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In this article, we find the necessary conditions for the existence and uniqueness of solutions to a system of hybrid equations that
contain mixed fractional derivatives (Caputo and Riemann-Liouville). We also verify the stability of these solutions using the
Ulam-Hyers (U-H) technique. Finally, this study ends with applied examples that show how to proceed and verify the
conditions of our theoretical results.

1. Introduction

Although the concept of fractional calculus was established
300 years ago, interest in this type of derivative appeared
for a short period. So that it is no secret to anyone that the
most important use of fractional derivatives is to find analyt-
ical solutions to differential equations if possible, or by using
numerical analysis methods to find an approximation to
these solutions. In this study, we will focus on the idea of
studying theories that investigate the existence of a solution
to a system of hybrid fractional equations that contain mixed
fractional derivatives with boundary conditions attached to
them.

As mentioned before, fractional calculus as a concept
is not very recent. It is worth mentioning here the great
names who have given a lot to this science, such as A.V.
Letnikov, J. Hadamard, J. Liouville, B. Riemann M., and
Caputo L. worked in this field. These names must be men-
tioned by way of example. To get acquainted with some of
the names of scientists who have made great contributions
to fractional calculus in the modern world, we ask the
reader to look at [1].

Fractional derivatives have played a very important role
in mathematical modeling in many diverse applied sciences,
see [2, 3]. For example, the authors in [4] employed the frac-
tional derivative of the Psi-Caputo type in modeling the

logistic population equation, through which they were able
to show that the model with the fractional derivative led to
a better approximation of the variables than the classical
model. In addition, the authors in [5] employed the frac-
tional derivative of the Psi-Caputo type and used the kernel
Rayleigh, to improve the model again in modeling the logis-
tic population equation.

As a final example, the authors in [6] employed the
fractional derivatives of the Caputo and Caputo-Fabrizio
type by modeling the equation that gives the relationship
between atmospheric pressure and altitude, and they were
also able to show that the fractional equation gave less
error in estimating atmospheric pressure at a certain alti-
tude. There are many scientific papers in the literature that
prove the superiority of fractional derivatives over classical
ones.

There are a large number of manuscripts published in
the literature that investigate the issue of the existence of
a solution to fractional differential equations, whether
they are sequential equations of type or nonsequential
equations [7–14].

In 2012, the authors in [7] studied a nonlinear three-
point boundary value problem of sequential fractional differ-
ential equations. Green’s function of the associated problem
involving the classical gamma function is obtained. Exis-
tence results are obtained using Banach’s contraction
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mapping principle and Krasnoselskii’s fixed point theorem.

CD
q
D + λð Þχ τð Þ =w τ, χ τð Þð Þ, τ ∈ 0, 1½ �q ∈ 1, 2ð �,

χ 0ð Þ = 0, χ′ 0ð Þ = 0, χ 1ð Þ = δχ ηð Þ, η ∈ 0, 1ð Þ:

(
ð1Þ

Here, D is the ordinary derivative, ψ : ½0, 1� ×ℝ⟶

ℝ, λ ∈ℝ + ,δ is a real number such that δ ≠ ððλ + e−λ − 1Þ
/ðλη + e−λη − 1ÞÞ.

In 2019, Ahmad et al. [15] developed the existence the-
ory for a new kind of nonlocal three-point boundary value
problems for differential equations involving both Caputo
and Riemann–Liouville fractional derivatives. The existence
of solutions for the multivalued problem concerning the
upper semicontinuous and Lipschitz cases is proved by
applying nonlinear alternative for Kakutani maps and Covitz
and Nadler fixed point theorem.

CDq
1−

RLD
p
0+

� �
ω τð Þ = ϑ τ, ω τð Þð Þ, 1 < q ≤ 2, 0 < p ≤ 1,

ω 0ð Þ = ω′ 0ð Þ = 0, ω 1ð Þ = δω ζð Þ,

8<
:

ð2Þ

where φ : ½0, 1� ×ℝ⟶ℝ, δ ∈ℝ, ζ ∈ ð0, 1Þ:
It is known that fractional calculus and FDEs are used in

different fields such as physics, signal and image processing,
control theory, robotics, economics, biology, and metallurgy,
see for example [16, 17] and references therein. On the other
hand, recently, many researchers have paid much attention to
hybrid differential equations of fractional order. This is because
of the development and new advanced applications of fractional
calculus. The fractional hybrid modeling is of great significance
in different engineering fields, and it can be a unique idea for
future combined research between various applied sciences,
for example, see [18] in which fractional hybrid modeling of a
thermostat is simulated, for some recent results on hybrid.

For FDEs, we refer to [19, 20]. Freshly, some authors have
studied different characteristics of hybrid FDEs including the
existence of solutions, see for some detail [21–29], and some
go further and studied Hyers-Ulam stability for FDEs by dif-
ferent mathematical theories, see for some detail [26].

Zhao et al. [29] investigated the existence result for the
fractional hybrid differential equations with Riemann–Liou-
ville fractional derivatives given by

RLD
r
0+

� � x tð Þ
f t, x tð Þð Þ

� �
= g t, x tð Þð Þ, t ∈ 0, T½ �, r ∈ 0, 1ð Þ,

x 0ð Þ = 0,

8><
>:

ð3Þ

where RLDr
is Riemann–Liouville fractional derivative,

f : ½0, T� ×ℝ⟶ℝ/f0g,g : ½0, 1� ×ℝ⟶ℝ are assumed to
be continuous.

Hilal and Kajouni [30] studied the Caputo hybrid BVP
of the form

CD
r
0+

� � x tð Þ
f t, x tð Þð Þ

� �
= g t, x tð Þð Þ, t ∈ 0, L½ �, r ∈ 0, 1ð Þ,

a1
x 0ð Þ

f 0, x 0ð Þð Þ + a2
x Lð Þ

f L, x Lð Þð Þ = d,

8>>><
>>>:

ð4Þ

in which f : ½0, T� ×ℝ⟶ℝ/f0g, g : ½0, 1� ×ℝ⟶ℝ
are assumed to be continuous and a1 + a2 ≠ 0.

