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Interval-valued fuzzy hypersoft set is an emerging field of study which is projected to address the limitations of interval-valued
fuzzy soft set for the entitlement of multiargument approximate function. This kind of function maps the subparametric tuples
to power set of universe. It emphasizes on the partitioning of attributes into their respective subattribute values in the form of
disjoint sets. These features make it a completely new mathematical tool for solving problems dealing with uncertainties. In
this study, after characterization of essential properties, operations, and set-inclusions (L-inclusion and J -inclusion) of
interval-valued fuzzy hypersoft set, some of its modular inequalities are discussed via set-inclusions. It is proved that all set-
inclusion-based properties and inequalities are preserved when ordinary approximate function of interval-valued fuzzy soft set
is replaced with multiargument approximate function of interval-valued fuzzy hypersoft set.

1. Introduction

Molodtsov [1] initiated the concept of soft set (s-set) to
equip fuzzy set-like models [2–4] with parameterization
tool. This set employs the concept of approximate function
which maps single set of parameters to initial set of alterna-
tives. This function is also known as single-argument
approximate function (SAAF) due to consideration of single
set of parameters as its domain. Many researchers contrib-
uted towards the characterization of rudiments of s-sets
but works of Maji et al. [5], Ali et al. [6], and Ge and Yang
[7] for the investigation on set-theoretic operations and
Babitha and Sunil [8, 9] for the introduction of relations
and functions are more significant. Pei and Miao [10] intro-
duced information system based on s-sets to handle the
informational vagueness. Li [11] extended the previous work
on soft operations and introduced some new operations.
Feng and Li [12] investigated in detail the soft subset and
soft product operations. Liu et al. [13] made discussion on

generalized soft equal relations. Maji et al. [14] developed
fuzzy soft set (fs-set) by combining fuzzy set (f-set) and s-
set to deal uncertainties with parameterization tools. Yang
et al. [15] hybridized interval-valued fuzzy set (ivf-set) [16]
with s-set and developed interval-valued fuzzy soft set
(ivfs-set) to tackle uncertain scenarios having interval nature
of information and data. Jun and Yang [17] rectified some
results on ivfs-sets presented by Yang et al. Chetia and Das
[18] applied the notions of ivfs-sets in decision-making for
medical diagnosis, Jiang et al. [19] calculated the entropy
of ivfs-sets, and Feng et al. [20] characterized level soft sets
based on ivfs-sets and applied them in decision-making.
Liu et al. [21, 22] discussed some nonclassical properties of
ivfs-sets and their modular inequalities based on soft J

-inclusion.
In many real-world decision-making scenarios, the clas-

sification of parameters into their respective subparametric-
valued disjoint sets is considered necessary for having reli-
able and precise decisions. Soft set-like structures
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(hybridized structures of soft set) are inadequate to tackle
such scenarios. Smarandache [23] conceptualized hypersoft
set (hs-set) to address the limitations of soft set-like models.
In hs-set, set of parameters is further partitioned into dis-
joint sets having subparametric values. It employs an
approximate function which maps the cartesian product of
attribute-valued nonoverlapping sets to collection of alterna-
tives. In this way, this function is also called multiargument
approximate function (MAAF). Saeed et al. [24] discussed
some elementary properties and set-theoretic operations of
hs-set with numerical examples. Abbas et al. [25] character-
ized the notions of hs-points and hs-function for their utili-
zation in the development of hs-function spaces. Ihsan et al.
[26] and Rahman et al. [27] developed hs-expert set and
bijective hs-set respectively and discussed their applications
in multiattribute decision-making (MADM). Rahman et al.
[28] introduced a conceptual framework for classical con-
vexity cum concavity under hs-set environment. The
researchers Yolcu and Ozturk [29], Jafar and Saeed [30],
and Debnath [31] discussed decision-making applications
based on fuzzy hypersoft set (fhs-set) (a hybridized structure
of f-set and hs-set). Rahman et al. [32] investigated the
parameterization of hs-set under fuzzy setting and discussed
its utilization in decision-making. The authors Saeed et al.
[33] and Rahman et al. [34, 35] developed hybridized struc-
tures of fhs-set with complex set in order to tackle periodic
nature of data.

The existing literature on soft inclusions and modular
inequalities for ivfs-sets is suitable for SAAF only but it is
incapable to manage MAAF-settings. In other words, it can
be viewed that the existing literature on fuzzy soft set is
unable to provide a mathematical model which may tackle
the following real-world situations collectively as a single
model:

(1) The situation where uncertain nature of alternatives
(entities in universal set) is required to be judged
by assigning fuzzy membership grades to each entity
corresponding to each parameter

(2) The scenarios where classification of parameters into
their respective parametric valued subcollections is
necessary to be considered

(3) The scenarios which has a big collection of interval-
base information which is required to be tackled
with the help of its interval-valued approximate
setting

Therefore, motivating from the above described short-
coming of literature, this study is aimed at developing a
new structure ivfhs-sets which is more flexible as compared
to existing models because it is capable to manage their lim-
itations and is useful for having reliable and unbiased deci-
sions due to deep focusing on parameters and their sub-
parametric tuples. Some contributions of this research are
(i) basic notions of ivfhs-set are characterized; (ii) the
notions of soft inclusions discussed in [13, 17] are general-
ized for ivfhs-sets; and (iii) modular inequalities for ivfhs-
sets based on hs-inclusions are explored by extending the

concepts of Liu et al. [21, 22] and Jun and Yang [17]. The
rest of the paper is structured as follows: Section 2 recalls
some essential basic definitions, properties, and results relat-
ing to ivfs-set, hs-set, and fhs-set to support the main results.
Section 3 presents the basic notions, properties, and inclu-
sions of ivfhs-sets with discussion on some particular cases
of ivfhs-sets. In Section 4, modular inequalities of ivfhs-sets
via L-inclusion are discussed. In Section 5, modular
inequalities of ivfhs-sets via J -inclusion are discussed. Sec-
tion 6 summarizes the paper with some future directions.

2. Preliminaries

This section reviews few elementary terminologies and
properties from literature for proper understanding of main

results. Throughout the paper, X̆, ΓX̆ , I, and P denote initial
universe, power set of X̆, unit closed interval, and set of
parameters, respectively.

Definition 1 (see [16]). Assume the set ℤI = f½û, v̂�: û ≤ v̂∀û
, v̂ ∈ Ig and the order relation ≤ℤI stated by ½û1, v̂1�≤ℤI ½û2,
v̂2� if and only if û1 ≤ û2, v̂1 ≤ v̂2 for all ½û1, v̂1�, ½û2, v̂2� ∈ℤI,
then Z I = ðℤI, ≤ℤIÞ forms a complete lattice. An ivf-set F iv

over X̆ is characterized by mapping bμ : X̆⟶ℤI, where bμ
is called membership function of F iv . The collection of all
ivf-sets over X̆ is represented by Ωivf s.

Definition 2 (see [1]). Let X̆ = fx̂1, x̂2,⋯, x̂ng be an initial
universe and P = fp̂1, p̂2,⋯, p̂ng be a set of parameters then

a SAAF is a mapping FS̆ : Q⟶ ΓX̆ and defined as FS̆ðf
p̂1, p̂2,⋯, p̂kgÞ = Γfx̂1,x̂2,⋯,x̂ng, where ΓX̆ denotes the power
set of X̆, Q ⊆P with k ≤ n. The pair ðFS̆,QÞ is known as
s-set and represented by S̆. The subsets F

S̆
ðp̂iÞ ⊆ X̆ are

known as p̂i -approximate sets having all p̂i -approximate
elements. The pair ðX̆,P Þ is called soft-universe. The collec-
tion of s-sets is denoted by Ωss.

Definition 3 (see [17]). For any soft-universe ðX̆,P Þ with
Q ⊆P , an ivfs-set F iv

S̆
= ðF

S̆
,QÞ is characterized by map-

ping FS̆ : Q⟶Ωiv f s, where Q is the same as stated in Def-

inition 2, and FS̆ is known as SAAF of F iv
S̆
. The collection

of ivfs-sets is denoted by Ωivf ss.

Definition 4 (see [15]). Let F iv
S̆
= ðF

S̆
,Q1Þ&G iv

S̆
= ðG

S̆
,Q2Þ

∈Ωiv f ss, then their soft product operations, i.e., ∧&∨ are
given as:

(1) The ∧-product (AND-operation) of F iv
S̆

and G iv
S̆

is
an ivfs-set defined by

F iv
S̆
∧G iv

S̆
= H

S̆
,Q1 ×Q2ð Þ, ð1Þ
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such that

H S̆ p̂1, p̂2ð Þ =FS̆ p̂1ð Þ ∩GS̆ p̂2ð Þ,
∀ p̂1, p̂2ð Þ ∈Q1 ×Q2:

ð2Þ

(2) The ∨-product (OR-operation) of F iv
S̆
and G iv

S̆
is an

ivfs-set defined by

F iv
S̆
∨G iv

S̆
= H

S̆
,Q1 ×Q2ð Þ, ð3Þ

such that

H S̆ p̂1, p̂2ð Þ =FS̆ p̂1ð Þ ∪GS̆ p̂2ð Þ,
∀ p̂1, p̂2ð Þ ∈Q1 ×Q2:

ð4Þ

The following two soft-inclusions relations Jun’s inclu-
sion c⊆ J in [17] and Liu’s inclusion c⊆ L in [13] are prom-
inent in literature for understanding the set-theoretic
operations of ivfs-sets.

Definition 5 (see [17]). Let F iv
S̆
= ðF

S̆
,Q1Þ&G iv

S̆
= ðG

S̆
,Q2Þ

∈Ωivf ss, then

(1) F iv
S̆

is said to be ivfs J -subset of G iv
S̆
, denoted by

F iv
S̆
c⊆ JG

iv
S̆
, if for every p̂1 ∈Q1∃p̂2 ∈Q2 such that

FS̆ðp̂1Þ ⊆GS̆ðp̂2Þ
(2) F iv

S̆
and G iv

S̆
are said to be ivfs J -equal, denoted by

F iv
S̆
=̂ JG

iv
S̆
, if F iv

S̆
c⊆ JG

iv
S̆
and G iv

S̆
c⊆ JF

iv
S̆

Liu et al. [13] introduced the following soft inclusions by
modifying the soft inclusion of Jun and Yang [17].

Definition 6 (see [13]). Let F iv
S̆
= ðFS̆,Q1Þ&G iv

S̆
= ðGS̆,Q2Þ

∈Ωivf ss, then

(1) F iv
S̆

is said to be ivfs L-subset of G iv
S̆
, denoted by

F iv
S̆
c⊆ LG

iv
S̆
, if for every p̂1 ∈Q1∃p̂2 ∈Q2 such that

FS̆ðp̂1Þ =GS̆ðp̂2Þ
(2) F iv

S̆
and G iv

S̆
are said to be ivfs L-equal, denoted by

F iv
S̆
=̂ LG

iv
S̆
, if F iv

S̆
c⊆ LG

iv
S̆
and G iv

S̆
c⊆ LF

iv
S̆

Note: both c⊆ J and c⊆ L are termed as ivfs J -inclusion
and ivfs L-inclusion respectively.

Proposition 7. If F iv
S̆
c⊆ LG

iv
S̆
, then it implies F iv

S̆
c⊆ JG

iv
S̆
.

