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We are concerned with  the following
—(a- ij|Vu\2dx)Au =Mu| T2 u+8u)Pu, xeQ

u=0, x €00,

nonlocal

problem  involving  critical = Sobolev  exponent

where Q is a smooth bounded domain in R*, a,b>0, 1< g<2,6,and A

are positive parameters. We prove the existence of two positive solutions and obtain uniform estimates of extremal values for
the problem. Moreover, the blow-up and the asymptotic behavior of these solutions are also discussed when b\0 and §\0. In

the proofs, we apply variational methods.

1. Introduction and Main Results

In this paper, we study a new class of Kirchhoft type problem
with critical exponent and concave-convex nonlinearities

- (a - b[ |Vu|2dx> Au= /\|u\q_2u + 8\u|2u, xe,
o b,ﬁ)’

u=0, XEaQ,

(1)

where Q is a smooth bounded domain in R* (2* =4 is the
critical exponent in dimension four), 4,6>0, 1<g<2, 6,
and A are positive parameters.

We call (2,5) a Kirchhoff type problem since the pres-
ence of the term | Q|Vu|2dx, which means that (2, 4) is no

longer a pointwise identity. Such nonlocal problem arises
in various models concerning physical and biological sys-

tems, see, e.g., [1-3]. Among others, Kirchhoff [2] built a
model defined by the equation

o*u P0+EL
Poar ~\n ﬁL

where u=u(x,t) represents the lateral displacement, p
denotes the mass density, P, is the initial tension, & denotes
the area of the cross-section, E denotes the Young modulus
of the material, and L is the length of the string. This equa-
tion is an extension of the classical D’Alembert wave equa-
tion for free vibrations of elastic strings.

Different from the traditional Kirchhoff type problem,
the sign of nonlocal term included in (2,,) is negative,
which causes some interesting difficulties. In the past few
years, much attention has been paid to the existence, multi-
plicity, and the behaviour of solutions for this kind of

ou
ox

2 ’u
dx) 52 0, (2)
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nonlocal problem but without critical growth. In particular,
Yin and Liu [4] were concerned with the following problem

- (a - bJ |Vu|2dx> Au = |u|P_2u, xe,
o (3)

u=0, x € 0Q),
where 1<p<2* and Q is a bounded domain in RY with
N > 1 and succeeded to find the problem (3) admits at least
two nontrivial solutions. In [5, 6], sign-changing solutions to
(3) were further obtained. When N =3 and the nonlinear
term has an indefinite potential, Lei et al. [7] and Qian and
Chao [8] established the existence of positive solution of
(3) for 1 <p <2 and 3 <p <6, respectively. For the singular
nonlinearity, two positive solutions to (3) with N =3 were
proved in [9]. In our previous work [10], we obtained two
positive solutions of (%,5) with §=0, as well as their
blow-up and asymptotic behavior when b\0. For more
related results, we refer the interested readers to [11-15]
and the references therein.

In 1994, Ambrosetti et al. [16] first studied the following
critical local problem involving concave-convex nonlinear-
ities

—Au= )L|u|q_2u + \u|2*_1u, x€Q,
(4)

u=0, x €00,

where 1 <g<2 and QcRY is a smooth bounded domain.
The authors proved that there exists A, >0 such that the
problem (4) has two positive solutions for A € (0, A;) and
no positive solutions for A > A;. Since then, many scholars
have considered problems with critical exponent and
concave-convex nonlinearities, see, eg., [7, 16-21]. Also,
the problem (4) of traditional Kirchhoff type is studied in
[22-26] and the reference therein. An interesting question
now is whether the same existence results as in [16] occur
to the nonlocal problem (%, 5) with critical exponent. For
A=0 and § =1, Wang et al. [27] proved the existence of
two positive solutions of (%, 5) with an additional inhomo-
geneous perturbation on the whole space R*. When 2<gq
<2* and § is replaced by a nonnegative function Q(x),
[28] showed how the shape of the graph of Q(x) affects the
number of positive solutions to (%, s). However, there are
no known existence results for (9, 5) provided A >0 and 1
<g<2.

Motivated by the works described above, in the present
paper, we try to prove the existence and multiplicity of pos-
itive solutions of problem (%, 5) when A € (0, T™) for some
T~ >0 (see Theorem 1), provide uniform estimates of extre-
mal values A* for problem (%,5) (see Theorem 2), and
obtain the blow-up and asymptotic behavior of these posi-
tive solutions when b\,0 and 6\.0 (see Theorem 3).

