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Convexity plays a vital role in pure and applied mathematics specially in optimization theory, but the classical convexity is not
enough to fulfil the needs of modern mathematics; hence, it is important to study generalized notion of convexity. Fraction
integral operators also become an important tool for solving problems of model physical and engineering processes that are
found to be best described by fractional differential equations. The aim of this paper is to study MT-h-convex functions via
fractional integral operators. We establish several Hermite—-Hadamard-type inequalities for MT-h-convex function via classical
and generalized fractional integrals. We also obtain special means related to our results and present some error estimates for

the trapezoidal formulas.

1. Introduction

One of the most important notions in mathematics is convex
functions which are very important for both pure and
applied mathematicians. Convex functions are helpful in
solving problems of optimization theory and many other
problems of applied nature.

Definition 1. Let J R and J° be interior of J, a mapping
Yy : ] — R said to be convex on J, if the following inequal-
ity holds for all ¢,d € J and A € [0, 1],

yOe+ (1-Ad) < hy(o) + (1-Ay(d). (1)

The mapping v is said to be concave if —y is convex.

The theory of inequalities got the attention of many
researchers, and the new inequalities are always appreciable
not only in real analysis but also the researchers working in

applied sciences use inequalities as a very effective tool for
analyzing different practical problems and to study various
properties of solution of different equations [1]. Jensen-
type inequalities, Hardy-type inequalities [2], Gagliardo-
Nirenberg-type inequalities [3], Griiss-type inequalities [4],
Ostrowski-type inequality [5, 6], etc. are extensively studied
in the literature. The most famous inequality in literature is
known as Hermite-Hadamard inequality, which has funda-
mental role in convex analysis. The Hermite-Hadamard-
type inequalities for different classes of convex function
can be found in [7, 8] and references therein.

Lety : ] €R — R be a convex mapping defined on the
interval J of real numbers and ¢, d € J. Then, the Hermite—
Hadamard inequality is as follows:
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with c<d and ¢,d € ]. If v is concave, then both the
inequalities reverse their direction.

Hermite-Hadamard inequality is the most important
inequality so far in inequality theory, and several exten-
sions of this inequality are given by researchers in recent
years [9]. Our motivation is to establish a generalized ver-
sion of Hermite-Hadamard-type inequality for MT-h-
convex functions. It is worthy to mention here that several
results of literature can be obtained from our established
results as a particular case by taking suitable values of
involved parameters.

Since classical notion of convexity is not enough for solv-
ing today’s problems, so this notion has been generalized by
several researchers to meet the needs of modern mathemat-
ics. Now, we present some generalized notions of convexity.

Definition 2 (see [10]). Let h: I — R be a nonnegative
mapping, h#0. The mapping v : ] — R is said to be h
-convex, if ¥ is nonnegative and for all ¢,de ], 1 €(0,1),
the following inequality holds:

y(Ae+ (1= 1)) Sh)y(e) +h(1-Ay(d).  (3)

The mapping is said to be h-concave if inequality (3) is
reversed.

Definition 3 (see [11, 12]). A mapping v : JCR — R is
said to be MT-convex on ] if it is nonnegative and satisfies
the following inequality:

VA Vi1

WM+U—M®S2ﬁi7W0+2¢XW

@. (4

Motivated by the above two notions, we introduce the
following notion of MT-h-convex function.

Definition 4. A mapping y : J SR — R is said to be MT-
h-convex on J, if for all ¢,d € J and h(A) € (0, 1), it is non-
negative and satisfies the following inequality:

y(Ac+ (1-N)d) <

Fraction integral operators also become an important
tool for solving problems of model physical and engineering
processes that are found to be best described by fractional
differential equations. Fractional calculus creates a diversity
in inequality theory of convex analysis [13, 14].

The following generalized fractional integral operators
were introduced by Ertugral and Sariaya [15] as follows:

Let p : [0,00) — [0,00) be such that

J’ﬁpdx<ax (6)

0
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then the left-hand-sided and right-hand-sided generalized
fractional integral operators are defined as:

Jpy(v) = JV PE/V__/\M y(A),v>e (7)
d -V
;hw@%{ig%zﬁwu¢v<¢ (8)

respectively.
The following remark justifies the generality of the above
fractional integral operators.

