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In this paper, we examine the category of ordered-RELspaces. We show that it is a normalized and geometric topological category
and give the characterization of local �T0, local T0′, and local T1 ordered-RELspaces. Furthermore, we characterize explicitly several
notions of T0’s and T1 objects in O-REL and study their mutual relationship. Finally, it is shown that the category of T0’s (resp. T1)
ordered-RELspaces are quotient reflective subcategories of O-REL.

1. Introduction

Many mathematical concepts were developed to describe
certain structures of topology. The concepts of uniform con-
vergences, uniform continuity, Cartesian closedness, com-
pleteness, and total boundedness do not exist in general
topology. As a remedy, several approaches have been made
to define these concepts in topology by mathematicians. For
example, the concepts of uniform convergence in the sense
of Kent [1] and Preuss [2], of set-convergence in the sense of
Wyler [3], Tozzi [4] (which scrutinize filter convergence to
bounded subset and generalizes classical point-convergence
and supertopologies), of nearness by Bentely [5] and Herrlich
[6] (particularly containing proximities and contiguities), and
that of hullness by Čech [7] and Leseberg [8] containing the
concepts of b-topologies and closures, respectively. In 2018,
Leseberg [9] introduced a global concept which embeds the
category of the above mentioned concepts into the category
of RELspaces and RELmaps as subcategories. This construct,
denoted by REL, forms thereby a topological category [9].

Classical separation axioms are very common and
important ideas in general topology, and have many applica-
tions in all fields of mathematics. With the help of T0 reflec-
tion [10], characterizations of locally semi-simple
morphisms are obtained in algebraic topology. Furthermore,
lower separation axioms can be used in digital topology

where they describe digital lines, and in image processing
and computer graphs to construct cellular complexes
[11–13]. With having the understanding of T0 and T1 sepa-
ration properties, several mathematicians have extended this
idea to arbitrary topological categories [14–18].

Classical separation axioms at some point p (locally)
were generalized and have been inspected in [14], where
the purpose was to describe the notion of strongly closed sets
(resp., closed) in arbitrary set based topological categories
[19]. Moreover, the notions of compactness [20], Hausdorff-
ness [14], regular and normal objects [21], perfectness [20],
and soberness [22] have been generalized by using the closed
and strongly closed sets in some well-defined topological
categories over sets [20, 23–26]. Furthermore, the notion of
closedness is suitable for the formation of closure operators
[27] in several well-known topological categories [28–30].

The salient objectives of this study are stated as follows:

(i) To define initial, final, discrete, and indiscrete
objects in O-REL

(ii) To characterize local �T0, local T0 ′, and local T1
objects in O-REL and examine their mutual
relationship

(iii) To give the characterization of �T0, T0 ′, and T1 objects
in O-REL and examine their mutual relationship
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(iv) To define several structures using ordered-
RELspaces and discuss each of the T0 and T1
axioms there and examine their mutual relationship

(v) To examine the quotient-reflective properties of
ordered-RELspaces.

2. Preliminaries

Recall [31, 32], a functor U : C ⟶ Set (the category of sets
and functions) is called topological if

(i) U is concrete

(ii) U consists of small fibers

(iii) Every U-source has a unique initial lift or every U

-sink has an unique final lift, i.e., if for every source
ð f j : X⟶ ðXj, ηjÞÞj ∈ I there exists an unique
structure η on X such that g : ðY , ζÞ⟶ ðX, ηÞ is
a morphism iff for each j ∈ I, f j ∘ g : ðY , ζÞ⟶ ðXj,
η jÞ is a morphism.

Moreover, a topological functor is called discrete (respec-
tively, indiscrete) if it has a left (respectively, right) adjoint.
In addition, a functor is called a normalized topological func-
tor if constant objects, i.e., subterminals, have an unique struc-
ture, and said to be geometric functor if the discrete functor is
left exact, i.e., it preserves finite limits [31, 32].

Let X be a non-empty, thenR ⊂ PðX × XÞ is called a rel-
ative system for X, and it is denoted by REL(X). Moreover,
REL(X) can be ordered by setting

�R < <R iff for each �R ∈ �R, there exists R ∈R such that
R ⊂ �R.

Furthermore, we denote by sec R≔ f�R ⊂ X × X : ∀R
∈R, R ∩ �R ≠ ϕg and by stackR = f�R ⊂ X × X : ∃R ∈R, R
⊂ �Rg.

Definition 1 (cf. [33]). Let X ≠ ϕ, then βX ⊂ PX is called
boundedness or B-set on X, if βX satisfies the following
axioms:

(i) ϕ ∈ βX

(ii) B2 ⊂ B1 ∈ β
X implies B2 ∈ β

X

(iii) a ∈ X implies fag ∈ βX .

And for B-sets βX and βY a function g : X ⟶ Y is
called bounded iff it satisfies;

g B½ �: B ∈ βX
n o

⊂ βY : ð1Þ

By BOUND we denote the corresponding defined
category.

Definition 2 (cf. [33]). The triple ðX, βX , rÞ is called RELative
space (shortly RELspace) if for the boundedness βX the

function r:βX ⟶ PRELðXÞ satisfies the following
conditions:

(i) B ∈ βX and �R < <R ∈ rðBÞ implies �R ∈ rðBÞ
(ii) fϕg ∉ rðBÞ for B ∈ βX

(iii) R ∈ rðϕÞ iff R = ϕ

(iv) a ∈ X implies ffag × fagg ∈ rðfagÞ.
The RELspace ðX, βX , rÞ is called ordered-RELspace pro-

vided that the following axiom holds:

(v) ϕ ≠ B1 ⊂ B ∈ βX implies rðB1Þ ⊂ rðBÞ.

Definition 3 (cf. [33]). Let ðX, βX , rÞ and ðY , βY , vÞ be two
RELspaces, then a bounded function g : X⟶ Y is called
RELative map (shortly RELmap) iff it satisfies the following
condition:

B ∈ βX \ ϕf g andR ∈ r Bð Þ implying gXR ∈ v g B½ �ð Þ, ð2Þ

where gXR = fðg × gÞ½R�: R ∈Rg with ðg × gÞ½R� = fðg ×
gÞða, cÞ: ða, cÞ ∈ Rg = fðgðaÞ, gðcÞÞ: ða, cÞ ∈ Rg. By O-REL,
we denote the full subcategory of REL, whose objects are
the ordered RELspaces. Note that O − REL is a bireflective
subcategory of REL [34].

Example 4. Let ðX, TXÞ be a preuniform convergence space;
then, the associated RELspace ðX, PðXÞ, rTX

Þ can be defined
as follows:

rTX
ϕð Þ = ϕf g and forB ∈ P Xð Þ \ ϕf g,

rTX
Bð Þ = R ∈ REL Xð Þ: ∃N ∈ TX ,N ⊂ sec Rf g:

ð3Þ

Let PU-REL denotes the category, whose objects are tri-
ples ðX, PX, rTX

Þ and morphisms are RELmaps. Note that
PUCONV≅PU-REL [9], where PUCONV is the category
of preuniform convergence spaces and uniformly continu-
ous maps as defined in [2].

Example 5. Let ðX, βX , tÞ be a set-convergence space; then,
the associated RELspace ðX, βX , rtÞ can be defined by

rt ϕð Þ = ϕf g and forB ∈ βX \ ϕf g, ð4Þ

rtðBÞ = fR ∈ RELðXÞ: ∃E ∈ FILðXÞððE, BÞ ∈ t andR ⊂
sec E ⊗EÞg, where E ⊗E = fR ⊂ X × X : ∃E1, E ∈Esuch th
at E1 × E ⊂ Rg and FIL(X) is the collection of all filters
defined on X.

Let SET-REL denotes the category, whose objects are tri-
ples ðX, βX , rtÞ and morphisms are RELmaps. Note that
SETCONV≅SET-REL [9], where SETCONV is the category
of set-convergence spaces and morphisms are b-continuous
maps as defined in [3].
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Example 6. Let ðx, ζÞ be prenearness space; then, the associ-
ated RELspace ðX, PðXÞ, rζÞ can be described as

rζ ϕð Þ = ϕf g and forB ∈ P Xð Þ \ ϕf g,
rζ Bð Þ = R ∈ REL Xð Þ: ∃Q ⊂ P Xð Þ Bf g ∪Q ∈ ζ andðf
R<<Q ×QÞg, whereQ ×Q≔ D ×D : D ∈Qf g:

ð5Þ

Note that PNEAR≅PN-REL [6, 9], where PNEAR is the
category, whose objects are prenearness spaces and morph-
isms are nearness preserving maps as defined in [6], and
PN-REL is the category of triples ðX, PX, rζÞ and morph-
isms are RELmaps.

