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In this paper, we are interested in the problem of determining the source function for the Sobolev equation with fractional
Laplacian. This problem is ill-posed in the sense of Hadamard. In order to edit the instability instability of the solution, we
applied the fractional Landweber method. In the theoretical analysis results, we show the error estimate between the exact
solution and the regularized solution by using an a priori regularization parameter choice rule and an a posteriori
regularization parameter choice rule. Finally, we investigate the convergence of the source function when fractional order
β⟶ 1+.

1. Introduction

Let Ω be a bounded domain in ℝNðN ≥ 1Þ with sufficiently
smooth boundary ∂Ω. In this paper, we are interested to
study the following pseudo-parabolic equation

ut − aΔut + −Δð Þβu = F x, tð Þ, inΩ × 0, Tð �,
uj∂Ω = 0, inΩ,

(
ð1Þ

where a > 0 is the diffusion coefficient, F is the source func-
tion, and u desribe the distribution of the temperature at
position x and time t. The paramater β is the fractional
order of Laplacian operator with β ≥ 1.

Pseudo-parabolic equations or called Sobolev equation
describe describing various important physical phenomena,
such as heat conduction involving two temperatures [1],
homogeneous liquid permeability in fractured rock [2], uni-
directional propagation of long waves in a nonlinearly dis-
persed medium [3], and its references.

Until now, the results on fractional pseudo-parabolic
equations equation are not rich we can mention them in a
few some few papers, for example, [1, 4–6]. From the frac-
tion operator ð−ΔÞβ appearing in the main equation which
is nonlocal, many scientists believe that it describes some
physical phenomena more accurately than classical integrals
differential equation. Properties of fractional operator ð−ΔÞβ
have been described in detail in [1].

For equation (1) we usually divide it into three forms.

(i) The first type is an initial value problem, i.e., deter-
mining u when the initial value uðx, 0Þ = u0ðxÞ and
the source function F is known. The results in this
category are vibrant and plentiful ([7, 8])

(ii) The second type is terminal value problem, i.e.,
recovering the function u from the terminal value
data uðx, TÞ = uTðxÞ and the source function data
F. To the best of our knowledge, there are limited
results for the terminal value problem. We can list
some recent papers, for example, [9–13]. In general,
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the terminal value problem is an ill-posed problem;
namely, a solution does do not exist, and if a solu-
tion exists, it does not depend continuously on the
data. The results of the regularized method for this
form were recently investigated by [14, 15]

(iii) The last type is inverse source problem, i.e., recov-
ering the source function F if we know the initial
value data uðx, 0Þ = u0ðxÞ and the terminal data
uðx, TÞ = uTðxÞ

The main purpose of this paper is to determine the
source function F = ψðtÞf ðxÞ with the split form when we
know that

u x, Tð Þ = g xð Þ, u x, 0ð Þ = 0, x ∈Ω: ð2Þ

The question of determining the function f when we
know ψ and g will be studied carefully in this paper. It is sur-
prising that the problem of determining the source function
for the pseudo-parabolic equation has not been investigated
before. We detail the objective of the problem. In practice,
the given dataðψδ, gδÞis noisy by the observed data ðψ, gÞ
by level δ > 0 such that

ψδ − ψk kL∞ 0,Tð Þ + gδ − gk kL2 Ωð Þ ≤ δ: ð3Þ

Our main task here is to construct a regularized method
which looking for the function f δ and claims claim that

lim∥f δ − f ∥ = 0, when δ⟶ 0+, ð4Þ

in the appropriate norm. It can be claimed that our paper
was one of the first works on the inverse source problem
for the Sobolev equation.

In [7], Tuan-Long-Thinh used the Tikhonov regulariza-
tion method to regularize regularized an inverse source
problem for time fractional diffusion equation. They also
introduced two methods, a priori and a posteriori parameter
choice rules, to obtain the convergence estimate of the regu-
larized methods. In [16], the authors studied the problem of
finding the source distribution for the linear biparabolic
equation when we have the final observation. Ma et al. [17]
identified the unknown space-dependent source term in a
time-fractional diffusion equation by applying the general-
ized and revised generalized Tikhonov regularization
methods. There are many different regularized methods,
and in this paper, we choose the fractional Landweber regu-
larization method. The Landweber regularization method
was first derived from [18] where the authors applied the fil-
ter regularization technique for solving a linear inverse prob-
lem. Up to now, the Landweber regularization method has
been applied to solve many inverse problems, for example,
[19–21] and references therein. This method is beneficial
very useful for investigating for the linear ill-posed equation.
Recently, Binh et al. [22] studied an inverse source problem
for the Rayleigh–Stokes problem using the Tikhonov
method.

For the reader’s convenience, we would like to outline
the main results and novelties of the paper briefly:

(i) The first goal of this paper is to provide the frac-
tional Landweber method to solve this inverse
space-dependent source problem for pseudo-
parabolic equation. We give the ill-posedness of
our inverse source problem and introduce the con-
vergence rate of the fractional Landweber regular-
ized solution. In addition, we obtain the
convergence rate by using an apriori parameter
choice rule and an a posteriori parameter choice
rule. Looking back at the articles [19–21], we realize
that the source functions in these papers do not
depend on the time function. So, the computation
is not complicated. Meanwhile, the source function
of the current paper depends on the function ψ
which makes the calculation more cumbersome.
The presence of (3) makes our problem more clearly
complex complex than [19–21]. One point to note is
that the method in the article [23] can be applied to
our model, but we approach it differently, in a differ-
ent way.

(ii) The second interesting point in the paper is the
investigation of the convergence of the source func-
tion when the order of derivative approaches 1.
Comparing the difference between the source func-
tion of equation (1) with β > 1 and the classical
pseudo-parabolic equation β = 1 will help us under-
stand more information about problem (1).