Remark 5. (1) If p(A) = A, then (7) and (8) convert to usual
Riemann fractional integral, respectively

v = [ v v

g (9)
Iﬂ@dzjwuﬂkv<d

v

(2) If p(A)=A"TI(n), then (7) and (8) reduce to the
Riemann-Liouville integral [14, 16]

1 vV
Tw(v)= — -\t v>c
R KR R IO e

‘ (10)

1 -1
Try(v)= WJV(A -v)Ty(L)dA, v < d.

Here, I'(n) = [t "m"'dm and Joy(v)=]4y(v) =y
).

Note that, for # = 1, the Riemann-Liouville integral con-
verts to the classical integrals. For the other interesting spe-
cial cases of (7) and (8), we refer to the readers [17, 18].

The aim of this paper is to establish Hermite-
Hadamard-type inequalities for the proposed notion of
MT-h-convex function in the setting of classical and gener-
alized fractional integral operators. As applications of our
results, we present special means related with our results.
We also establish some error estimates for the trapezoidal
formula.

2. Hermite-Hadamard-Type Inequalities via
Classical Fractional Integral

First, we present the following identity that has been
obtained in [19] which will play a crucial role in the proof
of our main results.

Lemma 6. Let v : ] CR — R be a differentiable function
on J° and c,de] with c<d. If v' €L,[c,d], then the
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following inequality holds:

-V vV—=¢C [ d
A= 1000 L[y

= (V_C)Zr(z—A)w’(AH(1—A)c)dA (11)

+ (”;_ v’ J1(1 — )y (AW + (1= 1)d)dA,

for each v € [c, d].

Theorem 7. Let v : ] c R* — R be a differentiable func-
tion on J° such that y' € L,[c,d] where c,de]. If |y'| is
MT-h-convex function on [c,d] and |y'| < Q where v € [c, d]
, then we have

(d-op(d) s ple) 1 wa(s) |
< QW X (;(51 +sz)),
where
5= J;(z - /\)%d/\, 5, = J;(z —A)%d&
(13)
with h(A)/h(1-)) < oo is finite.
Proof. From Lemma 6, we have
(d- v)w(d; * C(v —y(c) _ , ! : Kl”(s) s
- <2—_CC)2 E(l—)t)y/'()tv+(l—/\)c)d)t (14)
(‘fi__vc)z J:)u “ )y (AW + (1= A)d)dA.
Applying mode on both sides,
'<d— W O-gng L fws) N
. (Vd‘_cc)z J: Dy (v + (1= A)o)|dA (15)
(‘2__”6)2 J; N|y' (Av+ (1= 1)d)|dA.

Employing MT-h-convexity of [y, we have

v—c) ! Vh(A ,
S<d—c) L( _A)lb/hl(—))t [y’ )l

VI Dy I] PO a-n e

e
-[W%wu LD ya|an

Since |y’ (v)| < Q, so

| fw Ww e Jz A)_WCM]
d

a0y
<Q (2_ 2k G (S, + Sz)) + Q( d__vc)z G (S,

+Sz))

(17)
The proof is completed. O
Corollary 8. In Theorem 7, if we substitute h(A) = A, we get

[20] Theorem 7.

Remark 9. If we take v=(c+d)/2 in Theorem 7, then we
obtain

(d=)Qx (S, +5,).

Theorem 10. Let v : ] C R* — R be a differentiable func-
tion on J° such that v' € L,[c,d] where ¢,d e ]. If [y'|" is
MT-h-convex mapping on [c,d] and q>1,(1/p) + (1/q) =1
also |y'| < Q and v € [c, d], then we have

d-vyd+ -yl 1 r

() W




Proof. Assume that p > 1 and using Lemma 6, we have

-V v—=cC C d
'<d D09 L[y

d-c
: (Vd__?z J; Ny A+ (1-2)c)|dA (20)
* (2__? L(l M|y (Av+ (1= Q)d)|dA.

Using Holder inequality,

g% (J;a - )t)"d/\) N <£)|1//’(AV +(1- /\)c)‘qd)t> "

+ % (J;(l —A)"d/\) N (J lv' (Av+ (1-1)d)| d)l) l/q.

(21)

Since |y'|" is MT-h-convex mapping and |y(v)| < Q, so

we have
1 1/p 1 \/W , q
X(p?) X(Jolz eI
Rn G\ @y
2 /h0Y) +|1’/(C>|D T
y 1 1/p>< 1 \/m , q
<pﬁ) <J0 lz,/ha EpY) [v )]

ATE IR
i o + | (d)]])q.