Definition 8 (see [13]). F iv
S̆

is said to be identical to G iv
S̆
,

denoted by F iv
S̆
b≡G iv

S̆
, if Q1 =Q2 and FS̆ðp̂1Þ =GS̆ðp̂2Þ for

every p̂1 ∈Q1∃p̂2 ∈Q2.

Proposition 9. IfF iv
S̆
b≡G iv

S̆
, then it impliesF iv

S̆
c⊆ LG

iv
S̆
which

further implies F iv
S̆
c⊆ JG

iv
S̆
.

Propositions 7 and 9 are not valid in general. Please refer
to [12, 13] for detailed discussion regarding the generaliza-
tion of these results.

Definition 10 (see [23]). Let X̆ = fx̂1, x̂2,⋯, x̂ng be an initial
universe and P = fp̂1, p̂2,⋯, p̂ng be a set of parameters. The
respective attribute-valued nonoverlapping sets of each ele-
ment of P are Q1 = fq̂11, q̂12,⋯, q̂1ng, Q2 = fq̂21, q̂22,⋯, q̂2n
g, Q3 = fq̂31, q̂32,⋯, q̂3ng , ….., Qn = fq̂n1, q̂n2,⋯, q̂nng and
Q =Q1 ×Q2 ×Q3 ×⋯: ×Qn = fq̂1, q̂2, q̂3,⋯:,q̂rg, where
each q̂iði = 1, 2,⋯:,rÞ is a n-tuple element of Q and r =Qn

i=1jQij, j•j denotes set cardinality, then a MAAF is a map-

ping FH̆ : V ⟶ ΓX̆ and defined as FH̆ðfq̂1, q̂2,⋯, q̂kgÞ =
Γfx̂1,x̂2,⋯,x̂ng, where ΓX̆ denotes the power set of X̆, V ⊆Q

with k ≤ r. The pair ðFH̆,V Þ is known as hs-set and repre-

sented by H̆. The collection of all hs-sets is symbolized as
Ωhss.

Definition 11 (see [23]). If ΓX̆
F be the collection of all fuzzy

sets, then a hs-set H̆ = ðFH̆,V Þ is said to be fhs-set if FH̆

: V ⟶ ΓX̆
F , where V is same as discussed in Definition

10, and F
H̆
ðbνÞ is an approximate element of fhs-set for bν

∈V .

3. Properties of ivfhs-Sets

In this section, novel notions of ivfhs-sets are characterized.
During this characterization, focus is laid on those opera-
tions and properties which are essential to proceed further
for the development of modular inequalities.

Definition 12. Let X̆ = fŷ1, ŷ2,⋯, ŷng be an initial universe
and P = fp̂1, p̂2,⋯, p̂ng be a set of parameters. The respec-
tive subparametric-valued disjoint sets are R1 = fr̂11, r̂12,
⋯, r̂1ng, R2 = fr̂21, r̂22,⋯, r̂2ng, R3 = fr̂31, r̂32,⋯, r̂3ng ,…..,
Rn = fr̂n1, r̂n2,⋯, r̂nng,and R =R1 ×R2 ×R3 ×⋯: ×Rn
= fr̂1, r̂2, r̂3,⋯:,̂rsg, where each r̂iði = 1, 2,⋯:,sÞ is a n
-tuple element of R and s =Qn

i=1jRij, j•j denotes set cardi-
nality then the pair ðΨFHS,W Þ is known as ivfhs-set, where
ΨFHS : W ⟶Ωivf s and defined as ΨFHSðfr̂1, r̂2,⋯, r̂kgÞ =
Ωivf sðfŷ1, ŷ2,⋯, ŷngÞ, and W ⊆R with k ≤ s. The collection

of all ivfhs-sets is symbolized as ℧ivfhssðX̆,P Þ.

Example 1. Suppose an organization plans to recruit a candi-
date to fill a vacant post of assistant manager. There are six
candidates forming an initial universe of discourse X̆ = fC1
,C2,C3,C4,C5,C6g and have been scrutinized by recruit-
ment committee. The committee further requires evaluation
to select one of these candidates. The evaluation indicators
are qualification ðp̂1Þ, relevant experience in years ðp̂2Þ, and
computer skill ðp̂3Þ. Their subparametric disjoint sets are
R1 = fr̂11 =MBAg, R2 = fr̂21 = 5, r̂22 = 7, r̂23 = 10g, and R3
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= fr̂31 =MS − officeg respectively such that R =R1 ×R2
×R3 = fr̂1, r̂2, r̂3g. Then, an ivfhs-set ðΨFHS,RÞ is struc-
tured as ðΨFHS,RÞ = fðΨFHSðr̂1Þ, r̂1Þ, ðΨFHSðr̂2Þ, r̂2Þ, ðΨFHSð
r̂3Þ, r̂3Þg, where

ΨFHS r̂11, r̂21, r̂31ð Þ =ΨFHS r̂1ð Þ
= C1

0:2,0:4½ � ,
C2

0:3,0:5½ � ,
C3

0:4,0:6½ � ,
C4

0:5,0:7½ �
� �

,

ΨFHS r̂11, r̂22, r̂31ð Þ =ΨFHS r̂2ð Þ
= C1

0:3,0:6½ � ,
C2

0:4,0:7½ � ,
C3

0:5,0:8½ � ,
C4

0:6,0:9½ �
� �

,

ΨFHS r̂11, r̂23, r̂31ð Þ =ΨFHS r̂3ð Þ
= C1

0:1,0:5½ � ,
C2

0:2,0:6½ � ,
C3

0:3,0:7½ � ,
C4

0:4,0:8½ �
� �

:

ð5Þ

Hence,

ΨFHS,Rð Þ =

C1
0:2,0:4½ � ,

C2
0:3,0:5½ � ,

C3
0:4,0:6½ � ,

C4
0:5,0:7½ �

� �
, r̂1

� �
,

C1
0:3,0:6½ � ,

C2
0:4,0:7½ � ,

C3
0:5,0:8½ � ,

C4
0:6,0:9½ �

� �
, r̂2

� �
,

C1
0:1,0:5½ � ,

C2
0:2,0:6½ � ,

C3
0:3,0:7½ � ,

C4
0:4,0:8½ �

� �
, r̂3

� �

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
:

ð6Þ

Its tabular representation is given in Table 1.

Definition 13. The complement of an ivfhs-set ðΨFHS,RÞ,
denoted by ðΨFHS,RÞc, is defined by ðΨFHS,RÞc = ðΨc

FHS,
~RÞ where Ψc

FHS : ~R⟶Ωivfs and ~R stands for "not
R.

Example 2. Considering data from Example 1, we have

ΨFHS,Rð Þc =

C1
0:6,0:8½ � ,

C2
0:5,0:7½ � ,

C3
0:4,0:6½ � ,

C4
0:3,0:5½ �

� �
, ~ r̂1

� �
,

C1
0:4,0:7½ � ,

C2
0:3,0:6½ � ,

C3
0:2,0:5½ � ,

C4
0:1,0:4½ �

� �
, ~ r̂2

� �
,

C1
0:5,0:9½ � ,

C2
0:4,0:8½ � ,

C3
0:3,0:7½ � ,

C4
0:2,0:6½ �

� �
, ~ r̂3

� �

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
:

ð7Þ

Its tabular representation is given in Table 2.

Definition 14. LetG1 = ðΨ1
FHS,R1Þ&G2 = ðΨ2

FHS,R2Þ be two
ivfhs-sets then their hypersoft aggregation operations, i.e.,
~⊔&~⊓ are given as:

(1) Their union is an ivfhs-set defined by G1
⊔~G2 = ðΨ3

FHS,R3Þ such that Ψ3
FHSðp̂Þ =Ψ1

FHSðp̂Þ ∪
Ψ2

FHSðp̂2Þ∀p̂ ∈R1 ∪R2 with maximum interval-

valued fuzzy degrees respective to Ψ1
FHSðp̂Þ and

Ψ2
FHSðp̂Þ

(2) Their intersection is an ivfhs-set defined by G1
⊓~G2 = ðΨ4

FHS,R4Þ such that Ψ4
FHSðp̂Þ =Ψ1

FHSðp̂Þ ∩
Ψ2

FHSðp̂2Þ∀p̂ ∈R1 ∩R2 with minimum interval-
valued fuzzy degrees respective to Ψ1

FHSðp̂Þ and
Ψ2

FHSðp̂Þ

Example 3. Considering Example 1, we have following two
ivfhs-sets G1 = ðΨ1

FHS,R1Þ&G2 = ðΨ2
FHS,R2Þ.

G1 = Ψ1
FHS,R1

� �
=

C1
0:2,0:4½ � ,

C2
0:3,0:5½ � ,

C3
0:4,0:6½ � ,

C4
0:5,0:7½ �

� �
, r̂1

� �
,

C1
0:3,0:6½ � ,

C2
0:4,0:7½ � ,

C3
0:5,0:8½ � ,

C4
0:6,0:9½ �

� �
, r̂2

� �
,

C1
0:1,0:5½ � ,

C2
0:2,0:6½ � ,

C3
0:3,0:7½ � ,

C4
0:4,0:8½ �

� �
, r̂3

� �

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
,

G2 = Ψ2
FHS,R2

� �
=

C1
0:3,0:4½ � ,

C2
0:4,0:5½ � ,

C3
0:5,0:6½ � ,

C4
0:6,0:7½ �

� �
, r̂1

� �
,

C1
0:4,0:6½ � ,

C2
0:5,0:7½ � ,

C3
0:6,0:8½ � ,

C4
0:7,0:9½ �

� �
, r̂2

� �
,

C1
0:2,0:5½ � ,

C2
0:3,0:6½ � ,

C3
0:4,0:7½ � ,

C4
0:5,0:8½ �

� �
, r̂3

� �

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
,

ð8Þ

then

G1⊔
~G2 = Ψ3

FHS,R3
� �

=

C1
0:3,0:4½ � ,

C2
0:4,0:5½ � ,

C3
0:5,0:6½ � ,

C4
0:6,0:7½ �

� �
, r̂1

� �
,

C1
0:4,0:6½ � ,

C2
0:5,0:7½ � ,

C3
0:6,0:8½ � ,

C4
0:7,0:9½ �

� �
, r̂2

� �
,

C1
0:2,0:5½ � ,

C2
0:3,0:6½ � ,

C3
0:4,0:7½ � ,

C4
0:5,0:8½ �

� �
, r̂3

� �

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
,

ð9Þ

and

G1⊓
~G2 = Ψ4

FHS,R4
� �

=

C1
0:2,0:4½ � ,

C2
0:3,0:5½ � ,

C3
0:4,0:6½ � ,

C4
0:5,0:7½ �

� �
, r̂1

� �
,

C1
0:3,0:6½ � ,

C2
0:4,0:7½ � ,

C3
0:5,0:8½ � ,

C4
0:6,0:9½ �

� �
, r̂2

� �
,

C1
0:1,0:5½ � ,

C2
0:2,0:6½ � ,

C3
0:3,0:7½ � ,

C4
0:4,0:8½ �

� �
, r̂3

� �

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
:

ð10Þ

Table 1: Interval-valued fuzzy hypersoft set ðΨFHS,RÞ.

