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In this paper, the existence and uniqueness of solutions for a nonlinear fractional differential equation with a two-point boundary
condition in a Banach space are investigated by using the contraction mapping principle and the Brouwer fixed-point theorem
with Bielecki norm. The iterative scheme of the numerical solution for the nonlinear two-point boundary value problem will
be discussed and illustrated by solving some problems. The well-known Ulam-Hyers and Ulam-Hyers-Rassias stability
theorems are employed to establish the stability of solutions to the boundary value problem. In the end, we provided a couple
of examples to support our results.

1. Introduction

Fractional calculus is an important mathematical topic due
to its theoretical foundation and multiple applications in
physical, chemical processes, and engineering; for instance,
see [1–6]. The two-point boundary value problem occurs
in applied mathematics, theoretical physics, engineering,
control, and optimization theory (see [7]). The existence of
solutions of initial and boundary value problems of frac-
tional differential equations by the help of different fixed-
point theorems has been discussed by many mathemati-
cians, and the readers are referred to see the monographs
[8–21]. In [22], the authors give the existence results for
two-point boundary value problem of fractional differential
equations at resonance by means of the coincidence degree
theory. Mongkolkeha and Gopal [23] proposed new com-
mon fixed-point theorems for the Ciric type generalized F-
contraction in metric spaces with the w-distance. The fixed
points for the monotone γ-nonexpansive and generalized ℘
-nonexpansive mappings in hyperbolic space have been
approximated by [24].

In fact, the subject of numerical methods for solving
fractional differential equations has gained prominence and
has been discussed by several authors, including a series of

papers [25–31] and references cited therein, which include
some recent studies on the approximation method for differ-
ential equations of fractional order. El-Ajou et al. [32]
extended the application of the homotopy analysis method
(HAM) to provide symbolic approximate solution for two-
point boundary value problems of fractional order. Lyons
et al. [33] prove an extension of Picard’s iterative existence
and uniqueness theorem to Caputo fractional ordinary dif-
ferential equations, when the nonhomogeneous term sat-
isfies the usual Lipschitz’s condition. In [34], the successive
approximation method was applied to solve the temperature
field based on the given Mittag-Leffler-type.

Nie et al. [35] investigated the existence and numerical
method of two-point boundary value problems for fractional
differential equations with Caputo’s derivative or Riemann-
Liouville derivative. The solutions can be deduced by the
contraction mapping principle and fractional Green func-
tion. For the Caputo’s derivative case, it has the form

CĐγϖ tð Þ +℧ t, ϖ tð Þ,Đ℘ϖ tð Þð Þ = 0, ð1Þ

ϖ að Þ = A, ϖ bð Þ = B: ð2Þ
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For Riemann-Liouville derivative case, it has the form

RĐγϖ tð Þ +℧ t, ϖ tð Þ,Đ℘ϖ tð Þð Þ = 0,
ϖ að Þ = 0, ϖ bð Þ = B:

ð3Þ

More recently, Hyers-Ulam type stability theorems for
nonlinear fractional differential equations have attracted a
lot of attention as an interesting field and have been investi-
gated in many papers (see [36–40]). Murad et al. [41] stud-
ied the existence, Ulam-Hyers, and Ulam-Hyers-Rassias
theorems of solutions to a differential equation of mixed
Caputo-Riemann fractional derivatives.

Dai et al. [42] discussed the existence and Hyers-Ulam
and Hyers-Ulam-Rassias stability of solutions for the frac-
tional differential equation with boundary condition. Prasad
et al. [43] investigated the existence and Ulam stability of the
fractional-order iterative two-point boundary value problem
which has the form

CĐγϖ tð Þ =℧ t, ϖ tð Þ, ϖ 2½ � tð Þ
� �

, t ∈ 0, 1½ �, 1 < γ ≤ 2,

ϖ 0ð Þ = A, ϖ 1ð Þ = B,
ð4Þ

where CĐγ is the Caputo fractional derivative and 1 < γ ≤ 2
and 0 ≤ A ≤ B ≤ 1.

In this paper, we consider the nonlinear fractional differ-
ential equation which has the form

Đγϖ tð Þ =℧ t, ϖ tð Þ,Đ℘ϖ tð Þð Þ, I = a, b½ �, ð5Þ

with boundary conditions

ϖ að Þ = A,
ϖ bð Þ = B,

ð6Þ

where ℧ : I × R × R⟶ R, 1 < γ ≤ 2, 0 < ℘ ≤ 1, Đγ and Đ℘

are the Caputo fractional derivatives, and a, b, A, B are con-
stants. The main objective is to study the existence of a solu-
tion to the boundary value problem (5) and (6). The results
are based on Brouwer’s fixed-point theorem and Banach
contraction mapping principle. The analytical approximate
technique to obtain the solution is a part of this work, and
some examples are illustrated to explain the algorithm. Fur-
thermore, we discuss the Ulam-Hyers stability and Ulam-
Hyers-Rassias stability of the boundary value problem (5)
and (6). Some examples are also constructed to illustrate
and validate the main results.

2. Preliminaries

Let us give some definitions and lemmas that are basic and
needed at various places in this work.

Definition 1 (see [44]). Let ℧ be a function which is defined
almost everywhere ða:e:Þ on ½a, b�. If γ > 0, then

b
aI

γ℧ =
ðb
a
℧ sð Þ b − sð Þγ−1

Γ γð Þ ds, ð7Þ

provided that this integral (Lebesgue) exists.

Definition 2 (see [5]). For a continuous function ℧ : ½0,∞Þ
⟶ℝ, the Caputo derivative of fractional order γ is defined
as

CĐγ℧ tð Þ = 1
Γ n − γð Þ

ðt
0
t − sð Þn−γ−1℧ nð Þ sð Þds, n − 1 < γ ≤ n,

ð8Þ

provided that ℧ðnÞ exists, where n = ½γ� + 1, ½γ� denotes
the integer part of the real number γ.

Lemma 3 (see [1]). Let γ > 0. If we assume ϖ ∈ Cð0, 1Þ ∩ L1
ð0, 1Þ, then the Caputo fractional differential equation

Đγϖ tð Þ = 0 ð9Þ

has the solution

ϖ tð Þ = c0 + c1t + c2t
2+⋯+cn−1tn−1, ð10Þ

where ci ∈ℝ, i = 0, 1, 2,⋯, n − 1, and n = ½γ� + 1:

Lemma 4 (see [1]). Let ϖ ∈ Cð0, 1Þ ∩ L1ð0, 1Þ with fractional
derivative of order γ > 0 that belongs to Cð0, 1Þ ∩ L1ð0, 1Þ:
Then,

IγCĐγϖ tð Þ = ϖ tð Þ + c0 + c1t + c2t
2+⋯+cn−1tn−1, ð11Þ

for ci ∈ℝ, i = 0, 1, 2,⋯, n − 1, where n is the smallest inte-
ger greater than or equal to γ:

Theorem 5 (see [45]) (Brouwer’s fixed-point theorem). Let
M be a nonempty compact (closed and bounded) convex set
in Rn and T : M⟶M be a continuous self-mapping. Then,
T has (at least) one fixed point in M.