Some small calculations yield that

This implies that

da. (23)

1/q

_ (v—f);t(cd—v)2 y (Pi l)pr (Qqﬁ)%d?\)

(24)
The proof is completed. O
Corollary 11. In Theorem 10, if we substitute h(1) = A, we

get [20] Theorem 2.4.
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Remark 12. If we take v=(c+d)/2 in Theorem 10, then we
obtain

‘(d - v)w(d(; * C(v —y(c) _ . ! : J jw(s) s
) . I
< ((d;C)> x (p;) i (QqJO h(hﬁ)}t) dA) i}
(25)

Theorem 13. Let y : ] CR* — R be a differentiable func-
tion on J° such that v' € L,[c,d] with c < d where c,d € ]. If
ly'|" is MT-h-convex function on [c,d] with q¢>1 and |y’
(v)| < Q where v € |c,d|, then we have

-V v—c¢C [ d
'<d D 0= _ L[y

d-c
(=) +(d-v) _(1\"WD /] 1 g
SR Er— X(z) (5Qq51+5‘3q52> ’
(26)
where

S :JI(I_A)4M(A)M

o ni-1)
(27)

! h(I-A
SZ:JO(I—/\) (h](/\))d/\’

with h(A)/h(1 - 1) < oo is finite.

Proof. Using Lemma 6, Holder inequality, and MT-h-

. !
convexity of [y'|?, we have

-V vV—¢C C d
'<d DD L [y,

d-c
_o2 [t
s(Vd CC) J Ny W+ (1-A)e)|dA
- 0
(d-v)* (!
R J(l—}t)|t// (Av+(1 |d)t
0

< (Vd - CC)Z (J;(l - A)d/\) o

Jl 1)y )w+(l—/\)c)|qd/\)l/q
dd__?z (Ku - A)d/\) o

1 /g
(J My (v + (12 |dA>
0
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B £ Sl PRV o R
-dA+JI(1—/\ V()

1/q
! q
PN Ty v @ dA)

(d _ V)Z 1 1-(1/q) 1 ~ h()t)
i X<z) X(Jo(l EEN iy
ol | a-y ﬁvl |qu>

(V—C)2 1 (llq) 1 1/q
= i \2 Q Si Qq
(d _ V)2 1 1—(1/q) 1 1 1/q
() 4
— )2 _ 2 1-(1/q) 1/q
S (v C)dt(cd V)" (%) (;Qqsl + %@132) .

(28)
The proof is completed. O
Corollary 14. In Theorem 13, if we substitute h(1) = A, we

get [20] Theorem 2.6.

Remark 15. If we take v=(c+ d)/2 in Theorem 13, then we
obtain

-V v—¢C C d
’<d D =MLy

d—C 1 1-(1/q) 1 1 1/q
<! 5 ) « <5) (5@151 + EQqsz> .

3. Hermite-Hadamard-Type Inequalities via
Generalized Fractional Operators

To establish Hermite-Hadamard-type inequalities via gen-
eralized fractional operators for MT-h-convex function, we
need the following identity [21].

Lemma 16. Let y : [c,d] —R be differentiable function on
(¢, d) with ¢ < d such that w € L'[c, d]. Then, for each t € (0,
1), we have

(1-1)'Q(1) + £19(1)

e v(v)
- ﬁ (1= ) (w Ly(e)) + (V'L y(d))]
1 (30)

=(1- t)ﬂ”J Q' (v + (1-A)c)dr

0

- t'v“rvm)w’()w +(1-21)d)dA,

0

where v=tc+ (1 —t)d, and

0OA) = Ap((vs_c))ds<oo,
N ] (31)
V(A)=J Pl S_V))ds<oo

Theorem 17. Let v : [c, d] — R be a differentiable function
on (c,d) and y' € L'[c, d] with 0< c < d and n > 0. Then, the
following inequality holds for each t € (0, 1). If [y'| is MT-h-
convex on [c, d),

)(1 UL UM

- (1= Ly(@) + (T (d)

(1 _ t)f’]Jr]
2
tn+1

+ 5 {M ' (v |+N1|1//(d)},

‘ (32)

<

[y @)+ Ny )]

where the constants M, M,, N, and N, are

JIF i
LF YOy
1 j\/i [Q(Y)]dA,
N, JOF A

Proof. From Lemma 16, we have

M, =

(33)

Z
[

(o v,

[ L) + (L)
1 34
=(1- t)”“J Q)Y (v + (1= A)c)dA e

0

- r"“rv@)w’()w +(1-21)d)dA.