Denote by H}(Q) the standard Sobolev space endowed
with the standard norm ||-||. Let |-|, be the norm of the space
L*(Q). Denote by — (—) the strong (weak) convergence.
C and C; denote various positive constants whose exact
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values are not important. Let g, be the positive principal
eigenvalue of the operator —A on Q with corresponding pos-
itive principal eigenfunction e,. Denote by S the best con-
stant in the Sobolev embedding H}(Q)°L* (), namely,

2
[[ul

S= 5
weHy @\ (0} [uf?

> 0. (5)

It is well known that the weak solutions of problem (
Pys5) correspond to the critical points of the following
energy functional

a b A é
IMUQZ§HWV—ZHWP—EWﬂ—ZWﬁ~ (6)

Moreover, we easily see that I, 5 € C'(Hj(2), R).
Define the manifold

My s = {u € H\(Q): <I’b,6(u), u> = 0}
= {u € Hy(Q): al|u]|* =bl|u|* + Aulf + 5|u|3},
(7)
and decompose .#,, 5 into three subsets as follows:
Mys={u€ My a2 q)||ul” - b(4 - q)||ul|* - (4= q)|ul; =0},
My = {ue My : a2~ g)ull> - b4~ q)|[u]* - 5(4 - q)|ult >0},

My = {1 .My a(2=q)|ul* - b(4 - q)||ul|* - 5(4 - q)|ul; < 0}

(8)

Set
_ 2aS87? a(2-9q) e
Y (a-q)o 0\ (b+657)(4-9q) ’
(4-q)12 742 (9)
T, = 2q(as) {5 (2 q)} )
(2-q)(4 - q) (bS* + )| Q9" q

T”=min {T, T,}.
Our main results are as follows.

Theorem 1. Assume that A€ (0,T"), then problem (P,s)
has at least two positive solutions u, € My s and U, € M5
with [[u || <|[U.].

Theorem 2. Let

A" =sup {1 >0: (P, 5) has at least two positive solutions}.

(10)



Journal of Function Spaces

Then, we have
0<T <A <T*<oo, (11)

where T~ is defined as above and

T+ = 2ap, |:(2_q)a‘“1] 1 +1. (12)
4-q[ (4-q)0

Theorem 3. Assume that {b,} and {3,} are two sequences

satisfying b,\0 and §,\0 as n — co. Let u, and U, be

the two positive solutions of (P, s) corresponding to b, and

8, obtained in Theorem 1 with u, € M}, 5 and U, € M, 5

, then passing to a subsequence if necessary,

(i) |U,|| — 00 as n—> oo

(i) u, — u in Hy(Q) as n —> oo, where i is a positive
ground state solution of the problem

x €0, (Pyo)s
x € 0Q.

{ —alAu = /\|u|q_2u,
(13)
u=20,
Remark 4. The multiplicity result of (%,5) with § =0 has
been proved by [10]. So, our result presented in Theorem 1
can be viewed as an extension of [10] considering the sub-
critical case where § =0. In particular, we provide uniform
estimates of extremal values A for the problem, which are
observed for the first time in the studies of such nonlocal
problem like ().

Remark 5. Comparing with [16], which considered problem
(Py,5) with b =0, we in this paper investigate the nonlocal
case of b # 0. Moreover, unlike [22-24, 26], where the non-
local term is positive, here we study the case of negative sign
of nonlocal term and additionally obtain a bound from
above for the parameter.

The plan of this paper is as follows. In Section 2, we give
some preliminaries. Section 3 is devoted to the Proof of The-
orem 1. In Section 4, we prove Theorems 2 and 3. In the
proof of our main results, we use variational methods, and
they are inspired by [10, 16]. However, in the present paper,
we encounter some new difficulties due to the critical growth
and nonlocal term. Firstly, compared with [10], the calcula-
tions here are more delicate and difficult since we now face
the critical problem (%, ;). Secondly, to provide the bound
from above for A" of (%) involving nonlocal term, we
need to develop some techniques applied in [16] where dealt
with local case. Thirdly, in order to obtain the asymptotic
behavior of the solutions of (£,5) as in the work of [10],
we add the condition of §\0 and conduct some new
analysis.

2. Preliminaries

Lemma 6. Let A € (0, T,). Then, My5# D and My s ={0}.

