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In this work, we are concerned with some qualitative analyses of fractional-order partial hyperbolic functional differential
equations under the y-Caputo type. To be precise, we investigate the existence and uniqueness results based on the nonlinear
alternative of the Leray-Schauder type and Banach contraction mapping. Moreover, we present two similar results to nonlocal
problems. Then, the guarantee of the existence of solutions is shown by Ulam-Hyer’s stability. Two examples will be given to
illustrate the abstract results. Eventually, some known results in the literature are extended.

1. Introduction

Since fractional calculus (FC) has a decent global correlation
execution to reflect the historical reliance process of the
improvement of system functions and can likewise describe
the characteristics of the dynamic system itself, it turned into
a strong mathematical gadget to describe a few complex
developments, unpredictable phenomena, memory high-
lights, and other aspects. FC theory was vastly utilized by
mathematicians as well as scientific experts, engineers, finan-
cial analysts, scholars, and physicists (see [1-4]). Riemann,
in 1876, suggested the definition of the Riemann-Liouville
(RL) fractional derivative (FD). Caputo originally proposed
one more definition of FD through a changed RL fractional
integral (FI) toward the start of the twentieth century, to be
specific, a Caputo FD. One issue in this field is the major and
extraordinary number of possible various definitions of FD
and FI; settling on the choice of the best operator for every

specific framework is a significant issue. One method for
conquering this issue is to consider overall definitions, of
which the classical ones can be viewed as specific cases [5, 6].

In this regard, Almeida [7] and Sousa and de Oliveira [8]
recently introduced y-Caputo FD and y-Hilfer FD of one
variable, respectively, from which it is feasible to obtain a
wide class of FDs already well established. Sousa and de Oli-
veira [9] have very recently expanded y-Hilfer FD with two
variables. Therefore, one of the aims of this work is to intro-
duce some qualitative analyses of solutions based on -
Caputo FD with two variables.

Then again, functional differential equations (FDEs) and
fractional FDEs with finite delay show up frequently in
applications as models of equations, and consequently, the
investigation of these kinds of equations has gotten incredi-
ble consideration somewhat recently; see, for instance,
[10-14] and the references in those. The literature connected
with the existence of solutions of fractional partial FDEs
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with a finite delay was processed very slowly; see, for
instance, [15-19].

The background and survey in the literature relative to
classical fractional partial hyperbolic FDEs can be found in
the monograph of Abbas et al. [19]. Sousa and de Oliveira
[9] discussed the stability of fractional partial hyperbolic
DEs without delay under the y-Hilfer operator. Baitiche
et al. [20] established the existence result of coupled systems
of fractional partial hyperbolic DEs without delay.

This work is concerned with the existence, uniqueness,
and Ulam-Hyer (HU) stability of the solution to the -
Caputo-type fractional partial hyperbolic FDE with finite
delay:

O (1) = g(u T, z(m)), (67) € ], = [0, d] x [0, d],
20 1) =@, 1), (0, T) € J, = [k, c] X [k, d] \ (0, ¢] x (0,d],
2(%,0) = ¢, (%), %(0,7) = ¢, (1), % € [0, c], T € [0, d],
(1)
and the y-Caputo-type fractional nonlocal partial hyper-
bolic FDE with finite delay:

O (0, 7) = %(u, T, ;c(m)), (6, 7)€ ], =10, % [0,d],
26, 1T) =06, T), (,7) € ], := [k, c] X [~#,, d] \ (0, ¢] x (0, d],
2(1,0) + hy(x) =¢,(1), 2(0,7) + h)(2) = ¢,(1), x € [0, ¢], T € [0, d],

(2)

where ¢, d, x;, 1, > 0,0 = (4, v) € (0, 1] x (0, 1], is the y-
Caputo FD of order r with respect to another function v,
which is increasing, and 0y/0u, 0y/0T #0, for (x,7) €],
€=(0,0),¢(+, -) € €= E([-x;, 0] x [, 0], R),

F: ] xE— R, : [0,c] — R,¢, : [0,d] — R are abso-

lutely continuous with ¢, (%) = @(3, 0),¢,(7) = ¢(0, ),
Vxel0,c,Vre0,d], and h,h,:C(J;,R)— R are
continuous.