0



Using mode property on both sides, we obtain

’a S ORI

- - @) + (@) ‘
<(1- t)"”JO

+ t””JOW(A)

. I .
Since|y'| is MT-h-convex, so we have

<(1- tW”L@(A)\ [

(35)
M| (Av+ (1= 2)c)|dA

|y (A + (1= A)d) |dA.

Iy LT @
NGy ¢—“

! N0 N
t’“lJ V| |—e— |y dA.
7 1V )'me W)+ F 2y @
(36)
After simplification, we obtain desired result
1—¢ n+l
- Iy ) +vilv' @]
(37)
t‘r]+1 )
- [Mily 0]+ N (@)
O
Corollary 18. In Theorem 17, if we substitute h(A) = A, we

get [21] Theorem 2.1.

Theorem 19. Let v : [c, d] — R be a differentiable function
over (¢c,d) and y'eL'[c, d] with 0<c<d andn> 0. If [y'|* is
MT-h-convex with q > 1. Then for each t € (0, 1), the follow-
ing inequality holds:

‘u RILUALLUIS

=) @)

o
(v wor) [ S22

1 1ip
4 (J Q(A)Pd)t)
0

~<§(Iw’<v>|q+rw< [ D dA)

h(1—-A

Q(A)Pd)t) N

v (38)
dA)

where (1/p) + (1/q) =1 and p > 1.
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Proof. By using Lemma 16, Holder’s inequality, and MT-h-
convexity of [y'|?, we get

’(l—t)”Q(1)+t’7V(l) 1

d-c d-c

(A=) Ly(c)) + (v I,p(d))]
<(1- )'1“J O[3 (v + (1= 1)¢)|dA

+t’7”J V)| (Av+ (1= L)d)|dA

S(l_t)ml(JO’Q(A)pdA)I/P(J v (v + (1= 1)) dA) iq
L (J;'vadk) v <JO|W'()W+ (1- A)d)|qda) "

1 1p
S(l—t)ﬂﬂ(JOQ(/\)Pd/\) (J[\/LI(A_W )|
\/*‘ \}dA) + 11 (JO V(A)Pd/\>
(Jl{ Vh(d) ‘1//'( | /—“_‘_" |} >1/q
ol 2y/R(1-1) 2/h( '
(39)
Since,
J h(%) dA:J hL-A) gy, (40)
h(1-A (M)

this implies that

<(1-t)r! <J:} Q(M%M) " (; (’W’(V)’q + ‘W’(C)’q)
1/q
L VY al [
'L h(l—A)d)L) - (JO
1 1/q
' (% ('@l ' @") J 7,13%) dk)

Q(A)Pd/\> "

The proof is completed. O

Corollary 20. If we substitute h(\) =
obtain [21] Theorem 7.

A in Theorem 19, we

Theorem 21. Let y : [c, d]| — R be a differentiable function
on (¢,d) andy' € L'[c, d] with 0 < ¢ < d and n > 0. If function



Journal of Function Spaces

ly'|* is MT-h-convex on [c, d] for q > 1, then for each te(0, 1),
we have

(1-1)1Q(1) + t#V(1)
‘ y v(v)

(42)

) u-

(M )" +N1}1// (C)|q)”q
e ]
v’

(v )+ Ny @)7)

Proof. By using Lemma 16, power mean integral inequality,

and MT-h-convexity of |y'|?, we have

'(1 - t)ﬂ(ii(f);— t”V(l) ‘//(V)

(0007 1w() + (7L y(a)|

<=1 gy’ v + (1= 29 fan
+m+lj Wl A+ (1= A)d)|dr

<=0 ([ o) o ([ ity oo - 2fan) :
w0 ([ vam) o ([l +a-naran)

1-(Ug) / 1 TS
<(1-tym! <J |2(A )Id?\> (LQ(A)I[N%IW'(V)V
/RT=X) Va 1 1-(1/q)
It/f( I} ) +t’7”(L\V()L)|dA)

2\/“
x<J1|()[ \/h(—)L | } \/—| |} >1/q
0 \/— \/—

v 1-(1/g) .
(%) (1-1) ’I+l|: QA )|d}t} (M1|l//(v)|q +N1|1///(c)|q) q

" G) o [ |d)‘} " (MZW’(V)V +N2‘W’(d)|q) l/q'
(43)
The proof is completed. -

Corollary 22. If we substitute identity function h(A) = A in
Theorem 21, we obtain [21] Theorem 2.3.