Proof. A simple calculation shows that

L, 040t(tw) = 197" (@t |ul]” = bt*4Jull* = Mulg - 5t*7|ul} ).

(14)
For any u € Hy(Q) \ {0}, £ > 0, set

y(t) = a1 ul = b ul* - 8t jufl, £ > 0,

(15)
(1) = at®ul> = £79(b+ 65 2) ul*, £ > 0.

Since 1<q<2, it is clear that lim, .y, (t)=0 and
lim,_,, v, () =—0co. Moreover, v, (t) is concave and

t =

achieves its maximum at the max

[a(2— g)|ulP*/(b +85)(4 - q)|ull'] " with

<a||u||2)4—q :|1/2.
)

((b+3872)uf*

point

Vi (tma) = (24— 9)(2- g4 - )" {

(16)

By Holder and Sobolev inequalities, for A € (0, T,), we
obtain

Al < MOS0 <y () W (tar)- (17)

From which we infer that there exist two constants t*
=t*(u) and ¢~ =t (u) satisfying t* > ¢, >t >0 and

max

Y(e) = Mult =y (1),
v <0<y ().

This gives that t*u € M, 5 and t"u € M.

In what follows, we prove that ./ s ={0}. Suppose to
the contrary that there is w € ./} ; with w# 0. By w € /)5
, we have

a2-g)w|’=b(4-gw|* +8(4-gwl;. (19
As a consequence, by Sobolev inequality,

a(2 - q)|jw|]* < b(4 - q)|[w]|* + (4 - ) w|*

- s (20)
=(b+5S )(4—q)||w|\ .

Moreover, we can also infer from w € ./ that —2a
2 _ q_
|wl]l” +A(4 - g)|w|] =0 and so

2a
Mwl = yp J[w]. (21)



Combining (20) and (21), for A € (0, T;), we conclude

that
0<< ) )(27q>(2—q)/2 (a”w‘|z)4w _ 12
4-q)\4-¢q ((b+652)[w]*)™

_ g\ 292
Swig= (2) (229)
4-q)\4-¢q (22)

' |: (a“wHZ)‘lfq :| 1/2
(a2~ q)1(4 - q)) [w]?)*

~Awlt= 2|
-9

2
|w]|* = AJw[g =0,

which is absurd. The proof of Lemma 6 is completed. [

Lemma 7. Assume that A € (0, T,), then there is a gap struc-
ture in M, :

|u]| <A(A) <A(0) < \|U||,Vu€ﬂ;)5, Ueys (23)
where

1/2
- a2-9)

_ gy e
AW:C@@O| > .

24877
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Proof. In the case of U € /5, using Sobolev inequality, we
have

a(2=q)|U|* <b(4-q)||U[|" +5(4 - q)|U[; < (b +6S) (4= q)||U]I",
(25)

which yields ||U|| = A(0).
In the case of u € /5, it holds

2allull* < M4 - q)|ul] < A(4 - )| QTSI ul|?, - (26)

which gives that ||u|| < A(1). Moreover, we easily check that
if A€ (0, T,), then A(A) < A(0). O

Lemma 8. For any u € My, s, there exist p, > 0 and a differen-
tial functional g, : B, (0) — R* such that

9,,(0)=1. g, (w)(u-w) € M5,

< ' (0) ¢>_ (2a — 4b||u|*) [ ,VuVdx — gA [ |u|">u¢dx — 48 [ , |ul* updx (27)
e aC- gl —ba- gl =gl

Proof. Fix u € M5 and define F : R" x H— R by

F(t,w) =at’™||u—w|* - bt*|ju—w||* - Aju- wlf - St |u — wlj.

(28)
Since for u € My, 5 C M, 4, one has F(1,0) =0 and

F,(1,0) = a(2 - q)||ul]* = b(4 - q)|ul|* - 8(4 - q)[ul; <O,
(29)

then we can employ the implicit function theorem for F at
the point (1,0) and derive p > 0 and a differential functional
g=g(w) >0 defined for w € H}(Q), ||w|| < p such that

9(0)=1g(w)(u-w) e MyzYwe H,|w||<p.  (30)

In view of the continuity of g, we may choose p > 0 pos-
sibly smaller (p < p) such that for any w € Hy(Q), [|w]| < p, it

holds
g(w)(u-w) € My (31)

In a similar way, we can prove the case of u € /; 5, and
thus, Lemma 8 follows. O

Lemma 9. If A € (0, T,), then we have

(i) The functional I, 5 is coercive and bounded from
below on M,

(ll) infﬂ[tﬁu‘%g,slb’é = inf/%;)alb’s € (—O0,0)

Proof.