Example 7. For a B-set βX , we put rbðϕÞ≔ fϕg, and for B ∈
βX \ fϕg, we set rbðBÞ≔ fR ∈ RELðXÞ: ∃x ∈ B,R ⊂ _x × _xg;
hence, ðX, βX , rbÞ defines a RELspace, which is diagonal,
meaning that for B ∈ βX \ fϕg and R ∈ sðBÞ, we can find x ∈
B such that ∀R ∈R, ðx, xÞ ∈ R.

Let Δ-REL be denote the corresponding defined full sub-
category of REL; then, Δ-REL≅BOUND.

Remark 8. In this context, note that BORN, the full subcat-
egory of BOUND, whose objects are the bornological spaces,
then also has evidently a corresponding counterpart in REL.

Example 9. Let ðX, βX , qÞ be b-topological space; then, the
associated RELspace ðX, βX , rqÞ is defined by

rq ϕð Þ≔ ϕf g and forB ∈ βX \ ϕf g, rq Bð Þ
≔ R ∈ REL Xð Þ: ∃ω ⊂ βX ,∃a ∈ B R<<ω × ωð and a∈ ∩ q Eð Þ: E ∈ ωf g
n o

:

ð6Þ

Note that b-TOP≅bTOP-REL [9], where bTOP-REL
denotes the full subcategory of REL, whose objects are triples
ðX, βX , rqÞ, and b-TOP denotes the category of b-topological
spaces and b-continuous maps as defined in [9].

3. O − REL as a Normalized and Geometric
Topological Category

Note that the forgetful functor U : C ⟶ Set, where C = R
EL is topological in the following sense:

Lemma 10. Let ðXj, βXj , rjÞ be a collection of RELspaces. A

source ð f i : ðX, βX
I , rXI Þ⟶ ðXj, βX j , r jÞÞj∈I is initial in REL

iff

βX
I ≔ B ⊂ X : gj Bð Þ ∈ βX j ,∀j ∈ I

n o
, ð7Þ

and for all B ∈ βX
I ,

rXI Bð Þ≔ R ∈ REL Xð Þ: gX jR ∈ rj gj B½ �
� �

,∀j ∈ I
n o

: ð8Þ

Proof. It is given in [34]. Consequently, since O-REL is a full
and isomorphism-closed subcategory which is bireflective in
REL, it is topological, too.

Lemma 11. Let ðXj, βXj , rjÞ be a collection of ordered-

RELspaces. A sink ð f i : ðXj, βXj , rjÞ⟶ ðX, βX
f in, rf inÞÞj∈I is

final in O − REL iff

βX
f in ≔ B ⊂ X : ∃j ∈ I,∃Bj ∈ β

X
j ∣ B ⊂ gj Bj

� �n o
∪DX , ð9Þ

where DX = f∅g ∪ ffag: a ∈ Xg, and for B ∈ βX
f in \ fϕg,

rf in Bð Þ≔ R ∈ REL Xð Þ: ∃j ∈ I,∃Bj ∈ β
Xj ,∃Rj ∈ r j Bj

� �
∣R<<gX

j Rj

n o
∪,

R ∈ REL Xð Þ: ∃a ∈ B ∣ a, að Þ∈ ∩ R : R ∈Rf gf gwithrf in ϕð Þ≔ ϕf g:
ð10Þ

Proof. It is easy to observe that ðX, βX
f in, r f inÞ is an ordered-

RELspace and f i : ðXj, βXj , rjÞj∈I ⟶ ðX, βX
f in, r f inÞ is a

RELmap. Suppose that g : ðX, βX
f in, rf inÞ⟶ ðY , βY , rYÞ is a

mapping. We show that g is a RELmap iff g ∘ f j is a
RELmap. Necessity is obvious since the composition of two
RELmaps is RELmap again.

Conversely, let g ∘ f j : ðXj, βX j , r jÞ⟶ ðY , βY , rYÞ be a
RELmap.

Then, first, we show that g is a bounded map. Let Bi ∈ β
X
j ;

it implies that gð f jðBjÞÞ = g ∘ f jðBjÞ ∈ βY . For our own conve-

nience, take f jðBjÞ = B′, and since f j is a RELmap, then B′
∈ βX

f in, and consequently, g is bounded.

Now, let Bj ∈ β
X j \ fϕg and Ri ∈ r jðBjÞ. By the Defini-

tion 3, we have gð f jðBjÞÞ = g ∘ f jðBjÞ ∈ rYðgð f jðBjÞÞÞ. On
the other hand, f j is a RELmap; it follows that f jðR jÞ ∈
r f inð f jðBjÞÞ: Take f jðRjÞ =R′. Then, we have R′ ∈ rf inð
B′Þ, and subsequently, gðR′Þ ∈ rYðgðB′ÞÞ which shows g
is a RELmap.

Lemma 12. Let X ≠ ϕ, and ðX, βX , rÞ be an ordered-
RELspace.

(i) A RELstructure ðβX , rÞ is discrete iff ðβX , rÞ≔ ðDX ,
rdisÞ, where DX = f∅g ∪ ffag: a ∈ Xg and rdisðfagÞ
= fR ∈ RELðXÞ: ða, aÞ∈ ∩ fR : R ∈Rgg = fR ∈ RE
LðXÞ: R<<ffða, aÞggg with rdisðϕÞ≔ fϕg

(ii) A RELstructure ðβX , rÞ is indiscrete iff ðβX , rÞ≔ ðP
ðXÞ, ridÞ, where ridðBÞ = fR ∈ RELðXÞ: fϕg ∉Rg if
βX ≠ ϕ with ridðϕÞ≔ fϕg.

Proof. By applying Lemma 11, we get the desired result.

Remark 13. The topological functor U : C ⟶ Set, where
C =O − REL is normalized since an unique RELstructure
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βX = f∅g, and rð∅Þ = f∅g exists whenever X =∅ and a
unique RELstructure βX = f∅,fagg, rð∅Þ = f∅g and rðfagÞ
= f∅,fða, aÞgg exists whenever X = fag. Furthermore, the
topological functor U : O − REL⟶ Set is geometric since
the regular sub-object of a discrete RELspace is discrete, and
finite product of discrete RELstructures is discrete again.

4. Local T0 and Local T1 Ordered-RELspaces

In this section, we define notions for T0 and T1 ordered-
RELspaces at some point.

Let X be any set and p ∈ X. We define the wedge product
of X at p as the two disjoint copies of X at p and denote it as
X∨pX. For a point a ∈ X∨pX, we write it as a1 if a belongs to
the first component of the wedge product; otherwise, we
write a2 that is in the second component. Moreover, X2 is
the cartesian product of X.

Definition 14 (cf. [14]).

(i) A mapping Ap : X∨pX⟶ X2 is said to be principal
p-axis mapping provided that

Ap aj
� �

≔
a, pð Þ ; j = 1,
p, að Þ ; j = 2,

(
ð11Þ

(ii) A mapping Sp : X∨pX ⟶ X2 is said to be skewed
p-axis mapping provided that

Sp aj
� �

≔≔
a, að Þ ; j = 1,
p, að Þ ; j = 2,

(
ð12Þ

(iii) A mapping ∇p : X∨pX⟶ X is said to be fold map-
ping at p provided that

∇p aj
� �

≔ a, j = 1, 2: ð13Þ

Assume that U : C ⟶ Set is a topological functor,
X ∈ObjðCÞ with UX = Z and p ∈ Z.

Definition 15 (cf. [14]).

(i) X is �T0 at p provided that the initial lift of the U

-source fZ∨pZ⟶
Ap

UðX2Þ = Z2 andZ∨pZ⟶
∇p

UDZ
= Zg is discrete

(ii) X is T0′ at p provided that the initial lift of the U

-source fZ∨pZ⟶
id

UðX∨pXÞ = Z∨pZ andZ∨pZ

⟶
∇p

UDZ = Zg is discrete, where X∨pX is the wedge

product in C , i.e., the final lift of the U-sink fUX

= Z⟶
i1,i2 Z∨pZg, where i1, i2 represent the canonical

injections

(iii) X is T1 at p provided that the initial lift of the U

-source fZ∨pZ⟶
Sp

UðX2Þ = Z2 andZ∨pZ⟶
∇p

UDZ
= Zg is discrete.

Remark 16.