4. Application to Special Means

In this section, we present applications of our results in spe-
cial means. Firstly, we give definitions of special means.

(1) The arithmetic mean

A:A(c,d)_¥,c,dem (44)

(2) The logarithmic mean

d-—

C
L > =
)= M= d

sle| #|d|,cd#0,c,de R, (45)

(3) The generalized logarithmic mean

qml — el

1/n
L > =\l 5 Z_l) L) > .
2(6d) [(d—c)(n+1)] ne 0,c,deR,c+d

(46)
Now, using the results of §2, we give some applications
to special means of real numbers.

Proposition 23. Assume that c,d € R,0<c<d and neZ,|
n| = 2. Then, ¥V q >1 following inequality holds:

A(e", d") = Ly (e, d)]

d-c 1\ e\
= (T) x (pﬁ> * (quo h(i-%) dA)
A" d") = Ly (¢, d))|

(-9

N\ 1) /4 ; 1, 1/q
- QIS+ =QIS, ) .
=5 o)

Proof. For y(v) = v" the statement follows by Remark 12 and
15 where ve R, neZ, |n| > 2. d

(47)

Proposition 24. Assume that c,d e R,0<a<d. Then, ¥V q
>1, we have

(48)

Proof. The statement follows by Remark 12 and 15 for v
(v) =1/v. O



5. Estimates of Error for Trapezoidal Formula

Assume that f is a division c=v, <v, <--<v,_ <v,=d of
interval [c, d] and consider the quadrature formula

j Y)A) =T, (. f) + E, (v ), (49)

where
T = 3 L)y (s0)
k=0

for the trapezoidal version E,(y, f) donates the associ-
ated approximation error.

Proposition 25. Let y: J<R — R be a differentiable
function on J° such that y' € L,[c, d], where ¢,d € ] with ¢
<d and |y'|" is MT-h-convex on [c, d). Then, in 24, for every
division f of [c,d] and |y' (v)| < Qv € [c, d], the trapezoidal
error estimate satisfies

[E (v f)| < G) « <pi1>1/p

VN NS
X(Qﬂ()m””) ];)(Vkﬂ Vi)
(51)

where p> 1, (1/p) + (1/q) = 1.

Proof. On applying Remark 12 on the subinterval [v;, vi,,]
(k=0,1,2,---,n—1) of the division, we have

| Yy - 0.

B[ -

k=0 Vi
(=nae v) +y(v
< J l//(V)dV— V/( k) 21//( k+1) (Vk+1 _ Vk)
k=0 vk
1p 1 lq
< (1) y <1>1) < QqJ VY
2 +1 0/h(1-2)
n—1
’ Z (Vk+1 - Vk)
k=0
(52)
With this, the proof is completed. O

Proposition 26. Let y: J<R — R be a differentiable
function on J° such that v' € L,[c,d], where c,d € ] with ¢
<d and |y'|" is MT-h-convex on [c, d) where q > 1, for every
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division f of [c,d] and |y’ (v)| < Q v € [c, d], the trapezoidal
error estimate satisfies

1 2-(1/9) 1 1 1/q n—1 5
Ewns(3) (G50 50%) Y tn-nr

k=0
(53)

Proof. By using Remark 15, the proof comes the same as
Proposition 25. O

6. Conclusion

Convexity and fractional integral operators are the most
important notions to deal with the problems of today’s
world. In the present paper, we introduced a more general
notion of convexity, called as MT-h-convexity. The classical
and generalized fractional integral operators are used to
establish the most famous and most studied Hermite—
Hadamard-type inequalities for the proposed class of convex
functions. Applications of presented results to special means
are also given. Corollaries and remarks presented in this
paper justify the generality of our results. It is interesting
to establish Hermite-Hadamard-type inequalities for the
other variants of fractional integral operators, like Caputo
fractional integral operators and Atangana fractional inte-
gral operators.
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