In [31], the authors have considered the following
coupled hybrid system. A new generalization of Darbo’s the-
orem associated with measures of noncompactness is the
main tool in their approach:

CD
q

� � χ τð Þ
ℏ τ, χ τð Þ, ϑ τð Þð Þ
� �

= ψ τ, χ τð Þ, ϑ τð Þð Þ, τ ∈ 0, 1½ � 0 < q ≤ 1,

RLD
p

� � ϑ tð Þ
ƛ τ, χ τð Þ, ϑ τð Þð Þ
� �

= φ τ, χ τð Þ, ϑ τð Þð Þ, 1 < p ≤ 2,

8>>><
>>>:

ð5Þ

supplemented with nonlocal hybrid boundary conditions.
Inspired by the aforementioned studies, the following

sequential hybrid BVP is considered for investigating the
existence of the solution and for the stability of its solution
via the U-H sense

CD
q
1−

RLD
r
0+

� � χ τð Þ
ℏ τ, χ τð Þ, ϑ τð Þð Þ
� �

= ψ τ, χ τð Þ, ϑ τð Þð Þ, τ ∈ 0, 1½ � 1 < q ≤ 2, 0 < r ≤ 1,

CD
q
1−RLD

p
0+

� � ϑ tð Þ
ƛ τ, χ τð Þ, ϑ τð Þð Þ
� �

= φ τ, χ τð Þ, ϑ τð Þð Þ, 0 < p ≤ 1,

χ 0ð Þ = χ′ 0ð Þ = 0, χ 1ð Þ = δχ ζð Þ, δ ∈ℝ, ζ ∈ 0, 1ð Þ,
ϑ 0ð Þ = ϑ′ 0ð Þ = 0, ϑ 1ð Þ = εϑ ξð Þ, ε ∈ℝ, ξ ∈ 0, 1ð Þ:

8>>>>>>>>><
>>>>>>>>>:

ð6Þ

2 Journal of Function Spaces



After this introductory section of this work, the manu-
script is organized as the following hierarchical structure:
Section 2 delivers the basic elements of fractional calculus
definitions, Section 3 introduces the main results of the
work, Section 4 introduces the (U-H) stability result for
our problem, and the last section is arranged for a numerical
example to support the theoretical results.

2. Preliminaries

In this part, we present some basic elements and definitions
needed to find solutions to the main mathematical problem
presented in this study.

Definition 1 (see [3]). The Riemann-Liouville (RL) fractional
integral is defined by

RLI
δ
0+ϑ

� �
ϖð Þ≔ 1

Γ δð Þ
ðϖ
0
ϖ − tð Þδ−1ϑ tð Þdt, ϖ > 0, Re δð Þ > 0:

ð7Þ

Definition 2 (see [3]). The Caputo fractional derivative of
order ν of a function ϑ : ℝ+ ⟶ℝ is given by

CD
ν
0+ϑ

� �
τð Þ =

ðτ
0

τ − zð Þp−ν−1ϑ pð Þ zð Þ
Γ p − νð Þ dz, p − 1 < ν < p, p = ν½ � + 1:

ð8Þ

Theorem 3 (see [3], Banach’s contraction mapping princi-
ple). Let ðS, dÞ be a complete metric space; H : S⟶ S is a
contraction then

(i) H has a unique fixed point s ∈ S; that, is HðsÞ = s

(ii) ∀s0 ∈ S, we have lim
n⟶∞

Hnðu0Þ = u

Theorem 4 (see [3], nonlinear alternative of Leray-Schauder
type). Assume that V is an open subset of a Banach space U ,
0 ∈ V , and F : �V ⟶U be a contraction such that Fð�VÞ is
bounded then either

(i) F has a fixed point in �V , or

(ii) ∃μ ∈ ð0, 1Þ and v ∈ ∂V such that v = μFðvÞ holds

Theorem 5 (see [2], Arzela-Ascoli theorem). F ⊂ CðU ,ℝÞ is
compact if and only if it is closed, bounded, and
equicontinuous.

3. Main Results

Lemma 6. If h ∈ Cð½0, 1�,ℝÞ, and

then the solution to the problem mentioned above is given by

χ τð Þ = ℏ τ, χ τð Þ, ϑ τð Þð Þ

× 1
Γ rð Þ

ðτ
0
τ − zð Þr−1Iq1−w zð Þdz

�
+ τr+1

1 − δζr+1
� �

Γ rð Þ

� δ
ðζ
0
ζ − zð Þr−1Iq1−w zð Þdz −

ð1
0
1 − zð Þr−1Iq1−w zð Þdz

" #!
:

ð10Þ

Proof. Taking RLIq1− to ðCDq
1−

RLDr
0+ÞðχðτÞ/ℏðτ, χðτÞ, ϑðτÞÞÞ

=wðτÞ , then take RLIr0+ to the resulting equation, we get

χ τð Þ
ℏ τ, χ τð Þ, ϑ τð Þð Þ =

RLI
r
0+

RLI
q
1−w τð Þ + a0 + a1t

� �

+ a2τ
r−1 = RLI

r
0+

RLI
q
1−w τð Þ + a0

τr

Γ r + 1ð Þ
+ a1

τr+1

Γ r + 2ð Þ + a2τ
r−1:

ð11Þ

Substitution of χð0Þ = 0 and χ′ð0Þ = 0 in Equation (11)
gives a2 = 0 and a0 = 0, respectively, and consequently,

CD
q
1−

RLD
r
0+

� � χ τð Þ
ℏ τ, χ τð Þ, ϑ τð Þð Þ
� �

=w τð Þ , τ ∈ 0, 1½ �, 1 < q ≤ 2, 0 < r ≤ 1,

χ 0ð Þ = χ′ 0ð Þ = 0, χ 1ð Þ = δχ ζð Þ, δ ∈ℝ, ζ ∈ 0, 1ð Þ,

8><
>: ð9Þ
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Equation (6) becomes

χ τð Þ
ℏ τ, χ τð Þ, ϑ τð Þð Þ = RLI

r
0+

RLI
q
1−w τð Þ + a1

τr+1

Γ r + 2ð Þ : ð12Þ

Use of the condition χð1Þ = δχðζÞ in Equation (12) yields

a1 =
Γ r + 2ð Þ
1 − δζr+1

δRLI
r
0+

RLI
q
1−w ζð Þ − RLI

r
0+

RLI
q
1−w 1ð Þ

� �
: ð13Þ

Inserting a1 in Equation (12) gives

χ τð Þ
ℏ τ, χ τð Þ, ϑ τð Þð Þ =

RLI
r
0+

RLI
q
1−w τð Þ + Γ r + 2ð Þ

1 − δζr+1

� δRLI
r
0+

RLI
q
1−w ζð Þ − RLI

r
0+

RLI
q
1−w 1ð Þ

� � τr+1

Γ r + 2ð Þ :

ð14Þ

Alternatively, we have

χ τð Þ = ℏ τ, χ τð Þ, ϑ τð Þð Þ
× RLI

r
0+

RLI
q
1−w τð Þ + Γ r + 2ð Þ

1 − δζr+1
δRLI

r
0+

RLI
q
1−w ζð Þ

��

− RLI
r
0+

RLI
q
1−w 1ð Þ

� τr+1

Γ r + 2ð ÞÞ, τ ∈ 0, 1½ �:

ð15Þ

Equation (15) is equivalent to Equation (10), which
makes the proof done.

