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The main intention of this research article is to introduce a new class of generalized fractional differential equations that fall into
the categories of Sturm-Liouville’s, Langevin’s, and hybrid’s problems involving Y-Caputo fractional derivatives. The existence of
the solutions of the proposed equations is discussed by using the technique of the measure of noncompactness related to the fixed
point theorem, which is a generalization of Darbo’s fixed point theorem. Additionally, pertinent examples are provided along with
the different values of the function Y to confirm the validity of the reported results.

1. Introduction

Fractional differential equations (FDEs) with their various
branches such as Hybrid Equation (HE), Langevin Equation
(LE), and Sturm-Liouville Equation (SLE) are currently well
established, due to the number of papers and books edited
worldwide. These types of equations have been applied in
many applications in different fields, such as engineering
and science. Since in recent years, it has achieved a great deal
of development and interest by many researchers, for some
of these developments in the theory of fractional differential
equations, one can look at the monographs of Kilbas et al.
[1] and Podlubny [2], where they presented some properties
and applications appropriate for various types of fractional

operators. Dhage and Lakshmikantham [3] and Dhage
et al. [4] made excellent results on hybrid problems, as did
Zhao et al. [5] and Ahmad and Ntouyas [6]. The LE [7] is
formulated to be a powerful tool for describing the evolution
of physical phenomena in volatile environments. Some of
recent Langevin’s problem is studied through [8–10]. How-
ever, SLE has many applications in distinct areas of technical
knowledge and engineering [11, 12]. The mix of both frac-
tional SLE and fractional LE might give an adequate
description of the dynamic processes described in a fractal
medium where fractal and memory properties are inserted
with a scattered memory kernel. Recently, the authors in
[13] suggested an approach to the fractional model of
the SLE and LE. Indeed, they discussed the existence of
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solutions to the considered systems through fixed point
techniques and mathematical inequalities. Muensawat
et al. [14] studied antiperiodic BVPs for fractional systems
of generalized SL and LE. Boutiara et al. [15] considered
fractional LE under Caputo function-dependent kernel
fractional derivatives. Existence theorem for psi-fractional

HEs has been proven by Suwan et al. [16]. Some qualita-
tive analyses for multiterm LEs with generalized Caputo
FDs and diffusion FDE with ABC operators can be found
in [17, 18]. The authors in [19] considered a hybrid LE
involving Caputo FD and Riemann-Liouville (RL) frac-
tional integral (FI) as follows:

Motivated by the above works aforesaid and inspired by
[19, 21], in this paper, we deal with the existence of solutions

for the following BVP to the nonlinear fractional hybrid–
Sturm-Liouville–Langevin differential equation:

where cDr,Y denotes the Y-Caputo FD of order r ∈ fζ, ξg,
0 < ζ, ξ ≤ 1. Here, M ∈ CðΠ ×ℝ,ℝ \ f0gÞ, N ∈ CðΠ ×ℝ,
ℝÞ,ν, μ : Π⟶Π are given functions, p ∈ CðΠ,ℝ \ f0gÞ,
and q ∈ CðΠ,ℝÞ. As in Banach spaces, a closed and bounded
set is not generally a compact set; just continuity of the
functionM does not ensure the existence of a solution to dif-
ferential equations. Our arguments are principally founded
on Darbo’s fixed point technique mixed with the technique
of measures of noncompactness to set up the existence of
solutions for (2). In particular, problem (2) is formed as an
overarching structure comprising both fractional SLE, LE,
and HE, subjected to boundary conditions involving Y-
Caputo FDs. In fact, choosing qðσÞ ≡ 0 on the one hand
and pðσÞ ≡ 1, qðσÞ = λ, and λ ∈ℝ, on the other hand, reduces
the problem (2) into the fractional Sturm-Liouville problem
and the fractional Langevin problem, respectively. Besides,
if we set pðσÞ ≡ 1 and qðσÞ ≡ 0, the problem (2) reduces to
the fractional sequential hybrid problem.

Observe also that the current results are consistent
with some of the literature results when YðσÞ = σ, and
they are new even for the special case: YðσÞ = log σ and
YðσÞ = σρ:

Here is a brief outline of the paper. In Section 2, we
provide some preliminary facts. Sections 3 and 4 handle
the formulation of solutions and the existence of solutions
for (2) by using the generalized Darbo’s fixed point theo-
rem (D’sFPT) along with the approach of measures of
noncompactness in the Banach algebras. Lastly, we give
pertinent examples.

2. Preliminaries

Let us start this section with some auxiliary results used in
the forthcoming analysis.