(i) In TOP, �T0 and T′0 at p (respectively, T1 at p) are
equivalent to the classical T0 at p (respectively, the
classical T1 at p), i.e., for each a ∈ X with a ≠ p, there
exists a neighborhood Na of

‘‘a} not containing ‘‘p}

or (respectively, and); there exists a neighborhood
Np of

‘‘p} not containing ‘‘a} [35]

(ii) A topological space X is T0 (respectively T1) iff X is
T0 (respectively T1) at p for each p ∈ X [35]

(iii) Let U : C ⟶ Set be a topological functor, X ∈Obj
ðCÞ and p ∈UðXÞ be a retract of X. Then, if X is
�T0 or T1 at p, then X is T0′ at p but not conversely
in general [36].

Theorem 17. Let ðX, βX , rÞ be ordered-RELspace and p ∈ X.
Then, ðX, βX , rÞ is �T0 at p if and only if for each a ∈ X with
a ≠ p, the following holds:

(i) fa, pg ∉ βX

(ii) fR ∈ RELðXÞ: R<<ffða, pÞggg ∉ rðfagÞ or fR ∈ R
ELðXÞ: R<<ffðp, aÞggg ∉ rðfpgÞ

(iii) fR ∈ RELðXÞ: R<<ffða, pÞggg ∉ rðfpgÞ or fR ∈
RELðXÞ: R<<ffðp, aÞggg ∉ rðfagÞ

(iv) fR ∈ RELðXÞ: R<<ffða, aÞ, ðp, pÞggg ∉ rðfagÞ or
fR ∈ RELðXÞ: R<<ffðp, pÞ, ða, aÞggg ∉ rðfpgÞ:

Proof. Let ðX, βX , rÞ be �T0 at p; we show the conditions ðiÞ to
ðivÞ are holding:

(i) Suppose that fa, pg ∈ βX for all a ∈ X with a ≠ p.
Let U = fa1, a2g ∈ X∨pX, then since ∇pðUÞ = ∇pðf
a1, a2gÞ = ðf∇pa1, ∇pa2gÞ = fag ∈DX and for j = 1,
2, πjApðUÞ = fa, pg ∈ βX (by the assumption),
where πj : X

2 ⟶ X for j =1,2 are projection maps.
By Definitions 1 and 15 and Lemma 10, a contra-
diction, it follows fa, pg ∉ βX

(ii) Assume that fR ∈ RELðXÞ: R<<ffða, pÞggg ∈ rðf
agÞ and fR ∈ RELðXÞ: R<<ffðp, aÞggg ∈ rðfpgÞ.
Particularly, let R1 = ffða1, a2Þgg ∈ RELðX∨pXÞ
and B = fa1g ∈DX∨pX \ f∅g; then, ∇pR1 = ∇pffð
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a1, a2Þgg = ffða, aÞgg ∈ rdisðfagÞ. By the assump-
tion, π1ApðR1Þ = ffðπ1Apa1, π1Apa2Þgg = ffða, pÞg
g ∈ rðfagÞ and π2ApðR1Þ = ffðπ2Apa1, π2Apa2Þgg
= ffðp, aÞgg ∈ rðfpgÞ. Since ðX, βX , rÞ is �T0 at p,
it follows that R1 ∈�rdisðfa1gÞ, where �rdis is the dis-
crete structure on X∨pX.

Similarly, for B = fa2g ∈DX∨pX \ f∅g, we get R1 ∈�rdis
ðfa2gÞ, a contradiction to the discreteness of �rdisðBÞ.

Thus, fR ∈ RELðXÞ: R<<ffða, pÞggg ∉ rðfagÞ or fR
∈ RELðXÞ: R<<ffðp, aÞggg ∉ rðfpgÞ.

(iii) Suppose that fR ∈ RELðXÞ: R<<ffða, pÞggg ∈ rðf
pgÞ and fR ∈ RELðXÞ: R<<ffðp, aÞggg ∈ rðfagÞ.
In particular, let R2 = ffða2, a1Þgg ∈ RELðX∨pXÞ
and B = fa1g ∈DX∨pX \ f∅g; then, ∇pR1 = ∇pffð
a2, a1Þgg = ffða, aÞgg ∈ rdisðfagÞ, and by the
assumption π1ApðR2Þ = ffðp, aÞgg ∈ rðfagÞ and

π2ApðR2Þ = ffða, pÞgg ∈ rðfpgÞ. Since ðX, βX , rÞ is
�T0 at p, we get that R2 ∈�rdisðfa1gÞ, where �rdis is
the discrete structure on X∨pX

Similarly, for B = fa2g ∈DX∨pX \ f∅g, we get R2 ∈�rdis
ðfa2gÞ, a contradiction.

Therefore, fR ∈ RELðXÞ: R<<ffða, pÞggg ∉ rðfpgÞ or
fR ∈ RELðXÞ: R<<ffðp, aÞggg ∉ rðfagÞ.

(iv) Assume that fR ∈ RELðXÞ: R<<ffða, aÞ, ðp, pÞggg
∈ rðfagÞ and fR ∈ RELðXÞ: R<<ffðp, pÞ, ða, aÞgg
g ∈ rðfpgÞ. Let R3 = ffða1, a1Þ, ða2, a2Þgg ∈ RELðX
∨pXÞ and B = fa1g ∈DX∨pX \ f∅g; then, ∇pR3 =
∇pffða1, a1Þ, ða2, a2Þgg = ffða, aÞgg ∈ rdisðfagÞ, π1
ApðR3Þ = ffða, aÞ, ðp, pÞggg ∈ rðfagÞ, π2ApðR3Þ =
ffðp, pÞ, ða, aÞggg ∈ rðfpgÞ (by the assumption).
Since ðX, βX , rÞ is �T0 at p, it follows that R3 ∈
�rdisðfa1gÞ, where �rdis is the discrete structure on
X∨pX.

Similarly, for B = fa2g ∈DX∨pX \ f∅g, we get R3 ∈�rdis
ðfa2gÞ, a contradiction.

Hence, fR ∈ RELðXÞ: R<<ffða, aÞ, ðp, pÞggg ∉ rðfagÞ
or fR ∈ RELðXÞ: R<<ffðp, pÞ, ða, aÞggg ∉ rðfpgÞ.

Conversely, suppose ðiÞ to ðivÞ are holding.
Let ðβX∨pX ,�rÞ be the initial structure induced by Ap : X

∨pX⟶ ðX2, βX2 , r2Þ and ∇p : X∨pX ⟶ ðX,DX , rdisÞ,
where ðBX2 , r2Þ is the product RELstructure on X2 and
ðDX , rdisÞ the discrete RELstructure on X.

We show that ðβX∨pX ,�rÞ is the discrete REL structure on
X∨pX, i.e., we show that βX∨pX =DX∨pX = ff∅g ∪ fajg ; j =
1, 2 and aj ∈ X∨pXg and for B ∈DX∨pX , �rðBÞ = f �R ∈ RELðX
∨pXÞ: �R<<ffðaj, ajÞgg ; j = 1, 2g.

Let U ∈ βX∨pX and ∇pU ∈DX ; if ∇pU =∅, then U =∅.
Suppose ∇pU ≠∅. Then, we have ∇pU = fag for some a ∈
X, and if a = p, then U = fpg; let a ≠ p; then, it further

implies that U = fa1g or U = fa2g and U = fa1, a2g. By
the assumption, πjApU = πjApfa1, a2g = fa, pg ∉ βX (for j =

1,2). Thus, U = fa1g and U = fa2g; subsequently, βX∨pX =
DX∨pX .

Now, B ∈DX∨pX \ f∅g implies B = fa1g and B = fa2g,
and by Lemma 10, �rðBÞ = f �R ∈ RELðX∨pXÞ: πjApð �RÞ ∈ r
ðπjApðBÞÞand∇pð �RÞ∈rdisð∇pBÞÞ,wherej = 1, 2g:

Suppose B = fa1g, then
�rðfa 1gÞ = f �R ∈ RELðX∨pXÞ: πjApð �RÞ ∈ rðπjApðfa1gÞÞ

and∇p
�R ∈ rdisð∇pfa1gÞ,wherej = 1, 2g; it follows that �rðfa1

gÞ = f �R ∈ RELðX∨pXÞ: π1Apð �RÞ ∈ rðfagÞandπ2Apð �RÞ ∈ rð
fpgÞand∇pð �RÞ ∈ rdisðfagÞg.