Denote the Banach space by C = C½0, 1� with the norm k
hk = sup

0≤t≤1
jhðtÞj. Then, the product space ðC × C, kðχ, ϑÞkÞ

with the norm kðχ, ϑÞk = kχk + kϑk, ∀ðx, yÞ ∈ C × C is
indeed a Banach space too. We define an operator ϒ : C
× C⟶ C × C as

ϒ χ, ϑð Þ τð Þ =
ϒ 1 χ, ϑð Þ τð Þ
ϒ 2 χ, ϑð Þ τð Þ

 !
, ð16Þ

where

ϒ 1 χ, ϑð Þ τð Þ = ℏ τ, χ τð Þ, ϑ τð Þð Þ
× 1

Γ rð Þ
ðτ
0
τ − zð Þr−1RLIq1−ψ z, χ zð Þ, ϑ zð Þð Þdz

�

+ τr+1

1 − δζr+1
� �

Γ rð Þ
× δ

ðζ
0
ζ − zð Þr−1RLIq1−ψ z, χ zð Þ, ϑ zð Þð Þdz

"

−
ð1
0
1 − zð Þr−1RLIq1−ψ z, χ zð Þ, ϑ zð Þð Þdz

�
Þ,ϒ 2 χ, ϑð Þ τð Þ

= ƛ τ, χ τð Þ, ϑ τð Þð Þ × 1
Γ pð Þ

ðτ
0
τ − zð Þp−1RLIq1−φ z, χ zð Þ, ϑ zð Þð Þdz

�

+ τp+1

1 − εξp+1
� �

Γ pð Þ
× ε

ðξ
0
ξ − zð Þp−1RLIq1−φ z, χ zð Þ, ϑ zð Þð Þdz

"

−
ð1
0
1 − zð Þp−1RLIq1−φ z, χ zð Þ, ϑ zð Þð Þdz

��
:

ð17Þ

To construct the necessary conditions for the results of
uniqueness and existence of the problem (6), let us con-
sider the following hypotheses.

(C1) Let the functions f and g are assumed to be contin-
uous and bounded; that is, ∃λf , λg > 0 such that

ℏ τ, χ, ϑð Þj j ≤ λℏ, and ƛ τ, χ, ϑð Þj j ≤ λƛ,∀ τ, χ, ϑð Þ ∈ 0, 1½ � ×ℝ2:

ð18Þ

(C2) Let the functions ψ and φ are assumed to be contin-
uous, and ∃υi, ℓi > 0, ði = 1, 2Þ such that

ψ τ, χ1, ϑ1ð Þ − ψ τ, χ2, ϑ2ð Þj j ≤ υ1 χ1 − χ2j j + υ2 ϑ1 − ϑ2j j,

φ τ, χ1, ϑ1ð Þ − φ τ, χ2, ϑ2ð Þj j ≤ ℓ1 χ1 − χ2j j
+ ℓ2 ϑ1 − ϑ2j j,∀τ ∈ 0, 1½ �, χi, ϑi ∈ℝ, i = 1, 2ð Þ: ð19Þ

(C3) There is positive constants ω0, θ0, and ωi, θi ≥ 0 ði
= 1, 2Þ such that

ψ τ, χ, ϑð Þj j ≤ ω0 + ω1 χj j + ω2 ϑj j, ð20Þ

φ τ, χ, ϑð Þj j ≤ θ0 + θ1 χj j + θ2 ϑj j,∀τ ∈ 0, 1½ �, χi, ϑi ∈ℝ, i = 1, 2ð Þ:
ð21Þ

(C4) Let S ⊂ C × C be a bounded set, then ∃κi > 0, ði = 1
, 2Þ such that jψðτ, χðτÞ, ϑðτÞÞj ≤ κ1,and

φ τ, χ τð Þ, ϑ τð Þð Þj j ≤ κ2,∀ χ, ϑð Þ ∈ S: ð22Þ
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Observe that

1
Γ rð ÞΓ qð Þ

ðτ
0
τ − zð Þr−1

ð1
s
u − zð Þq−1dudz

=
ðτ
0

τ − zð Þr−1
Γ rð Þ

ð1
z

u − zð Þq−1
Γ qð Þ dudz

=
ðτ
0

τ − zð Þr−1
Γ rð Þ

u − zð Þq
Γ q + 1ð Þ

����
u=1

u=z
dz

=
ðτ
0

τ − zð Þr−1
Γ rð Þ

u − zð Þq
Γ q + 1ð Þ

����
u=1

u=z
dz =

ðτ
0

τ − zð Þr−1
Γ rð Þ

1 − zð Þq
Γ q + 1ð Þ dz

≤
ðτ
0

τ − zð Þr−1
Γ rð Þ

1
Γ q + 1ð Þ dz, 1 − sð Þq ≤ 1, 1 < q ≤ 2ð Þ

= τr

Γ r + 1ð ÞΓ q + 1ð Þ :

ð23Þ

To facilitate the calculations below, let us say

Λ1 = sup
0≤τ≤1

1
Γ rð ÞΓ qð Þ

ðτ
0
τ − zð Þr−1

ð1
z
u − zð Þq−1dudz

��

+ τr+1

1 − δζr+1
��� ���Γ rð ÞΓ qð Þ

× δj j
ðζ
0
ζ − zð Þr−1

ð1
z
u − zð Þq−1dudz

"

−
ð1
0
1 − zð Þr−1

ð1
z
u − zð Þq−1dudz

�
g

≤
1

Γ q + 1ð ÞΓ r + 1ð Þ 1 + δj jζr

1 − δζr+1
��� ���

2
64

3
75,

Λ2 = sup
0≤t≤1

1
Γ pð ÞΓ qð Þ

ðτ
0
τ − zð Þp−1

ð1
z
u − zð Þq−1dudz

�

+ τp+1

Γ pð Þ 1 − εξp+1
��� ���Γ qð Þ

× εj j
ðξ
0
ξ − zð Þp−1

ð1
z
u − zð Þq−1dudz

"

−
ð1
0
1 − zð Þp−1

ð1
s
u − zð Þq−1dudz

�	

≤
1

Γ p + 1ð ÞΓ q + 1ð Þ 1 + εj jξp

1 − εξp+1
��� ���

2
64

3
75:

ð24Þ

Theorem 7. If both (C1) and (C2) are satisfied, and assume
that ½λℏΛ1ðυ1 + υ2Þ + λƛΛ2ðℓ1 + ℓ2Þ� < 1. Then, the system in
Equation (6) has a unique solution.