The paper is organized as follows. Section 2 states some
preliminary theoretical knowledge. In Section 3, we give the
Fourier formula of the source function and also present the
ill-posedness of our problem. The conditional stability for
the source function source function is also discussed in the
same section. Section 4 provides the fractional Landweber
regularization method and states a convergence estimate
under a priori assumption on the exact solution. The poster-
iori parameter choice rule is also shown in section 4. Finally,
in Section 5, we prove the convergence of the source func-
tion in Hilbert scales space with the appropriate assumption
of ψ and g.

2. Preliminary Results

Let us consider the operator A = −Δ on V ≔H 1
0ðΩÞ ∩H2

ðΩÞ, and assume that the operator A has the eigenvalues
λj such that 0 < λ1 ≤ λ2 ≤⋯≤ λj ≤⋯ which approach ∞
as j goes to ∞, The corresponding eigenfunctions are
denoted by ej ∈ V . Now, let us define fractional powers
of A and its domain. For all s ≥ 0, we define by A s the
following operator:

A sv≔ 〠
∞

j=1
v, ej
� �

λsjej, v ∈D A sð Þ = v ∈ L2 Ωð Þ: 〠
∞

j=1
v, ej
� ��� ��2λ2sj <∞

( )
:

ð5Þ
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The domain ℍsðΩÞ =DðA sÞ is the Banach space
equipped with the norm

vk kD A sð Þ ≔ 〠
∞

j=1
v, ej
� ��� ��2λ2sj

 !1/2

, v ∈D A sð Þ: ð6Þ

We introduce the following two lemmas, which are
useful and helpful in the next proofs.

Lemma 1. Let ψ : ½0, T�⟶ℝ such that ψ0 ≤ ψðtÞ ≤ ψ1
where ψ0 and ψ1 are positive numbers. Let us assume that
β ≥ 1. Then, the following estimates are true:

ðT
0
exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þds ≤ ψ1

1 + aλj

λ
β
j

,

1 + aλj

λ
β
j

1 − exp −Tλβ1 1 + aλ1ð Þ−1
� �h i

ψ0

≤
ðT
0
exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þds:

ð7Þ

Proof. Since ψðtÞ ≤ ψ1, we infer thatðT
0
exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þ

� ds ≤ ψ1

ðT
0
exp − T − sð Þλβj 1 + aλj

� �−1� �
ds = ψ1

1 + aλj

λ
β
j

:

ð8Þ

Since ψðtÞ ≥ ψ0 > 0, we infer that
ðT
0
exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þ

� ds ≥ ψ0

ðT
0
exp − T − sð Þλβj 1 + aλj

� �−1� �
� ds = 1 + aλj

λ
β
j

1 − exp −Tλβj 1 + aλj

� �−1� �h i
ψ0 ·

ð9Þ

Let us consider the following function:

Φ zð Þ = zβ

1 + az
, z > 0: ð10Þ

The derivative of it is equal to

Φ′ zð Þ = aβzβ−1 + βzβ − zβ

1 + azð Þ2 > 0: ð11Þ

This implies that Φ is an increasing function on ð0, +∞Þ.

Therefore, we get that

λ
β
j 1 + aλj

� �−1 ≥ λ
β
1 1 + aλ1ð Þ−1: ð12Þ

It follows from (9) that

ðT
0
exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þ

� ds ≥ 1 + aλj

λ
β
j

1 − exp −Tλβ1 1 + aλ1ð Þ−1
� �h i

ψ0:
ð13Þ

The proof of the Lemma 1 is completed.

Lemma 2. Let ψ0, ψ1 be positive constants such that ψ0
< ψ < ψ1. By choosing δ ∈ ð0, ψ1/4Þ, and Bðψ0, ψ1Þ = ψ1
+ ðψ0/4Þ, we obtain

4−1ψ0 ≤ ψδ tð Þj j ≤B ψ0, ψ1ð Þ: ð14Þ

Proof. The proof is completed in [26], page 4.

3. Inverse Source Problem: Explicit Form
and Ill-Posedness

Let us first give the explicit of Fourier form of the mild solu-
tion to problems (1) and (2). First, taking the inner product
of both sides of (1) with ejðxÞ, we find that

d
dt

ð
Ω

u x, tð Þej xð Þdx
	 


+ aλj

ð
Ω

u x, tð Þej xð Þdx
	 


+ λ
β
j

ð
Ω

u x, tð Þej xð Þdx
	 


=
ð
Ω

F x, tð Þej xð Þdx,
ð15Þ

and from the initial condition uðx, 0Þ = 0, we have that
ð
Ω

u x, Tð Þej xð Þdx =
ðT
0
exp − T − sð Þλβj 1 + aλj

� �−1� �
�
ð
Ω

F x, sð Þej xð Þdx
	 


ds,
ð16Þ

since Fðx, sÞ = ψðsÞf ðxÞ; we know that

ð
Ω

f xð Þej xð Þdx =
Ð
Ω
g xð Þej xð ÞdxÐ T

0 exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þds

·

ð17Þ

Hence, the source function is defined as follows:

f xð Þ = 〠
∞

j=1

Ð
Ω
g xð Þej xð ÞdxÐ T

0 exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þds

2
4

3
5ej xð Þ:

ð18Þ

Let us prove the ill-posedness of inverse source problems
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(1) and (2). Logically, we will consider the source function
problem as the problem of finding f satisfying (18). From
now on, we only treat the source term (18).

Theorem 3. The problem of determining f that satisfies (18)
is ill-posed in the sense of Hadamard.