Since ∇pð �RÞ ∈ rdisðfagÞ = fR ∈ RELðXÞ: R<<ffða, aÞg
gg, we have the following possibilities of R:

f �R ∈ RELðX∨pXÞ: �R<<ffða1, a1Þggg,
f �R ∈ RELðX∨pXÞ: �R<<ffða2, a2Þggg,
f �R ∈ RELðX∨pXÞ: �R<<ffða1, a2Þggg,
f �R ∈ RELðX∨pXÞ: �R<<ffða2, a1Þggg ,
f �R ∈ RELðX∨pXÞ: �R≪ ffða1, a1Þ, ða2, a2Þggg.

Case (i). Suppose f �R ∈ RELðX∨pXÞ: �R<<ffða1, a1Þg
gg. It follows that for all �R ∈ �R such that fða1, a1Þg
⊆ �R, andπ1Apfða1, a1Þg ⊆ π1Ap

�R, π1Ap
�R < <π1Apffð

a1, a1Þgg = ffðπ1Apa1, π2Apa1Þgg = ffða, aÞgg. By

Definition 2, π1Ap
�R < <ffða, aÞgg ∈ rðfagÞ. Similarly,

π2Ap
�R < <ffðp, pÞgg ∈ rðfpgÞ. Therefore, f �R ∈ RELð

X∨pXÞ: R<<ffða1, a1Þggg holds

Case (ii). f �R ∈ RELðX∨pXÞ: �R<<ffða2, a2Þggg holds.
The proof is similar to Case (i)

Case (iii). Let f �R ∈ RELðX∨pXÞ: �R<<ffða1, a2Þggg. It
follows that for all �R ∈ �R such that fða1, a2Þg ⊆ �R, and
π1Apfða1, a2Þg ⊆ π1Ap

�R, π1Ap
�R < <π1Apffða1, a2Þgg

= ffða, pÞgg. By the assumption, we get π1Ap
�R < <f

fða, pÞgg ∉ rðfagÞ. Similarly, π2Ap
�R < <ffðp, aÞgg ∉ r

ðfpgÞ. Thus, f �R ∈ RELðX∨pXÞ: �R<<ffða1, a2Þggg
cannot be possible

Case (iv). Similar to Case (iii), we conclude that f �R ∈
RELðX∨pXÞ: �R<<ffða2, a1Þggg is not possible

Case (v). If f �R ∈ RELðX∨pXÞ: �R<<ffða1, a1Þ, ða2, a2Þ
ggg. It follows that for all �R ∈ �R such that fða1, a1Þ, ð
a2, a2Þg ⊆ �R, and π1Apfða1, a1Þ, ða2, a2Þg ⊆ π1Ap

�R, for
all �R ∈ �R implying π1Ap

�R < <π1Apffða1, a1Þ, ða2, a2Þ
gg = ffða, aÞ, ðp, pÞgg. By the assumption, π1Ap

�R < <
ffða, aÞ, ðp, pÞgg ∉ rðfagÞ. Similarly, π2Ap

�R < <ffðp,
pÞ, ða, aÞgg ∉ rðfpgÞ. Hence, f �R ∈ RELðX∨pXÞ: �R<<f
fða1, a1Þ, ða2, a2Þggg is not possible.
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Similarly, if B = fa2g, only Case (i) and Case (ii) are
holding. By Lemma 12, �rðBÞ = f �R ∈ RELðX∨pXÞ: �R<<ff
ðaj, ajÞgg ; j = 1, 2g is discrete.

Therefore, by Definition 15, ðX, βX , rÞ is �T0 at p.

Theorem 18. Let ðX, βX , rÞ be an ordered-RELspace and
p ∈ X.

ðX, βX , rÞ is T1 at p if and only if for any a ∈ X with a ≠ p,
the following holds:

(i) fa, pg ∉ βX

(ii) fR ∈ RELðXÞ: R<<ffða, pÞggg ∉ rðfagÞ and fR
∈ RELðXÞ: R<<ffðp, aÞggg ∉ rðfpgÞ

(iii) fR ∈ RELðXÞ: R<<ffða, pÞggg ∉ rðfpgÞ and fR
∈ RELðXÞ: R<<ffðp, aÞggg ∉ rðfagÞ

(iv) fR ∈ RELðXÞ: R<<ffða, aÞ, ðp, pÞggg ∉ rðfagÞ and
fR ∈ RELðXÞ: R<<ffðp, pÞ, ða, aÞggg ∉ rðfpgÞ.

Proof. By following the same technique used in Theorem 17,
and replacing the mapping Ap by the mapping Sp, we get the
proof.

Theorem 19. All ordered-RELspaces are T′0 at p.

Proof. Let ðX, βX , rÞ be ordered-RELspace and p ∈ X. By Def-
inition 15, we show that for each U ∈ βX∨pX ,U ⊂ ikðVÞ
(where k = 1, 2) for some V ∈ βX and ∇pU ∈DX . ∇pU = ϕ
implying U = ϕ. Suppose ∇pU ≠ ϕ, it implies that ∇pU = fag
for some a ∈ X. If a = p, then ∇pU = fpg implying U = fpg.

Suppose a ≠ p, it follows that U = fa1g, fa2g or fa1, a2g.
If U = fa1, a2g, then fa1, a2g ⊂ i1ðVÞ for some V ∈ βX which
shows that a2 should be in the first component of the wedge
product X∨pX, a contradiction. In similar manner, fa1, a2g
⊂i2ðVÞ for some V ∈ βX . Hence, U=fa1, a2g. Thus, we must
have U = fajg for j = 1, 2 only and consequently, βX∨pX =
DX∨pX , the discrete RELstructure on X∨pX.

Now, for B ∈DX∨pX \ fϕg, by Lemma 10, �rðBÞ = f �R ∈
RELðX∨pXÞ: �R<<i1ðsÞ for some s ∈ rðBÞ, �R<<i2ðsÞ for some
s ∈ rðBÞ and∇pð �RÞ ∈ rdisð∇pBÞg. Since ∇pð �RÞ ∈ rdisðfBgÞ =
fR ∈ RELðXÞ: R<<ffðaj, ajÞggwherej = 1, 2g, we have the
following possibilities of R:

f �R ∈ RELðX∨pXÞ: �R<<ffða1, a1Þggg,
f �R ∈ RELðX∨pXÞ: �R<<ffða2, a2Þggg,
f �R ∈ RELðX∨pXÞ: �R<<ffða1, a2Þggg,
f �R ∈ RELðX∨pXÞ: �R<<ffða2, a1Þggg,
f �R ∈ RELðX∨pXÞ: �R<<ffða1, a1Þ, ða2, a2Þggg.
In particular, for f �R ∈ RELðX∨pXÞ: �R<<ffða1, a2Þggg.

It follows that, for all �R ∈ �R such that fða1, a2Þg ⊂ �R, and
(for k =1,2), ikfða1, a2Þg ⊂ iK�R implying ik �R < <ikffða1, a2Þ
gg. It follows a2 (respectively, a1) in the first (respectively,
second) component of the wedge product X∨pX, a contradic-

tion. Similarly, for f �R ∈ RELðX∨pXÞ: �R<<ffða2, a1Þggg
and f �R ∈ RELðX∨pXÞ: �R<<ffða1, a1Þ, ða2, a2Þggg, we get a
contradiction.

Therefore, �rðBÞ = f �R ∈ RELðX∨pXÞ: R<<ffðaj, ajÞgg ;
j = 1, 2g. Consequently, by Definition 15(i) and Lemma 10,
ðX, βX , rÞ is T′0 at p.

5. T0 and T1 Ordered-RELspaces

In this section, we define generically notions of T0 and T1 in
ordered-RELspaces.

The characterization of T0 objects in categorical topology
has been an important idea in a topological universe. There-
fore, several attempts has been made such as in 1971 Brüm-
mer [15], in 1973 Marny [18], in 1974 Hoffman [17], in
1977 Harvey [16], and in 1991 Baran [14] to discuss various
approaches to generalize classical T0 object and examined the
relationship between different forms of generalized T0
objects. One of the main purposes of generalization is to
define Hausdorff objects in arbitrary topological categories.
In 1991, Baran [14, 37] also generalizes the classical T1
objects of topology to topological categories [14, 37]. In
abstract topological categories [21], T1 objects are used to
define T3, T4, normal objects, regular, and completely regu-
lar. To characterize separation axioms, Baran’s approach
was to use initial and final lifts and discreteness.

In 1991, Baran [14] used the generic element method of
topos theory introduced by Johnstone [38], to define generic
separation axioms, due to the fact that points does not make
sense in topos theory. In general, the wedge product X∨pX at
p can be replaced by X2∨ΔX

2 at diagonal Δ. Any element ð
a, bÞ ∈ X2∨ΔX

2 is written as ða, bÞ1 (resp., ða, bÞ1) if it lies
in the first (resp., second) component of X2∨ΔX

2. Clearly,
ða, bÞ1 = ða, bÞ2, if and only if a = b.

Definition 20 (cf. [14]).