Proof. Define a closed ball Bγ = fðχ, ϑÞ ∈ C × C : kðχ, ϑÞk ≤
γg with γ ≥ ðλℏΛ1Nψ + λƛΛ2NφÞ/ð1 − ðλℏΛ1ðυ1 + υ2Þ + λƛ
Λ2ðℓ1 + ℓ2ÞÞÞ, where Nψ = sup

0≤τ≤T
jψðτ, 0, 0Þj,Nφ = sup

0≤τ≤T
jφðτ,

0, 0Þj.
Observe that jψðτ, χ, ϑÞj = jψðτ, χ, ϑÞ − ψðτ, 0, 0Þ + ψðτ,

0, 0Þj ≤ υ1kχk + υ2kϑk +Nψ ≤ ðυ1 + υ2Þγ +Nψ.

First, we show that I �Bγ ⊂Bγ. For any ðχ, ϑÞ ∈Bγ, τ ∈ ½
0, 1�, we have

ϒ 1 χ, ϑð Þ τð Þj j = ℏ τ, χ τð Þ, ϑ τð Þð Þ × 1
Γ rð Þ

ðτ
0
τ − zð Þr−1RLIq1−ψ z, χ zð Þ, ϑ zð Þð Þdz

�����
+ τr+1

1 − δζr+1
� �

Γ rð Þ
× δ

ðζ
0
ζ − zð Þr−1RLIq1−ψ z, χ zð Þ, ϑ zð Þð Þdz

"

�
ð1
0
1 − zð Þr−1RLIq1−ψ z, χ zð Þ, ϑ zð Þð Þdz

�
Þj

≤ λℏ sup
0≤τ≤1

1
Γ rð ÞΓ qð Þ

ðτ
0
τ − zð Þr−1

�

�
ð1
z
u − zð Þq−1 ψ z, χ zð Þ, ϑ zð Þð Þj jdudz + τr+1

1 − δζr+1
��� ���Γ rð ÞΓ qð Þ

� δj j
ðζ
0
ζ − zð Þr−1

ð1
z
u − zð Þq−1 ψ z, χ zð Þ, ϑ zð Þð Þj jdudz

"

−
ð1
0
1 − zð Þr−1

ð1
z
u − zð Þq−1 ψ z, χ zð Þ, ϑ zð Þð Þj jdudz

�	

≤ λℏ υ1 + υ2ð Þγ +Nψ


 �
sup
0≤τ≤1

ðτ
0
τ − zð Þr−1

ð1
z
u − zð Þq−1dudz

�

+ τr+1

1 − δζr+1
��� ���Γ rð ÞΓ qð Þ

× δj j
ðζ
0
ζ − zð Þr−1

ð1
z
u − zð Þq−1dudz

"

−
ð1
0
1 − zð Þr−1

ð1
z
u − zð Þq−1 ψ z, χ zð Þ, ϑ zð Þð Þj jdudz

��	
≤ λℏΛ1 υ1 + υ2ð Þγ +Nψ


 �
,

ð25Þ

similar to what was done above, we get

ϒ 2 χ, ϑð Þk k ≤ λƛΛ2 ℓ1 + ℓ2ð Þγ +Nφ


 �
: ð26Þ

From Equation (25) and Equation (26), we deduce that
kϒðχ, ϑÞk ≤ γ.

Next, for ðχ1, ϑ1Þ, ðχ2, ϑ2Þ ∈ C × C, ∀τ ∈ ½0, 1�, we have

ϒ 1 χ1, ϑ1ð Þ τð Þ −ϒ 1 χ2, ϑ2ð Þ τð Þj j

≤ λℏ sup
0≤τ≤1

1
Γ rð ÞΓ qð Þ

ðτ
0
τ − zð Þr−1

ð1
z
u − zð Þq−1 ψ z, χ1 zð Þ, ϑ1 zð Þð Þj

�

− ψ z, χ2 zð Þ, ϑ2 zð Þð Þjdudz + τr+1

1 − δζr+1
��� ���Γ rð ÞΓ qð Þ

× δj j
ðζ
0
ζ − zð Þr−1

ð1
z
u − zð Þq−1 ψ z, χ1 zð Þ, ϑ1 zð Þð Þj

"

− ψ z, χ2 zð Þ, ϑ2 zð Þð Þjdudz −
ð1
0
1 − zð Þr−1

�
ð1
z
u − zð Þq−1 ψ z, χ1 zð Þ, ϑ1 zð Þð Þ − ψ z, χ2 zð Þ, ϑ2 zð Þð Þj jdudz

�	

≤ λℏ υ1 χ1 − χ2k k + υ2 ϑ1 − ϑ2k kð Þ sup
0≤τ≤1

1
Γ rð ÞΓ qð Þ

ðτ
0
τ − zð Þr−1

�

�
ð1
z
u − zð Þq−1dudz + τr+1

1 − δζr+1
��� ���Γ rð ÞΓ qð Þ

× δj j
ðζ
0
ζ − zð Þr−1

"

�
ð1
z
u − zð Þq−1dudz−

ð1
0
1 − zð Þr−1

ð1
z
u − zð Þq−1dudz

�	
≤ λℏΛ1 υ1 χ1 − χ2k k + υ2 ϑ1 − ϑ2k kð Þ ≤ λℏΛ1 υ1 + υ2ð Þ χ1 − χ2k k + ϑ1 − ϑ2k kð Þ:

ð27Þ
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Similarly, we can find

ϒ 2 χ1, ϑ1ð Þ −ϒ 2 χ2, ϑ2ð Þk k ≤ λƛΛ2 ℓ1 + ℓ2ð Þ χ1 − χ2k k + ϑ1 − ϑ2k kð Þ:
ð28Þ

Combining Equation (27) and Equation (28) yields

ϒ χ1, ϑ1ð Þ −ϒ χ2, ϑ2ð Þk k ≤ λℏΛ1 υ1 + υ2ð Þ + λƛΛ2 ℓ1 + ℓ2ð Þ½ �
× χ1 − χ2k k + ϑ1 − ϑ2k kð Þ:

ð29Þ

Equation (29) becomes kϒðχ1, ϑ1Þ −ϒðχ2, ϑ2Þk ≤ ðkχ1
− χ2k + kϑ1 − ϑ2kÞ. That is, ϒ is a contraction; conse-
quently, Banach fixed point theorem applies; thus, the
uniqueness of solutions for Equation (6) holds on ½0, 1�.