Theorem 6 (see [45]) (Banach contraction mapping princi-
ple). LetM be a Banach space. IfT : M⟶M is a contraction,
then T has a unique fixed point in M.

Lemma 7. Let ϖðtÞ ∈ CðI,ℝÞ and 1 < γ ≤ 2, 0 < ℘ ≤ 1; then,
the solution of the boundary value problem (5) and (6) is
given by
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ϖ tð Þ = A + B − Að Þ
b − að Þ t − að Þ − t − að Þ

b − að ÞΓ γð Þ
ðb
a
b − sð Þγ−1

�℧ s, ϖ sð Þ,Đ℘ϖ sð Þð Þds + 1
Γ γð Þ

ðt
a
t − sð Þγ−1

�℧ s, ϖ sð Þ,Đ℘ϖ sð Þð Þds:

ð12Þ

Proof. Byapplying the Lemma 4, we may reduce equation (5)
to an equivalent equation

ϖ tð Þ = t
aI

γ℧ t, ϖ tð Þ,Đ℘ϖ tð Þð Þ + c0 + c1 t − að Þ: ð13Þ

Using the boundary condition (6), we find that

c0 = A and c1 =
B − að Þ
b − að Þ −

1
b − að Þ

b

a

Iγ℧ t, ϖ tð Þ,Đ℘ϖ tð Þð Þ:

ð14Þ

Substituting the values of c0 and c1 in equation (13), the
result is

ϖ tð Þ = A + B − Að Þ
b − að Þ t − að Þ − t − að Þ

b − að ÞΓ γð Þ
ðb
a
b − sð Þγ−1

�℧ s, ϖ sð Þ,Đ℘ϖ sð Þð Þds + 1
Γ γð Þ

ðt
a
t − sð Þγ−1

�℧ s, ϖ sð Þ,Đ℘ϖ sð Þð Þds:

ð15Þ

The derivative Đ℘ϖðsÞ can be written as

Đ℘ϖ tð Þ = B − Að Þ t − að Þ1−℘
b − að ÞΓ 2−℘ð Þ −

t − að Þ1−℘
b − að ÞΓ 2−℘ð ÞΓ γð Þ

�
ðb
a
b − sð Þγ−1℧ s, ϖ sð Þ,Đ℘ϖ sð Þð Þds

+ 1
Γ γ−℘ð Þ

ðt
a
t − sð Þγ−℘−1℧ s, ϖ sð Þ,Đ℘ϖ sð Þð Þds:

ð16Þ

3. The Existence of Solution

This section deals with the existence and uniqueness of solu-
tion for the fractional differential equation (5) with bound-
ary condition (6). Let Cð½a, b�, RÞ be the Banach space
endowed with a Bielecki norm

ϖk kB =
ðb
a
e−Nt ϖ tð Þj jdt: ð17Þ

Let the space Θ = fϖðtÞ ∈ C½a, b�: Đ℘ϖðtÞ ∈ C½a, b�g,
equipped with the norm

ϖk kΘ = max
t∈ a,b½ �

ðb
a
e−Nt ϖ tð Þj jdt + max

t∈ a,b½ �

ðb
a
e−Nt Đ℘ϖ tð Þj jdt, ð18Þ

which is a Banach space, where N > 0 is a fixed constant.
Consider the following assumptions:

(H1) There exists a function a1ðtÞ ∈ L1ðIÞ such that ∣℧
ðt, x, ϖÞ ∣ ≤a1 ðtÞ + γ1 ∣ x ∣ +γ2 ∣ ϖ ∣ , where γ1, γ2 ≥ 0.

(H2) There exists constants Ω1,Ω2 > 0 such that

℧ t, ϖ1 tð Þ,Đ℘ϖ1 tð Þð Þ −℧ t, ϖ2 tð Þ,Đ℘ϖ2 tð Þð Þj j
≤Ω1 ϖ1 − ϖ2j j +Ω2 Đ

℘ϖ1 −Đ℘ϖ2j j, ð19Þ

for each t ∈ I and all ϖ1, ϖ2 ∈ℝ: Let us set the following
notation for convenience:

ℶ1 =
1

Γ γð Þ
ðb
a
e−NtG t, sð Þdt + e−Na − e−Nb

� � BΓ γð Þ +D b − að Þð Þ
NΓ γð Þ ,

ℶ2 =
b − að Þ e−Na − e−Nb

� �
NΓ γð Þ b − að Þ + 1

γ

� �
,

ζ1 =
1

Γ γ−℘ð Þ
ðb
a
e−NtG t, sð Þdt + e−Na − e−Nb

� � B − Að ÞΓ γð Þ + b − að ÞDð Þ
NΓ 2−℘ð ÞΓ γð Þ ,

ζ2 =
e−Na − e−Nb
� �

b − að Þ
N

b − að Þ
Γ 2−℘ð ÞΓ γð Þ +

1
Γ γ−℘+1ð Þ

� �
:

ð20Þ

Our results are based on the Brouwer’s fixed-point theo-
rem and Banach contraction principle.

Theorem 8. Suppose that (H1) holds. Then, the boundary
value problem (5) and (6) has at least one solution on CðI,ℝÞ.

Proof. Define the operator J : CðI,ℝÞ⟶ CðI,ℝÞ as

Jϖ tð Þ = A + B − Að Þ
b − að Þ t − að Þ − t − að Þ

b − að ÞΓ γð Þ
ðb
a
b − sð Þγ−1

�℧ s, ϖ sð Þ,Đ℘ϖ sð Þð Þds + 1
Γ γð Þ

ðt
a
t − sð Þγ−1

�℧ s, ϖ sð Þ,Đ℘ϖ sð Þð Þds,
ð21Þ

and the operator Đ℘ JϖðtÞ can be written as

Đ℘ Jϖ tð Þ = B − Að Þ t − að Þ1−℘
b − að ÞΓ 2−℘ð Þ −

t − að Þ1−℘
b − að ÞΓ 2−℘ð ÞΓ γð Þ

�
ðb
a
b − sð Þγ−1℧ s, ϖ sð Þ,Đ℘ϖ sð Þð Þds + 1

Γ γ−℘ð Þ
�
ðt
a
t − sð Þγ−℘−1℧ s, ϖ sð Þ,Đ℘ϖ sð Þð Þds:

ð22Þ

Firstly, we will prove that JHd ⊂Hd , where Hd = fϖ ∈ C
: kϖkθ ≤ dg, and choose d ≥ η1/ð1 − η2ðγ1 + γ2ÞÞ, for ϖ ∈Hd
, and the following is obtained:
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ðb
a
e−Nt J ϖð Þ tð Þj jdt

≤
ðb
a
e−Nt A + B − Að Þ

b − að Þ t − að Þ
� �

dt

+ 1
b − að ÞΓ γð Þ

ðb
a
t − að Þe−Nt

ðb
a
b − sð Þγ−1

� ℧ s, ϖ sð Þ,Đ℘ϖ sð Þð Þj jdsdt

+ 1
Γ γð Þ

ðb
a
e−Nt

ðt
a
t − sð Þγ−1 ℧ s, ϖ sð Þ,Đ℘ϖ sð Þð Þj jdsdt,

ð23Þ

and by using (H1), then

ðb
a
e−Nt J ϖð Þ tð Þj jdt

≤ B
ðb
a
e−Ntdt + b − að Þ

Γ γð Þ
ðb
a
e−Nt

ðb
a

� a1 sð Þ + γ1 ϖ sð Þj j + γ2 Đ
℘ϖ sð Þj jð Þdsdt

+ 1
Γ γð Þ

ðb
a
e−Nt

ðt
a
t − sð Þγ−1

� a1 sð Þ + γ1 ϖ sð Þj j + γ2 Đ
℘ϖ sð Þj jð Þdsdt,

ðb
a
e−Nt J ϖð Þ tð Þj jdt ≤ 1

Γ γð Þ
ðb
a
e−NtG t, sð Þdt

+ e−Na − e−Nb
� �

BΓ γð Þ +D b − að Þð Þ
NΓ γð Þ

+ b − að Þ e−Na − e−Nb
� �
NΓ γð Þ b − að Þ + 1

γ

� �
γ1d + γ2dð Þ,

ð24Þ

where

D =
ðb
a
a1 sð Þds, G t, sð Þ =

ðt
a
t − sð Þγ−1a1 sð Þds: ð25Þ

Thus, we have

Ω1

ðb
a
e−Nt ϖ tð Þj jdt ≤Ω1ℶ1 +Ω1ℶ2 γ1d + γ2dð Þ: ð26Þ

Now to establish the bounded of equation (22) by (H1),
get

ðb
a
e−Nt Đ℘ J ϖð Þ tð Þj jdt ≤ B − Að Þ

Γ 2−℘ð Þ
ðb
a
e−Ntdt + b − að Þ

Γ 2−℘ð ÞΓ γð Þ

�
ðb
a
e−Nt

ðb
a
a1 sð Þ + γ1 ϖ sð Þj j + γ2 Đ

℘ϖ sð Þj jð Þdsdt + 1
Γ γ−℘ð Þ

�
ðb
a
e−Nt

ðt
a
t − sð Þγ−℘−1 a1 sð Þ + γ1 ϖ sð Þj j + γ2 Đ

℘ϖ sð Þj jð Þdsdt,

ðb
a
e−Nt Đ℘ J ϖð Þ tð Þj jdt ≤ 1

Γ γ−℘ð Þ
ðb
a
e−NtG t, sð Þdt

+ e−Na − e−Nb
� � B − Að ÞΓ γð Þ + b − að ÞDð Þ

NΓ 2−℘ð ÞΓ γð Þ

+ e−Na − e−Nb
� �

b − að Þ
N

b − að Þ
Γ 2−℘ð ÞΓ γð Þ + 1

Γ γ−℘+1ð Þ
� �

� γ1d + γ2dð Þ,

Ω2

ðb
a
e−Nt Đ℘ J ϖð Þ tð Þj jdt ≤Ω2ζ1 +Ω2ζ2 γ1d + γ2dð Þ,

Jϖk kθ ≤ η1 + dη2 γ1 + γ2ð Þ ≤ d, ð27Þ

where η1 =Ω2ζ1 +Ω1ω1 and η2 =Ω1ζ2 +Ω1ω2, and we have
kJykθ ≤ d. Hence, J : Hd ⟶Hd:

According to the Brouwer fixed-point theorem, the
boundary value problem (5) and (6) has at least one solu-
tion.

Theorem 9. Assume that (H2) holds. If

λ2Ω1 + λ3Ω2ð Þ < 1, ð28Þ

where

λ1 =
b − að Þ 2 − e−N a−bð Þ − e−N b−að Þ� �

N2Γ γð Þ ,

λ2 = λ1 +
1
Nγ

� �
,

λ3 =
λ1

Γ 2−℘ð Þ + 1
Nγ−℘

� �
,

ð29Þ

then the boundary value problem (5) and (6) has a
unique solution.

Proof. We prove that J is a contraction. Let ϖ1, ϖ2 ∈ CðI,ℝÞ.
Then,

J ϖ1ð Þ tð Þ − J ϖ2ð Þ tð Þj j ≤ t − að Þ
b − að ÞΓ γð Þ

ðb
a
b − sð Þγ−1

� ℧ s, ϖ1 sð Þ,Đ℘ϖ1 sð Þð Þ −℧ s, ϖ2 sð Þ,Đ℘ϖ2 sð Þð Þj jds

+ 1
Γ γð Þ

ðt
a
t − sð Þγ−1 ℧ s, ϖ1 sð Þ,Đ℘ϖ1 sð Þð Þj

−℧ s, ϖ2 sð Þ,Đ℘ϖ2 sð Þð Þjds,

ð30Þ
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and by the condition (H2), the result is