(i) A mapping A : X2∨ΔX
2 ⟶ X3 is called principal

axis mapping provided that

A a, bð Þj
� �

≔
a, b, að Þ ; j = 1,
a, a, bð Þ ; j = 2,

(
ð14Þ

(ii) A mapping S : X2∨ΔX
2 ⟶ X3 is called skewed axis

mapping provided that

S a, bð Þj
� �

≔
a, b, bð Þ ; j = 1,
a, a, bð Þ ; j = 2,

(
ð15Þ

(iii) A mapping ∇ : X2∨ΔX
2 ⟶ X2 is called fold map-

ping provided that
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∇ a, bð Þj
� �

≔ a, bð Þ, j = 1, 2: ð16Þ

Any element ða, bÞ ∈ X2∨ΔX
2 is written as ða, bÞ1 (resp.,

ða, bÞ1) if it lies in the first (resp., second) component of
X2∨ΔX

2. Clearly, ða, bÞ1 = ða, bÞ2 if and only if a = b.
Now, we replace the point p by any generic point δ and

define the following separation axioms.

Definition 21. Let U : C ⟶ Set be a topological functor,
X ∈ObjðCÞ with UX = Z.

(i) X is �T0 provided that the initial lift of the U-source

fZ2∨ΔZ
2 ⟶

A
UðX3Þ = Z3 andZ2∨ΔZ

2 ⟶
∇

UDðZ2Þ
= Z2g is discrete [14]

(ii) X is T′0 provided that the initial lift of the U-source

fZ2∨ΔZ
2 ⟶

id
UðZ2∨ΔZ

2Þ′ = Z2∨ΔZ
2 andZ2∨ΔZ

2

⟶
∇

UDðZ2Þ = Z2g is discrete, where ðZ2∨ΔZ
2Þ′ is

the final lift of the U-sink fUðX2Þ = Z2 ⟶
i1,i2 Z2∨Δ

Z2g [14, 39]

(iii) X is called T0 provided that X doesn’t contain an
indiscrete subspace with at least two points [18, 40]

(iv) X is T1 provided that the initial lift of the U-source

fZ2∨ΔZ
2 ⟶

S
UðX3Þ = Z3 andZ2∨ΔZ

2 ⟶
∇

UDðZ2Þ
= Z2g is discrete [14].

Remark 22.

(i) In TOP, all the properties of being T0, �T0 and T0 ′
(respectively, T1) are equivalent to those classical
ones which are T0 (respectively, T1), i.e., for each
a, b ∈ X with a ≠ b, there exists a neighbourhood
Na of ‘‘a} not containing ‘‘b} or (respectively and),
there exists a neighbourhood Nb of

‘‘b} not contain-
ing ‘‘a} [14, 18, 40]

(ii) In any topological category, �T0 implies is T′0 but
not conversely in general. Also, each of the �T0 and
T′0 has no relation to a T0 [39]

(iii) Let U : C ⟶ Set be a topological functor, X ∈Obj
ðCÞ and p ∈UðXÞ be a retract of X. Then, if X is
�T0 (respectively T1), then X is �T0 at p (respectively
T1 at p) but not conversely in general [36].

Theorem 23. Let ðX, βX , rÞ be an ordered-RELspace.
ðX, βX , rÞ is �T0 iff for each a, b ∈ X with a ≠ b, the follow-

ing holds:

(i) fa, bg ∉ βX

(ii) fR ∈ RELðXÞ: R<<ffða, bÞggg ∉ rðfag or fR ∈ R
ELðXÞ: R<<ffðb, aÞggg ∉ rðfbgÞ

(iii) fR ∈ RELðXÞ: R<<ffða, bÞggg ∉ rðfbgÞ or fR ∈
RELðXÞ: R<<ffðb, aÞggg ∉ rðfagÞ

(iv) fR ∈ RELðXÞ: R<<ffða, aÞ, ðb, bÞggg ∉ rðfagÞ or
fR ∈ RELðXÞ: R<<ffðb, bÞ, ða, aÞggg ∉ rðfbgÞ.

Proof. Suppose ðX, βX , rÞ is �T0, we show that conditions ðiÞ
to ðivÞ are holding.

(i) Suppose that fa, bg ∈ βX for each a,b∈ X, a ≠ b. Let
U = fðða, bÞ1, ða, bÞ2Þg ∈ X2∨ΔX

2. Note that ∇ðUÞ
= ∇fðða, bÞ1, ða, bÞ2Þg = fða, bÞg ∈DX2

and π1AðUÞ
= fag ∈ βX . By the assumption, πkAðUÞ = πkAfð
ða, bÞ1, ða, bÞ2Þg = fa, bg ∈ βX , where πk : X

3 ⟶ X2

(for k=2,3) are projection maps. By Definitions 1
and 15 and Lemma 10, it leads to a contradiction,
it follows that fa, bg ∉ βX

(ii) Suppose that fR ∈ RELðXÞ: R<<ffða, bÞggg ∈ rðf
agÞ and fR ∈ RELðXÞ: R<<ffðb, aÞggg ∈ rðfbgÞ.
Let R1 = ffðða, bÞ1, ða, bÞ2Þgg ∈ RELðX2∨ΔX

2Þ and
B = fða, bÞ1g ∈DX2∨ΔX

2 \ fϕg, then ∇ðR1Þ = ∇ffð
ða, bÞ1, ða, bÞ2Þgg = ffð∇ða, bÞ1,∇ða, bÞ2Þgg = ffða,
bÞgg ∈ r2disðfða, bÞgÞ. By Definition 2, π1Affðða, bÞ1,ða, bÞ2Þgg = ffðπ1Aða, bÞ1, π1Aða, bÞ2Þgg = ffða, aÞ
gg ∈ rðfagÞ and by the assumption, π2Affðða, bÞ1,ða, bÞ2Þgg = ffðb, aÞgg ∈ rðfbgÞ and π3Affðða, bÞ1,
ða, bÞ2Þgg = ffða, bÞgg ∈ rðfagÞ. Since ðX, βX , rÞ is
�T0, we conclude R1 ∈�r2disðfða, bÞ1gÞ, where �r2dis is
the discrete structure on X2∨ΔX

2

Similarly, for B = fða, bÞ2g ∈DX2∨ΔX
2 \ fϕg, we get R1

∈�r2disðfða, bÞ2gÞ, a contradiction.
Therefore, fR ∈ RELðXÞ: R<<ffða, bÞggg ∉ rðfag or

fR ∈ RELðXÞ: R<<ffðb, aÞggg ∉ rðfbgÞ.

(iii) Suppose that fR ∈ RELðXÞ: R<<ffða, bÞggg ∈ rðfb
gÞ and fR ∈ RELðXÞ: R<<ffðb, aÞggg ∈ rðfagÞ. In
particular, let R2 = ffðða, bÞ2, ða, bÞ1Þgg ∈ RELðX2

∨ΔX
2Þ and B = fða, bÞ1g ∈DX2∨ΔX

2 \ fϕg, then ∇ðR2
Þ = ∇ffðða, bÞ2, ða, bÞ1Þgg = ffða, bÞgg ∈ r2disðfða, bÞ
gÞ. By Definition 2, π1Affðða, bÞ2, ða, bÞ1Þgg = ffða
, aÞgg ∈ rðfagÞ and by the assumption, π2Affð
ða, bÞ2, ða, bÞ1Þgg = ffðπ2Aða, bÞ2, π2Aða, bÞ1Þgg =
ffða, bÞgg ∈ rðfbgÞ and π3Affðða, bÞ2, ða, bÞ1Þgg =
ffðπ3Aða, bÞ2, π3Aða, bÞ1Þgg = ffðb, aÞgg ∈ rðfagÞ.
Since ðX, βX , rÞ is �T0 it follows thatR2 ∈�r2disðfða, bÞ2
gÞ, where �r2dis is the discrete structure on X2∨ΔX

2

Similarly, for B = fða, bÞ2g ∈DX2∨ΔX
2 \ fϕg, we get R2

∈�r2disðfða, bÞ1gÞ, a contradiction.
Thus, fR ∈ RELðXÞ: R<<ffða, bÞggg ∉ rðfbgÞ or fR

∈ RELðXÞ: R<<ffðb, aÞggg ∉ rðfagÞ.