Definition 1 (see [1]). The Y-RL FI of order ζ > 0 for an
integrable function ϑ : Π⟶ℝ is given by

I
ζ;Y
a+ ϑ σð Þ = 1

Γ ζð Þ
ðσ
a
Y ′ ςð Þ Y σð Þ − Y ςð Þð Þζ−1ϑ ςð Þdς, ð3Þ

where Γ is the gamma function. One can deduce that

Dσ I
ζ;Y
a+ ϑ σð Þ

� �
= Y ′ σð ÞI ζ−1;Y

a+ ϑ σð Þ, ζ > 1, ð4Þ

where Dσ = d/dt:

Definition 2 (see [20]). For n − 1 < ζ < nðn ∈ℕÞ and ϑ, Y ∈
CnðΠ,ℝÞ, the Y-Caputo FD of a function ϑ of order ζ is
given by

cD
ζ;Y
a+ ϑ σð Þ =I

n−ζ;Y
a+

Dσ

Y ′ σð Þ

 !n

ϑ σð Þ, ð5Þ

where n = ½ζ� + 1 for ζ ∉ℕ and n = ζ for ζ ∈ℕ.

cDζ cDξ ϑ σð Þ
M σ, ϑ ν σð Þð Þð Þ
� �

− λϑ σð Þ
� �

=N σ, ϑ μ σð Þð Þ,I γϑ μ σð Þð Þ, σ ∈ 0, 1�,ð

ϑ 0ð Þ = 0, cDξ
ϑ σð Þ

M σ, ϑ ν σð Þð Þð Þ
� �

σ=0
= 0, ϑ 1ð Þ = ζϑ κð Þ,  0 < κ < 1, ζ, λ ∈ℝ:

8>>><
>>>:

ð1Þ

cDζ,Y p σð ÞcDξ,Y ϑ σð Þ
M σ, ϑ ν σð Þð Þð Þ
� �

− q σð Þϑ σð Þ
� �

=N σ, ϑ μ σð Þð Þ, σ ∈Π = a, b½ �,ð

ϑ að Þ = 0, p bð ÞcDξ,Y ϑ σð Þ
M σ, ϑ ν σð Þð Þð Þ
� �

σ=b
+ q bð Þϑ bð Þ = 0,

8>>><
>>>:

ð2Þ
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Also, we can express Y-Caputo FD by

Lemma 3 (see [1, 20]). Let ζ, ξ > 0 and ϑ ∈ L1ðΠ,ℝÞ. Then,

I
ζ;Y
a+ I

ξ;Y
a+ ϑ σð Þ =I

ζ+ξ;Y
a+ ϑ σð Þ, a:e:σ ∈Π: ð7Þ

In particular, if ϑ ∈ CðΠ,ℝÞ, then I
ζ;Y
a+ I

ξ;Y
a+ ϑðσÞ =

I
ζ+ξ;Y
a+ ϑðσÞ, σ ∈Π:

Lemma 4 (see [20]). Let ζ > 0. Then, the following holds:
If ϑ ∈ CðΠ,ℝÞ, then

cD
ζ;Y
a+ I

ζ;Y
a+ ϑ σð Þ = ϑ σð Þ, σ ∈Π: ð8Þ

If ∈CnðΠ,ℝÞ,n − 1 < ζ < n. Then,

I
ζ;Y
a+

c
D

ζ;Y
a+ ϑ σð Þ = ϑ σð Þ − 〠

n−1

k=0

ϑ
k½ �
Y að Þ
k!

Y σð Þ − Y að Þ½ �k, σ ∈Π:

ð9Þ

Lemma 5 (see [1, 20]). Let σ > a, ζ ≥ 0, and ξ > 0: Then,

(i) I ζ;Y
a+ ðYðσÞ − YðaÞÞξ−1 = ðΓðξÞ/Γðξ + ζÞÞ

ðYðσÞ − YðaÞÞξ+ζ−1

(ii) cD
ζ;Y
a+ ðYðσÞ − YðaÞÞξ−1 = ðΓðξÞ/Γðξ − ζÞÞ

ðYðσÞ − YðaÞÞξ−ζ−1

(iii) cD
ζ;Y
a+ ðYðσÞ − YðaÞÞk = 0, for k < n,n ∈ℕ

Let Bðυ,~rÞ be the closed ball in the Banach space E; if
υ = 0, then Br ≡ Bð0,~rÞ: Let ~X⊂E, such that ~X and Conv
~X are a closure and a convex closure of ~X, respectively.
And let ME be the family of the nonempty and bounded
subsets of E, while PE denotes the subfamily of all relatively
compact subsets of ME.

Definition 6 (see [22]). We say that ~χ : ME ⟶ 0,∞Þ is a
noncompactness measure in E if all the assumptions
below hold:

(i) ker~χ = f~X ∈ME : ~χð~XÞ = 0g is nonempty and ker
~χ ⊂ PE

(ii) ~Y ⊂ ~X, then ~χð~Y Þ ≤ ~χð~XÞ
(iii) ~χð~Y Þ = ~χð~Y Þ = ~χðConv~Y Þ

(iv) ~χðλ1~Y + λ2 ~XÞ ≤ λ1~χð~Y Þ + λ2~χð~XÞ, λ1 + λ2 = 1

(v) In the case of ð~Y nÞ being a sequence of closed
subsets of ME with ~Y n+1 ⊂ ~Y nðn ≥ 1Þ and limn⟶∞
~χð~Y nÞ = 0, then ∩ ∞

n=1~Y n ≠∅

Definition 7 (see [22]). Let ~Y be a nonempty bounded set
and ⊂~C be a Banach space. We say that M ∈ ~Y is a modulus
of continuous function, denoted by ωðM, εÞ; if ∀M ∈ ~Y and
∀e > 0, we have