This paper is concerned with the qualitative analyses of
fractional partial hyperbolic FDEs, which are very new, and
the implementation of the y-fractional operator makes it
more general and novel, unlike the classical fractional oper-
ators. To be precise, we are interested in investigating the
existence, uniqueness, and Ulam-Hyer’s stability results for
our problems (1)-(2). These results initiate the investigation
of y-Caputo fractional partial hyperbolic FDEs with a finite
delay, which mainly includes a more general fractional oper-
ator based on another function y. To be certain, in the anal-
ysis of our results, we essentially use fixed point theorems
(FPTs) of the Leray-Schauder type and Banach type. Our
outcomes can be interpreted as extensions of preceding
results that Abbas et al. [19] and Sousa and de Oliveira [9]
obtained for classical FHDEs, which can be considered a
contribution to the literature.

The rest of the work has been organized as follows. Sec-
tion 2 is devoted to some essential connotations of w-frac-
tional calculus with auxiliary lemmas to problems at hand.
The existence, uniqueness, and UH stability results based
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on fixed point techniques are provided in Section 3. Suitable
examples are given in Section 4. In Section 5, we present the
conclusions.

2. Preliminary Results

In this section, we give some notations and essential defini-
tions of fractional partial integrals and derivatives (FPIs
and FPDs) and some function spaces to simplify the forth-
coming analysis. Let J, =[0,¢| x0,d], J, = [~k;, c] X —k,, d]
\ (0, ¢] x (0, d], where ¢,d,«;,x, >0,6=(0,0), and r= (g4, v
)€(0,1] x (0,1]. Denote & :=%([-«;,0] X —[«,,0],R) the
space of continuous functions on [—«;, 0] X —k,, 0]. Note that
% is the Banach space with the norm

206 7)|, (3)

2]l = sup
(u,r)e[—tc] ,O]X[—KZ,O]

and let C(J;, R) be the Banach space with the norm

206 7). (4)

2]l =~ sup
(67)€[0,x[0.d]

The space Z'(J, R) is endowed with the norm

¢ rd
2|l = JOL|Z(%, 7)|dndr. (5)

For any z,,,) 1 [-k;, c| X —ky, d] — R, where (3, 7) € ],
we have

Z(7) (0,0) =z(x+ 0,7 +0),for(6,0) € [-x, 0] X [k, 0].
(6)

Define the space € ([—x,, c] X —k,,d], R) as

Eed) = {z: [-Kp, ¢ x =Ky, d] — R : z’h =9peb6.z

. eC(]l,]R)},
(7)

where z| ], is the restriction of z to J,, which is a Banach space
with the norm

|26 7)]- (8)

lelle, = sw
" (,7) €[~k €] X[~y

In the forthcoming analysis, let us consider y/(-) to be an
increasing and positive monotone function on J; with (-
)»¥,(-)#0 on ], where v, =0y/0x and y_=0y/0r. On
the whole paper, mind Y971 (y, m) =

()~ w(m)"".

Definition 1 (see [9]). Let €= (0,0),r = (4, v), where y, v > 0.
Then, the yw-RL FPI of a function of two variables z(x, 7) €

keep in



Journal of Function Spaces

Z'(J, R) of order r is given by

7e007)= s | [ OwOw 0y (1. 0)2(0, ot
)
Also, we have
I 2(07) = ﬁ J:%(e)y/ﬂ-l (3,0)2(6, 7)db,
L (10)
T4 1) = s Jow,(e)q/H (7, 0)z(x, 6)d6.

Definition 2 (see [9]). Let £=(0,0), and r = (u, v), where 0
<, v < 1. Then, the y-RL FPD of a function z(x, 7) € Z'(
J1> R) of order r is defined by

; 1 2 o
DY z(n,7) = ( g )fé Y206 7). (11)

¥, Y, 0107
Definition 3 (see [9]). Let £=(0,0),r = (4, v), where 0 < y, v

<1, and v € C'(J;, R). Then, the w-Caputo FPD of a func-
tion z(x, 7) € C'(J,, R) of order r is defined by

L2 )z(%, 7). (12)

D 20, 1) =Ty
3 Z(% T) 3 W%WT OnoT

Lemma 4 (see [9]). Let r=(y,v) € (0,00) X (0,00), and &,
&,>—1. Then,

Y 6,0y (1,0,
(13)

Lemma 5 (see [9]). Let r=(u,v) € (0,1] x (0,1], and &, &,
> —1. Then,

Ty o 0y (1, 0) = r@(i@n F(I;(izzﬁ

I'@) I'E)

—-§,-1 V—fz—l
T-E)Tw-8y)"  CeOv ™ (n0).