(i) For u € M,s, using Holder’s inequality, we obtain
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1 a
I () = Iy () = 5 (s u) = 5 ulP?

1 1 a. .
(5= e 32)
_,\<1 - 1) |Q|(4“1)/4S*q/2‘|u“‘1_

q 4

This proves the conclusion (i).

(ii) For u € M, it holds

1) = a8 = (a0 =5 = 2

+b(1—1)nmﬁ+6(l—l)w&

q q

_ a2-q|ul’ + b4 q)ul' +5(4— g
4q

(33)

Combining this and Lemma 6, we have that inf ;. , 40
Iy =inf 4: I} 5 <0. Furthermore, we deduce from (i) that
inf 1 a0 Ins # —00. Thus, inf 4. 4o Iy 5 € (-00,0). 0

Lemma 10. If A€ (0, T)), then M}50 Mys and M,y are
closed.

Proof. Let {U, } be a sequence in .#, 5 such that U, — U,
in Hy(Q). Since {U, } C M5 C M, s, we have
allUoll* = b Upl[* = lim (U, = B[V, |
= lim (A¢U,w-+5|unﬁ)
n—00 q
= AUol5 +9] Uol*

a(2 - q)||Uo|* = b(4 = 9)| Uo||* = 8(4 = 9)| Uy |*
= lim [a(2-q)||U,||" - b(4-q)||U,|" (34)
-8(4-q)|U,"] <0,

namely, U € M, 5 U Mys. For A€ (0,T,), it then follows
from Lemma 7 that U, ¢ /). In turn, we obtain U, €
My s, and so, M, s is closed for A € (0, T). The same argu-
ment can prove that /5 U M} s is closed. This completes
the proof of Lemma 10. O

3. Proof of Theorem 1

Lemma 11. Suppose that A€ (0, T;), then problem (P,s)
admits a positive solution u, with u, € M}.

Proof. By Lemmas 9 and 10, we can apply Ekeland varia-
tional principle to get a minimizing sequence {u,} C ./} s

4
|M|4 <0.

5
u ﬂgﬁ such that
nh—r>noolb’6(un) = lnf Ib,8 < 0, (35)

1
Is(2) 2 I 5(u,) - n |z = u,||.Vz € My 5V /%(b),s- (36)

Since I, 5(|u|) = I, 5(u), we can assume that u, >0 in Q.
By Lemma 9, {u,} is bounded in Hy(Q2), and so, we may
assume that

u, —u,, in H(Q),
u, —u,, in L°(Q), 1<s<4, (37)
u,—u,, aein Q.

In the following, we prove that u, is a positive solution
to (P,s). To this purpose, we divide the proof into five
steps.

Step 1. u, #0.

If, to the contrary, we have u, =0. Since u, € M}, U

M3, it follows that for n large,

N

-9 4-¢q
allu,|* 2 7bllun|\4+ ESIWIE, (38)

and hence,
I u—lauz—lbu4—18u4+ol>
b,8( n)_i ” n” Z H n” Z ‘ n‘4 ()
4-¢q 1 4
(=g =)t 59)
4-q 1 4
i 1 ,
+<2(2_q) 4)(‘)‘|u,,|4+o()>0

which contradicts with (35). Therefore, u, # 0.
Step 2. There is a positive constant C, satisfying

2a]|u,||* - A(4 = q)Ju, |7 < -C,. (40)
To prove that, it suffices to check that

2alimsup||u

n—~oo

2 < M4 - q)u |1 (41)

nl

In view of u, € M} 5 U MY 5, one has

2alimsup||u
n—aoo

P < M4~ q)u |1 (12)

nl

Assume to the contrary that
2alimsup||u,,||* = A(4-q)|u. 3. (43)
n—aoo

Then, we can suppose ||u,|*— A>0 as n— oo,



where A satisfies

2aA
4—q‘

/\|u*\gz

From this, we have that for A € (0, T),

_ o\ (@2 4q)12
0< 2 2-q\"1 a0 —A|0) (4-9)/4 g-q/2
4-q)\4-q (b+8572) 02

2 PIPNCL
Jults (22) (G=0)
q q

[ (au) " A ‘q<( 2 )(2—,1)@*51)’2
: A i< (-2} (224
L((b+8572)Ju, | )" 17 \4-q)\4-¢
r 172
4-q 2-9)/2
(alld|I°) 2\ (2-q\""
' 2-q _Mu”'Z_) 4— 4—
(alls I = Ao 1) a7\
[ (aA)* 1 1/2_ 2aA o
[(e-a)(4-g)aa)™]  4-q

(45)

which implies that u,, — 0 in H} (), contradicting u, # 0.
In turn, we deduce that (40) holds.