ω M, εð Þ = sup M σð Þ −M ςð Þj j: σ, ς ∈Π, σ − ςj j ≤ εf g:
ð10Þ

Moreover,

ω ~Y , ε
� �

= sup ω M, εð Þ: M ∈ ~Y
n o

,

ω0 ~Y
� �

= lim
ε⟶0

ω ~Y , e
� �

:
ð11Þ

Definition 8 (see [23]). A noncompactness measure ~χ in ~C
satisfies the condition ðmÞ if

~χ MNð Þ ≤ Mk k~χ Nð Þ + Nk k~χ Mð Þ, ð12Þ

for all M,N ∈MCðΠÞ, where ~C ≔ CðΠÞ is the Banach
algebra.

Lemma 9 (see [24]). The condition (m) may be grasped by
the noncompactness measure ϑ0 on ~C :

Set

S = Y : 0,∞ð Þ⟶ b,∞ð Þ: ∀ υnð Þ ⊂ 0,∞ð Þ, lim
n⟶∞

Y υnð Þ
n

= b⟺ lim
n⟶∞

υn = 0
o
:

ð13Þ

Now, we present D’sFPT and generalized D’sFPT to prove
that there exists at least one fixed point.

Theorem 10 (see [25, 26]). Let ~C be a Banach space and
Ξ ⊂ ~C be a nonempty, bounded, convex, and closed set.
Let K : Ξ⟶ Ξ be continuous. Assume that there is 0 ≤

cD
ζ;Y
a+ ϑ σð Þ =

ðσ
a

Y ′ ςð Þ Y σð Þ − Y ςð Þð Þn−ζ−1
Γ n − ζð Þ

Dσ

Y ′ ςð Þ

 !n

ϑ ςð Þdς, if ζ ∉ℕ,

Dσ

Y ′ σð Þ

 !n

ϑ σð Þ, if ζ ∈ℕ:

8>>>>><
>>>>>:

ð6Þ
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θ < 1 with υ as a noncompactness measure in ~C meeting
the following requirements:

υ K ~Y
� �

≤ θ~χ ~Y
� �

,Θ ≠ ~Y ⊆ Ξ: ð14Þ

Then, K has a fixed point in Ξ:

Theorem 11 (see [26]). Let ~C be a Banach space and V ⊂ ~C
be a nonempty, bounded, convex, and closed set, and let
K : V ⟶V be continuous. Assume there exist Θ ∈ S and
0 ≤ θ < 1 such that for each nonempty subset D of V with
~χðKDÞ > 0,

Θ ~χ KDð Þð Þ ≤ Θ ~χ Dð Þð Þð Þθ, ð15Þ

where ~χ is a noncompactness measure in ~C . Then, K has
a fixed point in V .

3. Solution Formulation

This section presents a formulation of the solution to
problem (2) along with the assumptions required in the
forthcoming analysis. Foremost, we denote by ð~C , k:kÞ the
space of real valued continuous functions defined on a unit
interval Π. It is clearly the Banach space with the norm:

ϑk k = sup
σ∈Π

ϑ σð Þj j, for ϑ ∈ ~C : ð16Þ

Multiplication is defined as the usual product of real
functions.

To prove the existence of solutions to (2), we need the
following lemma:

Lemma 12. The problem (2) is equivalent to the following
fractional integral equation:

ϑ σð Þ =M σ, ϑ ν σð Þð Þð Þ I ξ,Y 1
p
I ζ,YN

� �
σ, ϑ μ σð Þð Þð Þ

�

−I ξ,Y q
p
ϑ

� �
σð Þ− Y σð Þ − Y að Þð Þξ

p σð ÞΓ ξ + 1ð Þ I ζ,YN b, ϑ μ bð Þð Þð Þ
)
:

ð17Þ

Proof. Applying the ζth-Y-RL integral on (2), we obtain

cDξ,Y ϑ σð Þ
M σ, ϑ ν σð Þð Þð Þ
� �

= I ζ,YN σ, ϑ μ σð Þð Þð Þ − q σð Þϑ σð Þ + k1
p σð Þ ,

ð18Þ

where k1 ∈ℝ. From the BCs of (2), we get

k1 = −I ζ,YN b, ϑ μ bð Þð Þð Þ: ð19Þ

Taking the ξth-Y-RL integral of (18), one has

ϑ σð Þ
M σ, ϑ ν σð Þð Þð Þ
� �

= I ξ,Y 1
p
I ζ,YN

� �
σ, ϑ μ σð Þð Þð Þ −I ξ,Y q

p
ϑ

� �
σð Þ

�

−
Y σð Þ − Y að Þð Þξ
p σð ÞΓ ξ + 1ð Þ I ζ,YN b, ϑ μ bð Þð Þð Þ

)
+ k2,

ð20Þ
where k2 ∈ℝ: The BCs of (2) give k2 = 0. In this regard, if we
apply the ξth-Y-Caputo FD and ζth-Y-Caputo FD to both
sides of (17) and use Lemma 5, then the problem (2) imme-
diately is established.