R↓\X̆ ⟶ C1 C2 C3 C4

r̂1 [0.2,0.4] [0.3,0.5] [0.4,0.6] [0.5,0.7]

r̂2 [0.3,0.6] [0.4,0.7] [0.5,0.8] [0.6,0.9]

r̂3 [0.1,0.5] [0.2,0.6] [0.3,0.7] [0.4,0.8]
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Definition 15. LetG1 = ðΨ1
FHS,R1Þ&G2 = ðΨ2

FHS,R2Þ be two
ivfhs-sets, then their hypersoft product operations, i.e., ~⊗&
~⊕ are given as:

(1) The ~⊗ -product (AND-operation) is an ivfhs-set
defined by G1 ~⊗G2 = ðΨ3

FHS,R1 ×R2Þ such that
Ψ3

FHSðp̂1, p̂2Þ =Ψ1
FHSðp̂1Þ ∩Ψ2

FHSðp̂2Þ∀ðp̂1, p̂2Þ ∈R1 ×
R2

(2) The ~⊕ -product (OR-operation) is an ivfhs-set
defined by G1 ~⊕G2 = ðΨ4

FHS,R1 ×R2Þ such that
Ψ4

FHSðp̂1, p̂2Þ =Ψ1
FHSðp̂1Þ ∪Ψ2

FHSðp̂2Þ∀ðp̂1, p̂2Þ ∈R1 ×
R2

Example 4. Considering the values of two ivfhs-sets G1 = ð
Ψ1

FHS,R1Þ&G2 = ðΨ2
FHS,R2Þ from Example 3, then

and

Table 2: Complement of ivfhs-set ðΨFHS,RÞ.

~R↓\X̆ ⟶ C1 C2 C3 C4

~ r̂1 [0.6,0.8] [0.5,0.7] [0.4,0.6] [0.3,0.5]

~ r̂2 [0.4,0.7] [0.3,0.6] [0.2,0.5] [0.1,0.4]

~ r̂3 [0.5,0.9] [0.4,0.8] [0.3,0.7] [0.2,0.6]

G1 ~⊗G2 = Ψ3
FHS,R1 ×R2

� �
=

C1
0:2,0:4½ � ,

C2
0:3,0:5½ � ,

C3
0:4,0:6½ � ,

C4
0:5,0:7½ �

� �
, r̂1, r̂1ð Þ

� �
,

C1
0:3,0:6½ � ,

C2
0:4,0:7½ � ,

C3
0:5,0:8½ � ,

C4
0:6,0:9½ �

� �
, r̂1, r̂2ð Þ

� �
,

C1
0:1,0:5½ � ,

C2
0:2,0:6½ � ,

C3
0:3,0:7½ � ,

C4
0:4,0:8½ �

� �
, r̂1, r̂3ð Þ

� �
,

C1
0:3,0:4½ � ,

C2
0:4,0:5½ � ,

C3
0:5,0:6½ � ,

C4
0:6,0:7½ �

� �
, r̂2, r̂1ð Þ

� �
,

C1
0:3,0:6½ � ,

C2
0:4,0:7½ � ,

C3
0:5,0:8½ � ,

C4
0:6,0:9½ �

� �
, r̂2, r̂2ð Þ

� �
,

C1
0:2,0:5½ � ,

C2
0:3,0:6½ � ,

C3
0:4,0:7½ � ,

C4
0:5,0:8½ �

� �
, r̂2, r̂3ð Þ

� �
,

C1
0:1,0:4½ � ,

C2
0:2,0:5½ � ,

C3
0:3,0:6½ � ,

C4
0:4,0:7½ �

� �
, r̂3, r̂1ð Þ

� �
,

C1
0:1,0:5½ � ,

C2
0:2,0:6½ � ,

C3
0:3,0:7½ � ,

C4
0:4,0:8½ �

� �
, r̂3, r̂2ð Þ

� �
,

C1
0:1,0:5½ � ,

C2
0:2,0:6½ � ,

C3
0:3,0:7½ � ,

C4
0:4,0:8½ �

� �
, r̂3, r̂3ð Þ

� �

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

, ð11Þ

G1 ~⊕G2 = Ψ4
FHS,R1 ×R2

� �
=

C1
0:3,0:4½ � ,

C2
0:4,0:5½ � ,

C3
0:5,0:6½ � ,

C4
0:6,0:7½ �

� �
, r̂1, r̂1ð Þ

� �
,

C1
0:4,0:6½ � ,

C2
0:5,0:7½ � ,

C3
0:6,0:8½ � ,

C4
0:7,0:9½ �

� �
, r̂1, r̂2ð Þ

� �
,

C1
0:2,0:5½ � ,

C2
0:3,0:6½ � ,

C3
0:4,0:7½ � ,

C4
0:5,0:8½ �

� �
, r̂1, r̂3ð Þ

� �
,

C1
0:3,0:6½ � ,

C2
0:4,0:7½ � ,

C3
0:5,0:8½ � ,

C4
0:6,0:9½ �

� �
, r̂2, r̂1ð Þ

� �
,

C1
0:4,0:6½ � ,

C2
0:5,0:7½ � ,

C3
0:6,0:8½ � ,

C4
0:7,0:9½ �

� �
, r̂2, r̂2ð Þ

� �
,

C1
0:2,0:5½ � ,

C2
0:3,0:6½ � ,

C3
0:4,0:7½ � ,

C4
0:5,0:8½ �

� �
, r̂2, r̂3ð Þ

� �
,

C1
0:3,0:5½ � ,

C2
0:4,0:6½ � ,

C3
0:5,0:7½ � ,

C4
0:6,0:8½ �

� �
, r̂3, r̂1ð Þ

� �
,

C1
0:4,0:6½ � ,

C2
0:5,0:7½ � ,

C3
0:6,0:8½ � ,

C4
0:7,0:9½ �

� �
, r̂3, r̂2ð Þ

� �
,

C1
0:2,0:5½ � ,

C2
0:3,0:6½ � ,

C3
0:4,0:7½ � ,

C4
0:5,0:8½ �

� �
, r̂3, r̂3ð Þ

� �

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

: ð12Þ
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Their tabular representations are presented in Tables 3
and 4.

Now, we present the generalized version of J -inclusion
and L-inclusion for ivfhs-sets with entitlement of multiar-
gument approximate functions.

Definition 16. LetG1 = ðΨ1
FHS,R1Þ&G2 = ðΨ2

FHS,R2Þ be two
ivfhs-sets then

(1) G1 is said to be ivfhs J -subset of G2, denoted by
Ac⊆ JB, if for every r̂1 ∈R1∃r̂2 ∈R2 such that
Ψ1

FHSðr̂1Þ ⊆Ψ2
FHSðr̂2Þ

(2) G1 and G2 are said to be ivfhs J -equal, denoted by
G1=̂ JG2, if G1c⊆ JG2 and G2c⊆ JG1

Definition 17. LetG1 = ðΨ1
FHS,R1Þ&G2 = ðΨ2

FHS,R2Þ be two
ivfhs-sets, then

(1) G1 is said to be ivfs L-subset of G2, denoted by
G1c⊆ LG2, if for every r̂1 ∈R1∃r̂2 ∈R2 such that
Ψ1

FHSðr̂1Þ =Ψ2
FHSðr̂2Þ

(2) G1 and G2 are said to be ivfs L-equal, denoted by
G1=̂ LG2, if G1=̂ LG2 and G2=̂ LG1

Note: both c⊆ J and c⊆ L are named as ivfhs J -inclu-
sion and ivfhs L-inclusion, respectively.

Proposition 18. If G1c⊆ LG2, then it implies G1c⊆ JG2.

Definition 19. LetG1 = ðΨ1
FHS,R1Þ&G2 = ðΨ2

FHS,R2Þ be two
ivfhs-sets then G1 is said to be identical to G2, denoted by
G1b≡G2, if R1 =R2 and Ψ1

FHSðr̂1Þ =Ψ2
FHSðr̂2Þ for every r̂1

∈R1∃r̂2 ∈R2.

Proposition 20. If G1b≡G2, then it implies G1c⊆ LG2 which
further implies G1c⊆ JG2.

Proof. Let G1b≡G2, then by Definition 19, we have R1 =R2
and Ψ1

FHSðr̂1Þ =Ψ2
FHSðr̂2Þ for every r̂1 ∈R1∃r̂2 ∈R2. By Def-

inition 17 part (1), we get G1c⊆ LG2. Now, applying Propo-
sition 18, we obtain G1c⊆ JG2.

It is pertinent to mention here that the results presented
in Propositions 18 and 20 are not legitimate in general. Bothc⊆ J and c⊆ L are preorder for ℧ivfhssðX̆,P Þ.

Proposition 21. The relations =̂ J and =̂ L satisfy the prop-
erties of equivalence relation on ℧ivfhssðX̆,P Þ.

Proof. Applying the concept stated in Definitions 16 and
Definitions 17, it is clear that both =̂ J and =̂ L satisfy reflex-
ive property as G1=̂ JG1 and G1=̂ LG1. Their symmetric
and transitive nature can also be deduced from these men-
tioned definitions. These properties collectively conclude
that both =̂ J and =̂ L are equivalence relations.

We know from classical set theory, for a set D ≠∅ with a
preorder ≤, an upward directed set is a set ðD, ≤Þ in which
every pair of elements in D has an upper bound, i.e., for d1
, d2 ∈D, there exists d3 such that d1 ≤ d3 and d2 ≤ d3. The
following definition is the generalized set theoretic version
of upward directed set under hypersoft set environment.

Definition 22. An ivfhs-set ðΨFHS,RÞ with R ≠∅ is called
an upward directed ivfhs-set (UD-ivfhss) if for r̂1, r̂2 ∈R,
there exists r̂3 ∈R such that

ΨFHS r̂1ð Þ ∪ΨFHS r̂2ð Þf g ⊆ΨFHS r̂3ð Þ: ð13Þ

Example 5. Considering data from Example 1, we have ivfhs-
set G = ðΨFHS,RÞ as given below

Table 3: Tabular representation of G1 ⊗ ~G2.

R1ð ×R2Þ↓\X̆ ⟶ C1 C2 C3 C4

r̂1, rð 1̂Þ [0.2,0.4] [0.3,0.5] [0.4,0.6] [0.5,0.7]

r̂ð 1, r̂2Þ [0.3,0.6] [0.4,0.7] [0.5,0.8] [0.6,0.9]

r̂ð 1, r̂3Þ [0.1,0.5] [0.2,0.6] [0.3,0.7] [0.4,0.8]

r̂2ð , r̂1Þ [0.3,0.4] [0.4,0.5] [0.5,0.6] [0.6,0.7]

r̂2ð , r̂2Þ [0.3,0.6] [0.4,0.7] [0.5,0.8] [0.6,0.9]

r̂2ð , r̂3Þ [0.2,0.5] [0.3,0.6] [0.4,0.7] [0.5,0.8]

r̂3ð , r̂1Þ [0.1,0.4] [0.2,0.5] [0.3,0.6] [0.4,0.7]

r̂3,ð r̂2Þ [0.1,0.5] [0.2,0.6] [0.3,0.7] [0.4,0.8]

r̂3,ð r̂3Þ [0.1,0.5] [0.2,0.6] [0.3,0.7] [0.4,0.8]

Table 4: Tabular representation of G1 ~⊕G2.