DY (0, 00y (1,0) =
(14)

Lemma 6 (see [7]). Let 0<r< 1, and h : [c,d] — R is con-
tinuous. Then,

DY TR0 = h(0), T DY () = h(30) = hc). (15)

(Fz)(n,1) = 1

et | PO 0w @ (5.0 x B0 2 ) e, (o)

3
Lemma 7. The following problem
D (06, 7) = f(3,7), (06, 7) €[0, ] X [0, d],
2(n,0) =, (%), 2(0,7) = §,(1), n € [0, c], T € [0, d],
(16)

with ¢,(0) = ¢,(0) which has a solution z(x, T) € €([0, (]
x 0,d], R) if and only if z(x, T) satisfies

26 7) =n(n 1) + I, f(6, 1), (1,7) €0, x 0,d],  (17)

where (%, 7) = ¢, (%) + ¢,(7) - ¢,(0).

Proof. The proof is primitive and similar to the proof of
Lemma 3.2 given in [21], so it can be omitted. O

Here, we only refer to source [22] of the results of Leray-
Schauder and Banach FPT.

3. Main Results

Let us begin by describing what we mean by a solution to
problem (1).

Definition 8. A function z is a solution of (1), if z € € 4 and
(D?z,,) (%, T) exists and is integrable.

Theorem 9. Let the following assumptions hold:
(A1) §: J; x € — R is continuous.
(A2) There exists Lg > 0 such that

|86 7, 2) = F(6 7, v) | < Lgllz — 0|l (6 T) €T, 2,V EB.

(18)
If

_ V(6 0)y¥(4,0)
0= WL%< 1, (19)

then there exists a unique solution for the w-Caputo problem
(1) on [—x;, c] X =k, d).

Proof. Consider the operator & : €4 — €4 defined by
(Hz)(, 1) =2(x, 1), e,

(0, 7) €],
(20)



where 16, 7) = ¢, (%) + ¢,(7) = ¢,(0).
Let z,w € € 4), and (%, 7) € [-x;, | X [-K;,, d]. Then,

(2067 -
< et | O 0w 09 (20
T I(Wrv) Jo)o !

% [&(6.0.200)) ~ B(6: ¢ ) a0

< s [ -1y i
B r(u)F(v)JoL‘“(W‘ (% 0y, (v (5.0)

% e - @ | e
~al, [ va@ 00| @ (x. acae
“Jo 0

AGD) j“wﬂ(e)w" (1 6)do

(Fw)(7)]

< e
S Tre)

< s
= Tore 1~ e
L (e0) ¥ (0)

TG+nr+1) 1 “le
(21)
which implies
1(572) - (Ho)llg,, <olle-wllg,,-  (2)

Since 0 < 1, the operator % is a contraction. This means
that % has a unique fixed point by Banach’s FPT. O

Theorem 10. Let (Al) and the following assumption hold:
(A3) There exist p,q € C(J;, R) such that

180672 <p(67) + (6 7)|2l g (7)€ T2 €F. (23)

If p=llqlloy* (e, 0)y™(d, O)/L(u+ 1I'(v + 1) <1, then
there exists at least one solution for the y-Caputo problem
(1) on [—k;, c] X —k,, d].

Proof. Consider the operator & : €4y — €4 defined by

(20); then, we show that#is completely continuous.
Step 1: # is continuous. Let {z,} be a sequence such
that z, — z in €. ;). Then,

[(Zz,) (1) = (F2) (0 T)|
<t . | O e O @ ()
x ’g(e, g z,,(w) - g(e, G z(e)()) (dcde

: W ”d%(9>W"'1(% O Ovimy Y
x (95,351 %(6 {2, () —%(9, g z(e)()) ’d(de
# >
< e 18- ) (-0,

Since § is continuous, ||(#z,) — (%Z)H% , 0 asn
— 0.