Before giving the essential result, we shall investigate
formula (17) under the following assumptions:

(i) (AS1) Both functions v, μ : Π⟶Π are continuous

(ii) (AS2) M ∈ CðΠ ×ℝ,ℝ \ f0gÞ, and N ∈ CðΠ ×
ℝ2,ℝÞ

(iii) (AS3) There exists a real number ρ ∈ ða, bÞ with
M σ, vð Þ −M σ, ϑð Þj j
≤ v − ϑj j + dð Þρ − dρ, ∀σ ∈Π, ϑ, v ∈ℝ, d ∈ℝ+:

ð21Þ

(iv) (AS4) There exists a continuous nondecreasing
function φ : ℝ+ ⟶ℝ+ with φð0Þ = 0 such that

N σ, ϑð Þj j ≤ φ ϑk kð Þ, σ ∈Π, ϑ ∈ℝ: ð22Þ

(v) (AS5) There exists r0 > 0 such that

r0 + dð Þρ − dρ +N½ � φ r0ð Þ
~p

Y bð Þ − Y að Þð Þζ+ξ
Γ ζ + ξ + 1ð Þ

(

+ ~q
~p
r0 Y bð Þ − Y að Þð Þζ

Γ ζ + 1ð Þ

+ 1
~p
φ r0ð Þ Y bð Þ − Y að Þð Þζ+ξ

Γ ζ + 1ð ÞΓ ξ + 1ð Þ

)
≤ r0,

where

Λ≔
φ r0ð Þ
~p

Y bð Þ − Y að Þð Þζ+ξ
Γ ζ + ξ + 1ð Þ + ~q

~p
r0 Y bð Þ − Y að Þð Þζ

Γ ζ + 1ð Þ

(

+ 1
~p
φ r0ð Þ Y bð Þ − Y að Þð Þζ+ξ

Γ ζ + 1ð ÞΓ ξ + 1ð Þ

)
≤ 1,

N = sup M σ, 0ð Þj j: σ ∈Πf g,
~p = sup

σ∈Π
p σð Þ, ~q = sup

σ∈Π
q σð Þ:

ð24Þ
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4. Existence Result

The aim of this section is to discuss the existence of solu-
tions to the problem (2). For this end, we apply Theorems
10 and 11.

Theorem 13 Under hypotheses (AS1)–(AS5). Then, the
problem (2) has a least one solution in the Banach algebra ~C .

Proof. Consider the operator K : ~C ⟶ ~C on the Banach
algebra ~C as

Kϑð Þ σð Þ = Fϑð Þ σð Þ Gϑð Þ σð Þ, ð25Þ

where

Fϑð Þ σð Þ =M σ, ϑ v σð Þð Þð Þ,

Gϑð Þ σð Þ =I ξ,Y 1
p
I ζ,YN

� �
σ, ϑ μ σð Þð Þð Þ

−I ξ,Y q
p
ϑ

� �
σð Þ − Y σð Þ − Y að Þð Þξ

p σð ÞΓ ξ + 1ð Þ G Nð Þ,

G Nð Þ =I ζ,YN b, ϑ μ bð Þð Þð Þ:
ð26Þ

From (AS4), we have

G Nð Þk k ≤ Y bð Þ − Y að Þð Þζ
Γ ζ + 1ð Þ Y ϑk kð Þ: ð27Þ

For the sake of simplicity, we put

Q
χ
Y σ, ςð Þ = Y ′ ςð Þ Y σð Þ − Y ςð Þð Þχ−1

Γ χð Þ , χ > 0: ð28Þ

Now, we divide the proof into several steps.

Step 1. K transforms ~C into itself.
At first, we show that ∀ϑ ∈ ~C implies that ðKϑÞ ∈ ~C , i.e.,

ðFϑÞðGϑÞ ∈ ~C for all ϑ ∈ ~C . Certainly, (AS1) and (AS2)
guarantee that if ϑ ∈ ~C , then ðFϑÞ ∈ ~C . It remains to prove
if ϑ ∈ ~C , then ðGϑÞ ∈ ~C . Let ϑ ∈ ~C and σ2, σ1 ∈Π with σ2 >
σ1. By hypothesis (AS4), we get

Gϑ σ1ð Þ −Gϑ σ2ð Þj j
= 1
~p

ðσ1
a
Q
ζ+ξ
Y σ1, ςð ÞM ς, ϑ ςð Þð Þdς

				
−
ðσ2
a
Q
ζ+ξ
Y σ2, ςð ÞM ς, ϑ ςð Þð Þdς

				
+ ~q
~p

ðσ1
a
Q
ζ
Y σ1, ςð Þϑ ςð Þdς −

ðσ2
a
Q
ζ+ξ
Y σ2, ςð Þϑ ςð Þdς

				
				

