hence, Proof of Theorem 2 is
completed if we show that λ∗ ≤ T+. To this goal, let us define
the functions

hλ tð Þ = tq−1 δt4−q − aμ1t
2−q + λ

� �
, t > 0,

~hλ tð Þ = δt4−q − aμ1t
2−q + λ, t > 0:

ð84Þ

Obviously, we have that ~hðtÞ is convex and attains its
minimum at the point tmin = ½ð2 − qÞaμ1/ð4 − qÞδ�1/2 with

~hλ tminð Þ = −
2aμ1
4 − q

2 − qð Þaμ1
4 − qð Þδ

	 
1/2
+ λ: ð85Þ

As a consequence, we can take

T+ = 2aμ1
4 − q

2 − qð Þaμ1
4 − qð Þδ

	 
1/2
+ 1, ð86Þ

such that

~hT+ tð Þ ≥ ~hT+ tminð Þ = 1 > 0,∀t > 0: ð87Þ

This gives that

hT+ tð Þ ≥ tq−1~hT+ tð Þ > 0,∀t > 0, ð88Þ

namely,

T+tq−1 + δt3 > aμ1t,∀t > 0: ð89Þ

Assume that any λ > 0 is such that ðP b,δÞ admits a pos-
itive solution u. On the one hand, using (89) with t = u, mul-
tiplying by e1, and integrating over Ω, we get

T+
ð
Ω

uq−1e1dx + δ
ð
Ω

u3e1dx > aμ1

ð
Ω

ue1dx: ð90Þ

On the other hand, multiplying ðP b,δÞ by e1 and inte-
grating over Ω, there holds

a − b uk k2� �ð
Ω

∇u∇e1dx = λ
ð
Ω

uq−1e1dx + δ
ð
Ω

u3e1dx > 0:

ð91Þ

Since

aμ1

ð
Ω

ue1dx = a
ð
Ω

∇u∇e1dx > a − b uk k2� �ð
Ω

∇u∇e1dx,

ð92Þ
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we infer from (90) and (91) that λ < T+. By the arbitrariness
of λ and the definition of λ∗, we conclude that λ∗ ≤ T+ <∞.
Proof of Theorem 2 is thus completed.

Proof of Theorem 3. Let fbng and fδng be two sequences sat-
isfying bn↘0 and δn↘0 as n⟶∞, and let un and Un be the
two positive solutions of ðP bn ,δnÞ obtained in Theorem 1
with un ∈M

+
bn ,δn and Un ∈M

−
bn ,δn .

Using Lemma 7 and Un ∈M
−
bn
, we have that

lim
n⟶∞

Unk k2 ≥ lim
n⟶∞

a 2 − qð Þ
4 − qð Þ bn + δnS

−2� �
 !1/2

= +∞, ð93Þ

and thus, the conclusion (i) holds.
In what follows, we prove the conclusion (ii) of Theorem

3. Noting that

Ibn ,δn unð Þ = inf
M+

bn ,δn∪M
0
bn ,δn

Ibn ,δn < 0, ð94Þ

for all n ∈ℕ, we obtain from Hölder inequality that

0 ≥ Ibn ,δn unð Þ − 1
4 I′bn ,δn unð Þ, un
D E

≥
1
2 −

1
4

� �
unk k2

− λ
1
q
−
1
4

� �
Ωj j4−q/4S−q/2 unk kq:

ð95Þ

As a consequence of 1 < q < 2, we have that fung is
bounded in H1

0ðΩÞ. Thus, there is a subsequence of fung
(still denoted by fung) such that un ⇀ �u in H1

0ðΩÞ as n
⟶∞. Furthermore, for all ϕ ∈H1

0ðΩÞ, it holds

0 = lim
n⟶∞

Ibn ,δn′ unð Þ, ϕ
D E

= lim
n⟶∞

a − bn unk k2� �ð
Ω

∇un∇ϕdx
	

− λ
ð
Ω

uq−1n ϕdx − δn

ð
Ω

u3nϕdx


= a
ð
Ω

∇u0∇ϕdx − λ
ð
Ω

uq−10 ϕdx,

ð96Þ

which provides that �u is a nonnegative weak solution of
problem ðP 0,0Þ. Let I0,0ðuÞ be the corresponding functional
of ðP 0,0Þ defined by

I0,0 uð Þ = a
2 uk k2 − λ

q
uj jqq: ð97Þ

Since

a un − �uk k2 = Ibn ,δn ′ unð Þ − I0,0 ′ �uð Þ, un − �u
D E

+ bn

ð
Ω

� ∇unj j2dx
ð
Ω

∇un∇ un − �uð Þdx + λ
ð
Ω

uq−1n − �uq−1
� �

un − �uð Þdx + δn

ð
Ω

u3n un − �uð Þdx⟶ 0,

ð98Þ

as n⟶∞, it follows that un ⟶ �u in H1
0ðΩÞ.

Define c0 = inf fI0,0ðuÞ: u ∈H1
0ðΩÞg. It is easy to check

that there exists v0 ∈H1
0ðΩÞ \ f0g such that c0 = I0,0ðv0Þ

and c0 < 0. As I0,0ðuÞ ≥ Ibn ,δnðuÞ for any u ∈H1
0ðΩÞ, we easily

see that infM+
bn ,δn∪M

0
bn ,δn

Ibn ,δn ≤ c0. Set cbn ,δn = Ibn ,δnðunÞ and

suppose that limn⟶∞cbn ,δn = k. We claim k = c0. Otherwise,
we have k < c0, and hence, by bn ⟶ 0, δn ⟶ 0 as n⟶
∞ and fung is bounded in H1

0ðΩÞ; one has for large n,

c0 ≤ I0,0 unð Þ = Ibn ,δn unð Þ + bn
4 unk k4 + δn

4 unj j44 = cbn ,δn

+ bn
4 unk k4 + δn

4 unj j44 ≤ k + c0 − k
2 = c0 + k

2 < c0,

ð99Þ

a contradiction. Thus, the claim follows. Then,

c0 = lim
n⟶∞

Ibn ,δn unð Þ = a
2 �uk k2 − λ

q
�uj jqq = I0,0 �uð Þ, ð100Þ

which implies that �u is a global minimum of I0,0. This result,
together with strong maximum principle proves that �u is a
positive ground state solution of ðP 0,0Þ. Theorem 3 is thus
proved.
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