Step 22 H(By) s
where B = {z € € : Hz”%,d)

bounded in
<&}, for any £> 0.

© ()
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Set
&> A (25)
max  [[¢]] =ik
where
- [Pllo ¥ (> 0) ¥ (d, 0)
For (x,7) € ],, we get
[(F2) (6 7)| < Jup 906 1) = (|9l (27)
U,T)E 2
Let (%,7) € ]}, and z € B. Then,

1 [ -1 v-1
|(H2) (0T < T + WLJOWW (60w, (O (1.0)
x )g(@, ) ‘d(de

<neer)|+ ‘:%(9)'!/”"(%) 0y, (v (5. 0)p(6.0)dCdo

1
FTE)
| 0w o0 Ov 5. 0000.0) g | 0

L1
I(u)r(
<l + (‘,'S”F( >[ [ @ 1 0y, @ 5.2t

<l (Il ) 2 ETEE

+pé.
(28)

Due to (25), (27), and (28), H(‘%Z)H%(m <& or (Hz)e
Bg, which implies that % (B;) is bounded in € ).

Step 3: F (Be) is equicontinuous in € ;. Let z € B, and
(31, 11), (30, Tp) € [=K, €] X [~Ky, d] with 3, <3,,7) <T,. If (
%, T1), (%, T,) €], and z € B;. Then,

[(H2) (2 73) = (H2) (1, 71)

< 0t 72) ~ 1007 ”‘Jr‘wn(e V()9 G O (72

T(#)F(V) 0
|

0, )y N (7, g(e 29§)|d(d9

e H © v 0 0y (72,01 [8(6: ¢, 20, ) |dcd0

* ) H‘” O Q[ (s Oy (0] [§(0:: 00 ) | ct0

+WJ?J:%(9)WT(C)W (ot 0 (12:0)] )3(9)4,2(6’0)“1(‘16
<106 2) =100 7)o + %KLW O (O [0 O™ (12,0)

(4, 0)y™ (1, )] dCd6 + %&J O

X [ e O (22, 0 + MJ j VO, (0)

- 1 [12llco * 119ll00t [ .
X [97 (6 O)y 7 (15, ()| ALl + OO L‘LV/()V/T(()

X [V"H(’fzve)‘/’Wl("’z’{)}dcdeS 106, 72) = 1040 71| o

+ NPl llall0d [
T(u+1)I(v+1)

(71, 0)9# (011, 0) = YV (72, 0)9# (365, 0) = 297 (15, T

297 (T, 0) Y (3630 307) + 29 (365, 0) Y (15, 7))
DY (2 ,)]-
(29)
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If —x; <3, <x,<0,and —«, <1, <71, <0, then

|(Hz) (3, T5) = (Fz) (01, 1) | < |9 (363, ) — (31, T1) |-
(30)

If -k, <%y <0<u,<c and —k, <17, <0< T, <d, then

[(Hz) (3, T;) = (F2) (31, 7))
< |(Hz) (% 72) = (H2)(0,0)[ + |(H2)(0,0) = (H2z) (1, 7))
1Pllo * lalleol ), v
T(u+ DI(v+1) 2y (72, 0)y# (55, 0)
+ 29 (55, 0)y" (75, 0) + ¥ (0, 0)y#(0, 0) — ¥ (75, 0)y# (5, 0)
=29 (72, 0)y* (365, 0)] + (0, 0) = (311, 7).

<m0 13) =0(0,0)| o, +

(31)

In all previous cases, as »; — x,, T, — T,, and the
uniform continuity of # on J,; and ¢ on J, implies that for
any &> 0, there exists § >0, independent of x,,x,, 7,1,
and z, such that |(#z)(x,, 1,) — (#z) (%, 7,)| < € whenever
[w(r,) —w(3%,)| <6/2 and |y(r,) — w(r,)| <8/2. Therefore,
H (By) is equicontinuous. It follows from the Arzela-Ascoli
theorem that % is compact.