+ 1
~p

G Nð Þj j
Γ ξ + 1ð Þ Y σ2ð Þ − Y að Þð Þξ − Y σ1ð Þ − Y að Þð Þξ

� �

≤
1
~p

ðσ2
a

Q
ζ+ξ
Y σ1, ςð Þ −Q

ζ+ξ
Y σ2, ςð Þ

h i
M ς, ϑ ςð Þð Þdς

				
				

+ 1
~p

ðσ1
σ2

Q
ζ+ξ
Y σ1, ςð ÞM ς, ϑ ςð Þð Þdς

					
					

+ ~q
~p

ðσ2
a

Q
ζ
Y σ1, ςð Þ −Q

ζ
Y σ2, ςð Þ

h i
M ς, ϑ ςð Þð Þdς

				
				

+ ~q
~p

ðσ1
σ2

Q
ζ
Y σ1, ςð ÞM ς, ϑ ςð Þð Þdς

					
					

+ 1
~p

G Nð Þj j
Γ ξ + 1ð Þ Y σ2ð Þ − Y að Þð Þξ − Y σ1ð Þ − Y að Þð Þξ

� �

≤
1
~p

φ ϑk kð Þ
Γ ζ + ξ + 1ð Þ Y σ1ð Þ − Y að Þð Þζ+ξ

			h
− Y σ2ð Þ − Y að Þð Þζ+ξ− Y σ1ð Þ − Y σ2ð Þð Þζ+ξ

			
+ Y σ1ð Þ − Y σ2ð Þð Þζ+ξ

i
+ ~q
~p

ϑk k
Γ ζ + 1ð Þ Y σ1ð Þ − Y að Þð Þζ − Y σ2ð Þ − Y að Þð Þζ

			h
− Y σ1ð Þ − Y σ2ð Þð Þζ

			 + Y σ1ð Þ − Y σ2ð Þð Þζ
i

+ 1
~p
φ ϑk kð Þ Y bð Þ − Y að Þð Þζ

Γ ζ + 1ð ÞΓ ξ + 1ð Þ
� Y σ2ð Þ − Y að Þð Þξ − Y σ1ð Þ − Y að Þð Þξ
� �

,

ð29Þ

which tends to be zero uniformly once σ2 ⟶ σ1. It is clear
that Gϑ ∈ ~C for all ϑ ∈ ~C .

Step 2. An estimate of kKϑk for ϑ ∈ ~C .
Let ϑ ∈ ~C and σ ∈Π. Then, by using our hypothesis,

we have

Kϑð Þ σð Þj j = Fϑð Þ σð Þ Gϑð Þ σð Þj j
≤ M σ, ϑ v σð Þð Þð Þ −M σ, 0ð Þj j + M σ, 0ð Þj jð Þ

× 1
~p

ðσ
a
Q
ζ+ξ
Y σ, ςð Þ N ς, ϑ μ ςð Þð Þð Þj jdς

�

+ ~q
~p

ðσ
a
Q
ζ
Y σ, ςð Þ ϑ ςð Þj jdς + 1

~p
G Nð Þj j
Γ ξ + 1ð Þ Y σð Þ − Y að Þð Þξ



≤ ϑk k + dð Þρ − dρ +N½ �

� 1
~p

ðσ
a
Q
ζ+ξ
Y σ, ςð ÞY ϑk kð Þdς

(
+ ~q
~p

ðσ
a
Q
ζ
Y σ, ςð Þ ϑk kdς

+ 1
~p
φ ϑk kð Þ Y bð Þ − Y að Þð Þζ+ξ

Γ ζ + 1ð ÞΓ ξ + 1ð Þ

)
:

ð30Þ
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Therefore,

Kϑk k ≤ ϑk k + dð Þρ − dρ +N½ � φ ϑk kð Þ
~p

Y bð Þ − Y ςð Þð Þζ+ξ
Γ ζ + ξ + 1ð Þ

(

+ ~q
~p

ϑk k Y bð Þ − Y ςð Þð Þζ
Γ ζ + 1ð Þ + 1

~p
φ ϑk kð Þ Y bð Þ − Y að Þð Þζ+ξ

Γ ζ + 1ð ÞΓ ξ + 1ð Þ

)
:

ð31Þ
Step 3. The operator K is continuous on Br0

. Here, Br0

is a subset of ~C defined by

Br0
= ϑ σð Þ ∈ ~C : ϑk k ≤ r0 : σ ∈Π
n o

, ð32Þ

with a fixed radius r0, which satisfies the inequality (AS5).
We shall need to show the continuity of F and G on

Br0
, separately. For any ε > 0 and ϑ, v ∈Br0

, there exists

0 < δ < ðε + dρÞ1/ρ − d,∋kϑ − vk ≤ δ; it follows for σ ∈Π that

Fϑ σð Þ −Fv σð Þj j = M σ, ϑ ν σð Þð Þð Þ −M σ, v ν σð Þð Þð Þj j
≤ ϑ ν σð Þð Þ − ν σð Þð Þj j + dð Þρ − dρ