J ϖ1ð Þ tð Þ − J ϖ2ð Þ tð Þj j ≤ t − að Þ
b − að ÞΓ γð Þ

ðb
a
b − sð Þγ−1 Ω1 ϖ1 sð Þj½

− ϖ2 sð Þj +Ω2 Đ
℘ϖ1 sð Þ −Đ℘ϖ2 sð Þj j�ds + 1

Γ γð Þ
ðt
a
t − sð Þγ−1

� Ω1 ϖ1 sð Þ − ϖ2 sð Þj j +Ω2 Đ
℘ϖ1 sð Þ −Đ℘ϖ2 sð Þj j½ �ds,

ð31Þ

ðb
a
e−Nt J ϖ1ð Þ tð Þ − J ϖ2ð Þ tð Þj jdt ≤ b − að Þ

Γ γð Þ
ðb
a
e−N t−sð Þ

�
ðb
a
e−Ns Ω1 ϖ1 sð Þ − ϖ2 sð Þj j +Ω2 Đ

℘ϖ1 sð Þ −Đ℘ϖ2 sð Þj j½ �dsdt

+ 1
Γ γð Þ

ðb
a
e−N t−sð Þ

ðt
a
t − sð Þγ−1e−Ns Ω1 ϖ1 sð Þ − ϖ2 sð Þj j½

+Ω2 Đ
℘ϖ1 sð Þ −Đ℘ϖ2 sð Þj j�dsdt,

ð32Þ
and using Holder inequality, the first term of equation

(32) becomes

ðb
a
e−Nt J ϖ1ð Þ tð Þ − J ϖ2ð Þ tð Þj jdt ≤ λ1

ðb
a
e−Ns Ω1 ϖ1 sð Þ − ϖ2 sð Þj j½

+Ω2 Đ
℘ϖ1 sð Þ −Đ℘ϖ2 sð Þj j�ds + 1

Γ γð Þ
ðb
a

ðb
s
e−N t−sð Þ

� t − sð Þγ−1dte−Ns Ω1 ϖ1 sð Þ − ϖ2 sð Þj j +Ω2 Đ
℘ϖ1 sð Þ −Đ℘ϖ2 sð Þj j½ �ds,

ð33Þ

and for the second term, let z =Nðt − sÞ, dz =Ndt, and it
follows

ðb
a
e−Nt J ϖ1ð Þ tð Þ − J ϖ2ð Þ tð Þj jdt ≤ λ1

ðb
a
e−Ns Ω1 ϖ1 sð Þ − ϖ2 sð Þj j½

+Ω2 Đ
℘ϖ1 sð Þ −Đ℘ϖ2 sð Þj j�ds + 1

NγΓ γð Þ

�
ðb
a

ðN b−sð Þ

0
e−Nzzγ−1dz e−Ns Ω1 ϖ1 sð Þ − ϖ2 sð Þj j½

+Ω2 Đ
℘ϖ1 sð Þ −Đ℘ϖ2 sð Þj j�ds, ≤ λ1

ðb
a
e−Ns Ω1 ϖ1 sð Þ − ϖ2 sð Þj j½

+Ω2 Đ
℘ϖ1 sð Þ −Đ℘ϖ2 sð Þj j�ds + 1

Nγ

ðb
a
e−Ns Ω1 ϖ1 sð Þ − ϖ2 sð Þj j½

+Ω2 Đ
℘ϖ1 sð Þ −Đ℘ϖ2 sð Þj j�ds,

ð34Þ

Ω1

ðb
a
e−Nt J ϖ1ð Þ tð Þ − J ϖ2ð Þ tð Þj jdt ≤Ω1λ2

�
ðb
a
e−Ns Ω1 ϖ1 sð Þ − ϖ2 sð Þj j +Ω2 Đ

℘ϖ1 sð Þ −Đ℘ϖ2 sð Þj j½ �ds:

ð35Þ

By the same way,

ðb
a
e−Nt Đ℘ J ϖ1ð Þ tð Þ −Đ℘ J ϖ2ð Þ tð Þj jdt ≤ b − að Þ

Γ 2−℘ð ÞΓ γð Þ

�
ðb
a

ðb
a
e−N t−sð Þe−Ns Ω1 ϖ1 sð Þ − ϖ2 sð Þj j +Ω2 Đ

℘ϖ1 sð Þj½

−Đ℘ϖ2 sð Þj�dsdt + 1
Γ γ−℘ð Þ

ðb
a

ðt
a
e−N t−sð Þ t − sð Þγ−℘−1e−Ns

� Ω1 ϖ1 sð Þ − ϖ2 sð Þj j +Ω2 Đ
℘ϖ1 sð Þ −Đ℘ϖ2 sð Þj j½ �dsdt,

Ω2

ðb
a
e−Nt D℘ J ϖ1ð Þ tð Þ −Đ℘ J ϖ2ð Þ tð Þj jdt ≤Ω2λ3

ðb
a
e−Ns

� Ω1 ϖ1 sð Þ − ϖ2 sð Þj j +Ω2 Đ
℘ϖ1 sð Þ −Đ℘ϖ2 sð Þj j½ �ds:

ð36Þ

Then, we have

J ϖ1ð Þ tð Þ − J ϖ2ð Þ tð Þk kθ ≤ λ2Ω1 + λ3Ω2ð Þ ϖ1 − ϖ2k k: ð37Þ

Hence, we conclude that the problem (5) and (6) has a
unique solution by the contraction mapping principle.

Example 1. Consider the following fractional boundary value
problem:

Đ1:2ϖ = et

10 1 + etð Þϖ + 5
6 + tð ÞĐ

0:3ϖ, t ∈ 0, 1½ �,

ϖ 0ð Þ = ϖ 1ð Þ = 1:

8><
>: ð38Þ

Here, γ = 1:2, ℘ = 0:3, and N = 0:47; then (H2) is satis-
fied with Ω1 = 0:073105857 and Ω2 = 0:833333, and one
can arrive at the following results:

λ1 =
b − að Þ 2 − e−N a−bð Þ − e−N b−að Þ� �

N2Γ γð Þ = −1:109321597426112,

λ2Ω1 = λ1 +
1
Nγ

� �
Ω1 = 0:099800501185966,

λ3Ω2 =
λ1

Γ 2−℘ð Þ +
1

Nγ−℘

� �
Ω2 = 0:626725087609827,

λ2Ω1 + λ3Ω2 = 0:726525588795793 < 1:
ð39Þ

Hence, by Theorem 9, the boundary value problem (38)
has a unique solution on ½0, 1�.

Example 2. Consider the following fractional boundary value
problem:

Đ3/2ϖ = t + 1ð Þe−t
t + 3ð Þ2

ϖ

2 + ϖð Þ + et

tet + 5ð Þ
Đ1/2ϖ

5 +Đ1/2ϖ
� � , t ∈ 0, 1½ �,

ϖ 0ð Þ = 1 ϖ 1ð Þ = 1:

8><
>:

ð40Þ
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Here, γ = 1:5, ℘ = 0:5, and N = 1/2, and according to the
Lipschitz condition, we have

℧ t, ϖ1 tð Þ,Đ℘ϖ1 tð Þð Þ −℧ t, ϖ2 tð Þ,Đ℘ϖ2 tð Þð Þj j
≤

t + 1ð Þe−t
t + 3ð Þ2 ϖ1 − ϖ2j j + et

tet + 5ð Þ Đ℘ϖ1 −Đ℘ϖ2j j,

Ω1 = 0:1111111,
Ω2 = 0:352187428,

λ1 = −1:152083842554695:
ð41Þ

Finally, the following obtained λ2Ω1 + λ3Ω2 =
0:432795980868753 < 1: Therefore, from Theorem 9, we
conclude that boundary value problem (40) has a unique
solution.