Step 4: % (B;) a priori bounds. 3 an open set Q€ € 4
with z # NHz, for X € (0,1), and z € 9Q. Let (5, 7) € [-«,,
c| x [-x,,d] and z € G, 4 with z # RHz, for some N € (0, 1
). Then,

2036, 7)| < Rjn( 7)| + —F(M;(V) J:J;%(g)wwlm OOy (1.0) ‘g(e . Z(&!)) |d(d(~)
! [ - v-1
<|n(e )|+ WJOL%(GW Y6, 0)y, (v (1, )
[p0.0)+ a0.0) 00| |t
[Pl ¥* (e 0) ¥*(d, 0)

)
llleo* =P Drv e

e [Ty @10t e L
s || va@ by Ol de.

(32)

If (%, 7) € J,, then (32) becomes

[IPlloo¥*(c.0) y(d. 0)
I+ 1)I'(v+1)

e [y o1yt
F s ) | O s vy (020,00

[1£llo + 19lleoll 206 DI

ll206 lleo < 11ll oo +

Wleo* =P Drw+ 1) 296 0)y7(d,0),
(33)
which implies
A
1206 7) || o, < 5= M. (34)
p
For (36,7) € J,,[|2(% 7)o = |9l -
Consequently,
2]l = max {M, [[g]l¢; } =" (35)
Set
Q:{ze%(c,d) : \|z|\oo<s*+1}. (36)
O

Through our choice , nothing z € 0Q such that z=N
Hz,0<N<1.

As conclusion, the Leray-Schauder FPT shows that %
has a fixed point z € 2 C €4 such that z =%z which is a
solution to problem.

We now provide two results on the nonlocal problem
(2), and their proofs are quite similar to the preceding
results. In addition, the results in Theorems 9 and 10 can
be presented by

(1) €]y

K N, T)= n (T
(=Y y0m) + () + () + 1(V) xj L%(e)w-l(;{, 0y (O (. 0)F(0.8 207 ) A0 (7)),

0

Theorem 11. Let (Al) and (A2) be satisfied. If there exist
Ly Ly, > 0 such that

by (@)~ by () | L Iz~ vl forzve B, R),
|h2(z)—h2(v)|SLhZHZ—vHOO, forz,ve€(J, R),
(38)

with A:=L, +L, +0 <1, where o is defined by (19); then,

(37)

there exists a unique solution for the y-Caputo problem (2)
on [—x;, ¢| X —x,, d].

Theorem 12. Let (A1) and (A3) be satisfied. If there exist
dy > dy, > 0 such that

1 ()] < dy, (1+]|2ll)>  forze BT, R,

(39)
1h2(2)|] < d, (1 + |2l )

forzeB(J, R"),



with p < 1, where p is defined by (A3); then, there exists at
least one solution for the w-Caputo problem (2) on [-x;, (]
X [~x,, d].

Now, we provide the UH and GUH stability of the y
-problem (2).

Definition 13. (see (2)). Problem ((2)) is UH stable if there
exists a x,, > 0 such that Ve > 0 and each solution w (s, 7) €

€ .q) Of the inequality

DN w(xT) - %(%, T, w(m)) ‘ <e, (61)€]),

(40)
woeT) -peT)|<e  (aT)el,
there exists a solution z(x, 7) € €. 4 of (2) satisfies
||w(o, T) = 2(52, T)||%([’d> < Xyt (41)

Remark 14. (3, 7) € €. 4 satisfies (40) iff there exists ¢(x,
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C@;i}”w(%, T) = %(%, T, w(m)) +6(x,T). (42)
Lemma 15. Let = (,v) € (0, 1| x (0, 1], and w(x, T) € €. 4
is a solution of (40). Then, w(x, T) satisfies

1
I'(uI(v)
(a g, wgq)dCdO‘

'w(u, T) = wy(%, T) -

J”me)w(n, 9)]2%(01#”% 0%

¥(d,0) y*(c, 0)
v+1)F([u+1)’

(43)

for (n,1)€],,

Moreover, |w(x, T) — (s,

where w,(%, 1) =n(x,7) + h;(w) + h,(w).

7)| =0, for (x,7) € ],.