(iv) Suppose that fR ∈ RELðXÞ: R<<ffða, aÞ, ðb, bÞggg
∈ rðfagÞ and fR ∈ RELðXÞ: R<<ffðb, bÞ, ða, aÞgg
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g ∈ rðfbgÞ. Let R3 = fððða, bÞ1, ða, bÞ1Þ, ðða, bÞ2,
ða, bÞ2Þgg ∈ RELðX2∨ΔX

2Þ, and B = fða, bÞ1g ∈
DX2∨ΔX

2 \ fϕg; then, ∇R3 = ∇ffððða, bÞ1, ða, bÞ1Þ, ð
ða, bÞ2, ða, bÞ2Þgg = ffða, bÞgg ∈ r2disðfða, bÞgÞ, and
by Definition 2, π1Affððða, bÞ1, ða, bÞ1Þ, ðða, bÞ2,
ða, bÞ2Þgg = ffða, aÞgg ∈ rðfagÞ. By the assumption,
π2Affððða, bÞ1, ða, bÞ1Þ, ðða, bÞ2, ða, bÞ2Þgg = ffðb, b
Þ, ða, aÞgg ∈ rðfbgÞ and π3Afððða, bÞ1, ða, bÞ1Þ, ð
ða, bÞ2, ða, bÞ2Þgg = ffða, aÞ, ðb, bÞgg ∈ rðfagÞ. Since
ðX, βX , rÞ is �T0, we conclude R3 ∈�r2disðfða, bÞ1gÞ,
where �r2dis is the discrete structure on X2∨ΔX

2.

Similarly, for B = fða, bÞ2g ∈DX2∨ΔX
2 \ fϕg, we get R3 ∈

�r2disðfða, bÞ2gÞ, a contradiction to the discreteness of �r2disðBÞ.
Hence, fR ∈ RELðXÞ: R<<ffða, aÞ, ðb, bÞggg ∉ rðfagÞ

or fR ∈ RELðXÞ: R<<ffðb, bÞ, ða, aÞggg ∉ rðfbgÞ.

Conversely, suppose ðiÞ to ðivÞ are holding.
Let ðβX2∨ΔX

2 ,�r2Þ be the initial structure induced by A : X2

∨ΔX
2 ⟶ ðX3, βX3 , r3Þ and ∇ : X2∨ΔX

2 ⟶ ðX2,DX2 , r2disÞ,
where ðβX3 , r3Þ is the product RELstructure on X3 and ðDX2 ,
r2disÞ the discrete RELstructure on X2.

We show that ðβX2∨ΔX
2 ,�r2Þ is the discrete RELstructure

on X2∨ΔX
2, i.e, βX2∨ΔX

2 =DX2∨ΔX
2 = ffϕg ∪ fða, bÞjg: ða, bÞj

∈ X2∨ΔX
2 f orj = 1, 2g and for B ∈DX2∨ΔX

2 \ fϕg,�r2ðBÞ = f
�R ∈ RELðX2∨ΔX

2Þ: �R<<ffða, bÞj, ða, bÞj, j = 1, 2gg.
LetU ∈ βX2∨ΔX

2
and∇U ∈ BX2

. If ∇U = ϕ, thenU = ϕ. Sup-
pose ∇U ≠ ϕ, then it follows that ∇U = fða, bÞg for some ða,
bÞ ∈ X2. If a = b, then U = fðb, bÞg. Next, let a ≠ b; then, we
have U = fða, bÞ1g or U = fða, bÞ2g or U = fða, bÞ1, ða, bÞ2g
and π1AU = π1Afða, bÞ1, ða, bÞ2g = fπ1Aða, bÞ1, π1Aða, bÞ2g
= fa, ag, and by the assumption, we get πkAfða, bÞ1, ða, bÞ2g
= fa, bg ∉ βX , (for k=2,3). Thus, U = fða, bÞ1g or U = f
ða, bÞ2g, and subsequently, βX2∨ΔX

2 =DX2∨ΔX
2
.

Now, B ∈ βX2∨ΔX
2 \ fϕg implies B = fða, bÞ1g and B = f

ða, bÞ2g, and by Lemma 10, �r2ðBÞ = f �R ∈ RELðX2∨ΔX
2Þ: πj

A �R ∈ rðπjAðBÞÞand∇ �R ∈ r2disð∇BÞÞ, where j = 1, 2, 3g.
Suppose B =U = fða, bÞ1g, thensince ∇R ∈ r2disðfa, bgÞ

= fR ∈ RELðX2Þ: R<<ffðða, bÞ, ða, bÞÞggg, we have the
following possibilities:

f �R ∈ RELðX2∨ΔX
2Þ: �R<<ffða, bÞ1, ða, bÞ1ggg,

f �R ∈ RELðX2∨ΔX
2Þ: �R<<ffða, bÞ2, ða, bÞ2ggg,

f �R ∈ RELðX2∨ΔX
2Þ: �R<<ffða, bÞ1, ða, bÞ2ggg,

f �R ∈ RELðX2∨ΔX
2Þ: �R<<ffða, bÞ2, ða, bÞ1ggg,

f �R ∈ RELðX2∨ΔX
2Þ: �R<<ffððða, bÞ1, ða, bÞ1Þ, ðða, bÞ2, ða, bÞ2Þggg.

Case (i). If f �R ∈ RELðX2∨ΔX
2Þ: �R<<ffða, bÞ1, ða, bÞ1g

gg. It follows that for all �R ∈ �Rfða, bÞ1, ða, bÞ1g ⊆ �R and
π1Afða, bÞ1, ða, bÞ1g ⊆ π1A�R, π1A �R < <π1Affða, bÞ1,ða, bÞ1gg = ffπ1Aða, bÞ1, π1Aða, bÞ1gg = ffða, aÞgg, and
by the Definition 2, we get π1A �R < <ffða, aÞgg ∈ rðfagÞ.
In a similar way, π2A �R < <ffðb, bÞgg ∈ rðfbgÞ and π3
A �R < <ffða, aÞgg ∈ rðfagÞ.

Thus, f �R ∈ RELðX2∨ΔX
2Þ: �R<<ffða, bÞ1, ða, bÞ1ggg

holds

Case (ii). f �R ∈ RELðX2∨ΔX
2Þ: �R<<ffða, bÞ2, ða, bÞ2ggg

holds. The proof is similar to Case (i)

Case (iii). f �R ∈ RELðX2∨ΔX
2Þ: �R<<ffða, bÞ1, ða, bÞ2gg

g. It follows that, for all �R ∈ �R such that fða, bÞ1,
ða, bÞ2g ⊆ �R. And π1Afða, bÞ1, ða, bÞ2g ⊆ π1A�R, π1A �R
< <π1Affða, bÞ1, ða, bÞ2gg = ffða, aÞgg, and by Defini-
tion 2 π1A �R < <ffða, aÞgg ∈ rðfagÞ
Similarly, by the assumption π2A �R < <ffðb, aÞgg ∉ rðf
bgÞ and π3A �R < <ffða, bÞgg ∉ rðfagÞ.
Therefore, f �R ∈ RELðX2∨ΔX

2Þ: �R<<ffða, bÞ1, ða, bÞ2g
gg is not possible.

Case (iv). Similar to Case (iii), we conclude that f �R ∈
RELðX2∨ΔX

2Þ: �R<<ffða, bÞ2, ða, bÞ1ggg is not possible.

Case (v). If f �R ∈ RELðX2∨ΔX
2Þ: �R < <ffððða, bÞ1,

ða, bÞ1Þ, ðða, bÞ2, ða, bÞ2Þggg. It follows that, for all �R ∈
�R such that fððða, bÞ1, ða, bÞ1Þ, ðða, bÞ2, ða, bÞ2Þg ⊆ �R
and π1Afððða, bÞ1, ða, bÞ1Þ, ðða, bÞ2, ða, bÞ2Þg ⊆ π1A �R

implies π1A �R < <π1Affððða, bÞ1, ða, bÞ1Þ, ðða, bÞ2,
ða, bÞ2Þgg = ffða, aÞgg. By Definition 2, π1A �R < <ffða
, aÞgg ∈ rðfagÞ.
Similarly, by the assumption, π2A �R < <ffððb, bÞ, ða, aÞ

Þgg ∉ rðfbgÞ and π3A �R < <ffðða, aÞ, ðb, bÞÞgg ∉ rðfbgÞ.
Hence, f �R ∈ RELðX2∨ΔX

2Þ: �R<<ffððða, bÞ1, ða, bÞ1Þ, ð
ða, bÞ2, ða, bÞ2Þggg is not possible.