R1 ×Rð 2Þ↓\X̆ ⟶ C1 C2 C3 C4

r̂1,ð r̂1Þ [0.3,0.4] [0.4,0.5] [0.5,0.6] [0.6,0.7]

r̂1,ð r̂2Þ [0.4,0.6] [0.5,0.7] [0.6,0.8] [0.7,0.9]

r̂1,ð r̂3Þ [0.2,0.5] [0.3,0.6] [0.4,0.7] [0.5,0.8]

r̂2,ð r̂1Þ [0.3,0.6] [0.4,0.7] [0.5,0.8] [0.6,0.9]

r̂2,ð r̂2Þ [0.4,0.6] [0.5,0.7] [0.6,0.8] [0.7,0.9]

r̂2,ð r̂3Þ [0.2,0.5] [0.3,0.6] [0.4,0.7] [0.5,0.8]

r̂3,ð r̂1Þ [0.3,0.5] [0.4,0.6] [0.5,0.7] [0.6,0.8]

r̂3,ð r̂2Þ [0.4,0.6] [0.5,0.7] [0.6,0.8] [0.7,0.9]

r̂3,ð r̂3Þ [0.2,0.5] [0.3,0.6] [0.4,0.7] [0.5,0.8]
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ΨFHS,Rð Þ =

C1
0:2,0:4½ � ,

C2
0:3,0:5½ � ,

C3
0:4,0:6½ � ,

C4
0:5,0:7½ �

� �
, r̂1

� �
,

C1
0:1,0:5½ � ,

C2
0:2,0:6½ � ,

C3
0:3,0:7½ � ,

C4
0:4,0:8½ �

� �
, r̂2

� �
,

C1
0:3,0:6½ � ,

C2
0:4,0:7½ � ,

C3
0:5,0:8½ � ,

C4
0:6,0:9½ �

� �
, r̂3

� �

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
,

ð14Þ

with tabular representation as given below in Table 5. It can
easily be seen that fΨFHSðr̂1Þ ∪ΨFHSðr̂2Þg ⊆ΨFHSðr̂3Þ which
shows that ðΨFHS,RÞ is an UD-ivfhss.

Proposition 23. An ivfhs-set G = ðΨFHS,RÞ with W G = f
ΨFHSðr̂Þ: r̂ ∈Rg is an UD-ivfhss if and only if ðW G, ⊆Þ is
an UD-ivfhss.

Proof. Let G = ðΨFHS,RÞ be an UD-ivfhss then by definition
of UD-ivfhss, then following conditions hold:

(i) R ≠∅ and W G = fΨFHSðr̂Þ: r̂ ∈Rg ⊆Ωivfs ;W G ≠
∅

(ii) for r̂1, r̂2 ∈R∃r̂3 ∈R such that fΨFHSðr̂1Þ ∪ΨFHSð
r̂2Þg ⊆ΨFHSðr̂3Þ

The second condition implies that ΨFHSðr̂1Þ ⊆ΨFHSðr̂3Þ
and ΨFHSðr̂2Þ ⊆ΨFHSðr̂3Þ which proves that ðW G, ⊆Þ is an
UD-ivfhss.

Conversely, let ðW G, ⊆Þ is an UD-ivfhss, then the below
given clauses hold due to definition of UD-ivfhss:

(i) both R and W G are nonempty sets

(ii) for r̂1, r̂2 ∈R, there exists an upper bound for ΨFHS
ðr̂1Þ and ΨFHSðr̂2Þ inW G which means ∃r̂3 ∈R such
that ΨFHSðr̂1Þ ⊆ΨFHSðr̂3Þ and ΨFHSðr̂2Þ ⊆ΨFHSðr̂3Þ

The clause (ii) further implies fΨFHSðr̂1Þ ∪ΨFHSðr̂2Þg ⊆
ΨFHSðr̂3Þ which shows that G = ðΨFHS,RÞ is an UD-ivfhss.

Proposition 24. An ivfhs-set G = ðΨFHS,RÞ with R ≠∅ is
an UD-ivfhss if and only if G=̂ JG ~⊕G.

Proof. Let G ~⊕G = ðYFHS,R ×RÞ with G = ðΨFHS,RÞ be
an UD-ivfhss. Therefore, there exists r̂3 ∈R corresponding
to pair ðr̂1, r̂2Þ ∈R ×R s.t.

YFHS r̂1, r̂2ð Þ = ΨFHS r̂1ð Þ ∪ΨFHS r̂2ð Þf g, ð15Þ

and

ΨFHS r̂1ð Þ ∪ΨFHS r̂2ð Þf g ⊆ΨFHS r̂3ð Þ: ð16Þ

Combining above equations, we obtain YFHSðr̂1, r̂2Þ ⊆
ΨFHSðr̂3Þ which shows that G ~⊕Gc⊆ JG but we know that

Gc⊆ JG ~⊕G; hence, G=̂ JG ~⊕G.

Conversely, let G=̂ JG ~⊕G then G ~⊕Gc⊆ JG implies ð
YFHS,R ×RÞc⊆ JG, that is, there exists r̂3 ∈R correspond-
ing to pair ðr̂1, r̂2Þ ∈R ×R s.t.

YFHS r̂1, r̂2ð Þ = ΨFHS r̂1ð Þ ∪ΨFHS r̂2ð Þf g ⊆ΨFHS r̂3ð Þ, ð17Þ

which proves that G = ðΨFHS,RÞ be an UD-ivfhss.

Corollary 25. LetG = ðΨFHS,RÞ be an ivfhs-set withR ≠∅,
then the given below statements are equivalent:

(1) G is an UD-ivfhss over X̆

(2) W G = fΨFHSðr̂Þ: r̂ ∈Rg is an UD-ivfhss w.r.t ⊆

G=̂ JG ~⊕G,

G ~⊕Gc⊆ JG:
ð18Þ

Proof. These can easily be verified by considering the conse-
quences of Proposition 23 and Proposition 24.

4. Modular Inequalities of ivfhs-Sets via L-
Inclusion

Liu et al. [22] discussed some modular inequalities for ivfs-
sets which employs approximate function that is unable to
tackle multiargument settings (i.e., cartesian product of
sub-parametric valued disjoint sets); therefore, in this sec-
tion, such modular inequalities are generalized to manage
such kind of settings.

Let X̆ = fô1, ô2,⋯, ông be an initial universe and C = f
ĉ1, ĉ2,⋯, ĉng be a set of parameters. The respective
subparametric-valued disjoint sets are K1 = fk̂11, k̂12,⋯,
k̂1ng, K2 = fk̂21, k̂22,⋯, k̂2ng, K3 = fk̂31, k̂32,⋯, k̂3ng,.....,
Kn = fk̂n1, k̂n2,⋯, k̂nng,and K =K1 ×K2 ×K3 × :⋯ ×
Kn = fk̂1, k̂2, k̂3,:⋯ , k̂αg, where each k̂iði = 1, 2,:⋯ , αÞ is a
n-tuple element of K , and α =Qn

i=1jK ij, j•j denotes set car-
dinality, then the pair ðψFHS,KÞ is known as ivfhs-set,
where ψFHS : K ⟶Ωivfs and defined as ψFHSðfk̂1, k̂2,⋯,
k̂pgÞ =Ωivfsðfô1, ô2,⋯, ôngÞ, and K ⊆C with p ≤ α.

Table 5: An upward directed interval-valued fuzzy hypersoft set ð
ΨFHS,RÞ.

R↓\X̆ ⟶ C1 C2 C3 C4

r̂1 [0.2,0.4] [0.3,0.5] [0.4,0.6] [0.5,0.7]

r̂2 [0.1,0.5] [0.2,0.6] [0.3,0.7] [0.4,0.8]

r̂3 [0.3,0.6] [0.4,0.7] [0.5,0.8] [0.6,0.9]
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Theorem 26. Let bΘ1 = ðψ1
FHS,K1Þ& bΘ2 = ðψ2

FHS,K2Þ be two
ivfhs-sets, then

bΘ1c⊆ L
bΘ1 ~⊕ bΘ2,bΘ2c⊆ L
bΘ1 ~⊕ bΘ2,bΘ1 ~⊗ bΘ2c⊆ L

bΘ1,bΘ1 ~⊗ bΘ2c⊆ L
bΘ1:

ð19Þ

Theorem 27 (Generalized commutativity of ivfhs-sets). LetbΘ1 = ðψ1
FHS,K1Þ& bΘ2 = ðψ2

FHS,K2Þ be two ivfhs-sets, then

bΘ1 ~⊗ bΘ2c⊆ L
bΘ2 ~⊗ bΘ1,bΘ1 ~⊕ bΘ2c⊆ L
bΘ2 ~⊕ bΘ1:

ð20Þ

Theorem 28. Let bΘ1 = ðψ1
FHS,K1Þ, bΘ2 = ðψ2

FHS,K2Þ& bΘ3 =
ðψ3

FHS,K3Þ be three ivfhs-sets with bΘ1c⊆ L
bΘ2, then

bΘ3 ~⊕ bΘ1c⊆ L
bΘ3 ~⊕ bΘ2,bΘ3 ~⊕ bΘ1c⊆ L
bΘ2 ~⊕ bΘ3,bΘ1 ~⊕ bΘ3c⊆ L
bΘ2 ~⊕ bΘ3,bΘ1 ~⊕ bΘ3c⊆ L
bΘ3 ~⊕ bΘ2:

ð21Þ

Proof.

(1) Let bΘ3 ~⊕ bΘ 1 = ðψ3
FHS,K3Þ ~⊕ ðψ1

FHS,K1Þ = ðζ1FHS,
K3 ×K1Þ and bΘ3 ~⊕ bΘ2 = ðψ3

FHS,K3Þ ~⊕ ðψ2
FHS,K2Þ

= ðζ2FHS,K3 ×K2Þ. Since given that bΘ1c⊆ L
bΘ2

which implies that there exists k̂2 ∈K2 for every k̂1
∈K1 such that

ψ1
FHS

ðk̂1Þ = ψ2
FHSðk̂2Þ: Let ðk̂3, k̂1Þ ∈K3 ×K1, then by defini-

tion of ~⊕ , we have

ζ1FHS k̂3, k̂1
� 	

= ψ3
FHS k̂3

� 	
∪ ψ1

FHS k̂1
� 	

: ð23Þ

By combining Equation (22) and Equation (23), we get

ζ1FHS k̂3, k̂1
� 	

= ψ3
FHS k̂3

� 	
∪ ψ2

FHS k̂2
� 	

: ð24Þ

Similarly for ðk̂3, k̂2Þ ∈K3 ×K2, we get

ζ2FHS k̂3, k̂2
� 	

= ψ3
FHS k̂3

� 	
∪ ψ2

FHS k̂2
� 	

: ð25Þ

From Equation (24) and Equation (25), we get ζ1FHSðk̂3,
k̂1Þ = ζ2FHSðk̂3, k̂2Þ, which shows that bΘ3 ~⊕ bΘ1c⊆ L

bΘ3 ~⊕ bΘ2.