Proof. Let w(x, T) is a solution of (40). It follows from (ii) of
Remark 14that

C@Zin(%’T) = %(%’ T, w(%,r)) + C(%, T)’ (%’ T) € ]1’

w(67) = 9(67), (67) €]y

T) € G ) With w(,0) + hy (0) = ¢, (), 0(0, 7) + hy () = ¢, (1), (26 T) € ;.
i) [c061)|<eme], (44)
(ii) for all x € J, Then, the solution of problem (44) is
906 )], (7)€,
D= 1) + (@) + hy(@) + r(y)lr b LL%(G)M*(% 0y, (O (1.0)[§(0.0 wy) +<(6.0)] dd6, (o).
(45)

Once more by (i) of Remark 14, we get

i 0 s owc

)VJ“’ wlnej Oy (x,0)dLdo
v(r,0) 1

0)ls(6.¢)dgdo

Wi T) ~en6 )~ )m)J VO (6 6>J;w,<c>w”"<r, o360 ww,o)dfd@\

Theorem 16. Under assumptions of Theorem 9, the solution
of the problem (2) is HU and GHU stable on [—«;, c] X —«,, d].

Proof. Let w(x,7) € € be a solution of (40), and z(x, 7) €
%) is a unique solution of the following problem:

C@ﬂ/z(%’ T) = %(%’ T Z(%,T)) > (%’ T) €/

= | O )0
¥'(1.0) yH060) _ y¥(d0) y*(c0) 2(067) =900, 1), (10,T) €],
(v+1) (;4+1) F(v+1 T(p+1)’
46)  x60) +hy () =006 0) ¥ (@) 20T thue) (o
=w(0,7) + hy(w), (%, T) € ];.
for (»,7) € ],. For (%, 7)€ J,, we obtain |w(sx, 1) — ¢(x, 7)|
=|o( 1) — (%, 7)|=0. O The previous problem has a solution
906 7), (61) €]
Z(n,T) = 1 % T (48)
u—1 v-1
2067)+ Ty | POV 060)| Oy B OB(0.6 200 )00 (o7 <)y
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where z,(x, 7) =1(3%, T) + hy(2) + h,(2).
Since z(x,0) + h,(z) = w(3%,0) + h; (w) and z(0, T) + h,(
z) =w(0,7) + h,(w), we have z,(x, T) = wy (%, 7). Indeed,

2(%7) =106 T) + by (2) + by (2)
=101, 7) —2(%,0) + w(sx, )+h(w) 2(0,7) + (0, 7) + h,(w)
=1(36T) = ¢y () + $1 (56) + Iy (W) = §,(T) + §,(7) + I ()
=106 T) + hy (@) + hy (0) = 0y (%, 7).
(49)
Hence, (48) becomes
z(n, T)
(%1) €],

5 [ @v 0 v v (w08 (0.0 00 )i (7)<

(50)

Note that, |w(x, ) — z(3, 7)| =0, for all (%, 7) € J,.
Using Lemma 15 and (A2), for (%, 7) € J;, we have

[0(6,T) = 2(3,T)| = |0(% T) — Wy (%, T) =

e
AT O 0] v

X @y (5. 0)F(0:8 205 ) A6
%Wr%(f?)w“‘l(u,e)r (O (@.0)F

< w(x, 1) = wy (3, T) -

< (0. e )] + s [0 0e0) v (015

x (0.4 wag)) ~ (0,820 )| dedo

¥'(d,0) y*(c.0) v'(d0) y¥(c0) _ o 7
S T D) T(u+1) M"wa‘“) “00 Hw ) TEr D) < I Tl e
(51)

which implies

o

ms. (52)

o =2llg(cq <

Taking y,:=0/Lg(1-0) such that o<1, then (51)

becomes
[0 =25 < Xy (53)

Hence, problem (2) is UH stable. Moreover, if there
exists a nondecreasing function ¥ : [0,00) — 0, c0) such
that ¥(e) = ¢, then we have with ¥(0) =0,

[l = 2[lgg(c) < ¥ (&) (54)

which proves that problem (2) is also GUH stable. O

4. Examples

In this portion, we provide two examples of partial hyper-
bolic FDEs having fractional order and satisfying the
obtained results. All computational work will be performed
through MATLAB.