Proof. We defined a linear operator Y : L2ðΩÞ⟶ L2ðΩÞ as
follows:

Y f xð Þ = 〠
∞

j=1

ðT
0
exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þds

	 


< f , ej > ej xð Þ =
ð
Ω

k x, ξð Þf ξð Þdξ:

ð19Þ

Due to kðx, ξÞ = kðξ, xÞ, we know Y is a self-adjoint oper-
ator. Next, its compactness is explained as follows. Let us
define the finite rank operators YN as follows:

YN f xð Þ = 〠
N

j=1

ðT
0
exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þds

	 

< f , ej > ej xð Þ:

ð20Þ

By some simple calculations and using Lemma 1, we
have

∥YN f − Y f ∥2L2 Ωð Þ ≤ ψ2
1 λ−11 + a
� �2

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
A2

1

〠
+∞

j=N+1

<f , ej >
�� ��2

λ
2β−2
j

: ð21Þ

From (21), we have

YN f − Y f ∥2L2 Ωð Þ ≤
A2

1

λ
2β−2
N

�����
�����f ∥2L2 Ωð Þ ⟶ 0 in L L2 Ωð Þ ; L2 Ωð Þ� �

asN ⟶∞:

ð22Þ

Therefore, Y is a compact operator. The SVDs for the
linear self-adjoint compact operator Y are

Y =
ðT
0
exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þds

	 

, ð23Þ

and corresponding eigenvectors are ej which is an orthonor-
mal basis in L2ðΩÞ. Therefore, the inverse source problem
we introduced above can be formulated as an operator equa-
tion Y f ðxÞ = gðxÞ where by gðxÞ is the numerator in for-
mula (18), and by Kirsch, we can conclude that it is ill-
posed. The final time data gi = λiei, by (18), the source term

corresponding to gi is

f i xð Þ = 〠
∞

j=1

ðT
0
exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þds

	 
−1

�
ð
Ω

g xð Þej xð Þdx
	 


ej xð Þ

≥
1
λ1

+ a
	 
−1

1 − exp −Tλβi 1 + aλið Þ−1
� �h i−1

ψ−1
0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A2

λ
β
i ,

ð24Þ

whereby A1 is defined in formula (21). The input final data
g = 0, by (18), the source term corresponding to g is f = 0.
We have error in L2ðΩÞ norm between gm and g

lim
i⟶+∞

∥gi − g∥L2 Ωð Þ = lim
i⟶+∞

λ−1i = 0: ð25Þ

Then, the error in L2 norm between f i and f is estimated
as follows:

f i − fk kL2 Ωð Þ ≥
λi
A2

⟶ lim
i⟶+∞

f i − fk kL2 Ωð Þ ≥ +∞: ð26Þ

From (25) and (26), we deduce that the solution to prob-
lem (1) is unstable in L2ðΩÞ.

Next, we consider stability of the inverse source problem.

Theorem 4. If f ∈DðA sÞ such that

fk kD A sð Þ ≤E, s = k β − 1ð Þ
2

≥ 0, ð27Þ

then we get

fk kL2 Ωð Þ ≤C
−k/ k+2ð Þ
1 E2/ k+2ð Þ gk kk/ k+2ð Þ

L2 Ωð Þ , ð28Þ

where C1 = ða½1 − exp ð−Tλβ1 ð1 + aλ1ÞÞ
−1�ψ0Þ.

Proof. From (18) and the Hölder inequality, it gives

fk k2L2 Ωð Þ = 〠
∞

j=1

Ð
Ω
g xð Þej xð ÞdxÐ T

0 exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þds

2
4

3
52

≤ 〠
∞

j=1

Ð
Ω
g xð Þej xð Þ� �2k/ k+2ð Þ

Ð T
0 exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þds

h i2
�
ð
Ω

g xð Þej xð Þdx
	 
4/k+2

≤ 〠
∞

j=1

Ð
Ω
f xð Þej xð Þdx� �2

Ð T
0 exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þds

� �k
0
B@

1
CA

2/k+2

� 〠
∞

j=1

ð
Ω

g xð Þej xð Þdx
	 
2

 !k/k+2

·

ð29Þ
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Applying Lemma 1 and the priori boundary condition
(27), we have

〠
∞

j=1

Ð
Ω
f xð Þej xð Þdx� �2

Ð T
0 exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þds

� �k
= 〠

∞

j=1

ð
Ω

f xð Þej xð Þdx
	 
2

λ
k β−1ð Þ
j

� a 1 − exp −Tλβ1 1 + aλ1ð Þ−1
� �h i

ψ0

� �−k
≤E2 C1ð Þ−k:

ð30Þ

Combining (29) to (30), one has

∥f ∥L2 Ωð Þ ≤C
−k/ k+2ð Þ
1 E2/ k+2ð Þ∥g∥k/ k+2ð Þ

L2 Ωð Þ , ð31Þ

where C1 = ða½1 − exp ð−Tλβ1 ð1 + aλ1Þ−1Þ�ψ0Þ. The proof of
this theorem is completed.

4. A Fractional Landweber Method and
Convergent Rate

In this section, we apply the fractional Landweber regulari-
zation method to solve the inverse source problem (1) and
give a convergence estimate. The construction of this
method and its iterative implementation are clarified in
[19]. We denote the fractional Landweber regularization
solution with the observed data by

f c δð Þ,δ xð Þ = 〠
∞

j=1
1 − 1 − b

λ−11 + a

λ
β−1
j

 !2" #c δð Þ

�
Ð
Ω
gδ xð Þej xð Þdx� �

ej xð ÞÐ T
0 exp − T − sð Þλβj 1 + aλj

� �−1� �
ψδ sð Þds

,

ð32Þ

f dc δð Þ,δ xð Þ = 〠
∞

j=1
1 − 1 − b

λ−11 + a

λ
β−1
j

 !2 !c δð Þ2
4

3
5d

�
Ð
Ω
gδ xð Þej xð Þdx� �

ej xð ÞÐ T
0 exp − T − sð Þλβj 1 + aλj

� �−1� �
ψδ sð Þds

,

ð33Þ

f dc δð Þ xð Þ = 〠
∞

j=1
1 − 1 − b

λ−11 + a

λβ−1j

 !2 !c δð Þ2
4

3
5d

�
Ð
Ω
g xð Þej xð Þdx� �

ej xð ÞÐ T
0 exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þds

·

ð34Þ
It is obvious to see that formulas (33) and (34) are more

complicated. For simplicity, we put Cβða, s, λjÞ = exp ð−ðT −

sÞλβj ð1 + aλjÞ−1Þ. Expressions (33) and (34) become

f dc,δ xð Þ = 〠
∞

j=1
1 − 1 − b

λ−11 + a

λ
β−1
j

 !2 !c δð Þ2
4

3
5d

�
Ð
Ω
gδ xð Þej xð Þdx� �

ej xð ÞÐ T
0Cβ a, s, λj

� �
ψδ sð Þds

, 12 < d < 1,

ð35Þ

f dc xð Þ = 〠
∞

j=1
1 − 1 − b

λ−11 + a

λ
β−1
j

 !2 !c δð Þ2
4

3
5d

�
Ð
Ω
g xð Þej xð Þdx� �

ej xð ÞÐ T
0Cβ a, s, λj

� �
ψ sð Þds

, 12 < d < 1,

ð36Þ

where d ∈ ð1/2, 1� is called the fractional parameter and cðδÞ
≥ 1 is a regularization parameter and b ∈ ð0, ðλβ−11 /λ−11 + aÞ2Þ.
If d = 1, it is the classical Landweber method. Next, we have
the following lemmas:

Lemma 5. For 0 < λ < 1, τ > 0, n ∈ℕ, let rnðλÞ≔ ð1 − λÞn,
we get

rn λð Þλτ ≤ θτ n + 1ð Þ−τ, ð37Þ

where

θτ =
1, 0 ≤ τ ≤ 1,
ττ, τ > 1:

(
ð38Þ

Proof. Please see in [19].

Lemma 6. For ð1/2Þ < d < 1, cðδÞ ≥ 1, choosing b ∈ ð0,
ðλβ−11 /λ−11 + aÞ2Þ then 0 < bðλ−11 + a/λβ−11 Þ2 < 1, by denoting

z = bðλ−11 + a/λβ−11 Þ2, we have the following estimates:

að Þ 1 − 1 − zð Þc½ �d z
b

� �−1/2
≤ b1/2c1/2,

bð Þ 1 − zð Þc z
b

� �ς/2
≤

ς

2b

� �ς/2
c−ς/2:

ð39Þ

Proof. The proof can be found in [19].

4.1. A Priori Parameter Choice Rule

Theorem 7. Suppose that f is given by (18) such that ∥f
∥DðAkðβ−1ÞÞ ≤E for any E > 0. Let the data ðψ, g, ψδ, gδÞ satisfy
(3). If we choose ½cðδÞ� = ðE/δÞ2/k+1, then we obtain

∥f rc δð Þ,δ − f ∥L2 Ωð Þis of order δ
k/k+1, ð40Þ

where f dcðδÞ,δ is a regularized solution defined in (35).
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Proof. By using the triangle inequality, we have

∥f dc δð Þ,δ − f ∥L2 Ωð Þ ≤ ∥f dc δð Þ,δ − f dc δð Þ∥L2 Ωð Þ+∥f dc δð Þ − f ∥L2 Ωð Þ ·
ð41Þ

We receive ∥f dcðδÞ,δ − f dcðδÞ∥L2ðΩÞ as follows:

f dc δð Þ,δ xð Þ − f dc δð Þ xð Þ = 〠
∞

j=1
1 − 1 − b

λ−11 + a

λ
β−1
j

 !2 !c δð Þ2
4

3
5d

�
Ð
Ω
gδ xð Þej xð Þdxej xð ÞÐ T

0Cβ a, s, λj

� �
ψδ sð Þds

−
Ð
Ω
g xð Þej xð Þdxej xð ÞÐ T

0Cβ a, s, λj

� �
ψ sð Þds

 !
·

ð42Þ

From (42), we get

∥f dc δð Þ,δ − f dc δð Þ∥L2 Ωð Þ =〠∞
j=1 1 − 1 − b

λ−11 + a

λβ−1j

 !2 !c δð Þ2
4

3
5d Ð

Ω
gδ xð Þ − g xð Þð Þej xð ÞdxÐ T

0Cβ a, s, λj

� �
ψδ sð Þds

 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I 1

+〠∞
j=1 1 − 1 − b

λ−11 + a

λβ−1j

 !2 !c δð Þ2
4

3
5d Ð

Ω
g xð Þej xð ÞdxÐ T

0Cβ a, s, λj

� �
ψδ sð Þds

−
Ð
Ω
g xð Þej xð ÞdxÐ T

0Cβ a, s, λj

� �
ψ sð Þds

 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I 2

·

ð43Þ

Using (43), Lemma 6, and Lemma 1 and noting that

jðλ−11 + aÞ/λβ−1j j−1, we provide the estimation ofI 1 as follows:

I 1 ≤ 〠
∞

j=1
1 − 1 − b

λ−11 + a

λβ−1j

 !2 !c δð Þ2
4

3
5d

λ−11 + a

λβ−1j

�����
�����
−1

× λ−11 + a

λ
β−1
j

�����
����� λ

β−1
j

λ−11 + a

�����
����� 4ψ0

Ð
Ω
gδ xð Þ − g xð Þð Þej xð Þdx

1 − exp −Tλ1 1 + aλ1ð Þ−1� � ��
 !

≤ c δð Þ½ �1/2b1/24ε ψ0 1 − exp −Tλ1 1 + aλ1ð Þ−1� �� � �−1
:

ð44Þ

Next, we have the estimation of I 2

I 2 ≤ 〠
∞

j=1

Ð T
0Cβ a, s, λj

� �
ψ sð Þ − ψδð ÞdsÐ T

0Cβ a, s, λj

� �
ψδ sð Þds

×
Ð
Ω
g xð Þej xð Þdxej xð ÞÐ T

0Cβ a, s, λ j

� �
ψ sð Þds

�����
�����

≤
4δ
ψ0

fk kL2 Ωð Þ:

ð45Þ

Combining (42) to (45), we derive that

f dc δð Þ,δ − f dc δð Þ
��� ���

L2 Ωð Þ
≤ c δð Þ½ �1/2b1/24δ

� ψ0 1 − exp −Tλ1 1 + aλ1ð Þ−1� �� � �−1 + 4δ
ψ0

fk kL2 Ωð Þ:

ð46Þ

Next, we give

f dc δð Þ − f
��� ���2

L2 Ωð Þ
= 〠

∞

j=1
1 − 1 − 1 − b

λ−11 + a

λβ−1j

 !2 !c δð Þ2
4

3
5d

2
64

3
75
2

�
Ð
Ω
g xð Þej xð ÞdxÐ T

0Cβ a, s, λ j

� �
ψ sð Þds

�����
�����
2

≤ 〠
∞

j=1
1 − 1 − 1 − b

λ−11 + a

λβ−1j

 !2 !c δð Þ2
4

3
5d

2
64

3
75
2

� λ−k β−1ð Þ
j fk k2D Ak β−1ð Þð Þ ≤ 〠

∞

j=1
1 − b

λ−11 + a

λβ−1j

�����
�����
2" #2c δð Þ

λ
−k β−1ð Þ
j E2:

ð47Þ

From estimate (13) and Lemma 1, we arrive at

ðT
0
exp − T − sð Þλβj 1 + aλj

� �−1� �
� ds ≥ 1 + aλj

λβj
1 − exp −Tλβ1 1 + aλ1ð Þ−1

� �h i

≥
aλj

λ
β
j

1 − exp −Tλβ1 1 + aλ1ð Þ−1
� �h i

≥ aλ− β−1ð Þ
j

� 1 − exp −Tλβ1 1 + aλ1ð Þ−1
� �h i

:

ð48Þ

Hence,

λ
− β−1ð Þ
j ≤

Ð T
0 exp − T − sð Þλβj 1 + aλj

� �−1� �
ds

a 1 − exp −Tλβ1 1 + aλ1ð Þ−1
� �h i

≤
λ−11 + a
� �

λ
β−1
j a 1 − exp −Tλβ1 1 + aλ1ð Þ−1

� �h i ·
ð49Þ

The above estimate (49) implies that

λ
−k β−1ð Þ
j ≤

λ−11 + a
� �k

λ
k β−1ð Þ
j ak 1 − exp −Tλβ1 1 + aλ1ð Þ−1

� �h ik : ð50Þ

From observation above, using Lemma 6, we conclude
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that

∥f dc δð Þ − f ∥2L2 Ωð Þ ≤ 〠
∞

j=1
1 − b

λ−11 + a

λ
β−1
j

�����
�����
2" #2c δð Þ

� λ−11 + a
� �
λ

β−1ð Þ
j

 !k
E2

ak 1 − exp −Tλβ1 1 + aλ1ð Þ−1
� �h ik

≤
k
2b

	 
k

c δð Þ½ �−k E2

ak 1 − exp −Tλβ1 1 + aλ1ð Þ−1
� �h ik ·

ð51Þ

From (47) and (50), we have

∥f dc δð Þ − f ∥L2 Ωð Þ ≤
k
2b

	 
k/2
c δð Þ½ �−k/2

� E2

ak/2 1 − exp −Tλβ1 1 + aλ1ð Þ−1
� �h ik/2 : ð52Þ

Combining (68) to (52), it can be seen

∥f dc δð Þ − f ∥L2 Ωð Þ ≤ c δð Þ½ �1/2b1/24δ ψ0 1 − exp −Tλ1 1 + aλ1ð Þ−1� �� � �−1
+ 4δ
ψ0

∥f ∥L2 Ωð Þ +
k
2b

	 
k/2

� c δð Þ½ �−k/2 E

ak/2 1 − exp −Tλβ1 1 + aλ1ð Þ−1
� �h ik/2 ·

ð53Þ

By substituting cðδÞ = ½ðE/δÞ2/k+1� in the above expression,
we deduce that

∥f dc δð Þ,δ − f ∥L2 Ωð Þ ≤ δk/k+1Ek/k+1 L1 +L2ð Þ, ð54Þ

where

L1 = b1/24 ψ0 1 − exp −Tλ1 1 + aλ1ð Þ−1� �� � �−1
+ 4δk/k+1ψ−1

0 C−k/k+2
1 ∥g∥k/k+2,

L2 =
k
2b

	 
k/2 E

ak/2 1 − exp −Tλβ1 1 + aλ1ð Þ−1
� �h ik/2 ·

ð55Þ

The proof of Theorem 7 is completed.

4.2. A Posteriori Parameter Choice Rule. In order to obtain a
posteriori convergence error estimate, we apply Morozov’s dis-
crepancy principle, which is introduced in [18]. Furthermore,
we learn the analysis techniques from previous papers [19–21].

Let us assume that σ > 1 is a fixed constant. By a similar
claim in [19–21], we provide that the general a posteriori
rule in the following:

∥Y f dc δð Þ,δ − gδ∥L2 Ωð Þ ≤ σδ: ð56Þ

From here on, in this subsection, we need to assume fur-
ther to further assume that cðδÞ is a natural number that
greater than 1: If ∥gδ∥L2ðΩÞ ≥ σδ, then the equation (56)
exists in a unique solution.

Lemma 8. Set RðcðδÞÞ = ∥Y f δcðδÞ,δ − gδ∥L2ðΩÞ where 0 < δ < ∥
gδ∥L2ðΩÞ. Then, we declare that

(a) RðcðδÞÞ is a continuous function

(b) RðcðδÞÞ⟶ 0 as cðδÞ⟶ +∞
(c) RðcðδÞÞ⟶ ∥gδ∥L2ðΩÞ as cðδÞ⟶ 0

(d) RðcðδÞÞ is a strictly increasing function for cðδÞ ∈ ð0
,+∞Þ

Proof. The proof of Lemma 8 is simple and completely sim-
ilar to that in [19–21]. Hence, we omit it here.