(2) According to second part of Theorem 27, we havebΘ2 ~⊕ bΘ3c⊆ L
bΘ3 ~⊕ bΘ2 which implies that

ψ2
FHS k̂2

� 	
∪ ψ3

FHS k̂3
� 	

= ψ3
FHS k̂3

� 	
∪ ψ2

FHS k̂2
� 	

: ð26Þ

Therefore, from Equations (24), (25), and (26), it is vivid
that ζ1FHSðk̂3, k̂1Þ = ζ2FHSðk̂2, k̂3Þ which shows that bΘ3 ~⊕ bΘ1c⊆ L

bΘ2 ~⊕ bΘ3.
Part 3 and part 4 can easily be verified with the help of

Theorem 27(2) and above results.

Theorem 29. Let ðψi
FHS,K iÞ&ðΦi

FHS, S iÞ be two ivfhs-sets
with ðψ1

FHS,K1Þc⊆ LðΦ1
FHS, S1Þ and ðψ2

FHS,K2Þc⊆ LðΦ2
FHS,

S2Þ, then

ψ1
FHS,K1

� �
~⊕ ψ2

FHS,K2

� �c⊆ L Φ1
FHS,S1

� �
~⊕ Φ2

FHS, S2

� �
:

ð27Þ

Theorem 30. Let bΘ1 = ðψ1
FHS,K1Þ, bΘ2 = ðψ2

FHS,K2Þ& bΘ3 =
ðψ3

FHS,K3Þ be three ivfhs-sets with bΘ1c⊆ L
bΘ2 then

bΘ3 ~⊗ bΘ1c⊆ L
bΘ3 ~⊗ bΘ2,bΘ3 ~⊗ bΘ1c⊆ L
bΘ2 ~⊗ bΘ3,bΘ1 ~⊗ bΘ3c⊆ L
bΘ2 ~⊗ bΘ3,bΘ1 ~⊗ bΘ3c⊆ L
bΘ3 ~⊗ bΘ2:

ð28Þ

Proof.

(1) Let bΘ3 ~⊗ bΘ1 = ðψ3
FHS,K3Þ ~⊗ ðψ1

FHS,K1Þ = ðξ1FHS,
K3 ×K1Þ and bΘ3 ~⊗ bΘ2 = ðψ3

FHS,K3Þ ~⊗ ðψ2
FHS,K2Þ

= ðξ2FHS,K3 ×K2Þ. Since given that bΘ1c⊆ L
bΘ2

which implies that there exists k̂2 ∈K2 for every k̂1
∈K1 such that

ψ1
FHS k̂

�

1Þ = ψ2
FHSðk̂2Þ: Let ðk̂3, k̂1Þ ∈K3 ×K1, then by definition

of ~⊗ , we have

ξ1FHS k̂3, k̂1
� 	

= ψ3
FHS k̂3

� 	
∩ ψ1

FHS k̂1
� 	

: ð30Þ

By combining Equation (29) and Equation (30), we get

ξ1FHS k̂3, k̂1
� 	

= ψ3
FHS k̂3

� 	
∩ ψ2

FHS k̂2
� 	

: ð31Þ

Similarly, for ðk̂3, k̂2Þ ∈K3 ×K2, we get

ξ2FHS k̂3, k̂2
� 	

= ψ3
FHS k̂3

� 	
∩ ψ2

FHS k̂2
� 	

: ð32Þ
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From Equation (31) and Equation (32), we get ξ1FHSðk̂3,
k̂1Þ = ξ2FHSðk̂3, k̂2Þ which shows that bΘ3 ~⊗ bΘ1 c⊆ L

bΘ3 ~⊗bΘ2.

(2) According to Theorem 27, we have bΘ2 ~⊗ bΘ3c⊆ LbΘ3 ~⊗ bΘ2 which implies that

ψ2
FHS k̂2

� 	
∩ ψ3

FHS k̂3
� 	

= ψ3
FHS k̂3

� 	
∩ ψ2

FHS k̂2
� 	

: ð33Þ

Therefore from Equations (31), (32), and (33), it is vivid
that ξ1FHSðk̂3, k̂1Þ = ξ2FHSðk̂2, k̂3Þ which shows that bΘ3 ~⊗ bΘ1c⊆ L

bΘ2 ~⊗ bΘ3.
Part 3 and part 4 can easily be verified with the help of

Theorem 27(2) and above results.

Theorem 31. Let ðψi
FHS,K iÞ&ðΦi

FHS, S iÞ be two ivfhs-sets
with ðψ1

FHS,K1Þc⊆ LðΦ1
FHS, S1Þ and ðψ2

FHS,K2Þc⊆ LðΦ2
FHS,

S2Þ, then ðψ1
FHS,K1Þ ~⊗ ðψ2

FHS,K2Þc⊆ LðΦ1
FHS,S1Þ ~⊗ ðΦ2

FHS,
S2Þ.

Theorem 32 (Generalized distributive inequalities of ivfhs-
sets). Let bΘ1 = ðψ1

FHS,K1Þ, bΘ2 = ðψ2
FHS,K2Þ& bΘ3 = ðψ3

FHS,
K3Þ be three ivfhs-sets then

bΘ1 ~⊕ bΘ2

� 	
~⊗ bΘ3c⊆ L

bΘ1 ~⊗ bΘ3

� 	
~⊕ bΘ2 ~⊗ bΘ3

� 	
,

bΘ1 ~⊗ bΘ2

� 	
~⊕ bΘ3c⊆ L

bΘ1 ~⊕ bΘ3

� 	
~⊗ bΘ2 ~⊕ bΘ3

� 	
,

bΘ1 ~⊗ bΘ2

� 	
~⊕ bΘ3c⊆ L

bΘ1 ~⊗ bΘ2

� 	
~⊕ bΘ1 ~⊗ bΘ3

� 	
,

bΘ1 ~⊕ bΘ2

� 	
~⊗ bΘ3c⊆ L

bΘ1 ~⊕ bΘ2

� 	
~⊗ bΘ1 ~⊕ bΘ3

� 	
:

ð34Þ

5. Modular Inequalities of ivfhs-Sets via J -
Inclusion

Jun and Yang [17] discussed some modular inequalities for
ivfs-sets by extending the concept presented by Liu et al.
[22], and this concept too shows inadequacy regarding mul-
tiargument approximate settings (i.e., cartesian product of
subparametric valued disjoint sets); therefore, in this section,
such modular inequalities are generalized to manage such
kind of settings.

Let X̆ = fû1, û2,⋯, ûng be an initial universe and V = f
v̂1, v̂2,⋯, v̂ng be a set of parameters. The respective
subparametric-valued disjoint sets are D1 = fd̂11, d̂12,⋯,
d̂1ng, D2 = fd̂21, d̂22,⋯, d̂2ng, D3 = fd̂31, d̂32,⋯, d̂3ng,.....,
Dn = fd̂n1, d̂n2,⋯, d̂nng,and D =D1 ×D2 ×D3 × :⋯ ×Dn

= fd̂1, d̂2, d̂3,:⋯ , d̂sg, where each d̂iði = 1, 2,⋯:,sÞ is an n
-tuple element of D and s =Qn

i=1jDij, j•j denotes set cardi-
nality, then the pair ðΨFHS,DÞ is known as ivfhs-set where
ΨFHS : D⟶Ωivfs and defined as ΨFHSðfd̂1, d̂2,⋯, d̂kgÞ =
Ωivfsðfû1, û2,⋯, ûngÞ, and D ⊆V with k ≤ s.

Theorem 33. LetW1 = ðΨ1
FHS,D1Þ&W2 = ðΨ2

FHS,D2Þ be two
ivfhs-sets, then

W1c⊆ JW1 ~⊕W2,

W2c⊆ JW1 ~⊕W2,

W1 ~⊗W2c⊆ JW1,

W1 ~⊗W2c⊆ JW1:

ð35Þ

Theorem 34. Let W1 = ðΨ1
FHS,D1Þ,W2 = ðΨ2

FHS,D2Þ&W3

= ðΨ3
FHS,D3Þ be three ivfhs-sets with W1c⊆ JW2, then

W3 ~⊕W1c⊆ JW3 ~⊕W2,

W3 ~⊕W1c⊆ JW2 ~⊕W3,

W1 ~⊕W3c⊆ JW2 ~⊕W3,

W1 ~⊕W3c⊆ JW3 ~⊕W2:

ð36Þ

Theorem 35. Let ðΨi
FHS,DiÞ&ðΦi

FHS, S iÞ be two ivfhs-sets
with ðΨ1

FHS,D1Þc⊆ J ðΦ1
FHS, S1Þ and ðΨ2

FHS,D2Þc⊆ J ðΦ2
FHS,

S2Þ, then

Ψ1
FHS,D1

� �
~⊕ Ψ2

FHS,D2

� �c⊆ J Φ1
FHS,S1

� �
~⊕ Φ2

FHS, S2

� �
:

ð37Þ

Theorem 36. Let W1 = ðΨ1
FHS,D1Þ,W2 = ðΨ2

FHS,D2Þ&W3

= ðΨ3
FHS,D3Þ be three ivfhs-sets with W1c⊆ JW2, then

W3 ~⊗W1c⊆ JW3 ~⊗W2,

W3 ~⊗W1c⊆ JW2 ~⊗W3,

W1 ~⊗W3c⊆ JW2 ~⊗W3,

W1 ~⊗W3c⊆ JW3 ~⊗W2:

ð38Þ

Theorem 37. Let ðΨi
FHS,RiÞ&ðΦi

FHS, S iÞ be two ivfhs-sets
with

Ψ1
FHS,R1

� �c⊆ J Φ1
FHS, S1

� �
, ð39Þ

and

Ψ2
FHS,R2

� �c⊆ J Φ2
FHS, S2

� �
, ð40Þ

then

Ψ1
FHS,R1

� �
~⊗ Ψ2

FHS,R2

� �c⊆ J Φ1
FHS,S1

� �
~⊗ Φ2

FHS, S2

� �
:

ð41Þ

Theorem 38. Let W1 = ðΨ1
FHS,D1Þ,W2 = ðΨ2

FHS,D2Þ&W3

= ðΨ3
FHS,D3Þ be three ivfhs-sets, then ðW1 ~⊕W2Þ ~⊗W3c⊆ JW1 ~⊕ ðW2 ~⊗W3Þ.
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Proof. From Theorem 32(1), we have

W1 ~⊕W2ð Þ ~⊗W3c⊆ L W1 ~⊗W3ð Þ ~⊕ W2 ~⊗W3ð Þ, ð42Þ

and then, after applying Proposition 18, we get

W1 ~⊕W2ð Þ ~⊗W3c⊆ J W1 ~⊗W3ð Þ ~⊕ W2 ~⊗W3ð Þ, ð43Þ

and by Theorem 33, we obtain W1 ~⊗W3c⊆ JW1; therefore,

W1 ~⊕W2ð Þ ~⊗W3c⊆ JW1 ~⊕ W2 ~⊗W3ð Þ, ð44Þ

implies

W1 ~⊗W3ð Þ ~⊕ W2 ~⊗W3ð Þc⊆ JW1 ~⊕ W2 ~⊗W3ð Þ, ð45Þ

which leads to following final result due to transitivity ofc⊆ J

W1 ~⊕W2ð Þ ~⊗W3c⊆ JW1 ~⊕ W2 ~⊗W3ð Þ: ð46Þ

Corollary 39. Let W1 = ðΨ1
FHS,D1Þ,W2 = ðΨ2

FHS,D2Þ&W3

= ðΨ3
FHS,D3Þ be three ivfhs-sets then

W2 ~⊕W1ð Þ ~⊗W3c⊆ JW1 ~⊕ W2 ~⊗W3ð Þ,
W1 ~⊕W2ð Þ ~⊗W3c⊆ JW1 ~⊕ W3 ~⊗W2ð Þ,
W2 ~⊕W1ð Þ ~⊗W3c⊆ JW1 ~⊕ W3 ~⊗W2ð Þ:

ð47Þ

Proof. From Theorem 27(2), we have

W2 ~⊕W1=̂ LW1 ~⊕W2, ð48Þ

and then, after applying Proposition 18, we get

W2 ~⊕W1=̂ JW1 ~⊕W2, ð49Þ

implies

W2 ~⊕W1c⊆ JW1 ~⊕W2: ð50Þ

Taking ~⊗ on both sides of above inequality withW3, we
have

W2 ~⊕W1ð Þ ~⊗W3c⊆ J W1 ~⊕W2ð Þ ~⊗W3, ð51Þ

but by Theorem 38

W1 ~⊕W2ð Þ ~⊗W3c⊆ JW1 ~⊕ W2 ~⊗W3ð Þ, ð52Þ

which leads to following final result due to transitivity ofc⊆ J

W2 ~⊕W1ð Þ ~⊗W3c⊆ JW1 ~⊕ W2 ~⊗W3ð Þ: ð53Þ

Other parts can easily be validated in the similar manner.