Step 3. [|I',5(11,)|| — 0 as n — oo.

Let 0<p<p,=p,, g,=9,, where p, and g, are
defined as Lemma 8 with u=u,. Let w, = pv with v=u/|[u
| Fix n and set z, = g, (w,) (u, — w,). Since z, € M, 5, it fol-
lows from (36) that

1
Ib,s(zp) —Ib,a(un)z—;Hzp—unH. (46)

By the definition of Fréchet derivative, we obtain

1
(oot 2p = 1) + (|2, = 1) = = [|z, = |~ (47)
Then,

(a0, + (9, () = 1) (=) )2+ 2= | + (25 =
(48)

and hence,

_p<1’h,8(un)’ V> + (gn (wp) - 1) <Ilb,5(un)’ U, — wp> =
),

1
o= ]+ ol =

(49)

Journal of Function Spaces

which yields that

<Ilb,8(un)’v> < ;Hzp/_)”nH + 0 (Hzp/_)u”H) + gn(w;;) -1

) <I/b,6(un)’ Uy~ wp>'
(50)

From Step 2, Lemma 8, and the boundedness of {u, }, we
also have

2o = wall = [| (90 (wp) = 1) (u —wy) —w,[| < |9, (w,) = 1|C, +p,

lim |g”(wp) B 1|

tim 9 4g,0)9) < g 0)] < G

<I,b,8(un)’ U, - wp> = <I,b,8(un)’_wp> = _P<I’b,8(un)’ V>~
(51)

As a consequence, for fixed n, we can derive letting p
— 0 in (50) that

<I,b,8(un)’ V> < E (52)

n

which implies that ||I',(u,)|| — 0 as n — oo.

Step 4. u, — u, in Hy(Q).

Setv, =u, —u,.If ||v,|| — 0, we are done, thus assume
[Vall = L >0. By (I'y5(u,), u.) = (1) and (37),

2 2 2 4
0=allu,|* = b(L* + [|ue, |*) [, | = Moo | = Sl [3- - (53)

Moreover, from I, 5(u,) — 0, the boundedness of {u,
}, and Brézis-Lieb lemma, we have that

0(1) = (Tys(1t)r ) =a(| v, + |1, )
=Bt 20w Pl P+ ety (54
= |9 = 8], [4 = Olu. [} + o(1).
Combining this and (53), we get
o(1) = alv, | = bl[v,|[* = Bllv, |2l | - 8|y [3 (55)

It then follows from Sobolev inequality that

2 4 2 2 4 —. 4
[yl = b[v, [|* = By, |* . ]|* = v, [5 + 0(1) <8S[[v,,[|* + o(1).

(56)
Passing the limit as n — oo, we obtain that
S?(a-b|u,|?
L*> M >0. (57)
bS* + 6
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By (53), (57), and Holder inequality,

a
Lys(u,) = EH .

b 1 1
TN [ £l [P ) () [P
4 4 q 4)"*l
ab$*||u,||* b
>— 4
4(bS7+5) 4

-1 1.1 ‘Q|(4—‘1)/4S*q/2”u 2.
q 4 "

b A é
o e [T

ad
L2||“*||2 + MH”*HZ
(58)

For &:=ad/4(bs? +8) and 7:=A((1/q) - (1/4))|Q[* 7
$792, define

f(t) =& —nti. (59)

By easy calculation, we have that f(¢) achieves its mini-
mum value at f,,;, = (q7/2€)""*? and

29 504 (4 a2
— 2 . (60)

Therefore, we obtain

abS|[u,|* b5 ab$’||u, ||*
I >———_+-L +f(tyn) = ——5——
b,é(u*) 4(1782 +(S> 4 ”u*H f( mln) 4(b82 +5)
72— 4— 2/(2-9)
N ZLZH”*HZ -2 q <A( : q) |Q|(4q)/4s—q/2)
q
2q(b8*+8)] "7
ad '
(61)