Theorem 8. If (C1), (C3), and (C4) are satisfied, and if ðλℏ
Λ1ω1 + λƛΛ2θ1Þ < 1 and ðλℏΛ1ω2 + λƛΛ2θ2Þ < 1, then Equa-
tion (6) has at least one solution.

Proof. In the first step, we verify that the operator ϒ : C ×
C⟶ C × C is completely continuous; obviously, the opera-
tor is continuous as a result that ℏ, ƛ, ψ, and φ are all
assumed to be continuous.

With the aid of (C4), ∀ðχ, ϑÞ ∈ S, we have

ϒ 1 χ, ϑð Þ τð Þj j ≤ λℏ sup
0≤τ≤1

1
Γ rð ÞΓ qð Þ

ðτ
0
τ − zð Þr−1

�

�
ð1
z
u − zð Þq−1 ψ z, χ zð Þ, ϑ zð Þð Þj jdudz

+ τr+1

1 − δζr+1
��� ���Γ rð ÞΓ qð Þ

× δj j
ðζ
0
ζ − zð Þr−1

"

�
ð1
z
u − zð Þq−1 ψ z, χ zð Þ, ϑ zð Þð Þj jdudz

−
ð1
0
1 − zð Þr−1

ð1
z
u − zð Þq−1 ψ z, χ zð Þ, ϑ zð Þð Þj jdudz

�	
≤ λℏΛ1κ1:

ð30Þ

Similarly,

ϒ 2 χ, ϑð Þk k ≤ λƛΛ2κ2: ð31Þ

Combining the inequalities (30) and (31) yields kϒðχ, ϑÞk
≤ λℏΛ1κ1 + λƛΛ2κ2, implying that ϒ is uniformly bounded.

Next, to verify the equicontinuity for the operator ϒ , we
let τ1, τ2 ∈ ½0, 1�, ðτ1 < τ2Þ then

ϒ 1 χ, ϑð Þ τ2ð Þ −ϒ 1 χ, ϑð Þ τ1ð Þj j
≤ λℏ sup

0≤τ≤1

1
Γ rð ÞΓ qð Þ

ðτ1
0

τ1 − zð Þr−1 − τ2 − zð Þr−1� �

�
ð1
z
u − zð Þq−1 ψ z, χ zð Þ, ϑ zð Þð Þj jdudz

−
1

Γ rð ÞΓ qð Þ
ðτ2
τ1

τ2 − zð Þr−1
ð1
z
u − zð Þq−1 ψ z, χ zð Þ, ϑ zð Þð Þj jdudz

+ τr+12 − τr+11
�� ��

1 − δζr+1
��� ���Γ rð ÞΓ qð Þ

× δj j
ðζ
0
ζ − zð Þr−1

"

�
ð1
z
u − zð Þq−1 ψ z, χ zð Þ, ϑ zð Þð Þj jdudz −

ð1
0
1 − zð Þr−1

�
ð1
z
u − zð Þq−1 ψ z, χ zð Þ, ϑ zð Þð Þj jdudz

�
g,

ð32Þ

ϒ 1 χ, ϑð Þ τ2ð Þ −ϒ 1 χ, ϑð Þ τ1ð Þj j ≤ λℏκ1

× 1
Γ rð ÞΓ qð Þ

ðτ1
0

τ1 − zð Þr−1 − τ2 − zð Þr−1� ð1
z
u − zð Þq−1dudz

����
−

1
Γ rð ÞΓ qð Þ

ðτ2
τ1

τ2 − zð Þr−1
ð1
z
u − zð Þq−1dudz

�����
+ τr+12 − τr+11

�� ��
1 − δζr+1
��� ���Γ rð ÞΓ qð Þ

× δj j
ðζ
0
ζ − zð Þr−1

ð1
z
u − zð Þq−1dudz

"

−
ð1
0
1 − zð Þr−1

ð1
z
u − zð Þq−1dudz

�
,

ð33Þ

ϒ 2 χ, ϑð Þ τ2ð Þ −ϒ 2 χ, ϑð Þ τ1ð Þj j ≤ λƛκ2

× 1
Γ pð ÞΓ qð Þ

ðτ1
0

τ1 − zð Þp−1 − τ2 − zð Þp−1� ð1
s
u − sð Þq−1duds

����
−

1
Γ pð ÞΓ qð Þ

ðt2
t1

t2 − sð Þp−1
ð1
s
u − sð Þq−1duds

�����
+

τp+12 − τp+11

��� ���
1 − εξp+1
��� ���Γ pð ÞΓ qð Þ

× εj j
ðξ
0
ξ − zð Þp−1

ð1
z
u − zð Þq−1dudz

"

−
ð1
0
1 − zð Þp−1

ð1
z
u − zð Þq−1dudz

�
:

ð34Þ

The R.H.S for both inequalities (33) and (34) tend to
zero as τ1 ⟶ τ2, and they are both independent on ðχ, ϑÞ.
So, operator ϒðχ, ϑÞ is equicontinuous and yields; ϒðχ, ϑÞ
is completely continuous.