Lemma 9. Let us assume that (56) holds. Then, cðδÞ satisfies

c δð Þ ≤ 2K2
β ψ1, a, T , λ1, ψ0ð Þ

σ2 − 2

 !1/k+1
k + 1
2b

	 

E2/k+1δ−2/k+1 ·

ð57Þ

Proof. From the definition of cðδÞ, d ∈ ð1/2, 1�, 0 < b

jðλ−11 + aÞ/λβ−1j j2 < 1, ∥f ∥DðAkðβ−1ÞÞ ≤E, we have

∥Yf dc δð Þ,δ − gδ∥
2
L2 Ωð Þ = ∥〠

∞

j=1
1 − 1 − 1 − b λ−11 + a

� �
λ
1−β
j

��� ���2	 
c δð Þ−1" #d2
4

3
5

�
ð
Ω

gδ xð Þej xð Þdx
	 


∥2L2 Ωð Þ:

ð58Þ

Using the inequality ða + bÞ2 ≤ 2ða2 + b2Þ, we derive that

Y f dc δð Þ−1,δ − gδ
��� ���2

L2 Ωð Þ

≤ 2 〠∞
j=1 1 − 1 − 1 − b λ−11 + a

� �
λ1−βj

���� ���2	 
c δð Þ−1" #d2
4

3
5 ð

Ω

gδ xð Þ − g xð Þð Þej xð Þdx
	 
������

������
2

L2 Ωð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
O1

+ 2 〠∞
j=1 1 − 1 − 1 − b λ−11 + a

� �
λ1−βj

��� ���2	 
c δð Þ−1" #d2
4

3
5 ð

Ω

g xð Þej xð Þdx
	 
������

������
2

L2 Ωð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
O2

:

ð59Þ

(Step 1) Due to ½1 − ½1 − ð1 − bjðλ−11 + aÞλ1−βj j2Þ
cðδÞ−1

�
d

�
≤ 1 and ∥gδ − g∥L2ðΩÞ ≤ δ, from (59), the esti-
mate of O1 is as follows:
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O1 ≤ 2δ2: ð60Þ

(Step 2) O2 can be bounded as follows:

O2 ≤ 2∥〠
∞

j=1
1 − b λ−11 + a

� �
λ
1−β
j

��� ���2	 
c δð Þ−1 ðT
0
Cβ a, s, λj

� �
ψ sð Þds

����
����

�
ð
Ω

f xð Þej xð Þdx
	 


∥2L2 Ωð Þ ≤ 2∥〠
∞

j=1
1 − b λ−11 + a

� �
λ
1−β
j

��� ���2	 
c δð Þ−1

�
ðT
0
Cβ a, s, λj

� �
ψ sð Þds

����
����k+1

Ð
Ω
f xð Þej xð Þdx� �

Ð T
0Cβ a, s, λj

� �
ψ sð Þds

��� ���k ∥
2
L2 Ωð Þ

≤ 2∥〠
∞

j=1
1 − b λ−11 + a

� �
λ
1−β
j

��� ���2	 
c δð Þ−1
λ−11 + a
� �

λ
1−β
j

��� ���k+1
�Kβ ψ1, a, T , λ1, ψ0ð ÞE∥2L2 Ωð Þ,

ð61Þ

where

Kβ ψ1, a, T , λ1, ψ0ð Þ = ψ1j jk+1 a 1 − exp −Tλβ1 1 + aλ1ð Þ−1
� �h i

ψ0

��� ���−k:
ð62Þ

Thanks for the two articles [24, 25], we get the following
inequality:

1 − ωð Þsωr ≤ rr s + 1ð Þ−r , ð63Þ

for 0 < ω < 1, r > 0, ands ∈ℕ. Combining (58) and (63), we
deduce that

σ2δ2 ≤ 2δ2 + 2 k + 1
2b

	 
k+1 1
c δð Þ
	 
k+1

K2
β ψ1, a, T , λ1, ψ0ð ÞE2:

ð64Þ

This implies that

c δð Þ ≤ 2K2
β ψ1, a, T , λ1, ψ0ð Þ

σ2 − 2

 !1/k+1
k + 1
2b

	 

E2/k+1δ−2/k+1 ·

ð65Þ

Theorem 10. Let f dcðδÞ,δ be the regularized solution which is
defined in (33). Suppose that condition (3) is satisfied, and
the parameter regularization is chosen by (56). Then we get
the following estimate:

∥f dc δð Þ,δ − f ∥L2 Ωð Þis of order δ
k/k+1 · ð66Þ

Proof. By the triangle inequality, we receive

∥f dc δð Þ,δ − f ∥L2 Ωð Þ ≤ ∥f dc δð Þ,δ − f dc δð Þ∥L2 Ωð Þ+∥f dc δð Þ − f ∥L2 Ωð Þ ·
ð67Þ

Firstly, we have

∥f dc δð Þ,δ − f dc δð Þ∥L2 Ωð Þ ≤ c δð Þ½ �1/2b1/24δ
� ψ0 1 − exp −Tλ1 1 + aλ1ð Þ−1� �� � �−1
+ 4δ
ψ0

∥f ∥L2 Ωð Þ:

ð68Þ

Secondly, we find that

f dc δð Þ − f
��� ���

L2 Ωð Þ
= 〠

∞

j=1
1 − 1 − 1 − b λ−11 + a

� �
λ1−βj

��� ���2	 
c δð Þ" #d2
4

3
5

������
�
Ð
Ω
g xð Þej xð Þdx� �

ej ·ð ÞÐ T
0Cβ a, s, λj

� �
ψ sð Þds

��� ���
������
L2 Ωð Þ

:

ð69Þ

In view of Hölder inequality, we follow from (69) that

f dc δð Þ − f
��� ���

L2 Ωð Þ
≤V 1V 2, ð70Þ

where

V 1 = 〠
∞

j=1
1 − b λ−11 + a

� �
λ
1−β
j

��� ���2	 
κ δð Þ ð
Ω

f xð Þej xð Þdx
	 


ej ·ð Þ
�����

�����
1/k+1

,

V 2 = 〠
∞

j=1
1 − 1 − 1 − b λ−11 + a

� �
λ
1−β
j

��� ���2	 
c δð Þ" #d2
4

3
5 Ð

Ω
g xð Þej xð Þdx� �

ej ·ð ÞÐ T
0Cβ a, s, λj

� �
ψ sð Þds

��� ���
������

������
k/k+1

:

ð71Þ

To continue the proof, we divide it into two steps.