Using (37), (53), and (61), we deduce that for A € (0, T,),

a b
TIps(uy,) =Tys(u,) + le"nll2 - ZIIVn||2H”*||2 +o(1)
abS? Ju,
> 272 17
4(bS* +9)

. ((4 B q) |Q|(4q)/4sq/2> @)
4q

a 2 -
274
4 2

/(2-9)
) Zq(b82 +8) R AZ/(Z*q) + 0(1) > a’s’
a5 D)

_ 2- q (4 - q) |Q|(4fq)/4s—q/2 2/(27‘1)
2 4q
9/(2=q)
. 2q(bS* +8) 20 4 o(1) > 0,
ad

(62)

which is a contradiction since lim, I}, 5(u,) <0. This
implies that ||v,|| — L >0 is impossible. Hence, ||v,|| —
0; that is, u,, — u, in Hj(Q).

Step 5. u, is a positive solution of problem (2, ) and
u, € Mjys.

From (35) and Steps 3 and 4, we have that, up to a sub-
sequence, u, — u, in H}(Q) with I,5(u,) <0 and I',4(
u,)=0. Namely, u, >0 is a weak nontrivial solution of
problem (%, ). Moreover, by Lemmas 6 and 10, we know
u, € My s. Standard elliptic regularity argument and strong
maximum principle provide that u, is positive. Therefore,
the proof of Lemma 11 is completed. O

Lemma 12. Let A € (0, T,), then problem (P, s) has a posi-
tive solution U, with U, € M,.

Proof. As in the proof of Lemma 11, we can prove that there
exists a bounded and nonnegative sequence {U,} C A,
with the properties

(i) lim I,5(U,) :};}flb,é

n—0co b8
(if) I5(2) 2 1,5(U,) = 1nllz — u,[|, Vz € M} 5
(iii) U, — U, in HL(Q)
(iv) U,— U, inL*(Q),2<s<4
(v) U,— U, aeinQ

Without loss of generality, we may assume that 0 € Q.
Let ¢(x) € C3°(Q) be a cut-off function such that 0< <1
in Q and ¢(x) =1 near zero. Set

8)12¢

b(x) = p(x) (63)
& + x|
By [29, 30], one has for &£ > 0 small,
|vell> = S* + O(sz),

vy =S+ O(e"), (64)

[vel; = O(e).

In the first place, we prove the following upper bound for
inf RIT

a*§?

Y ises) @

inf I} 5 <suplys(u, +tv,) <I,s(u,)
Mys >0 ’

where u, is the positive solution obtained in Lemma 11.
Since u, € My, it is easy to verify that a - bl|u,||* > 0. By



the fact that (5" (u,), tv,) = 0, we also have

O:t(a—bHu*Hz)J Vu*Vvsdx—tAJ uZ’lvsdx—tGJ ulv,dx,
o

Q Q
(66)
and hence,
A ul v dx+6( 1dvd
JVu*vadx: Jois vedx f?u*vs *so. (67)
o a=blu,|

Let w, = u, + Ry, with R> 1. It follows from (67) that

||w£\|2 =||u, I*+ ZRJQVu*VVde+R2HV£H2 > HM*HZ +R?$* + O(sz).

(68)

Let y(¢) be given by Lemma 6. As can be seen from the
proof of Lemma 6, there exist y(t,) = A|w£/||w£|||g and v/ (
t.) <0, where t, =t"(w,/||w,||). From the structure of y
and the fact of |ws/||ws|||g >0, we easily see that ¢, is uni-

formly bounded by a suitable constant C, >0, VR > 1, and
Ve > 0.

Moreover, we have from (68) that there is &, > 0 satisfy-
ing

1
el = u.||* + S RS Ve € (0,e,). (69)

Therefore, we may find R, >
>R,, and Ve € (0, ¢)).
Define

E{onnt(ﬂ)}
e ()}

Notice that H{(Q)-.#,5=E UE, and }sCE,.
Because u, € ./} 5 and the continuity of ¢*(u), we have that
u, +tRyv, for t€(0,1) must intersect ./#,s. As a conse-
quence,

1 such that ||w,|| > C,, VR

};f[b5<sup1b5(u +tv ) (71)

bo

Thus, to complete the proof of (65), it suffices to show
that

supl, s(u, +tv,)<I, s(u, )+ —s—.
t>(I)) b,é‘( * s) b,&( *) 4(b82+8)