Finally, we establish the bounded set given by Ω = fðx,
yÞ ∈ C × Cjðx, yÞ = βIðx, yÞ, β ∈ ½0, 1�g; then, ∀τ ∈ ½0, 1�; the
equation ðχ, ϑÞ = βϒ ðχ, ϑÞ gives

χ τð Þ = βϒ 1 χ, ϑð Þ τð Þ, ϑ τð Þ = βϒ 2 χ, ϑð Þ τð Þ: ð35Þ

6 Journal of Function Spaces



Using the hypothesis (C3), we get

χk k ≤ λℏΛ1 ω0 + ω1 χk k + ω2 ϑk kð Þ,
ϑk k ≤ λƛΛ2 θ0 + θ1 χk k + θ2 ϑk kð Þ:

ð36Þ

Consequently, we have

χk k + ϑk k ≤ λℏΛ1ω0 + λƛΛ2θ0ð Þ + λℏΛ1ω1 + λƛΛ2θ1ð Þ χk k
+ λℏΛ1ω2 + λƛΛ2θ2ð Þ ϑk k:

ð37Þ

Inequality (37) can be written as follows:

χ, ϑð Þk k ≤ λℏΛ1ω0 + λƛΛ2θ0ð Þ
Λ0

, ð38Þ

where Λ0 = min f1 − ðλℏΛ1ω1 + λƛΛ2θ1Þ, 1 − ðλℏΛ1ω2
+ λƛΛ2θ2Þg.

Inequality (38) shows that Ω is bounded. Hence, Leray-
Schauder alternative applies, implying the existence of the
solution for Equation (6).

4. Stability

In this part, we address the issue of stability of solutions to
the system of equations defined by Equation (6) via U-H
definition.

Definition 9. The system of the coupled sequential fractional
differential BVPs Equation (6) is stable in U–H sense if a real
number c =max ðc1, c2Þ > 0 exists so that, for any ε =max ð
ε1, ε2Þ > 0 and for any ð�χ, �ϑÞ ∈ C × C satisfying

CD
q
1−

RLD
r
0+

� � �χ τð Þ
ℏ τ, �χ τð Þ, �ϑ τð Þ� 
 !

− ψ τ, �χ τð Þ, �ϑ τð Þ� �����
����� < ε1, τ ∈ 0, 1½ �,

CD
q
1−

RLD
p
0+

� � �ϑ τð Þ
ƛ τ, �χ τð Þ, �ϑ τð Þ� 
 !

− φ τ, �χ τð Þ, �ϑ τð Þ� �����
����� < ε2,

8>>>>><
>>>>>:

ð39Þ

there exists a unique solution ðχ, ϑÞ ∈ C × C of (6) with

χ, ϑð Þ − �χ, �ϑ
� �� �� < cε: ð40Þ

It is clear that ð�χ, �ϑÞ ∈ C × C satisfies the inequalities (39)
if there exists a function ðh1, h2Þ ∈ C × C (which depends on
ð�χ, �ϑÞ), such that

(i) jh1ðτÞj < ε1 and jh2ðτÞj < ε2, τ ∈ ½0, 1�
(ii) For τ ∈ ½0, 1�

CD
q
1−

RLD
r
0+

� � �χ τð Þ
ℏ τ, �χ τð Þ, �ϑ τð Þ� 

 !
= ψ τ, �χ τð Þ, �ϑ τð Þ� 

+ h1 τð Þ,

CD
q
1−

RLD
p
0+

� � �ϑ τð Þ
ƛ τ, �χ τð Þ, �ϑ τð Þ� 

 !
= φ τ, �χ τð Þ, �ϑ τð Þ� 

+ h2 τð Þ:

8>>>>><
>>>>>:

ð41Þ

Theorem 10. Suppose that (C2) is fulfilled. Moreover

λℏΛ1 υ1 + υ2ð Þ < 1, λƛΛ2 ℓ1 + ℓ2ð Þ < 1,
Δ = 1 − λℏΛ1 υ1 + υ2ð Þð Þ 1 − λƛΛ2 ℓ1 + ℓ2ð Þð Þ

− λℏΛ1 υ1 + υ2ð ÞλƛΛ2 ℓ1 + ℓ2ð Þ > 0:

ð42Þ

Then, the system of coupled sequential fractional differen-
tial BVPs (6) is U–H stable.

Proof. Assume that for ε1, ε2 > 0 a couple ð�χ, �ϑÞ ∈ C × C
satisfies the inequalities (39). Introduce the following
operator

K1 τ ; hð Þ = 1
Γ rð Þ

ðτ
0
τ − zð Þr−1RLIq1−h zð Þdz,

K2 τ ; hð Þ = 1
Γ pð Þ

ðτ
0
τ − uð Þp−1RLIq1−h uð Þdu:

ð43Þ

Then

�χ τð Þ = ℏ τ, �χ τð Þ, �ϑ τð Þ� 
K1 τ ; ψ ·, �χ ·ð Þ, �ϑ ·ð Þ� � �

+ τr+1

1 − δζr+1
� � δK1 ζ ; ψ ·, �χ ·ð Þ, �ϑ ·ð Þ� � 


− K1 1 ; ψ ·, �χ ·ð Þ, �ϑ ·ð Þ� � �Þ + ℏ τ, �χ τð Þ, �ϑ τð Þ� 
� K1 τ ; h1ð Þ + τr+1

1 − δζr+1
� � δK1 ζ ; h1ð Þ − K1 1 ; h1ð Þ½ �

0
@

1
A,

ð44Þ

�ϑ τð Þ = ƛ τ, �χ τð Þ, �ϑ τð Þ� 
K2 τ ; φ ·, �χ ·ð Þ, �ϑ ·ð Þ� � �

+ τr+1

1 − δζr+1
� � δK2 ζ ; φ ·, �χ ·ð Þ, �ϑ ·ð Þ� � 

− K2 1 ; φ ·, �χ ·ð Þ, �ϑ ·ð Þ� � 
 �1A

+ ƛ τ, �χ τð Þ, �ϑ τð Þ� 
K2 τ ; h2ð Þ + τr+1

1 − δζr+1
� � δK2 ζ ; h2ð Þ − K2 1 ; h2ð Þ½ �

0
@

1
A:

ð45Þ
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From Equation (44) and Equation (45), we obtain