Corollary 40. Let W1 = ðΨ1
FHS,D1Þ,W2 = ðΨ2

FHS,D2Þ&W3

= ðΨ3
FHS,D3Þ be three ivfhs-sets then

W3 ~⊗ W2 ~⊕W1ð Þc⊆ JW1 ~⊕ W2 ~⊗W3ð Þ,
W3 ~⊗ W1 ~⊕W2ð Þc⊆ JW1 ~⊕ W3 ~⊗W2ð Þ,
W3 ~⊗ W2 ~⊕W1ð Þc⊆ JW1 ~⊕ W3 ~⊗W2ð Þ,
W3 ~⊗ W1 ~⊕W2ð Þc⊆ JW1 ~⊕ W2 ~⊗W3ð Þ:

ð54Þ

Corollary 41. Let W1 = ðΨ1
FHS,D1Þ,W2 = ðΨ2

FHS,D2Þ&W3

= ðΨ3
FHS,D3Þ be three ivfhs-sets, then

W3 ~⊗ W2 ~⊕W1ð Þc⊆ J W2 ~⊗W3ð Þ ~⊕W1,

W3 ~⊗ W1 ~⊕W2ð Þc⊆ J W3 ~⊗W2ð Þ ~⊕W1,

W3 ~⊗ W2 ~⊕W1ð Þc⊆ J W3 ~⊗W2ð Þ ~⊕W1,

W3 ~⊗ W1 ~⊕W2ð Þc⊆ J W2 ~⊗W3ð Þ ~⊕W1:

ð55Þ

Corollary 42. Let W1 = ðΨ1
FHS,D1Þ,W2 = ðΨ2

FHS,D2Þ&W3

= ðΨ3
FHS,D3Þ be three ivfhs-sets, then

W2 ~⊕W1ð Þ ~⊗W3c⊆ J W2 ~⊗W3ð Þ ~⊕W1,

W1 ~⊕W2ð Þ ~⊗W3c⊆ J W3 ~⊗W2ð Þ ~⊕W1,

W2 ~⊕W1ð Þ ~⊗W3c⊆ J W3 ~⊗W2ð Þ ~⊕W1,

W1 ~⊕W2ð Þ ~⊗W3c⊆ J W2 ~⊗W3ð Þ ~⊕W1:

ð56Þ

Theorem 43. Let W1 = ðΨ1
FHS,D1Þ,W2 = ðΨ2

FHS,D2Þ&W3

= ðΨ3
FHS,D3Þ be three ivfhs-sets. If W1c⊆ JW3, then

W1 ~⊕ W2 ~⊗W3ð Þc⊆ J W1 ~⊕W2ð Þ ~⊗ W3 ~⊕W3ð Þ: ð57Þ

Proof. From Theorem 32(2), we have

W1 ~⊕ W2 ~⊗W3ð Þc⊆ L W1 ~⊕W2ð Þ ~⊗ W1 ~⊕W3ð Þ, ð58Þ

and then, after applying Proposition 18, we get

W1 ~⊕ W2 ~⊗W3ð Þc⊆ J W1 ~⊕W2ð Þ ~⊗ W1 ~⊕W3ð Þ: ð59Þ

since given that,

W1c⊆ JW3: ð60Þ

Taking ~⊕ on both sides of above inequality withW3, we
have

W1 ~⊕W3c⊆ JW3 ~⊕W3, ð61Þ

implies
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W1 ~⊕ W2 ~⊗W3ð Þc⊆ J W1 ~⊕W2ð Þ ~⊗ W3 ~⊕W3ð Þ, ð62Þ

such that

W1 ~⊕W2ð Þ ~⊗ W1 ~⊕W3ð Þc⊆ J W1 ~⊕W2ð Þ ~⊗ W3 ~⊕W3ð Þ, ð63Þ

which leads to following final result due to transitivity ofc⊆ J

W1 ~⊕ W2 ~⊗W3ð Þc⊆ J W1 ~⊕W2ð Þ ~⊗ W3 ~⊕W3ð Þ: ð64Þ

Example 6. Let X̆ = fû1, û2, û3, û4, û5g be an initial universe
and V = fv̂1, v̂2, v̂3, v̂4, v̂5, v̂6g be a set of attributes. The
respective attribute-valued disjoint sets are D1 = fd̂11g, D2
= fd̂21, d̂22g, D3 = fd̂31, d̂32g, D4 = fd̂41, d̂42gD5 = fd̂51g
D6 = fd̂61g, and D =D1 ×D2 ×D3 × :⋯ ×Dn = fd̂1, d̂2, d̂3
, d̂4, d̂5, d̂6, d̂7, d̂8g. Let us take E1 = fd̂1, d̂2, d̂3g,E2 = fd̂4,
d̂5g, and E3 = fd̂6, d̂7, d̂8g as subsets of D, then we have
three ivfhs-sets W1 = ðΨ1

FHS,E1Þ,W2 = ðΨ2
FHS,E2Þ&W3 = ð

Ψ3
FHS,E3Þ with

Ψ1
FHS d̂1

� 	
= û1

0:2,0:7½ � ,
û2

0:3,0:8½ � ,
û3

0:4,0:8½ � ,
û4

0:5,0:6½ � ,
û5

0:6,0:7½ �
� �

,

Ψ1
FHS d̂2

� 	
= û1

0:3,0:7½ � ,
û2

0:4,0:8½ � ,
û3

0:5,0:8½ � ,
û4

0:6,0:7½ � ,
û5

0:7,0:8½ �
� �

,

Ψ1
FHS d̂3

� 	
= û1

0:4,0:7½ � ,
û2

0:5,0:8½ � ,
û3

0:6,0:8½ � ,
û4

0:7,0:8½ � ,
û5

0:5,0:8½ �
� �

,

Ψ2
FHS d̂4

� 	
= û1

0:5,0:8½ � ,
û2

0:6,0:8½ � ,
û3

0:7,0:8½ � ,
û4

0:8,0:9½ � ,
û5

0:6,0:8½ �
� �

,

Ψ2
FHS d̂5

� 	
= û1

0:6,0:8½ � ,
û2

0:7,0:8½ � ,
û3

0:8,0:9½ � ,
û4

0:8,0:9½ � ,
û5

0:7,0:9½ �
� �

,

Ψ3
FHS d̂6

� 	
= û1

0:3,0:8½ � ,
û2

0:4,0:9½ � ,
û3

0:5,0:9½ � ,
û4

0:6,0:7½ � ,
û5

0:7,0:8½ �
� �

,

Ψ3
FHS d̂7

� 	
= û1

0:4,0:8½ � ,
û2

0:5,0:9½ � ,
û3

0:6,0:9½ � ,
û4

0:7,0:8½ � ,
û5

0:8,0:9½ �
� �

,

Ψ3
FHS d̂8

� 	
= û1

0:5,0:8½ � ,
û2

0:6,0:9½ � ,
û3

0:7,0:9½ � ,
û4

0:8,0:9½ � ,
û5

0:6,0:9½ �
� �

:

ð65Þ

It is clear that Ψ1
FHSðd̂1Þ ⊆Ψ3

FHSðd̂6Þ, Ψ1
FHSðd̂2Þ ⊆Ψ3

FHSð
d̂7Þ, and Ψ1

FHSðd̂3Þ ⊆Ψ3
FHSðd̂8Þ; therefore, W1c⊆ JW3.

Consider W4 =W2 ~⊗W2 or ðΦFHS,E2 ×E3Þ = ðΨ2
FHS,

E2Þ ~⊗ ðΨ3
FHS,E3Þ with

ΦFHS d̂4, d̂6
� 	

= û1
0:3,0:8½ � ,

û2
0:4,0:8½ � ,

û3
0:5,0:8½ � ,

û4
0:6,0:7½ � ,

û5
0:6,0:8½ �

� �
,

ΦFHS d̂4, d̂7
� 	

= û1
0:4,0:8½ � ,

û2
0:5,0:8½ � ,

û3
0:6,0:8½ � ,

û4
0:7,0:8½ � ,

û5
0:6,0:8½ �

� �
,

ΦFHS d̂4, d̂8
� 	

= û1
0:5,0:8½ � ,

û2
0:6,0:8½ � ,

û3
0:7,0:8½ � ,

û4
0:8,0:9½ � ,

û5
0:6,0:8½ �

� �
,

ΦFHS d̂5, d̂6
� 	

= û1
0:3,0:8½ � ,

û2
0:4,0:8½ � ,

û3
0:5,0:9½ � ,

û4
0:6,0:7½ � ,

û5
0:7,0:8½ �

� �
,

ΦFHS d̂5, d̂7
� 	

= û1
0:4,0:8½ � ,

û2
0:5,0:8½ � ,

û3
0:6,0:9½ � ,

û4
0:7,0:8½ � ,

û5
0:7,0:9½ �

� �
,

ΦFHS d̂5, d̂8
� 	

= û1
0:5,0:8½ � ,

û2
0:6,0:8½ � ,

û3
0:7,0:9½ � ,

û4
0:8,0:9½ � ,

û5
0:6,0:9½ �

� �
:

ð66Þ

Now, let W5 =W1 ~⊕ ðW2 ~⊗W2Þ or

YFHS,E1 × E2 ×E3ð Þð Þ = Ψ1
FHS,E1

� �
~⊕ Ψ2

FHS,E2
� �

~⊗ Ψ3
FHS,E3

� �
 �
,

ð67Þ

with

YFHS d̂1, d̂4, d̂6
� 	

= û1
0:3,0:8½ � ,

û2
0:4,0:8½ � ,

û3
0:5,0:8½ � ,

û4
0:6,0:7½ � ,

û5
0:6,0:8½ �

� �
,

YFHS d̂1, d̂4, d̂7
� 	

= û1
0:4,0:8½ � ,

û2
0:5,0:8½ � ,

û3
0:6,0:8½ � ,

û4
0:7,0:8½ � ,

û5
0:6,0:8½ �

� �
,

YFHS d̂1, d̂4, d̂8
� 	

= û1
0:5,0:8½ � ,

û2
0:6,0:8½ � ,

û3
0:7,0:8½ � ,

û4
0:8,0:9½ � ,

û5
0:6,0:8½ �

� �
,

YFHS d̂1, d̂5, d̂6
� 	

= û1
0:3,0:8½ � ,

û2
0:4,0:8½ � ,

û3
0:5,0:9½ � ,

û4
0:6,0:7½ � ,

û5
0:7,0:8½ �

� �
,

YFHS d̂1, d̂5, d̂7
� 	

= û1
0:4,0:8½ � ,

û2
0:5,0:8½ � ,

û3
0:6,0:9½ � ,

û4
0:7,0:8½ � ,

û5
0:7,0:9½ �

� �
,

YFHS d̂1, d̂5, d̂8
� 	

= û1
0:5,0:8½ � ,

û2
0:6,0:8½ � ,

û3
0:7,0:9½ � ,

û4
0:8,0:9½ � ,

û5
0:6,0:9½ �

� �
,

YFHS d̂2, d̂4, d̂6
� 	

= û1
0:3,0:8½ � ,

û2
0:4,0:8½ � ,

û3
0:5,0:8½ � ,

û4
0:6,0:7½ � ,

û5
0:7,0:8½ �

� �
,

YFHS d̂2, d̂4, d̂7
� 	

= û1
0:4,0:8½ � ,

û2
0:5,0:8½ � ,

û3
0:6,0:8½ � ,

û4
0:7,0:8½ � ,

û5
0:7,0:8½ �

� �
,

YFHS d̂2, d̂4, d̂8
� 	

= û1
0:5,0:8½ � ,

û2
0:6,0:8½ � ,

û3
0:7,0:8½ � ,

û4
0:8,0:9½ � ,

û5
0:7,0:8½ �

� �
,

YFHS d̂2, d̂5, d̂6
� 	

= û1
0:3,0:8½ � ,

û2
0:4,0:8½ � ,

û3
0:5,0:9½ � ,

û4
0:6,0:7½ � ,

û5
0:7,0:8½ �

� �
,

YFHS d̂2, d̂5, d̂7
� 	

= û1
0:4,0:8½ � ,

û2
0:5,0:8½ � ,

û3
0:6,0:9½ � ,

û4
0:7,0:8½ � ,

û5
0:7,0:9½ �

� �
,

YFHS d̂2, d̂5, d̂8
� 	

= û1
0:5,0:8½ � ,

û2
0:6,0:8½ � ,

û3
0:7,0:9½ � ,

û4
0:8,0:9½ � ,

û5
0:7,0:9½ �

� �
,

YFHS d̂3, d̂4, d̂6
� 	

= û1
0:4,0:8½ � ,

û2
0:5,0:8½ � ,

û3
0:6,0:8½ � ,

û4
0:7,0:8½ � ,

û5
0:7,0:8½ �

� �
,

YFHS d̂3, d̂4, d̂7
� 	

= û1
0:4,0:8½ � ,

û2
0:5,0:8½ � ,

û3
0:6,0:8½ � ,

û4
0:7,0:8½ � ,

û5
0:6,0:8½ �

� �
,

YFHS d̂3, d̂4, d̂8
� 	

= û1
0:5,0:8½ � ,

û2
0:6,0:8½ � ,

û3
0:7,0:8½ � ,

û4
0:8,0:9½ � ,

û5
0:6,0:8½ �

� �
,
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YFHS d̂3, d̂5, d̂6
� 	

= û1
0:4,0:8½ � ,

û2
0:5,0:8½ � ,

û3
0:6,0:9½ � ,

û4
0:7,0:8½ � ,

û5
0:7,0:8½ �

� �
,

YFHS d̂3, d̂5, d̂7
� 	

= û1
0:4,0:8½ � ,

û2
0:5,0:8½ � ,

û3
0:6,0:9½ � ,

û4
0:7,0:8½ � ,

û5
0:7,0:9½ �

� �
,

YFHS d̂3, d̂5, d̂8
� 	

= û1
0:5,0:8½ � ,

û2
0:6,0:8½ � ,

û3
0:7,0:9½ � ,

û4
0:8,0:9½ � ,

û5
0:6,0:9½ �

� �
:

ð68Þ

Now, we find W6 =W1 ~⊕W2 = ðΨ1
FHS,E1Þ ~⊕ ðΨ2

FHS,E2Þ
= ðΦ1

FHS,E1 ×E2Þ with

Φ1
FHS d̂1, d̂4

� 	
= û1

0:5,0:8½ � ,
û2

0:6,0:8½ � ,
û3

0:7,0:8½ � ,
û4

0:8,0:9½ � ,
û5

0:6,0:8½ �
� �

,

Φ1
FHS d̂1, d̂5

� 	
= û1

0:6,0:8½ � ,
û2

0:7,0:8½ � ,
û3

0:8,0:9½ � ,
û4

0:8,0:9½ � ,
û5

0:7,0:9½ �
� �

,

Φ1
FHS d̂2, d̂4

� 	
= û1

0:5,0:8½ � ,
û2

0:6,0:8½ � ,
û3

0:7,0:8½ � ,
û4

0:8,0:9½ � ,
û5

0:7,0:8½ �
� �

,

Φ1
FHS d̂2, d̂5

� 	
= û1

0:6,0:8½ � ,
û2

0:7,0:8½ � ,
û3

0:8,0:9½ � ,
û4

0:8,0:9½ � ,
û5

0:7,0:9½ �
� �

,

Φ1
FHS d̂3, d̂4

� 	
= û1

0:5,0:8½ � ,
û2

0:6,0:8½ � ,
û3

0:7,0:8½ � ,
û4

0:8,0:9½ � ,
û5

0:6,0:8½ �
� �

,

Φ1
FHS d̂3, d̂5

� 	
= û1

0:6,0:8½ � ,
û2

0:7,0:8½ � ,
û3

0:8,0:9½ � ,
û4

0:8,0:9½ � ,
û5

0:7,0:9½ �
� �

:

ð69Þ

Similarly, W7 =W3 ~⊕W3 = ðΨ3
FHS,E3Þ ~⊕ ðΨ3

FHS,E3Þ = ð
Φ2

FHS,E3 ×E3Þ with

Φ2
FHS d̂6, d̂6

� 	
= û1

0:3,0:8½ � ,
û2

0:4,0:9½ � ,
û3

0:5,0:9½ � ,
û4

0:6,0:7½ � ,
û5

0:7,0:8½ �
� �

,

Φ2
FHS d̂6, d̂7

� 	
= û1

0:4,0:8½ � ,
û2

0:5,0:9½ � ,
û3

0:6,0:9½ � ,
û4

0:7,0:8½ � ,
û5

0:8,0:9½ �
� �

,

Φ2
FHS d̂6, d̂8

� 	
= û1

0:5,0:8½ � ,
û2

0:6,0:9½ � ,
û3

0:7,0:9½ � ,
û4

0:8,0:9½ � ,
û5

0:7,0:9½ �
� �

,

Φ2
FHS d̂7, d̂6

� 	
= û1

0:4,0:8½ � ,
û2

0:5,0:9½ � ,
û3

0:6,0:9½ � ,
û4

0:7,0:8½ � ,
û5

0:8,0:9½ �
� �

,

Φ2
FHS d̂7, d̂7

� 	
= û1

0:4,0:8½ � ,
û2

0:5,0:9½ � ,
û3

0:6,0:9½ � ,
û4

0:7,0:8½ � ,
û5

0:8,0:9½ �
� �

,

Φ2
FHS d̂7, d̂8

� 	
= û1

0:5,0:8½ � ,
û2

0:6,0:9½ � ,
û3

0:7,0:9½ � ,
û4

0:8,0:9½ � ,
û5

0:8,0:9½ �
� �

,

Φ2
FHS d̂8, d̂6

� 	
= û1

0:5,0:8½ � ,
û2

0:6,0:9½ � ,
û3

0:7,0:9½ � ,
û4

0:8,0:9½ � ,
û5

0:7,0:9½ �
� �

,

Φ2
FHS d̂8, d̂7

� 	
= û1

0:5,0:8½ � ,
û2

0:6,0:9½ � ,
û3

0:7,0:9½ � ,
û4

0:8,0:9½ � ,
û5

0:8,0:9½ �
� �

,

Φ2
FHS d̂8, d̂8

� 	
= û1

0:5,0:8½ � ,
û2

0:6,0:9½ � ,
û3

0:7,0:9½ � ,
û4

0:8,0:9½ � ,
û5

0:6,0:9½ �
� �

:

ð70Þ

Lastly, W8 =W6 ~⊗W7 = ðW1 ~⊕W2Þ ~⊗ ðW3 ~⊕W3Þ = ð
Φ1

FHS,E1 ×E2Þ ~⊗ ðΦ2
FHS,E3 ×E3Þ = ðΦ3

FHS, ðE1 ×E2Þ × ðE3
×E3ÞÞ with

Φ3
FHS d̂1, d̂4

� 	
, d̂6, d̂6
� 	� 	

= û1
0:3,0:8½ � ,

û2
0:4,0:8½ � ,

û3
0:5,0:8½ � ,

û4
0:6,0:7½ � ,

û5
0:6,0:8½ �

� �
,

Φ3
FHS d̂1, d̂4

� 	
, d̂6, d̂7
� 	� 	

= û1
0:4,0:8½ � ,

û2
0:5,0:8½ � ,

û3
0:6,0:8½ � ,

û4
0:7,0:8½ � ,

û5
0:6,0:8½ �

� �
,

Φ3
FHS d̂1, d̂4

� 	
, d̂6, d̂8
� 	� 	

= û1
0:5,0:8½ � ,

û2
0:6,0:8½ � ,

û3
0:7,0:8½ � ,

û4
0:8,0:9½ � ,

û5
0:6,0:8½ �

� �
,

⋯⋯⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

⋯⋯⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

⋯⋯⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

Φ3
FHS d̂3, d̂5

� 	
, d̂8, d̂8
� 	� 	

= û1
0:5,0:8½ � ,

û2
0:6,0:8½ � ,

û3
0:7,0:9½ � ,

û4
0:8,0:9½ � ,

û5
0:6,0:9½ �

� �
:

ð71Þ

It can be seen that

W5c⊆ JW8 =W1 ~⊕ W2 ~⊗W3ð Þc⊆ J , ð72Þ

ðW1 ~⊕W2Þ ~⊗ ðW3 ~⊕W3Þ is not valid in general.