≤ ϑ − vk k + dð Þρ − dρ ≤ δ + dð Þρ − dρ < ε:

ð33Þ
Therefore, F is continuous on Br0

. The continuity of
the operator G is obtained by Lebesgue dominated conver-
gence (LDC) theorem. Indeed, let ðϑnÞ be a sequence such
that ϑn ⟶ ϑ in Br0

with kϑn − ϑk⟶ 0 as n⟶ 0: As
μ : Π⟶Π is continuous, we obtain

ϑn μ σð Þð Þj j ≤ r0, ∀n ∈ℕ,∀σ ∈Π: ð34Þ
Since N is continuous on Π × ½−r0, r0�, it is uniformly

continuous on Π × ½−r0, r0�: Now, we set

G0 = max
σ,ϑð Þ∈Π× −r0,r0½ �

Gϑð Þ σð Þj j, ð35Þ

κ0 =
G0 Y bð Þ − Y að Þð Þζ

Γ ζ + 1ð Þ : ð36Þ

Applying the LDC theorem, we get

lim
n⟶∞

Gϑnð Þ σð Þ = lim
n⟶∞

1
~p

ðσ
a
Q
ζ+ξ
Y σ, ςð Þ N ς, ϑn μ ςð Þð Þð Þj jdς

�

+ ~q
~p

ðσ
a
Q
ζ
Y σ, ςð Þ ϑn ςð Þj jdς

+ G ϑnð Þj j
Γ ξ + 1ð Þ Y σð Þ − Y að Þð Þξ




= 1
~p

ðσ
a
Q
ζ+ξ
Y σ, ςð Þ N ς, ϑ μ ςð Þð Þð Þj jdς

�

+ ~q
~p

ðσ
a
Q
ζ
Y σ, ςð Þ ϑ ςð Þj jdς

+ 1
~p

G ϑð Þj j
Γ ξ + 1ð Þ Y σð Þ − Y að Þð Þξ



= Gϑð Þ σð Þ:

ð37Þ
Thus, G is continuous in Br0

.

Due to the continuity of F and G , the operator K is
continuous in Br0

.

Step 4. We estimate ϑ0ðFΞÞ and ϑ0ðGΞÞ for ∅≠ Ξ ⊂Br0
.

At first, we estimate ϑ0ðFΞÞ. Since ν : Π⟶Π is
uniformly continuous, we obtain for any ε > 0, ∃δ > 0 with
ðδ < εÞ, ∀σ1, σ2 ∈Π with jσ2 − σ1j < δ, which implies jνðσ2Þ
− νðσ1Þj < ε. Taking ϑ ∈ Ξ and σ1, σ2 ∈Π with jσ2 − σ1j < δ,
under hypothesis (AS5), we get

Fϑð Þ σ2ð Þ − Fϑð Þ σ1ð Þj j
= M σ2, ϑ ν σ2ð Þð Þð Þ −M σ1, ϑ ν σ1ð Þð Þð Þj j
≤ M σ2, ϑ ν σ2ð Þð Þð Þ −M σ2, ϑ ν σ1ð Þð Þð Þj j

+ M σ2, ϑ ν σ1ð Þð Þð Þ −M σ1, ϑ ν σ1ð Þð Þð Þj j
≤ ϑ ν σ2ð Þð Þ − ϑ ν σ1ð Þð Þj j + dð Þρ − dρ½ � + ω M, εð Þ
≤ ω Ξ, εð Þ + dð Þρ − dρ½ � + ω M, εð Þ:

ð38Þ

Considering

ω M, εð Þ = sup M σ2, ϑð Þ −M σ1, ϑð Þj j: σ1, σ2 ∈Π, σ2 − σ1j jf
< ε, ϑ ∈ −r0, r0½ �g,

ð39Þ

then we can write (38) as

ω FΞ, εð Þ ≤ ω Ξ, εð Þ + bð Þp − bp
� �

+ ω M, εð Þ: ð40Þ

Obviously, Mðσ, ϑÞ is uniformly continuous on Π ×
½−r0, r0�, and ωðM, εÞ⟶ 0 once ε⟶ 0. Hence, (40)
becomes as follows:

ω0 FΞð Þ ≤ ω0 Ξð Þ + bð Þp − bp: ð41Þ

Next, since μ : Π⟶Π is uniformly continuous, we
have ∀ε > 0, ∃δ > 0 with ðδ = δðεÞÞ, ∀σ1, σ2 ∈Π with jσ2 −
σ1j < δ, which implies jμðσ2Þ − μðσ1Þj < ε: Take into account
equations (32), (35), and (36) for each ε > 0: Set

δ =min 1
2 ,

Γ ξ + 1ð Þε
κ0

, p
∗Γ ζ + 1ð Þε
q∗r0

, p
∗Γ ζ + ξ + 1ð Þε

4G0

� 

:

ð42Þ

Choosing ϑ ∈ Ξ and σ1, σ2 ∈Π with jσ2 − σ1j ≤ δ yields

6 Journal of Function Spaces



For simplicity’s sake, we set

H
χ
Y σð Þ = Y σð Þ − Y að Þð Þχ, χ > 0: ð44Þ

The factors H ζ
Yðσ2Þ −H

ζ
Yðσ1Þ, H ξ

Yðσ2Þ −H
ξ
Yðσ1Þ, and

H
ζ+ξ
Y ðσ2Þ −H

ζ+ξ
Y ðσ1Þ can be estimated as in the following

cases:
Case 1. If 0 ≤HYðσ1Þ < δ,HYðσ2Þ ≤ 2δ, then

H
ζ
Y σ2ð Þ −H

ζ
Y σ1ð Þ ≤H

ζ
Y σ2ð Þ < 2δð Þζ ≤ 2ζδ ≤ 2δ,

H
ξ
Y σ2ð Þ −H

ξ
Y σ1ð Þ ≤H

ξ
Y σ2ð Þ < 2δð Þξ ≤ 2ξδ ≤ 2δ,

H
ζ+ξ
Y σ2ð Þ −H

ζ+ξ
Y σ1ð Þ ≤H

ζ+ξ
Y σ2ð Þ < 2δð Þζ+ξ ≤ 2ζ+ξδ ≤ 4δ:

ð45Þ

Case 2. If 0 <HYðσ1Þ <HYðσ2Þ ≤ δ, then

H
ζ
Y σ2ð Þ −H

ζ
Y σ1ð Þ ≤H

ζ
Y σ2ð Þ < δζ ≤ ζδ < 2δ,

H
ξ
Y σ2ð Þ −H

ξ
Y σ1ð Þ ≤H

ξ
Y σ2ð Þ < δξ ≤ ξδ < 2δ,

H
ζ+ξ
Y σ2ð Þ −H

ζ+ξ
Y σ1ð Þ ≤H

ζ+ξ
Y σ2ð Þ < δζ+ξ ≤ ζ + ξð Þδ < 4δ:

ð46Þ

Case 3. If δ ≤HYðσ1Þ <HYðσ2Þ ≤ 1, then

H
ζ
Y σ2ð Þ −H

ζ
Y σ1ð Þ < ζδ < 2δ,

H
ξ
Y σ2ð Þ −H

ξ
Y σ1ð Þ < ξδ < 2δ and σa+ξ2 − σa+ξ

1 < ζ + ξð Þδ < 4δ:
ð47Þ

Accordingly, we obtain jGϑðσ2Þ −Gϑðσ1Þj ≤ ε, which
implies that ωðGϑ, εÞ ≤ ε:

Let ε⟶ 0. Then,

ω0 GΞð Þ = 0: ð48Þ

Step 5. We estimate ω0ðKΞÞ for ∅ = Ξ ∈Br0
.

By Lemma 9 and equations (32), (41), and (48), we
obtain

ω0 KΞð Þ = ω0 FΞ:GΞð Þ FΞk kω0 GΞð Þ + GΞk kω0 FΞð Þ
≤ F Br0

 ��� ��ω0 GΞð Þ + G Br0

 ��� ��ω0 FΞð Þ

≤ ω0 Ξð Þ + dð Þρ − dρ½ � φ r0ð Þ
~p

Y σð Þ − Y ςð Þð Þζ+ξ
Γ ζ + ξ + 1ð Þ

(

+ ~q
~p
r0 Y σð Þ − Y ςð Þð Þζ

Γ ζ + 1ð Þ + 1
~p
φ r0ð Þ Y bð Þ − Y að Þð Þζ+ξ

Γ ζ + 1ð ÞΓ ξ + 1ð Þ

)

= ω0 Ξð Þ + dð Þρ − dρ½ �Λ:
ð49Þ

Since Λ ≤ 1, the assumption (AS5) gives

ω0 KΞð Þ + dρ ≤ ω0 Ξð Þ + dð Þρ: ð50Þ

Thanks to Theorem 10, the contractive condition is ful-
filled with φðϑÞ = ϑ + b, where φ ∈ S. By applying Theorem
11, K has at least fixed point in Br0

. Hence, the problem
(2) has at least one solution in Br0

.

5. Examples

Here, we provide two examples to illustrate previous results.