�χ τð Þ−ℏ τ, �χ τð Þ, �ϑ τð Þ� 
K1 τ ; ψ Än, �χ Än

� �
, �ϑ Än
� �� �� ��

+ τr+1

1−δζr+1
� � δK1 ζ ; ψ Än, �χ Än

� �
, �ϑ Än
� �� �� �

−K1 1 ; ψ Än, �χ Än
� �

, �ϑ Än
� �� �� �� �1A

≤ℏ τ, �χ τð Þ, �ϑ τð Þ� 
K1 τ ; h1ð Þ + τr+1

1−δζr+1
� � δK1 ζ ; h1ð Þ−K1 1 ; h1ð Þ½ �

0
@

1
A, ð46Þ

�ϑ τð Þ−ƛ τ, �χ τð Þ, �ϑ τð Þ� 
K2 τ ; φ Än, �χ Än

� �
, �ϑ Än
� �� �� ���

+ τr+1

1−δζr+1
� � δK2 ζ ; φ Än, �χ Än

� �
, �ϑ Än
� �� �� �

−K2 1 ; φ Än, �χ Än
� �

, �ϑ Än
� �� �� �� �1A

≤ƛ τ, �χ τð Þ, �ϑ τð Þ� 
K2 τ ; h2ð Þ + τr+1

1−δζr+1
� � δK2 ζ ; h2ð Þ−K2 1 ; h2ð Þ½ �

0
@

1
A ð47Þ

From Equation (27) and Equation (28), we obtain

�χ τð Þ − ℏ τ, �χ τð Þ, �ϑ τð Þ� 
K1 τ ; ψ ·, �χ ·ð Þ, �ϑ ·ð Þ� � ���

+ τr+1

1 − δζr+1
� � δK1 ζ ; ψ ·, �χ ·ð Þ, �ϑ ·ð Þ� � 

− K1 1 ; ψ ·, �χ ·ð Þ, �ϑ ·ð Þ� � 
 �1A
������

≤ λℏΛ1 h1k k ≤ λℏΛ1ε1,
ð48Þ

�ϑ τð Þ − ƛ τ, �χ τð Þ, �ϑ τð Þ� 
K2 τ ; φ ·, �χ ·ð Þ, �ϑ ·ð Þ� � ��

+ τr+1

1 − δζr+1
� � δK2 ζ ; φ ·, �χ ·ð Þ, �ϑ ·ð Þ� � 

− K2 1 ; φ ·, �χ ·ð Þ, �ϑ ·ð Þ� � 
 �1A
≤ λƛΛ2 h2k k ≤ λƛΛ2ε2:

ð49Þ

Let ðχ, ϑÞ ∈ C × C be a solution of Equation (6).
Thanks to Lemma 6, it is equivalent to the following inte-
gral equations:

χ τð Þ = ℏ τ, χ τð Þ, ϑ τð Þð Þ K1 τ ; ψ ·, χ ·ð Þ, ϑ ·ð Þð Þð Þð

+ τr+1

1 − δζr+1
� � δK1 ζ ; ψ ·, χ ·ð Þ, ϑ ·ð Þð Þð Þ − K1 1 ; ψ ·, χ ·ð Þ, ϑ ·ð Þð Þð Þ½ �

1
A, ϑ tð Þ

= ƛ τ, χ τð Þ, ϑ τð Þð Þ K2 t ; φ ·, χ ·ð Þ, ϑ ·ð Þð Þð Þð

+ τr+1

1 − δζr+1
� � δK2 ζ ; φ ·, χ ·ð Þ, ϑ ·ð Þð Þð Þ − K2 1 ; φ ·, χ ·ð Þ, ϑ ·ð Þð Þð Þ½ �

1
A:

ð50Þ

By the same arguments in Theorem 7, we get

χ τð Þ − �χ τð Þj j = ϒ 1 χ, ϑð Þ τð Þ −ϒ 1 �χ, �ϑ
� 

τð Þ − ℏ τ, �χ τð Þ, �ϑ τð Þ� ��
� K1 τ ; h1ð Þ + τr+1

1 − δζr+1
� � δK1 ζ ; h1ð Þ − K1 1 ; h1ð Þ½ �

0
@

1
A
������

≤ ϒ 1 χ, ϑð Þ τð Þ −ϒ 1 �χ, �ϑ
� 

τð Þ�� �� + ℏ τ, �χ τð Þ, �ϑ τð Þ� ��
� K1 τ ; h1ð Þ + τr+1

1 − δζr+1
� � δK1 ζ ; h1ð Þ − K1 1 ; h1ð Þ½ �

0
@

1
A
������

≤ λℏΛ1 υ1 + υ2ð Þ χ − �χk k + ϑ − �ϑ
�� ��� 

+ λℏΛ1ε1,

ð51Þ

ϑ τð Þ − �ϑ τð Þ�� �� = ϒ 2 χ, ϑð Þ τð Þ −ϒ 2 �χ, �ϑ
� 

τð Þ − ƛ τ, �χ τð Þ, �ϑ τð Þ� ��
� K2 τ ; h2ð Þ + τr+1

1 − δζr+1
� � δK2 ζ ; h2ð Þ − K2 1 ; h2ð Þ½ �

0
@

1
A
������

≤ ϒ 2 χ, ϑð Þ τð Þ −ϒ 2 �χ, �ϑ
� 

τð Þ�� �� + ƛ τ, �χ τð Þ, �ϑ τð Þ� ��
� K2 τ ; h2ð Þ + τr+1

1 − δζr+1
� � δK2 ζ ; h2ð Þ − K2 1 ; h2ð Þ½ �

0
@

1
A
������

≤ λƛΛ2 ℓ1 + ℓ2ð Þ χ − �χk k + ϑ − �ϑ
�� ��� 

+ λƛΛ2ε2:

ð52Þ
It follows that

χ − �χk k − λℏΛ1 υ1 + υ2ð Þ χ − �χk k + ϑ − �ϑ
�� ��� 

≤ λℏΛ1ε1,

ϑ − �ϑ
�� �� − λgΛ2 ℓ1 + ℓ2ð Þ χ − �χk k + ϑ − �ϑ

�� ��� 
≤ λƛΛ2ε2:

ð53Þ

Representing these inequalities as matrices, we get

1 − λℏΛ1 υ1 + υ2ð Þ −λℏΛ1 υ1 + υ2ð Þ
1 − λƛΛ2 ℓ1 + ℓ2ð Þ −λƛΛ2 ℓ1 + ℓ2ð Þ

 !
χ − �χk k
ϑ − �ϑ
�� ��

 !
≤

λℏΛ1ε1

λƛΛ2ε2

 !
:

ð54Þ

Solving the above inequality, we get

χ − �χk k ≤ 1 − λℏΛ1 υ1 + υ2ð Þ
Δ

λℏΛ1ε1 +
λℏΛ1 υ1 + υ2ð Þ

Δ
λƛΛ2ε2,

ϑ − �ϑ
�� �� ≤ λƛΛ2 ℓ1 + ℓ2ð Þ

Δ
λℏΛ1ε1 +

1 − λƛΛ2 ℓ1 + ℓ2ð Þ
Δ

λƛΛ2ε2,

ð55Þ

where Δ = ð1 − λℏΛ1ðυ1 + υ2ÞÞð1 − λƛΛ2ðℓ1 + ℓ2ÞÞ − λλℏΛ1ð
υ1 + υ2ÞλƛΛ2ðℓ1 + ℓ2Þ ≠ 0.