(Step 1) In the estimate of V 1, we have

V 1 ≤ ∥〠
∞

j=1
1 − b λ−11 + b

� �
λ
1−β
j

��� ���2	 
c δð Þ

� λk β−1ð Þ
j

ð
Ω

f xð Þej xð Þdx
	 


ej ·ð Þ∥1/k+1L2 Ωð Þ:

ð72Þ

(Step 2) In the estimate of V 2, we have
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V 2 ≤ 〠
∞

j=1
1 − 1 − 1 − b λ−11 + a

� �
λ
1−β
j

��� ���2	 
c δð Þ" #d2
4

3
5

������
0
@

�
Ð
Ω
g xð Þ − gδ xð Þð Þej xð Þdx� �

ej ·ð ÞÐ T
0Cβ a, s, λj

� �
ψ sð Þds

��� ���
������
L2 Ωð Þ

+ 〠
∞

j=1
1 − 1 − 1 − b λ−11 + a

� �
λ
1−β
j

��� ���2	 
c δð Þ" #d2
4

3
5

������
�
Ð
Ω
gδ xð Þej xð Þdx� �

ej ·ð ÞÐ T
0Cβ a, s, λj

� �
ψ sð Þds

��� ���
������
L2 Ωð Þ

!k/k+1

:

ð73Þ

From (73), we have

V 2 ≤ 〠
∞

j=1
1 − b λ−11 + a

� �
λ
1−β
j

��� ���2	 
c δð Þ# Ð
Ω
g xð Þ − gδ xð Þð Þej xð Þdx� �

ej ·ð ÞÐ T
0Cβ a, s, λj

� �
ψ sð Þds

��� ���
������

������
L2 Ωð Þ

0
B@

+ 〠
∞

j=1
1 − 1 − 1 − b λ−11 + a

� �
λ1−βj

��� ���2	 
c δð Þ" #d2
4

3
5 Ð

Ω
gδ xð Þej xð Þdx� �

ej ·ð ÞÐ T
0Cβ a, s, λj

� �
ψ sð Þds

��� ���
������

������
L2 Ωð Þ

1
CA

k/k+1

≤ δk/k+1 1 + σð Þk/k+1 sup
λ j>1

λβ−1j

ψ0 λ−1j + a
� �

1 − exp −Tλ1 1 + aλ1ð Þ−1� � ���� ���
2
64

3
75
k/k+1

:

ð74Þ

Substituting (73) into (69), it gives

f dc δð Þ − f
��� ���

L2 Ωð Þ
≤ δk/k+1E1/k+1 1 + σð Þk/k+1 1

ψ0a 1 − exp −Tλ1 1 + aλ1ð Þ−1� � �
" #k/k+1

·

ð75Þ

Substituting (65) into (68) and combining estimate (75),
we conclude that

f dc δð Þ,δ − f
��� ���

L2 Ωð Þ
≤ δk/k+1E1/k+1 R1 +R2ð Þ, ð76Þ

where

R1 =
2K2

β ψ1, a, T , λ1, ψ0ð Þ
� �k/2 k+1ð Þ

k + 1/2bð Þ1/2b1/24
σ2 − 2ð Þ−1/2 k+1ð Þ ψ0 1 − exp −Tλ1 1 + aλ1ð Þ−1� �� � �
+ 4δk/k+1ψ−1

0 C−k/k+2
1 gk kk/k+2,

R2 = 1 + σð Þk/k+1 1
ψ0a 1 − exp −Tλ1 1 + aλ1ð Þ−1� � �
" #k/k+1

:

ð77Þ

Theorem 10 is proven.

5. Convergence of the Source Function
when β⟶ 1

In this section, we will first prove the convergence of the
source function when β⟶ 1.

Theorem 11. Let the Cauchy data g ∈DðA r+2βðΩÞÞ for any
r ≥ 0. Let the function ψ ∈ L∞ð0, TÞ. Then, we have the fol-
lowing estimate:

f βð Þ xð Þ − f 1ð Þ xð Þ
��� ���

D A r Ωð Þð Þ
≲ β − 1ð Þ2− β−1ð Þε∥ψ∥L∞ 0,Tð Þ∥g∥D A r+2β Ωð Þð Þ,

ð78Þ

where ε > 0 satisfies that 2 − ðβ − 1Þε > 0.

Proof. Using the inequality je−m − e−nj ≤ Cεjm − njε, we find
that for z > 0

exp −hλβj 1 + aλj

� �−1� �
− exp −hλ j 1 + aλj

� �−1� ���� ���
≤ Cεh

ε λ
β
j − λj

1 + aλj

�����
�����
ε

≤
Cε

a
hελ−εj λ

β
j − λj

��� ���ε · ð79Þ

Let us recall Lemma 12 which is proved in [27].

Lemma 12. Assume that 0 ≤ a ≤ b and 0 < z. For any ε > 0,
there always exists �Cε > 0 such that

(a) If z < 1 then

za − zb
��� ��� ≤ �Cε b − að Þεza−ε ð80Þ

(b) If z ≥ 1 then

za − zb
��� ��� ≤ �Cε b − að Þεzb+ε ð81Þ

Let us divide the set of natural number into two sets in
the following:

ℕ =ℕ1 ∪ℕ2, ð82Þ

where

ℕ1 = j ∈ℝ, λj ≤ 1
� �

,

ℕ2 = j ∈ℝ, λj > 1
� �

:
ð83Þ

Let us assume that j ∈ℕ1. Let us recall that the assump-
tion β ≥ 1. By applying Lemma 12, we know that since λj ≤ 1
then for any θ > 0