Journal of Function Spaces

By mean value theorem, there exists 8(x) € [0, 1] such

that

(s (%) + t(x))T = ud (x) = q(u, (x) + O(x)tv, (x)) T

> qtul” (x)ve(x),

tv,(x)

for any x € Q. Using (66), (67), and (73), we obtain
a 2 a., 2 b
Ls(u, +tv) = —|ju,||" +at| Vu,Vvdx+ —t°|v.||" - -
’ 2 5 2 4
Zp
||t - b <J Vu*Vvsdx> - —t*|v|*
o 4
b
b | Vu Vv e P
1)
- bt3||vs||2J Vu, Vv, dx - /\qJ (u, +tvy)ldx
0 0

é
-3 et SEppR
(0]

b A
- 5Pl |
q)ao
5
N, + tv) T —ul - qrutly, | dx - ZJ

by 4
2
0
[, + tv)t -l - 4ndv, dx < Iy 5(u,)

a b b
T L PR A
9
- [(u, +tv,)* - ul — 40, ] dx.
4)q
(74)

To proceed, we set

a b b )
)= S0P = FI1* = Sl P = 5 [ +9)* o - sudv]a

(75)
Recall that, for r, s > 1, it holds
(r+s)t=rt—ar’s>s'+ Crs’, (76)
for some C; > 0. By (73) and (76), we have that
a b b )
J(ew) = 321 = 3Tl - 3P Pl - §
Q
4 4 3 a., 2 by
[(u, +tv)* =y - 4tu v,}dxs —t||vell” - !
Dol 3 PP = 3| (00" Con (e
a b S
= EfZHVsHZ— Ele\”*\lzl\vellz —f4|| A —t4| vy
)
- ZCltSJ u, vidx,
Q
(77)
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which implies that there exists a constant ¢, >0 small
enough such that

2
sup Ips(u, +1tv,) < e (78)
0<t<t, ’ 4b

Thus, we only need to consider the case of ¢ > t,. By the
same argument of Lemma 11 of [21], we have

Jnu*vgdx = (8)3/2811*(0)]

————dx+o(e). (79)
R (1+]x]%)

Combining this and (64), we have for € > 0 sufficiently
small,

b b 8
supy (o1, < sup {5 = 3 2l Pl - Gl - G

>t
2
(allvell” = Bllu | 1vell*)

4(Blvell* + [vel3)

8
- —Clt?J u,vidx <
4 Q

(a8? — b8?||u, )’

_ - 2\ _
Cye+o(¢) 105 1 0% +0(e*) - Cye+o(e)
Sa-blu,|?)’ @S

4(bS* +9) 4(bS* +95)’

(80)
where C, >0 is a positive constant independent of ¢. This
together with (74) implies that (65) holds.

In the second place, we claim that U, # 0. If, to the con-
trary, we have U, = 0. Since U, € M}, 5 C M, 4, it follows that

al|U,|I* = Bl|U, |I* = A|U,[4 - 8|U,[;=0,  (81)
and so, by Sobolev inequality
al|U,|I* =B U,[|* +8|U,[3 +0o(1) < (b+8S7)|[U, "
(82)

Assume that ||U,||> — 2. By {U,} ¢ #, 5 and Lemma

7, we obtain that 2 > 0. Taking n — oo in (82), we have /2
>aS?/(bS? +§), and thus

(a2 0,)]

1 1
= tim (2|0, P -A(- - <)o, = 52
n—soo |4 q 4 q 4
a*§?
2 T S |
4(sz +9)

N

%ﬁlb,é = lim I,5(U,)= lim_ |:Ib,6(Un) -

(83)

which is a contradiction with (65). Therefore, the claim fol-
lows. At this point, we may proceed as in the proof of
Lemma 11 and conclude that U, is a positive solution of
problem (£,5) with U, € #,s. This completes the proof
of Lemma 12. O

Proof of Theorem 1. Theorem 1 is an immediate conse-
quence of Lemmas 7, 11, and 12. O

4. Proofs of Theorems 2 and 3

Proof of Theorem 2. By the definition of A* and Theorem 1,
we easily see that A* > T~. Hence, Proof of Theorem 2 is
completed if we show that A" < T*. To this goal, let us define
the functions

hy(t) =t (8t*1 - au >+ 1), t >0,
A= (00— g0 3) "

hy(t)=8t"1—au ™1+ A,t>0.