4. Iterative Numerical Schema

For the solution of the boundary value problem (5) and (6),
an iterative schema is provided. Starting with ϖ0ðtÞ and Đ℘

ϖ0ðtÞ, the width h = ðb − aÞ/N , and ti = a + ih, i = 0, 1,⋯N ,
the integral equations (21) and (22) are numerically evalu-
ated to obtain the sequence fϖnðtÞg, a ≤ t ≤ b. The trapezoi-
dal rule is most convenient for estimating fϖnðtkÞg,
k = 0, 1::⋯N , and the approximation for (21) and (22)
becomes

ϖn+1 tkð Þ = A + B − Að Þk
N

−
k
N
ℵa,b,n +ℵa,tk ,n, ð42Þ

Đ℘ϖn+1 tkð Þ = B − Að Þk1−℘h−℘
NΓ 2−℘ð Þ −

k1−℘h−℘

NΓ 2−℘ð Þℵa,b,n + Ja,tk ,n,

ð43Þ
where

ℵa,b,n = b
aI

γ℧ s, ϖ,Đ℘ϖð Þ,
ℵa,tk ,n =

tk
a I

γ℧ s, ϖ,Đ℘ϖð Þ,
Ja,tk ,n =

tk
a I

γ−℘℧ s, ϖ,Đ℘ϖð Þ,
ð44Þ

and the process of iteration may be terminated by setting
a criterion

max ϖn+1 tkð Þ − ϖn tkð Þj j ≤ ε, a ≤ t ≤ b, ð45Þ

where ε is a constant which is to be taken smaller than the
discretization error Oðh2Þ in ϖðtkÞ for the solution of the
boundary value problem (5) and (6).

5. Convergence of fϖnðtkÞg and fĐγϖnðtkÞg
To prove the convergence of the iteration schema (42) and
(43), let us suppose that ℧ : I ×ℝ ×ℝ⟶ℝ be continuous
function that satisfies the conditions.

(H3) There exists a constant χ, χ1, χ2 > 0 such that j℧ð
t, ϖðtÞ,Đ℘ϖðtÞÞj ≤ χ,

d2

ds2
b − sð Þγ−1℧ s, ϖ sð Þ,Đ℘ϖ sð Þð Þ

�����
����� ≤ χ1,

d2

ds2
b − sð Þγ−℘−1℧ s, ϖ sð Þ,Đ℘ϖ sð Þð Þ

�����
����� ≤ χ2,

ð46Þ

for each t, s ∈ I and all ϖ, ϖ1, ϖ2,⋯∈ R. After simplifying
equations (42) and (43), we have

ϖn+1 tkð Þ = A + B − Að Þk
N

+ hγ

2Γ γð Þ kγ−1 −
k
N
Nγ−1

	 

℧n að Þ

+ khγ

Γ γð Þ〠
k−1

j=1
k − jð Þγ−1 − k

N
N − jð Þγ−1

	 

℧n t j

� �

−
khγ

NΓ γð Þ 〠
N−1

j=k
N − jð Þγ−1℧n t j

� �

−
h3k

12Γ γð Þ tk − sð Þγ−1℧n tð Þ� �″,
ð47Þ

Đ℘ϖn+1 tkð Þ = B − Að Þk1−℘h−℘
NΓ 2−℘ð Þ

− hγ−℘ 〠
k

j=1

k − jð Þ1−℘
Γ γ−℘ð Þ −

k1−℘ N − jð Þγ−1
NΓ 2−℘ð ÞΓ γð Þ

" #
℧n t j

� �

+ hγ−℘

2Γ 2−℘ð ÞΓ γ−℘ð ÞΓ γð Þ
� Nkγ−℘−1Γ 2−℘ð ÞΓ γð Þ −Nγ−1k1−℘Γ γ−℘ð Þ� �

℧n að Þ

+ k1−℘hγ−℘

NΓ 2−℘ð ÞΓ γð Þ 〠
N−1

j=k+1
N − jð Þγ−1℧n t j

� �

−
h3k

12Γ γ−℘ð Þ tk − sð Þγ−℘−1℧n tð Þ� �″,
ð48Þ

ϖ0,k = A + B − Að Þ
b − að Þ tk − að Þ, Đ℘ϖ0,k = A + B − Að Þ tk − að Þ1−℘

b − að ÞΓ 2−℘ð Þ :

ð49Þ
Now, Computing jϖn+1,k − ϖn,kj and jĐ℘ϖn+1,k −Đ℘ϖn,kj

from equations (47) and (48) and by using (H2) and (H3),
the result is

ϖ1,k tkð Þ − ϖ0,k tkð Þ�� �� ≤ khγ Nγ−1 − kγ−1
�� ��
Γ γ + 1ð Þ χ + Δ1,

Đ℘ϖ1,k tkð Þ −Đ℘ϖ0,k tkð Þ�� ��
≤
hγ−℘k1−℘ Γ γ + 1ð ÞΓ 2−℘ð Þkγ−1 − Γ γ−℘+1ð ÞNγ−1�� ��

Γ γ + 1ð ÞΓ 2−℘ð ÞΓ γ−℘+1ð Þ χ + Δ2:

ð50Þ
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Let

P = khγ Nγ−1 − kγ−1
�� ��
Γ γ + 1ð Þ ,

Q = hγ−℘k1−℘ Γ γ + 1ð ÞΓ 2−℘ð Þkγ−1 − Γ γ−℘+1ð ÞNγ−1�� ��
Γ γ + 1ð ÞΓ 2−℘ð ÞΓ γ−℘+1ð Þ ,

Δ1 =
kh3

6Γ γð Þχ1,

Δ2 =
kh3

6Γ γ−℘ð Þχ2,

ϖ2,k tkð Þ − ϖ1,k tkð Þ�� �� ≤ P Ω1 ϖ1 − ϖ0j j +Ω2 Đ
℘ϖ1 −Đ℘ϖ0j jð Þ + Δ1,

Đ℘ϖ2,k tkð Þ −Đ℘ϖ1,k tkð Þ�� �� ≤Q Ω1 ϖ1 − ϖ0j j +Ω2 Đ
℘ϖ1 −Đ℘ϖ0j jð Þ + Δ2,

ð51Þ

and so on, in general

ϖn+1,k tkð Þ − ϖn,k tkð Þ�� �� ≤ P PΩ1 +QΩ2ð Þn−1
� Ω1 ϖ1 − ϖ0j j +Ω2 Đ

℘ϖ1 −Đ℘ϖ0j j½ �

+ P〠
n−2

i=0
PΩ1 +QΩ2ð Þi Ω1Δ1 +Ω2Δ2ð Þ + Δ1,

Đ℘ϖn+1,k tkð Þ −Đ℘ϖn,k tkð Þ�� �� ≤Q PΩ1 +QΩ2ð Þn−1
� Ω1 ϖ1 − ϖ0j j +Ω2 Đ

℘ϖ1 −Đ℘ϖ0j j½ �

+ P〠
n−2

i=0
PΩ1 +QΩ2ð Þi Ω1Δ1 +Ω2Δ2ð Þ + Δ2:

ð52Þ

If ðPΩ1 +QΩ2Þ < 1, then the process of iteration is con-
vergent and the bound of truncation error is given by

En tkð Þj j = ϖ tkð Þ − ϖn tkð Þj j

= 〠
∞

i=n
ϖi+1,k − ϖi,k
�� �� ≤ Δ1 ≤ ψ1h

2,

Đ℘En tkð Þj j = Đ℘ϖ tkð Þ −Đ℘ϖn tkð Þj j

= 〠
∞

i=n
Đ℘ϖi+1,k −Đ℘ϖi,k
�� �� ≤ Δ2 ≤ ψ2h

2:

ð53Þ

6. Numerical Illustrations

To show the efficiency of this method, we will approximate
the solutions for some fractional differential equations of
order 1 < γ ≤ 2 and 0 < ℘ ≤ 1, using a prepared program in
Matlab. To solve these problems, we used equations (42)
and (43) to obtain the sequences fynðtkÞg, fĐ℘ynðtkÞg: By
using the exact solutions, we computed the error at each piv-
otal point. The partial output of these error terms is pre-
sented in Tables 1 and 2.

Example 3. Consider the fractional boundary value problem

Đ3/2ϖ + 1
3ϖ + 1

4Đ
1/2ϖ = −

7t0:5
2 ffiffiffi

π
p + t

3 −
2t1:5
3 ffiffiffi

π
p −

t2

3 , t ∈ 0, 1½ �,

ð54Þ

ϖð0Þ = 0, ϖð1Þ = 0: The exact solution is ϖðtÞ = tð1 − tÞ:
A comparison of the absolute errors, computed by the

proposed method with h = 1/20, h = 1/40, and N = 8 at t ∈
½0, 1�, is calculated in Table 1. The approximate solutions
obtained with the exact solution of corresponding
fractional-order equation when γ = 3/2, ℘ = 1/2, and h = 1/
20 are given in Figure 1(a).

Example 4. Consider the fractional boundary value problem

Đ3/2ϖ + ϖ = t5 − t4 + 128t3:5
7 ffiffiffi

π
p −

64t2:5
5 ffiffiffi

π
p , t ∈ 0, 1½ �, ð55Þ

ϖð0Þ = 0, ϖð1Þ = 0: The exact solution is ϖðtÞ = t5 − t4:
In Figure 1(b), the approximate solutions obtained with

h = 1/40 together with the exact solution of this problem
are plotted. Furthermore, by considering h = 1/20, h = 1/40,
and N = 6, the absolute errors at some selected points are
reported in Table 1.

Table 1: Absolute error for the numerical solutions of Examples
3–5.

t
Example 3
iteration 8

Example 4
iteration 6

Example 5
iteration 7

h = 1/20 h = 1/40 h = 1/20 h = 1/40 h = 0:01 h = 0:005
0.1 .243e-2 .876e-3 .109e-2 .393e-3 .362e-3 .185e-3

0.2 .278e-2 .996e-3 .228e-2 .822e-3 .677e-3 .347e-3

0.3 .276e-2 .986e-3 .352e-2 .126e-2 .925e-3 .473e-3

0.4 .255e-2 .910e-3 .469e-2 .168e-2 .108e-2 .556e-3

0.5 .224e-2 .797e-3 .564e-2 .202e-2 .115e-2 .592e-3

0.6 .185e-2 .659e-3 .618e-2 .221e-2 .113e-2 .577e-3

0.7 .142e-2 .505e-3 .610e-2 .218e-2 .999e-3 .509e-3

0.8 .964e-3 .342e-3 .520e-2 .185e-2 .765e-3 .390e-3

0.9 .486e-3 .172e-3 .324e-2 .115e-2 .430e-3 .219e-3

Table 2: Error for the numerical solution of Example 6.

t
Example6 iteration 8

h = 0:01 h = 0:005
1.1 .194e-6 .208e-7

1.2 .262e-6 .566e-7

1.3 .299e-6 .560e-7

1.4 .338e-6 .103e-7

1.5 .376e-6 .603e-7

1.6 .392e-6 .125e-6

1.7 .367e-6 .160e-6

1.8 .290e-6 .150e-6

1.9 .164e-6 .935e-7
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Example 5. Consider the fractional boundary value problem

ϖ′′ + ϖ +Đ1/2ϖ = t2 + t + 2t1:5
Γ 5/2ð Þ + t0:5

Γ 3/2ð Þ + 3, t ∈ 0, 1½ �,

ð56Þ

ϖð0Þ = 1, ϖð1Þ = 3: The exact solution is ϖðtÞ = t2 + t + 1:

Table 1 shows the absolute error between exact and
numerical solutions when h = 0:01, h = 0:005, and N = 7.
Figure 2(a) compares both the exact and numerical solutions

for the fractional differential equation (56) with γ = 2, ℘ =
1/2, and h = 0:01 in some points t ∈ ½0, 1�:

Example 6. Consider the boundary value problem

ϖ′′ = − tϖ′
� �2

e−2ϖ, t ∈ 1, 2½ �, ð57Þ

ϖð1Þ = 0, ϖð2Þ = ln ð2Þ. The exact solution is ϖðtÞ = ln
ðtÞ:

The numerical results of Example 6 for the values γ = 2,
℘ = 1 and h = 0:01 are shown in Figure 2(b). In addition,

t

0

0.05

0.1

0.15

0.2

0.25

0.3

So
lu

tio
n 
𝜛

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

𝜛 Numerical solution
𝜛 Exact solution

(a)

t

–0.09

–0.08

–0.07

–0.06

–0.05

–0.04

–0.03

–0.02

–0.01

0

0.01

𝜛

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

𝜛 Numerical solution
𝜛 Exact solution

(b)

Figure 1: A comparison between exact and approximate solutions: (a) Example 3 when γ = 3/2, ℘ = 1/2, and h = 1/20. (b) Example 4 when
γ = 3/2 and h = 1/40.
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Figure 2: Exact and approximate solutions with h = 0:01: (a) Example 5 when γ = 2 and ℘ = 1/2: (b) Example 6 when γ = 2 and ℘ = 1:
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the absolute error is presented in Table 2 when h = 0:01,
h = 0:005, and N = 8:

7. Stability Theorems

In this section, we investigate the Ulam-Hyers and Ulam-
Hyers-Rassias stability of the boundary value problem (5)
and (6). For the definitions of Ulam-Hyers stability and
Ulam-Hyers-Rassias stability, see [46]. For ℧ : I ×ℝ ×ℝ
⟶ℝ, the norm is defined as