Thus

χ − �χk k + ϑ − �ϑ
�� �� ≤ 1 − λℏΛ1 υ1 + υ2ð Þ

Δ
+ λƛΛ2 ℓ1 + ℓ2ð Þ

Δ

� �
λℏΛ1ε1

+ 1 − λƛΛ2 ℓ1 + ℓ2ð Þ
Δ

+ λℏΛ1 υ1 + υ2ð Þ
Δ

� �
λƛΛ2ε2:

ð56Þ
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For ε =max ðε1, ε2Þ and

we get

χ, �χð Þ − ϑ, �ϑ
� �� �� ≤ χ − �χk k + ϑ − �ϑ

�� �� ≤ cε: ð58Þ

Therefore, with the aid of Definition 9, the solution of
the problem Equation (6) is U–H stable.

5. Example

In this part, we present an applied example to support the
theoretical results we reached in the previous part, consider
the following system:

Here,

1 = δ = ε,

p = 7
4 , q =

5
4 , ℏ τ, χ, ϑð Þ = 1

2 sin χ τð Þj j + 7
5 , λ τ, χ, ϑð Þ = 1

3 cos ϑ τð Þj j + 1,

ψ τ, χ τð Þ, ϑ τð Þð Þ = 3eτ + 1
10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ3 + 15

p χj j
1 + χj j +

1
40 tan−1ϑ, φ τ, χ τð Þ, ϑ τð Þð Þ

= 2e−3τ sin τ + 1
20 tan−1ϑ + tan−1χ
� 

:

ð60Þ

Observe that

ψ τ, χ1, ϑ1ð Þ − ψ τ, χ2, ϑ2ð Þj j ≤ 1
40 χ2 − χ1j j + 1

40 ϑ2 − ϑ1j j,

φ τ, χ1, ϑ1ð Þ − φ τ, χ2, ϑ2ð Þj j ≤ 1
20 χ2 − χ1j j + 1

20 ϑ2 − ϑ1j j,
λℏΛ1 υ1 + υ2ð Þ + λƛΛ2 ℓ1 + ℓ2ð Þ½ � ≤ 0:330291 < 1:

ð61Þ

Thus, the boundary value problem Equation (59) sat-
isfies all the conditions of Theorem 7; consequently, the
uniqueness of solution of Equation (59) is satisfied on ½0, 1�.

In order to explain Theorem 7, it is clear that (C1) is sat-
isfied as follows:

ℏ τ, χ, ϑð Þj j ≤ 1
2 sin χ τð Þj j + 7

5 ≤ 2 = λℏ,

ƛ τ, χ, ϑð Þj j ≤ 1
3 cos ϑ τð Þj j + 1 ≤ 3

2 = λƛ,
ð62Þ

Also, one can easily show that (C3) holds, taking into
account that τ ∈ ½0, 1�, then

ψ τ, χ, ϑð Þj j = 3eτ + 1
10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ3 + 15

p χj j
1 + χj j +

1
40 tan−1ϑ

����
����

≤ 3e + 1
40 χj j + 1

40 ϑj j,

φ τ, χ, ϑð Þj j = 2e−3τ sin τ + 1
20 tan−1ϑ + tan−1χ
� ����

����
≤ 2 + 1

20 χj j + 1
20 ϑj j:

ð63Þ

Also, (C4) satisfied with

ψ τ, χ, ϑð Þj j ≤ 3e + 1 + 2π
40 , φ τ, χ, ϑð Þj j ≤ 2 + π

5 : ð64Þ

Finally, easy calculations with the data above give ðλℏ
Λ1ω1 + λƛΛ2θ1Þ = 0:203275 < 1 and ðλℏΛ1ω2 + λƛΛ2θ2Þ =

c = 1 − λℏΛ1 υ1 + υ2ð Þ + λƛΛ2 ℓ1 + ℓ2ð Þð ÞλℏΛ11 + 1 − λƛΛ2 ℓ1 + ℓ2ð Þ + λℏΛ1 υ1 + υ2ð Þð ÞλƛΛ2
Δ

, ð57Þ

CD
7/4
1−

RLD
1/4
0+

� � χ τð Þ
1/2 sin χ τð Þj j + 7/5

� �
= 3eτ + 1

10
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ3 + 15

p χj j
1 + χj j +

1
40 tan−1ϑ, τ ∈ 0, 1½ �,

CD
7/4
1−

RLD
3/4
0+

� � ϑ τð Þ
1/3 cos ϑ τð Þj j + 1

� �
= 2e−3τ sin τ + 1

20 tan−1ϑ + tan−1χ
� 

,

χ 0ð Þ = χ′ 0ð Þ = 0, χ 1ð Þ = χ
1
2

� �
,

ϑ 0ð Þ = ϑ′ 0ð Þ = 0, ϑ 1ð Þ = ϑ
1
3

� �
:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð59Þ
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0:203 < 1; all conditions of Theorem 8 hold; that is, the prob-
lem (59) has at least one solution in ½0, 1�.

6. Conclusion

We have studied a coupled hybrid FDEs consisting of mixed
fractional derivatives such as Caputo and Riemann-Liouville
fractional derivatives and nonlocal boundary conditions.
Existence/uniqueness results are established via a nonlinear
alternative of the Leray-Schauder and Banach fixed point
theorem. We also studied the Ulam-Hyers stability of these
couple of hybrid FDEs. The obtained result is well illustrated
by a numerical example. The result obtained in this paper is
new and significantly contributes to the existing literature on
the topic.

One possible direction in which to extend the results of
this paper is toward different kinds of mixed fractional dif-
ferential and mixed conformable fractional differential sys-
tems of higher order. Another challenge is to find out if
similar results can be derived in the case of constant/variable
delays in linear/nonlinear terms.
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