Example 1. Consider a y-Caputo fractional partial hyper-
bolic FDE

1
Py e P vy ey )

ot 2 (n,7) = e[0,1]x[0,1],
x(0,1)=n+1%, (0,1)€[-1,1] x[-2,1]\ (0,1] x (0, 1],
%(#,0) =1 %(0,7) =15, %,7€[0, 1],

(55)

where  r=(u,v), u=12,v=1/3,90671)=n+12
c=d =1k, =1k, =2,¢,(%) =3¢,(r) =12 Consider F(x, T,
Z)=1/(3¢"""(1 +z(x— 1,7 - 2))), for (%,7,2) €0,1] x0, 1
| x€([-1,0] x-2,0],R). Let zve®([-1,0]%x-2,0],R),
and (%, 7) €0,1] %0, 1]. Then,

)50

1 1
S@|Z(%—1,T—2)—v(%—1,1—2)\S?||z—v||%.

(56)

So, assumptions (A1) and (A2) are satisfied with Lg =1
/3¢*. Moreover, the condition o =2/(3"%¢*\/nI'(1/3)) <1
with w(3) =x/3,y(t) =7e"'/3 and c=d = 1. Hence, Theo-
rem 9 shows that problem (55) has a unique solution defined

n [-1,1] x [-2,1].

Example 2. Consider a y-Caputo fractional partial hyper-
bolic FDE

Y () =

(= 1,7-2)] >

—1—T
1+
4+e”+f< (I+|2(x-1,t-2)|)

(1) € [O, ﬂ X [0, ﬂ

1
2(%,0) =u2,z(0, T)=T,%,T€ {0, 3} (57)

where r=(uv), p=12,v=1/3,p(x,1)=25*+1,
c=d=1/3k, = Lk, =2,¢, (%) = n*,¢,(7) = 7. Consider F(,
7,2) = (e 7"/(4+ 7)) (1 + 2/(1 +2)), for (%, 7,Z) € [0, 1/3]
x [0,1/3] x €([-1,0] x —=2,0], R). Let z € €([-1,0] x -2, 0],

R), and (%, 1) € [0, 1/3] x [0, 1/3]. Then,
P Z(%,T) P e T
’%(%’ o z(’”)) ’ T R T av oo [
e T ——T
Sgvor Fare e
(58)

Thus, (A3) holds with p(x, ) = (3, T) = e /(4 + &7),
where ||q||, = 1/5. To verify that p < 1, we select y(x) = &3



and y(7) = /7 + 1, then find that

Y(6,0) = (W(0) - y(0) = (%) = Ve,

and p=0.314 < 1. So, all assumptions of Theorem 10 are
satisfied. Hence, Theorem 10 shows that problem (57) has
a solution defined on [-1, 1/3] x [-2, 1/3].

Remark 3. Our current outcomes on problems (1) and (2)
can be interpreted as extensions of preceding results of
Abbas et al. [19], for w(x) = .

Remark 4. As special cases, it is possible to obtain other
results for similar problems involving various FDs such as
Caputo-Katugampola FD (for (x)= (x*),p>0), Caputo-
Hadamard FD (for w(x) =1n (%)), and other FDs, for differ-
ent choices of ().

5. Conclusion

Somewhat recently, several fractional definitions have been
proposed to describe the behaviors of some complex world
problems arising in many scientific fields. In this regard,
Sousa and de Oliveira [9] introduced the concept of the mul-
tivariate partial fractional derivative with respect to another
function. As an additional contribution to this topic, exis-
tence and uniqueness results have been obtained for two
types of Cauchy and nonlocal fractional partial hyperbolic
FDEs (1) and (2) involving y-Caputo FD with two variables.
We have presented several results based on Banach’s and
Leray-Schauder’s fixed point theorem. In light of our present
results, special cases of similar problems containing several
partial fractional operators have been presented according
to different choices of the y function. Moreover, we have
provided the stability results in UH and GUH sense. Lastly,
two suitable examples that validate the obtained results were
given.

It is interesting to approach current problems with infi-
nite delay, and this is what we are thinking of in future
research. One can also study the same present problem in
terms of the generalized fractional derivative that was
recently proposed in [23, 24].
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