ϖk k = max
t∈ a,b½ �

Ω1 ϖ tð Þj j + max
t∈ a,b½ �

Ω2 Đ
℘ϖ tð Þj j: ð58Þ

Definition 10. Equation (5) is Ulam-Hyers stability if there
exists a real number cf > 0 such that for each ε > 0 and for

each solution z ∈ C1ðI,ℝÞ of the inequality
cĐγz tð Þ −℧ t, z tð Þ,Đ℘z tð Þð Þj j ≤ ε, t ∈ I, ð59Þ

there exists a solution ϖ ∈ C1ðI,ℝÞ of equation (5) with

z tð Þ − ϖ tð Þj j ≤ cf ε, t ∈ I: ð60Þ

Definition 11. Equation (5) is Ulam-Hyers-Rassias stability
with respect to φ ∈ C1ðI,ℝ+Þ if there exists a real number
cf > 0 such that for each ε > 0 and for each solution z ∈ CðI,
ℝÞ of the inequality

cĐγz tð Þ −℧ t, z tð Þ,Đ℘z tð Þð Þj j ≤ εφ tð Þ, t ∈ I, ð61Þ

there exists a solution ϖ ∈ C1ðI,ℝÞ of equation (5) with

z tð Þ − ϖ tð Þj j ≤ cf εφ tð Þ, t ∈ I: ð62Þ

For proving, we need the following hypothesis.

(H4) There exists an increasing function φ ∈ CðI,ℝ+Þ,
and there exists Λφ, λφ > 0 such that for any t ∈ I, we have

ðt
a

t − sð Þγ−1
Γ γð Þ φ sð Þds ≤Λφφ tð Þ,

ðt
a

t − sð Þγ−℘−1
Γ γ−℘ð Þ φ sð Þds ≤ λφφ tð Þ:

ð63Þ

Theorem 12. Assume that ℧ : I × R × R⟶ R is a continu-
ous function and (H2) holds with ðPΩ1 +QΩ2Þ < 1. Then,
the problem (5) and (6) is Ulam-Hyers stability.

Proof. Let zðtkÞ ∈ CðI,ℝÞ be a solution of the inequality (59),
and there exists a solution ϖ ∈ CðI,ℝÞ of equation (5). Then,
we have

ϖ tkð Þ = A + B − Að Þ
b − að Þ t − að Þ − t − að Þ

b − að ÞΓ γð Þ
ðb
a
b − sð Þγ−1

�℧ s, ϖ sð Þ,Đ℘ϖ sð Þð Þds + 1
Γ γð Þ

ðtk
a
tk − sð Þγ−1

�℧ s, ϖ sð Þ,Đ℘ϖ sð Þð Þds:
ð64Þ

From inequality (21), for each t ∈ I, we get

z tkð Þ − A −
B − Að Þk
N

+ k
N

b

a
Iγ℧ tk, z tkð Þ,Đ℘z tkð Þð Þ

�����
− tk

a I
γ℧ tk, z tkð Þ,Đ℘z tkð Þð Þ − Δ1

����� ≤ khð Þγε
Γ γ + 1ð Þ ,
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Figure 3: (a) The function jpðtÞj for t ∈ ½0, 1�. (b) The function zðtÞ for t ∈ ½0, 1�.
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Figure 4: Continued.
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Đ℘z tkð Þ − B − Að Þk1−℘h−℘
NΓ 2−℘ð Þ + k1−℘h−℘

NΓ 2−℘ð Þ
b

a

�����
� Iγ℧ tk, z tkð Þ,Đ℘z tkð Þð Þ − tk

a I
γ−℘℧ tk, z tkð Þ,Đ℘z tkð Þð Þ

− Δ2

����� ≤ khð Þγ−℘ε
Γ γ−℘+1ð Þ ,

ð65Þ

and by (H2), for each t ∈ I, one can arrive at the follow-
ing results:

z tkð Þ − ϖ tkð Þj j ≤ khð Þγε
Γ γ + 1ð Þ + P Ω1 z − ϖj j +Ω2 Đ

℘z −Đ℘ϖj jð Þ,

ð66Þ

Đ℘z tkð Þ −Đ℘ϖ tkð Þj j ≤ khð Þγ−℘ε
Γ γ−℘+1ð Þ
+Q Ω1 z − ϖj j +Ω2 Đ

℘z −Đ℘ϖj jð Þ,
ð67Þ

z tkð Þ − ϖ tkð Þk k =max
t∈I

Ω1 z tkð Þ − ϖ tkð Þj j
+max

t∈I
Ω2 Đ

℘z tkð Þ −Đ℘ϖ tkð Þj j:
ð68Þ

Then, from equation (68), we conclude that

z tkð Þ − ϖ tkð Þk k ≤ cf ε, t ∈ I, where cf

= Γ γ−℘+1ð Þ khð ÞγΩ1 + Γ γ + 1ð Þ khð Þγ−℘Ω2ð Þ
Γ γ + 1ð ÞΓ γ−℘+1ð Þ 1 − PΩ1 +QΩ2ð Þð Þ :

ð69Þ

Thus, the problem (5) and (6) is Ulam-Hyers stability.

Theorem 13. Suppose that conditions (H2) and (H4) are sat-
isfied. Then, the problem (5) and (6) is Ulam-Hyers-Rassias
stability.

Proof. Let zðtkÞ ∈ CðI,ℝÞ be a solution of the inequality (61),
and there exists a solution y ∈ CðI,ℝÞ of equation (5). From
inequality (61), for each t ∈ I, we have

z tkð Þ − A −
B − Að Þk
N

+ k
N

b

a
Iγ℧ tk, z tkð Þ,Đ℘z tkð Þð Þ

�����
− tk

a I
γ℧ tk, z tkð Þ,Đ℘z tkð Þð Þ − Δ1

���� ≤ εΛφφ tkð Þ,

Đ℘z tkð Þ − B − Að Þk1−℘h−℘
NΓ 2−℘ð Þ + k1−℘h−℘

NΓ 2−℘ð Þ
b

a

�����
� Iγ℧ tk, z tkð Þ,Đ℘z tkð Þð Þ − tk

a I
γ−℘℧ tk, z tkð Þ,Đ℘z tkð Þð Þ

− Δ2

���� ≤ ελφφ tkð Þ,

ð70Þ
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Figure 4: (a) The value of jpðtÞj for t ∈ ½0, 1�. (b) The value pðtÞ for t ∈ ½0, 1�. (c) The value of pðtÞ for t ∈ ½0, 10�:
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and by using the hypothesis (H2), for each t ∈ I, the
result is

z tkð Þ − ϖ tkð Þj j ≤ εΛφφ tkð Þ + P Ω1 z − ϖj j +Ω2 Đ
℘z −Đ℘ϖj jð Þ,

Đ℘z tkð Þ −Đ℘ϖ tkð Þj j ≤ ελφφ tkð Þ +Q Ω1 z − ϖj j +Ω2 Đ
℘z −Đ℘ϖj jð Þ:

ð71Þ

Then, the use of equation (68) implies that

z tkð Þ − ϖ tkð Þk k ≤ cf εφ tkð Þ, t ∈ I,

 where cf =
Ω1Λφ +Ω2λφ
� �
1 − PΩ1 +QΩ2ð Þð Þ :

ð72Þ

Then, the problem (5) and (6) is Ulam-Hyers-Rassias
stability.
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Figure 5: The graphic of the function zðtÞ: (a) for t ∈ ½0, 1� and (b) for t ∈ ½0, 10�.
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Figure 6: Continued.
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Figure 6: (a) Function jpðtÞj for t ∈ ½0, 1�. (b) Function zðtÞ for t ∈ ½0, 1�. (c) Function zðtÞ for t ∈ ½0, 5�.
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Figure 7: Exact and approximate solution for Example 10, when θ = −1.
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8. Examples

In this section, we give some examples to illustrate the use-
fulness of our main results.

Example 7. Consider the following fractional boundary value
problem:

Đ3/2ϖ + 1
3ϖ + 1

4Đ
1/2ϖ = −

7t0:5
2 ffiffiffi

π
p + t

3 −
2t1:5
3 ffiffiffi

π
p −

t2

3 , t ∈ 0, 1½ �,

ϖ 0ð Þ = 0, ϖ 1ð Þ = 0:

8><
>: ð73Þ

Here, γ = 3/2, and ℘ = 1/2. By Lipschitz condition, we
obtain Ω1 = 1/3 and Ω2 = 1/4. To estimate the Ulam stabil-
ity, let ϖ = 1 and h = 0:1, and by Theorem 12, we have

Đ3/2ϖ + 1
3ϖ + 1

4Đ
1/2ϖ + 7t0:5

2 ffiffiffi
π

p −
t
3 + 2t1:5

3 ffiffiffi
π

p + t2

3

����
���� ≤ 1:2648822308 ≤ ε,

z tkð Þ − 1j j ≤ ζε, ζ = Ω1 khð Þ3/2 + khð ÞΓ 5/2ð ÞΩ2
Γ 5/2ð Þ 1 − PΩ1 +QΩ2ð Þð Þ ,

ð74Þ
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Figure 8: Approximate solution for Example 10 when (a) θ = −0:5 and (b) θ = 0:5.
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which shows the problem (73) is Ulam-Hyers stability.
Using Matlab, the function jpðtÞj = jz − ϖj is computed and
depicted in Figure 3(a), while the function zðtÞ for t ∈ ½0, 1�
is given in Figure 3(b).

Example 8. Consider the following fractional boundary value
problem:

Đ1:2ϖ = et

10 1 + etð Þϖ + 5
6 + tð ÞĐ

0:3ϖ, t ∈ 0, 1½ �,

ϖ 0ð Þ = 1, ϖ 1ð Þ = 1:

8><
>: ð75Þ

Here, γ = 1:2, and ℘ = 0:3. By Lipschitz condition, we
obtain Ω1 = 0:073105857 and Ω2 = 0:833333. Now, we
investigate the Ulam-Hyers-Rassias stability for equation
(75), let ϖ = t, φ = sin t and h = 0:1, and by Theorem 13,
the following is obtained:

Đ1:2ϖ −
et

10 1 + etð Þϖ −
5

6 + tð ÞĐ
0:3ϖ

����
���� ≤ 0:778612319543994 ≤ ε,

z tkð Þ − ϖ tkð Þj j ≤ Ω1t
2:2
k E2,3:2 −t2k

� �
+Ω2t

1:9
k E2,2:9 −t2k

� �� �
ε

1 − PΩ1 +QΩ2ð Þð Þ :

ð76Þ

The function jpðtÞj = jz − ϖj is depicted in Figure 4(a) for
t ∈ ½0, 1�, while the function pðtÞ for t ∈ ½0, 1� is given in
Figure 4(b), and the function pðtÞ for t ∈ ½0, 10� is plotted
in Figure 4(c).

Moreover, Figures 5(a) and 5(b) show the function zðtÞ
for t ∈ ½0, 1� and t ∈ ½0, 10�, respectively.

Example 9. Consider the following fractional boundary value
problem:

Đ2ϖ = e−t

20 ϖ + 9
10Đ

0:5ϖ, t ∈ 0, 1½ �,
ϖ 0ð Þ = ϖ 1ð Þ = 1:

8<
: ð77Þ

Here, γ = 2, and ℘ = 0:5. By Lipschitz condition, we
obtain Ω1 = 0:05 and Ω2 = 0:9. Now, we investigate the
Ulam-Hyers-Rassias stability for equation (77), let ϖ = et+1,
and φ = et , and by Theorem 13, the results are

Đ2ϖ −
e−t

20 ϖ −
5
7Đ

0:5ϖ

����
���� ≤ ε,

z tð Þ − ϖ tð Þj j ≤ ε Ω1t
2E1,3 tð Þ +Ω2t

1:5E1,2:5 tð Þ� �
1 − PΩ1 +QΩ2ð Þð Þ :

ð78Þ

The behavior of the function jpðtÞj = jz − ϖj is depicted
in Figure 6(a) for t ∈ ½0, 1�. Furthermore, the behavior of
zðtÞ for t ∈ ½0, 1� and for t ∈ ½0, 5� is plotted in Figures 6(b)
and 6(c), respectively.

Example 10 (see [47, 48]). Consider the following Bagley-
Torvik equation:

D2ϖ + θD℘ϖ = −1 − et−1, t ∈ 0, 1½ �,
ϖ 0ð Þ = ϖ 1ð Þ = 0:

(
ð79Þ

The exact solution of Example 10 is not known for gen-
eral values of ℘. Only, the exact solution is

ϖ tð Þ = t 1 − e t−1ð Þ
� �

, ð80Þ

for θ = −1 and ℘ = 1. This example was solved for differ-
ent values of 0 < ℘ ≤ 1, and the numerical solutions are
shown in (Figures 7 and 8).

9. Conclusions

In this article, the author analyzed the existence, uniqueness,
and stability of solutions for nonlinear two-point boundary
value problems in the sense of Caputo fractional derivative.
Banach’s fixed-point theorem was used to prove the unique-
ness of the solution, while Brouwer’s fixed-point theorem
was employed to study the existence results. In addition,
the numerical solution for the fractional differential equation
with boundary condition was studied by using successive
approximation method. Discussion on the convergence and
error analysis of the proposed method is presented. Some
numerical examples are given to show the accuracy of the
suggested method. Finally, the Hyers-Ulam and Hyers-
Ulam-Rassias stability of the problem (5) and (6) are studied.
Examples are presented to illustrate our theoretical results.
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