λ
β
j − λj

��� ��� ≤ �C1,θλ
1−θ
j β − 1ð Þθ: ð84Þ
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It follows from (79) that

exp −hλβj 1 + aλj

� �−1� �
− exp −hλ j 1 + aλj

� �−1� ���� ���
≤
Cε

�Cε
1,θ

a
hελ−εj λ

1−θð Þε
j β − 1ð Þθε ≤ Cε

�Cε
1,θ

a
hελ−θεj β − 1ð Þθε ·

ð85Þ

Let us assume that j ∈ℕ2. By applying Lemma 12, we
know that since λj > 1, then

λ
β
j − λj

��� ��� ≤ �C2,θλ
β+θ
j β − 1ð Þθ: ð86Þ

It follows from (79) that

exp −hλβj 1 + aλj

� �−1� �
− exp −hλj 1 + aλj

� �−1� ���� ���
≤
Cε

�Cε
1,θ

a
hελ−εj λ

β+θð Þε
j β − 1ð Þθε ≤ Cε

�Cε
1,θ

a
hελ−ε+βε+θεj β − 1ð Þθε:

ð87Þ

Let us review that

f βð Þ xð Þ = 〠
∞

j=1

Ð
Ω
g xð Þej xð ÞdxÐ T

0 exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þds

2
4

3
5ej xð Þ:

ð88Þ

By in view of Parseval’s equality, we find that

f 1ð Þ xð Þ = 〠
∞

j=1

Ð
Ω
g xð Þej xð ÞdxÐ T

0 exp − T − sð Þλj 1 + aλj

� �−1� �
ψ sð Þds

2
4

3
5ej xð Þ:

ð89Þ

Since two above observations, we derive that

f βð Þ xð Þ − f 1ð Þ xð Þ
��� ���2

D A r Ωð Þð Þ

= 〠
∞

j=1

Ð
Ω
g xð Þej xð ÞdxÐ T

0 exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þds

2
4

−
Ð
Ω
g xð Þej xð ÞdxÐ T

0 exp − T − sð Þλj 1 + aλj

� �−1� �
ψ sð Þds

3
52

λ2rj :

ð90Þ

First, if λj ≤ 1, then using the estimate (85), we get that

ðT
0
exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þ

����
� ds −

ðT
0
exp − T − sð Þλj 1 + aλj

� �−1� �
ψ sð Þdsj

≤
Cε

�Cε
1,θ

a
λ−θεj β − 1ð Þθε

ðT
0
T − sð Þεds

	 

ψk kL∞ 0,Tð Þ

≤M1 ψk kL∞ 0,Tð Þλ
−θε
j β − 1ð Þθε,

ð91Þ

whereM1 = ðCε
�Cε
1,θ/aÞðT1+ε/1 + εÞ: By a similar explanation,

if λj > 1, then using the estimate (87), we get that

ðT
0
exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þ

����
� ds −

ðT
0
exp − T − sð Þλ j 1 + aλj

� �−1� �
ψ sð Þdsj

≤
Cε

�Cε
1,θ

a
λ
−ε+βε+θε
j β − 1ð Þθε

ðT
0
T − sð Þεds

	 

∥ψ∥L∞ 0,Tð Þ

≤M1∥ψ∥L∞ 0,Tð Þλ
−ε+βε+θε
j β − 1ð Þθε:

ð92Þ

By using Lemma 1, we find that

ðT
0
exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þds

� �

�
ðT
0
exp − T − sð Þλj 1 + aλj

� �−1� �
ψ sð Þds

� �

≥ 1 − exp −Tλβ1 1 + aλ1ð Þ−1
� �h i2

ψ0j j2 1 + aλj

λ
β
j

 !2

=M2
2

1 + aλj

λ
β
j

 !2

≥M2
2a

2λ
2−2β
j ,

ð93Þ

where we denote

M2 = 1 − exp −Tλβ1 1 + aλ1ð Þ−1
� �h i

ψ0j j: ð94Þ

From some of the above observations, we get that

∥f βð Þ xð Þ − f 1ð Þ xð Þ∥2D A r Ωð Þð Þ

= 〠
λ j≤1

Ð
Ω
g xð Þej xð ÞdxÐ T

0 exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þds

2
4

−
Ð
Ω
g xð Þej xð ÞdxÐ T

0 exp − T − sð Þλj 1 + aλj

� �−1� �
ψ sð Þds

3
52

λ2rj
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+ 〠
λ j>1

Ð
Ω
g xð Þej xð ÞdxÐ T

0 exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þds

2
4

−
Ð
Ω
g xð Þej xð ÞdxÐ T

0 exp − T − sð Þλj 1 + aλj

� �−1� �
ψ sð Þds

3
52

λ2rj

≤
M1
M2

2

	 
2
β − 1ð Þ2θε∥ψ∥2L∞ 0,Tð Þ 〠

λ j≤1
λ
2θε−4+4β+2r
j

:

ð
Ω

g xð Þej xð Þdx
	 
2

+ M1
M2

2

	 
2
β − 1ð Þ2θε∥ψ∥2L∞ 0,Tð Þ

:〠
λ j>1

λ
2θε−4+4β+2r−2ε+2βε
j

ð
Ω

g xð Þej xð Þdx
	 
2

:

ð95Þ

Noting that β ≥ 1, we have that

1 ≤
λj

λ1

	 
2βε−2ε
: ð96Þ

This implies the following estimate:

∥f βð Þ xð Þ − f 1ð Þ xð Þ∥2D A r Ωð Þð Þ ≲ β − 1ð Þ2θε∥ψ∥2L∞ 0,Tð Þ

�〠
∞

j=1
λ
2θε−4+4β+2r−2ε+2βε
j

ð
Ω

g xð Þej xð Þdx
	 
2

:
ð97Þ

Let us choose θ and ε such that 2θε + 2βε = 4 + 2ε: In
order to choose such number θ and ε, we need to choose ε
> 0 if β = 1 and such that

0 < ε < 2
β − 1 , β > 1: ð98Þ

Let θ be such that θ = ð2/εÞ + 1 − β: Then since (()(97)),
we deduce that

∥f βð Þ xð Þ − f 1ð Þ xð Þ∥D A r Ωð Þð Þ ≲ β − 1ð Þθε∥ψ∥L∞ 0,Tð Þ∥g∥D A r+2β Ωð Þð Þ
= β − 1ð Þ2− β−1ð Þε∥ψ∥L∞ 0,Tð Þ∥g∥D A r+2β Ωð Þð Þ:

ð99Þ
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