Similarly, if B= fða, bÞ2g only Case (i) and Case (ii) are
holding. By Lemma 12, f �R ∈ RELðX2∨ΔX

2Þ: �R<<ffð
ða, bÞj, ða, bÞjÞ, j = 1, 2ggg is discrete. Therefore, by Defini-

tion 21 (i), ðX, βX , rÞ is �T0.

Theorem 24. Let ðX, βX , rÞ be an ordered-RELspace.
ðX, βX , rÞ is T0 iff for each a, b ∈ X with a ≠ b, each of the

following conditions are satisfied:

(i) fa, bg ∉ βX

(ii) fR ∈ RELðXÞ: R<<ffða, bÞggg ∉ rðfagÞ or fR ∈
RELðXÞ: R<<ffða, bÞggg ∉ rðfbgÞ

(iii) fR ∈ RELðXÞ: R<<ffðb, aÞggg ∉ rðfagÞ or fR ∈
RELðXÞ: R<<ffðb, aÞggg ∉ rðfbgÞ

(iv) fR ∈ RELðXÞ: R<<ffða, aÞggg ∉ rðfbgÞ or fR ∈
RELðXÞ: R<<ffðb, bÞggg ∉ rðfagÞ.

Proof. Let ðX, βX , rÞ be T0, fa, bg ∈ βX and fR ∈ RELðXÞ:
R<<ffða, bÞggg ∈ rðfagÞ and fR ∈ RELðXÞ: R<<ffða, bÞ
ggg ∈ rðfbgÞ and fR ∈ RELðXÞ: R<<ffðb, aÞggg ∈ rðfagÞ
and fR ∈ RELðXÞ: R<<ffðb, aÞggg ∈ rðfbgÞ and fR ∈ RE
LðXÞ: R<<ffða, aÞggg ∈ rðfagÞ and fR ∈ RELðXÞ: R<<f
fðb, bÞggg ∈ rðfbgÞ.
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Let U = fa, bg. Note that ðU , βU , rUÞ is the subspace of
ðX, βX , rÞ, where ðβU , rUÞ is the initial lift of the ordered-
RELsystem induced by the inclusion map i : S⟶U and
for any S ⊂U , S ∈ βU , whenever iðSÞ = S ∈ βU and for any
R ∈ RELðUÞ,R ∈ rðSÞ, whenever iðRÞ =R ∈ rðBÞ.

By the assumption, iðUÞ =U = fa, bg ∈ βU and by Defi-
nition 1, we get βU = PU .

Now, for any R ∈ RELðUÞ let R = ffða, aÞgg ∈ RELðUÞ.
By Definition 2, iðffða, aÞggÞ = ffða, aÞgg ∈ rðfagÞ. By the
assumption, R = ffða, aÞgg ∈ rðfbgÞ implying that fR ∈ R
ELðXÞ: R<<ffða, aÞggg ∈ rðfagÞ and fR ∈ RELðXÞ: R<<
ffða, aÞggg ∈ rðfbgÞ.

Similarly, for R = ffðb, bÞgg ∈ RELðUÞ, it follows that
fR ∈ RELðXÞ: R<<ffðb, bÞggg ∈ rðfagÞ and fR ∈ RELðXÞ
: R<<ffðb, bÞggg ∈ rðfbgÞ.

Now, if R = ffða, bÞgg ∈ RELðUÞ then by the assump-
tion, fR ∈ RELðXÞ: R<<ffða, bÞggg ∈ rðfagÞ and fR ∈ R
ELðXÞ: R<<ffða, bÞggg ∈ rðfbgÞ.

And for R = ffðb, aÞgg ∈ RELðUÞ then by the assump-
tion, fR ∈ RELðXÞ: R<<ffðb, aÞggg ∈ rðfagÞ and fR ∈ R
ELðXÞ: R<<ffðb, aÞggg ∈ rðfbgÞ.

Therefore, rU = fR ∈ RELðUÞ: fϕg ∈Rg and ðβU , rUÞ
= ðPðUÞ, ridÞ, which is a contradiction by Lemma 12. Thus
ðiÞ − ðivÞ are holding.

Conversely, suppose that for all a, b ∈ X with a ≠ b, con-
ditions ðiÞ − ðivÞ are holding. We show that the initial struc-
ture ðβU , rUÞ is not an indiscrete ordered-RELstructure on
U. Let U = fa, bg ⊂ X. By the assumption, fa, bg ∉ βX and
fR ∈ RELðXÞ: R<<ffða, bÞggg ∉ rðfagÞ or fR ∈ RELðXÞ:
R<<ffða, bÞggg ∉ rðfbgÞ and fR ∈ RELðXÞ: R<<ffðb, aÞ
ggg ∉ rðfagÞ or fR ∈ RELðXÞ: R<<ffðb, aÞggg ∉ rðfbgÞ
and fR ∈ RELðXÞ: R<<ffða, aÞggg ∉ rðfbgÞ or fR ∈ REL
ðXÞ: R<<ffðb, bÞggg ∉ rðfagÞ. Thus, ðU , βU , rÞ is not an
indiscrete ordered-RELsubspace of ðX, βX , rÞ. Hence, by
Definition 21 (iii), ðX, βX , rÞ is T0.

Theorem 25. Let ðX, βX , rÞ be an ordered-RELspace. Then,
ðX, βX , rÞ is T1 iff for all a, b ∈ X with a ≠ b, the following
holds:

(i) fa, bg ∉ βX

(ii) fR ∈ RELðXÞ: R<<ffða, bÞggg ∉ rðfagÞ and fR
∈ RELðXÞ: R<<ffðb, aÞggg ∉ rðfbgÞ

(iii) fR ∈ RELðXÞ: R<<ffða, bÞggg ∉ rðfbgÞ and fR
∈ RELðXÞ: R<<ffðb, aÞggg ∉ rðfagÞ

(iv) fR ∈ RELðXÞ: R<<ffða, aÞ, ðb, bÞggg ∉ rðfagÞ and
fR ∈ RELðXÞ: R<<ffðb, bÞ, ða, aÞggg ∉ rðfbgÞ.

Proof. Similarly, using Theorem 23, and replacing mapping
A by the mapping S, we obtain the proof.

Theorem 26. All ordered-RELspaces are T′0.

Proof. Let ðX, βX , rÞ be an ordered-RELspace. By Definition

21, we show that for any U ∈ βX2∨ΔX
2
, U ⊂ ikðVÞ (where k

= 1, 2) for some V ∈ βX2
and ∇U ∈DX2

. If ∇U = ϕ implies
U = ϕ. Suppose ∇U ≠ ϕ, hence ∇U = fða, bÞg for some
ða, bÞ ∈ X2.

Suppose a ≠ b, it follows that U = fða, bÞ1gorfða, bÞ2gor
fða, bÞ1, ða, bÞ2g. If U = fða, bÞ1, ða, bÞ2g, then fða, bÞ1,
ða, bÞ2g ⊂ i1ðVÞ for some V ∈ βX2

, which shows that ða, bÞ2
must be in the first component of X2∨ΔX

2, a contradiction.

Similarly, fða, bÞ1, ða, bÞ2g⊂i2ðVÞ, for V ∈ βX2
. Hence, U =

ffða, bÞjgg for j = 1, 2. Consequently, βX2∨ΔX
2 =DX2∨ΔX

2
,

the discrete ordered-RELstructure on X2∨ΔX
2.

Now, for B ∈DX2∨ΔX
2 \ fϕg, and by Lemma 10, �r2ðBÞ =

f �R ∈ RELðX2∨ΔX
2Þ: �R<<i1ðsÞ for some s ∈ rðBÞ, �R<<i2ðsÞ

for some s ∈ rðBÞ and∇ð �RÞ ∈ r2disð∇BÞg. But ∇ð �RÞ ∈ r2disð∇BÞ
gives the following possibilities:

f �R ∈ RELðX2∨ΔX
2Þ: �R<<ffða, bÞ1, ða, bÞ1ggg,

f �R ∈ RELðX2∨ΔX
2Þ: �R<<ffða, bÞ2, ða, bÞ2ggg,

f �R ∈ RELðX2∨ΔX
2Þ: �R<<ffða, bÞ1, ða, bÞ2ggg,

f �R ∈ RELðX2∨ΔX
2Þ: �R<<ffða, bÞ2, ða, bÞ1ggg,

f �R ∈ RELðX2∨ΔX
2Þ: �R<<ffððða, bÞ1, ða, bÞ1Þ, ðða, bÞ2, ða, bÞ2Þggg.