Example 14. Consider the problem (2) with following
specific data:

p σð Þ = 1, q σð Þ = λ = 1
100 , Y σð Þ = σ: ð51Þ

Then, the problem (2) reduces to

Gϑ σ1ð Þ − Gϑ σ2ð Þj j = 1
~p

ðσ1
a
Q
ζ+ξ
Y σ1, ςð ÞM σ, ϑ ςð Þð Þdς −

ðσ2
a
Q
ζ+ξ
Y σ2, ςð ÞM ς, ϑ ςð Þð Þdς

				
				 + ~q

~p

ðσ1
a
Q
ζ
Y σ1, ςð Þϑ ςð Þdς −

ðσ2
a
Q
ζ
Y σ2, ςð Þϑ ςð Þdς

				
				

+ 1
~p

G Nð Þj j
Γ ξ + 1ð Þ Y σ2ð Þ − Y að Þð Þξ − Y σ1ð Þ − Y að Þð Þξ

� �

≤
1
~p

G0
Γ ζ + ξ + 1ð Þ Y σ1ð Þ − Y að Þð Þζ+ξ − Y σ2ð Þ − Y að Þð Þζ+ξ

			h − Y σ1ð Þ − Y σ2ð Þð Þζ+ξ
			 + Y σ1ð Þ − Y σ2ð Þð Þζ+ξ

i

+ ~q
~p

r0
Γ ζ + 1ð Þ Y σ1ð Þ − Y að Þð Þζ − Y σ2ð Þ − Y að Þð Þζ

			h − Y σ1ð Þ − Y σ2ð Þð Þζ
			

+ Y σ1ð Þ − Y σ2ð Þð Þζ
i
+ 1
~p

κ0
Γ ξ + 1ð Þ Y σ2ð Þ − Y að Þð Þξ − Y σ1ð Þ − Y að Þð Þξ

� �
:

ð43Þ
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where

a = 0, b = 1, ζ = 1
4 , ξ =

1
2 , λ =

1
100 , ν σð Þ = e σ−1ð Þ

2 , μ σð Þ = ffiffiffi
σ

p
:

ð53Þ

Mðσ, ϑÞ = ffiffiffiffiffiffiffiffiffiffiffiffiffiffijϑj + 42
p

,N ðσ, ϑÞ = ð1/10Þ sin ðϑÞ, d = 16,
and N = supσ∈0,1�jMðσ, 0Þj = 4. Thus, (AS1) and (AS2) hold.

For (AS3), we obtain ρ = 1/2. Furthermore, let zðϑÞ =ffiffiffiffiffiffiffiffiffiffiffiffiffiffijϑj + 42
p

− 22: Then, zð0Þ = 0, and it is a concave function.
Since zðσÞ is concave. As a result, the subadditive property
of the concave function allows us to conclude

M σ, ϑ2ð Þ −M σ, ϑ1ð Þj j = z ϑ2ð Þ − z ϑ1ð Þj j
≤ z ϑ2 − ϑ1ð Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϑ2 − ϑ1j j + 42

q
− 22:
ð54Þ

Thus, (AS3) holds, with ρ = 1/2. Moreover, for every σ
∈Π and ϑ ∈ℝ, we obtain

N σ, ϑð Þj j = σ

10 sin ϑ σð Þ½ �
			 			 ≤ 1

10 ϑ σð Þj j, ∀σ ∈Π: ð55Þ

Hence, (AS4) holds with φðkϑkÞ = ð1/10Þϑ. Finally,
(AS5) permitted to provide us the range of r0 which is
obviously

0 < r0 ≤ 1:7924: ð56Þ

Accordingly, (AS5) confirms that the illustrated exam-
ple (52) has a solution in ~C due to

Λ = 0:544529299 < 1: ð57Þ

Example 15. Depending on the previous example, we pres-
ent some special cases of Y with different values for some
parameters as in Table 1.

6. Conclusions

In this work, we have successfully studied some qualitative
properties of the solution to a fractional problem that
integrates three different types of BVP; more precisely, we
have investigated the existence of the solutions of the
Sturm-Liouville–Langevin–hybrid-type FDEs. Our analysis
has been based on the technique of the measure of noncom-
pactness along with the generalized Darbo’s fixed point the-
orem. The results were consistent with some of the literature
results when YðσÞ = σ, and they are new even for the special
case: YðσÞ = log σ and YðσÞ = σρ:

The problem studied can be extended to a more general
problem containing Y-Hilfer FD, and this is what we are
considering in future research.
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Table 1: Examples with some special cases of the Y function.

Y σð Þ a, b½ � ζ ξ ~p ~q r0 Λ

σ 0, 1½ � 1
4

1
2

1 1
100 0 < r0 ≤ 1:7924 0:5445 < 1

eσ 0, 1½ � 1
3

3
4 2 2

25 0 < r0 ≤ 0:385 0:1613 < 1

ln σð Þ 1, e½ � 2
3

1
3

3
5

1
25 0 < r0 ≤ 1:2603 0:3034 < 1

2σ 1, 2½ � 1
2

1
2

3
2

1
35 0 < r0 ≤ 0:1807 0:0449 < 1

cD1/4 cD1/2 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϑ e σ−1ð Þ/2
 �

+ 42
q

2
64

3
75 −

1
100 ϑ σð Þ

3
75 = σ

10 sin ϑ
ffiffiffi
σ

p �� �
, σ ∈Π = 0, 1½ �,

ϑ 0ð Þ = 0, 22
ϑ σð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϑ e σ−1ð Þ/2
 �

+ 42
q
2
64

3
75
σ=1

+ 1
100 ϑ 1ð Þ = 0,

8>>>>>>>>><
>>>>>>>>>:

ð52Þ
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