Obviously, we have that A(t) is convex and attains its
minimum at the point ¢,;, = [(2 — q)au, /(4 — q)8]"* with

hultn) == [CEDR T as)

As a consequence, we can take

7+ 20t [(2 - q)am} Yl (86)
4-q[ (4-q)0

such that

B () 2 e (Ein ) = 1> 0¥ > 0. (87)
This gives that
o (8) 2 7 e (£) > 0,9 > 0, (88)
namely,

T+ 88 > ap,t,Vt > 0. (89)

Assume that any A > 0 is such that (9, ;) admits a pos-
itive solution u. On the one hand, using (89) with ¢ = u, mul-
tiplying by e, and integrating over Q, we get

T+J uq_leldx+5j u3eldx>a‘u1J ue,dx. (90)
o

0 Q

On the other hand, multiplying (2, s) by e, and inte-
grating over (2, there holds

(a—b||u||2)J VuVeldx=AJ uq’leldx+6J wedx > 0.
0

o 0
(o1)

Since

a‘MIJ ueldx:aj VuVe,dx > (a—b||u||2)J VuVe,dx,
Q o o

(92)
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we infer from (90) and (91) that A < T". By the arbitrariness
of A and the definition of A*, we conclude that A* < T* < co.
Proof of Theorem 2 is thus completed. O

Proof of Theorem 3. Let {b,} and {J,,} be two sequences sat-
isfying b, \\0 and §, \\0 as n — 00, and let u,, and U, be the
two positive solutions of (&, 5 ) obtained in Theorem 1
with u, € My s and U, € M, 4 .

Using Lemma 7 and U, € ./, , we have that

2—
lim ||U,|J>> lim a2-q)
n—00 n—00 (4 - q) (bn + 8nS

172
)> =+00, (93)
and thus, the conclusion (i) holds.

In what follows, we prove the conclusion (ii) of Theorem
3. Noting that

Ibn)(;n (un) = inf

+ 0
My, 5,9y, 5,

I, 5 <0, (94)

for all n € N, we obtain from Hoélder inequality that

1/, 1 1
02 45,0~ 5 (T, ) ) = (5 = 5 ol

1 1
- A( - 4) Q4
q

As a consequence of 1<¢q<2, we have that {u,} is
bounded in Hj(Q). Thus, there is a subsequence of {u,}
(still denoted by {u,}) such that u, —u in H{(Q) as n
— 00. Furthermore, for all ¢ € Hy(Q), it holds

0= lim <Iz: s (un),¢>: lim {(a—bnuunHZ)J Vu, Védx
n—s00 nn n—s00 0
—)\,J u?l‘l(pdx—SnJ uf,qﬁdx} =aJ VuOVqux—AJ ul™ pdx,
Q [0} Q Q
(96)
which provides that % is a nonnegative weak solution of

problem (%,). Let I, (u) be the corresponding functional
of (%) defined by

_a , A q
Ino() = 5l = 2l 57)
Since

a”un - aHZ = <Ibn,6” ,(un) - IO,OI(ﬁ)’ u, = ﬁ> + an

. Wun|2de Vu,V(u, —u)dx + AJ
Q Q

0

(ud™ =T (u, — u)dx + 6,1[ u (u, — u)dx — 0,
o

(98)

as n — 00, it follows that u, —  in Hy(Q2).

Journal of Function Spaces

Define ¢, = inf {Iy,(u): u € Hy(Q)}. It is easy to check
that there exists v, € Hy(€2)\ {0} such that ¢, =1,,(v,)
and ¢, < 0. As Ioo(u) 21, 5 (u) for any u € Hy(Q), we easily
see that inf/”in,snw”gn anlbn’sn <c. Set ¢, 5 =1 5 (u,) and
suppose that lim k. We claim k = ¢;,. Otherwise,
we have k < ¢, and hence, by b, — 0, §, — 0 as n —
oo and {u,} is bounded in Hy(Q); one has for large n,

n—>oocbn,8,, =

b é
%) SIO,O(l’ln) = Ib,,,(?n(un) + Zn Hun||4 + Zn |un‘i = Cbn,ﬁn

co—k:co+k

b é
2 [ [ <

2 2
(99)
a contradiction. Thus, the claim follows. Then,
. a . _., A_ _
G = ,,h_{noolbnﬁn(”n) =5 [lal” - a|”|g =Ioo(u),  (100)

which implies that # is a global minimum of I ,. This result,
together with strong maximum principle proves that u is a
positive ground state solution of (). Theorem 3 is thus
proved. O
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