In particular, for f �R ∈ RELðX2∨ΔX
2Þ: �R<<ffða, bÞ1,

ða, bÞ2ggg. Then, it follows, for all �R ∈ �R
fða, bÞ1, ða, bÞ2g ⊂ �R, and consequently, ikfða, bÞ1, ða, bÞ2g
⊂ �R (for k=1,2). As a result, ða, bÞ2 (respectively, ða, bÞ1) is
in the first (respectively, second) component of the
wedge product X2∨ΔX

2 which leads to a contradiction.
Similarly, for f �R ∈ RELðX2∨ΔX

2Þ: �R<<ffða, bÞ2, ða, bÞ1ggg
and f �R ∈ RELðX2∨ΔX

2Þ: �R<<ffððða, bÞ1, ða, bÞ1Þ, ðða, bÞ2,
ða, bÞ2Þggg, we get a contradiction.

Hence, �r2ðBÞ = f �R ∈ RELðX2∨ΔX
2Þ: �R<<ffðða, bÞj,

ða, bÞjÞg ; j = 1, 2gg. Thus, by Lemma 10 and Definition 21,

ðX, βX , rÞ is T′0.

Remark 27. Let X be an ordered-RELspace.

(i) By Theorems 17 and 23, X is �T0 iff X is �T0 at p, for
each p ∈ X

(ii) By Theorems 18 and 25, X is T1 iff X is T1 at p, for
each p ∈ X

(iii) By Theorems 19 and 26, X is T′0 iff X is T′0 at p, for
each p ∈ X

(iv) By Theorems 23–26, T1 ⟹ �T0 ⟹ T0 ⟹ T′0 but
the converse does not hold in general.

Corollary 28. Let ðX, PðXÞ, rÞ be in PU − REL. Then the fol-
lowing statements are equivalent.

(i) ðX, PðXÞ, rÞ is �T0

(ii) ðX, PðXÞ, rÞ is �T0PUCONV, where �T0PUCONV is
the category of �T0 pre-uniform convergence spaces
and uniformly continuous maps
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(iii) For each a, b ∈ X with a=b, and for all B ∈ PðXÞ,
fR ∈ RELðXÞ: R<<ffða, bÞggg ∉ rðBÞ or fR ∈ RE
LðXÞ: R<<ffðb, aÞggg ∉ rðBÞ, and fR ∈ RELðXÞ:
R<<ffða, aÞ, ðb, bÞggg ∉ rðBÞ.

Proof. By applying Example 4, Theorem 23, and Theorem
3.1.10 of [41].

Corollary 29. Let ðX, PðXÞ, rÞ be in PU − REL. Then, the fol-
lowing statements are equivalent:

(i) ðX, PðXÞ, rÞ is T1

(ii) ðX, PðXÞ, rÞ is T1PUCONV, where T1PUCONV is
the category of T1 pre-uniform convergence spaces
and uniformly continuous maps

(iii) For all a, b ∈ X with a=b, and for all B ∈ PðXÞ, fR
∈ RELðXÞ: R<<ffða, bÞggg ∉ rðBÞ and fR ∈ RELð
XÞ: R<<ffðb, aÞggg ∉ rðBÞ, and fR ∈ RELðXÞ: R
<<ffða, aÞ, ðb, bÞggg ∉ rðBÞ.

Proof. This follows from Example 4, Theorem 25, and The-
orem 3.2.4 of [41].

6. Quotient-Reflective Subcategories of the
Category of Ordered-RELspaces

Definition 30 (cf. [42]). Given a topological functor U : C
⟶ Set, and a full and isomorphism-closed subcategory
H of C , we say that H is

(i) Epireflective in C and closed if and only if H is
closed under the formation of products and extremal
subobjects (i.e., subspaces)

(ii) Quotient-reflective in C if and only if H is epireflec-
tive and is closed under finer structures (i.e., if A ∈
H , B ∈C , UðAÞ =UðBÞ, and id : A⟶ B is a C

-morphism, then B ∈H).

Theorem 31.

(i) Any �T0O-REL, T0O-REL and T1O-REL is a
quotient-reflective subcategory of O-REL

(ii) T0′O-REL is a normalized topological construct

Proof. ðiÞ Suppose C =�T0O − REL and ðX, βX , rÞ ∈C . It can
be easily verified that C is a full and isomorphism-closed
subcategory of O-REL and closed under finer structures. It
remains to show that X is closed under extremal subobjects
and closed under the formation of products.

Let A ⊂ X and ðβA, rAÞ denotes the sub O-REL structure
on A, induced by the inclusion map i : A⟶ X. We show
that ðA, βA, rAÞ is �T0O-REL space. Suppose that for any

a,b ∈ A with a ≠ b, fa, bg ∈ βA, then by the inclusion
map iðfa, bgÞ = fiðaÞ, iðbÞg = fa, bg ∈ βX , a contradiction
by Theorem 23.Thus, fa, bg ∉ βA.

Now, suppose fR ∈ RELðAÞ: R<<ffða, bÞggg ∈ rAðfagÞ
and fR ∈ RELðAÞ: R<<ffðb, aÞggg ∈ rAðfbgÞ. It follows
that, for all R ∈R such that fða, bÞg ⊂ R, and by the inclusion
map ifða, bÞg ⊂ iðRÞ implying fða, bÞg ⊂ R. It follows that
fR ∈ RELðXÞ: R<<ffða, bÞggg ∈ rXðfagÞ, a contradiction
by Theorem 23. Similarly, by the same argument fR ∈ RE
LðAÞ: R<<ffðb, aÞggg ∈ rXðfbgÞ, a contradiction. There-
fore, fR ∈ RELðAÞR<<ffða, bÞggg ∉ rAðfagÞ or fR ∈ RE
LðAÞ: R<<ffðb, aÞggg ∉ rAðfbgÞ.

In similar way, fR ∈ RELðAÞ: R<<ffða, bÞggg ∉ rAðfb
gÞ or fR ∈ RELðAÞ: R<<ffðb, aÞggg ∉ rAðfagÞ, and fR ∈
RELðAÞ: R<<ffða, aÞ, ðb, bÞggg ∉ rAðfagÞ or fR ∈ RELðAÞ
: R<<ffðb, bÞ, ða, aÞggg ∉ rAðfbgÞ. Hence, X is closed
under extremal subobjects.

Next, suppose that X =Q
k∈IXk, where ðβXk , rXk

Þ are

the �T0O-REL structures on Xk induced by projection
map πk : Xk ⟶ X for all k ∈ I, i.e., ðXk, βXk , rXk

Þ ∈C . We

show that ðX, βX , rXÞ is a �T0O-REL space. Let fa, bg ∈
βX for any a, b ∈ X with a ≠ b. Then, πkðfa, bgÞ = fπkðaÞ,
πkðbÞg = fak, bkg ∈ βXk , a contradiction by Theorem 23. Thus,
fa, bg ∉ βX .

Now, suppose fR ∈ RELðXÞ: R<<ffða, bÞggg ∈ rXðfagÞ
and fR ∈ RELðXÞ: R<<ffðb, aÞggg ∈ rXðfbgÞ. It follows R
∈R implies fða, bÞg ⊂ R. Then, there is k ∈ I for which ak ≠
bk ∈ Xk, and πkfða, bÞg ⊂ πkR implying fðπka, πkbÞg = fðak,
bkÞg ⊂ πkR. It follows that fR ∈ RELðXÞ: πkR<<ffðak, bkÞg
gg ∈ rXk

ðfakgÞ, a contradiction by Theorem 23. By the same
process, fR ∈ RELðXÞ: πkðRÞ<<ffðbk, akÞggg ∈ rXk

ðfbkgÞ,
a contradiction. Hence, fR ∈ RELðXÞ: R<<ffða, bÞggg ∉
rXðfag or fR ∈ RELðXÞ: R<<ffðb, aÞggg ∉ rXðfbgÞ. In
similar way, fR ∈ RELðXÞ: R<<ffða, bÞggg ∉ rXðfbgÞ or
fR ∈ RELðXÞ: R<<ffðb, aÞggg ∉ rXðfagÞ, and fR ∈ RELð
XÞ: R<<ffða, aÞ, ðb, bÞggg ∉ rXðfagÞ or fR ∈ RELðXÞ: R
<<ffðb, bÞ, ða, aÞggg ∉ rXðfbgÞ. Hence, X is closed under
the formation of products.

Therefore, the category �T0O-REL is a quotient-reflective
subcategory of O-REL.

Analogous to the above argument, setting C = T0
O − REL or T1O − REL, the proof can be easily followed
by using Theorem 24 or Theorem 25, respectively.

(ii) By the Theorem 26 and Remark 13, T0′O-REL and
O-REL are isomorphic categories and thus T0′O-REL is nor-
malized
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