Corollary 44. Let W1 = ðΨ1
FHS,D1Þ,W2 = ðΨ2

FHS,D2Þ&W3

= ðΨ3
FHS,D3Þ be three ivfhs-sets. If W1c⊆ JW3, then

W1 ~⊕ W3 ~⊗W2ð Þc⊆ J W1 ~⊕W2ð Þ ~⊗ W3 ~⊕W3ð Þ,
W1 ~⊕ W3 ~⊗W2ð Þc⊆ J W2 ~⊕W1ð Þ ~⊗ W3 ~⊕W3ð Þ,
W1 ~⊕ W2 ~⊗W3ð Þc⊆ J W2 ~⊕W1ð Þ ~⊗ W3 ~⊕W3ð Þ:

ð73Þ

Proof. From Theorem 27(2), we have

W2 ~⊗W3=̂ LW3 ~⊗W2, ð74Þ

and then, after applying Proposition 18, we get

W2 ~⊗W3=̂ JW3 ~⊗W2, ð75Þ

implies

W3 ~⊗W2c⊆ JW2 ~⊗W3: ð76Þ

Taking ~⊕ on both sides of above inequality withW1, we
have

W1 ~⊕ W3 ~⊗W2ð Þc⊆ JW1 ~⊕ W2 ~⊗W3ð Þ, ð77Þ

but by Theorem 43, we get

W1 ~⊕ W2 ~⊗W3ð Þc⊆ J W1 ~⊕W2ð Þ ~⊗ W3 ~⊕W3ð Þ, ð78Þ

which leads to following final result due to transitivity ofc⊆ J

W1 ~⊕ W3 ~⊗W2ð Þc⊆ J W1 ~⊕W2ð Þ ~⊗ W3 ~⊕W3ð Þ: ð79Þ

Other parts can easily be validated in the similar manner.
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Corollary 45. Let W1 = ðΨ1
FHS,D1Þ,W2 = ðΨ2

FHS,D2Þ&W3

= ðΨ3
FHS,D3Þ be three ivfhs-sets. If W1c⊆ JW3, then

W1 ~⊕ W3 ~⊗W2ð Þc⊆ J W3 ~⊕W3ð Þ ~⊗ W2 ~⊕W1ð Þ,
W1 ~⊕ W2 ~⊗W3ð Þc⊆ J W3 ~⊕W3ð Þ ~⊗ W2 ~⊕W1ð Þ,
W1 ~⊕ W2 ~⊗W3ð Þc⊆ J W3 ~⊕W3ð Þ ~⊗ W1 ~⊕W2ð Þ,
W1 ~⊕ W3 ~⊗W2ð Þc⊆ J W3 ~⊕W3ð Þ ~⊗ W1 ~⊕W2ð Þ:

ð80Þ

Corollary 46. Let W1 = ðΨ1
FHS,D1Þ,W2 = ðΨ2

FHS,D2Þ&W3

= ðΨ3
FHS,D3Þ be three ivfhs-sets. If W1c⊆ JW3, then

W3 ~⊗W2ð Þ ~⊕W1c⊆ J W3 ~⊕W3ð Þ ~⊗ W2 ~⊕W1ð Þ,
W2 ~⊗W3ð Þ ~⊕W1c⊆ J W3 ~⊕W3ð Þ ~⊗ W2 ~⊕W1ð Þ,
W2 ~⊗W3ð Þ ~⊕W1c⊆ J W3 ~⊕W3ð Þ ~⊗ W1 ~⊕W2ð Þ,
W3 ~⊗W2ð Þ ~⊕W1c⊆ J W3 ~⊕W3ð Þ ~⊗ W1 ~⊕W2ð Þ:

ð81Þ

Corollary 47. Let W1 = ðΨ1
FHS,D1Þ,W2 = ðΨ2

FHS,D2Þ&W3

= ðΨ3
FHS,D3Þ be three ivfhs-sets. If W1c⊆ JW3, then

W3 ~⊗W2ð Þ ~⊕W1c⊆ J W2 ~⊕W1ð Þ ~⊗ W3 ~⊕W3ð Þ,
W2 ~⊗W3ð Þ ~⊕W1c⊆ J W2 ~⊕W1ð Þ ~⊗ W3 ~⊕W3ð Þ,
W2 ~⊗W3ð Þ ~⊕W1c⊆ J W1 ~⊕W2ð Þ ~⊗ W3 ~⊕W3ð Þ,
W3 ~⊗W2ð Þ ~⊕W1c⊆ J W1 ~⊕W2ð Þ ~⊗ W3 ~⊕W3ð Þ:

ð82Þ

Theorem 48. Let W1 = ðΨ1
FHS,D1Þ,W2 = ðΨ2

FHS,D2Þ&W3

= ðΨ3
FHS,D3Þ be three ivfhs-sets. If W1c⊆ JW3 and W3 is

an UD-ivfhss, then we have

W1 ~⊕ W2 ~⊗W3ð Þ=̂ J W1 ~⊕W2ð Þ ~⊗W3: ð83Þ

Proof. Since we know from Theorem 43 that

W1 ~⊕ W2 ~⊗W3ð Þc⊆ J W1 ~⊕W2ð Þ ~⊗ W3 ~⊕W3ð Þ, ð84Þ

As given that W3 is an UD-ivfhss, therefore, W3 ~⊕W3
=̂ JW3 which implies W3 ~⊕W3c⊆ JW3 such that

W1 ~⊕ W2 ~⊗W3ð Þc⊆ J W1 ~⊕W2ð Þ ~⊗W3, ð85Þ

implies

W1 ~⊕W2ð Þ ~⊗ W3 ~⊕W3ð Þc⊆ J W1 ~⊕W2ð Þ ~⊗W3, ð86Þ

which leads to following final result due to transitivity ofc⊆ J

W1 ~⊕ W2 ~⊕W3ð Þc⊆ J W1 ~⊕W2ð Þ ~⊗W3: ð87Þ

Corollary 49. Let W1 = ðΨ1
FHS,D1Þ,W2 = ðΨ2

FHS,D2Þ&W3

= ðΨ3
FHS,D3Þ be three ivfhs-sets. If W1c⊆ JW3 and W3 is

an UD-ivfhss, then

W1 ~⊕ W3 ~⊗W2ð Þ=̂ J W1 ~⊕W2ð Þ ~⊗W3,
W1 ~⊕ W3 ~⊗W2ð Þ=̂ J W2 ~⊕W1ð Þ ~⊗W3,
W1 ~⊕ W2 ~⊗W3ð Þ=̂ J W2 ~⊕W1ð Þ ~⊗W3:

ð88Þ

Proof. Since we know from Theorem 27 that W2 ~⊗W3=̂ L

W3 ~⊗W2 which further implies that W2 ~⊗W3=̂ JW3 ~⊗
W2, i.e.,

W2 ~⊗W3c⊆ JW3 ~⊗W2, ð89Þ

and

W3 ~⊗W2c⊆ JW2 ~⊗W3: ð90Þ

By applying Theorem 36, we have

W1 ~⊕ W2 ~⊗W3ð Þc⊆ JW1 ~⊕ W3 ~⊗W2ð Þ, ð91Þ

and

W1 ~⊕ W3 ~⊗W2ð Þc⊆ JW1 ~⊕ W2 ~⊗W3ð Þ, ð92Þ

so

W1 ~⊕ W3 ~⊗W2ð Þ=̂ JW1 ~⊕ W2 ~⊗W3ð Þ, ð93Þ

since by Theorem 48, we have

W1 ~⊕ W2 ~⊗W3ð Þ=̂ J W1 ~⊕W2ð Þ ~⊗W3: ð94Þ

Hence,

W1 ~⊕ W3 ~⊗W2ð Þ=̂ J W1 ~⊕W2ð Þ ~⊗W3: ð95Þ

Corollary 50. Let W1 = ðΨ1
FHS,D1Þ,W2 = ðΨ2

FHS,D2Þ&W3

= ðΨ3
FHS,D3Þ be three ivfhs-sets. If W1c⊆ JW3 and W3 is

an UD-ivfhss, then

W3 ~⊗W2ð Þ ~⊕W1=̂ J W1 ~⊕W2ð Þ ~⊗W3,
W3 ~⊗W2ð Þ ~⊕W1=̂ J W2 ~⊕W1ð Þ ~⊗W3,
W2 ~⊗W3ð Þ ~⊕W1=̂ J W2 ~⊕W1ð Þ ~⊗W3,
W2 ~⊗W3ð Þ ~⊕W1=̂ J W1 ~⊕W2ð Þ ~⊗W3:

ð96Þ

Corollary 51. Let W1 = ðΨ1
FHS,D1Þ,W2 = ðΨ2

FHS,D2Þ&W3

= ðΨ3
FHS,D3Þ be three ivfhs-sets. If W1c⊆ JW3 and W3 is

an UD-ivfhss, then
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W3 ~⊗W2ð Þ ~⊕W1=̂ JW3 ~⊗ W1 ~⊗W2ð Þ,
W3 ~⊗W2ð Þ ~⊕W1=̂ JW3 ~⊗ W2 ~⊗W1ð Þ,
W2 ~⊗W3ð Þ ~⊕W1=̂ JW3 ~⊗ W2 ~⊗W1ð Þ,
W2 ~⊗W3ð Þ ~⊕W1=̂ JW3 ~⊗ W1 ~⊗W2ð Þ:

ð97Þ

Corollary 52. Let W1 = ðΨ1
FHS,D1Þ,W2 = ðΨ2

FHS,D2Þ&W3

= ðΨ3
FHS,D3Þ be three ivfhs-sets. If W1c⊆ JW3 and W3 is

an UD-ivfhss, then

W1 ~⊕ W3 ~⊗W2ð Þ=̂ JW3 ~⊗ W1 ~⊕W2ð Þ,
W1 ~⊕ W3 ~⊗W2ð Þ=̂ JW3 ~⊗ W2 ~⊕W1ð Þ,
W1 ~⊕ W2 ~⊗W3ð Þ=̂ JW3 ~⊗ W2 ~⊕W1ð Þ,
W1 ~⊕ W2 ~⊗W3ð Þ=̂ JW3 ~⊗ W1 ~⊕W2ð Þ:

ð98Þ

5.1. Discussion. Now, we prove the flexibility of our pre-
sented model ivfhs-set through structural comparison based
on some important evaluating features like DoM (degree of
membership), SAAF (single-argument approximate func-
tion), MAAF (multiargument approximate function), DFPT
(deep focus on parametric tuples), and IVTD (interval-val-
ued type data). The Table 6 presents this comparison with
some relevant existing studies. Some of the advantages of
the proposed model are as under:

(1) It is capable to manage the uncertain nature of alter-
natives (entities in universal set) by assigning fuzzy
membership grades to each entity corresponding to
each parameter

(2) It has ability to tackle the scenarios where classifica-
tion of parameters into their respective parametric-
valued subcollections is necessary to be considered

(3) It is useful to manage big collection of interval-base
information with the help of its interval-valued
approximate setting

In short, the ivfhs-set tackle all the above three situations
collectively in one model.

6. Conclusion

In this research, some essential elementary rudiments (i.e.,
properties, set-theoretic operations, and set-inclusions) of
ivfhs-set are conceptualized, and then, some modular
inequalities of ivfhs-set are established by employing the
concept of L-inclusion and J -inclusion. It is observed that
the transformation of approximate function from ivfs-set to
ivfhs-set preserve all set-inclusion-based properties and
inequalities. As this paper focuses on the fuzzy membership
with interval setting under hs-set environment, so it is inad-
equate for the scenarios where the consideration of falsity
degree and indeterminacy degree is mandatory. Therefore,
the future work may include the extension of this study to
tackle above said scenarios. This can also be extended to
the development of algebraic structures based on fuzzy
hypersoft set with interval-valued setting.
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