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In this article, we acquire a variety of new exact traveling wave solutions in the form of trigonometric, hyperbolic, and rational
functions for the nonlinear time-fractional Clannish Random Walker’s Parabolic (CRWP) equation in the sense of beta-
derivative by employing the two modified methods, namely, modified ðG′/G2Þ − expansion method and modified F −
expansion method. The obtained solutions are verified for aforesaid equations through symbolic soft computations. To
promote the essential propagated features, some investigated solutions are exhibited in the form of 2D and 3D graphics by
passing on the precise values to the parameters under the constrain conditions. The obtained solutions show that the presented
methods are effective, straight forward, and reliable as compared to other methods. These methods can also be used to extract
the novel exact traveling wave solutions for solving any types of integer and fractional differential equations arising in
mathematical physics.

1. Introduction

Investigation of the exact traveling wave solutions for frac-
tional nonlinear partial differential equations (PDEs) plays
an important role in the study of nonlinear physical phe-
nomena. Fractional equations, both partial and ordinary
ones, have been applied in modeling of many physical, engi-
neering, chemistry, biology, etc. in recent years [1]. There
are several definitions of fractional derivatives such as Rie-
mann Liouville [2], conformable fractional derivative [3],
beta derivative [4], and new truncated M-fractional deriva-
tive [5] are available in literature. Many powerful methods
for obtaining exact solutions of nonlinear fractional PDEs
have been presented as Hirota’s bilinear method [6], sine-
cosine method [7], tanh-function method [8], exponential
rational function method [9], Kudryashov method [10],

sine-Gordon expansion method [11], modified ðG′/GÞ
-expansion method [12], extended ðG′/GÞ-expansion
method [13], ðG′/GÞ-expansion method [14], tanh-coth
expansion method [15], Jacobi elliptic function expansion
method [16], first integral method [17], sardar-subequation
method [18], new subequation method [19], extended direct
algebraic method [20], exp ð−ϕðηÞÞ method [21], Expa func-
tion method [22], ð1/G′Þ, ðG′/G, 1/GÞ, and modified ðG′/
G2Þ − expansion methods [23, 24], Kudryashov method
[25], modified expansion function method [26], new auxil-
iary equation method [27], extended Jacobi’s elliptic expan-
sion function method [28], extended sinh-Gordon equation
expansion method [29], modified simplest equation method
[30], and many more.

The time-fractional Clannish Random Walker’s Para-
bolic (CRWP) equation [31, 32] is a model that can
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determine the behavior of two species A and B of random
walker who execute a concurrent one- dimensional random
walk characterized by an intensification of the clannishness
of the members of one species A at point x at a time t, uðx
, tÞ, can be expressed by the time- fractional CRWP equation
as

Dα1
t u + sux + quux + ruxx = 0, ð1Þ

where α1 is a parameter describing the order of the fractional
time derivative and 0 < α1 ≤ 1:.

The major concern of this existing study is to utilize the
novel meanings of fractional-order derivative, named beta
fractional derivative [4], for time-fractional CRWP equation,
and to find the novel comprehensive exact traveling wave
solutions in the form of hyperbolic, trigonometric, and ratio-
nal functions by employ two modified methods, modified ð
G′/G2Þ − expansion method [33] and modified F − expan-
sion method [34]. Beta-derivative has some interesting con-
sequences in diverse areas including fluid mechanics, optical
physics, chaos theory, biological models, disease analysis,
and circuit analysis. To the best of our knowledge, the
obtained solutions are more general and in different form
which have never been reported in previously published
studies [31, 32]. Our results also enrich the variety of the
dynamics of higher-dimensional nonlinear wave field. It is
hoped that these results will provide some valuable informa-
tion in the higher-dimensional nonlinear field.

By using the modified ðG′/G2Þ − expansion method [33],
traveling wave solutions have been found for the nonlinear
Schrödinger equation along third-order dispersion. Different
types of traveling wave solutions of the Fokas-Lenells equa-
tions have been determined in [35] by this method. Alyah-
daly found the general exact traveling wave solutions to the
nonlinear evolution equations in [36]. Gepreel and Nofal
[37] obtained the analytical solutions for nonlinear evolution
equations in mathematical physics. Siddique and Mehdi
found the exact traveling wave solutions for two prolific con-
formable M-fractional differential equations in [23]. Exact
solutions for nonlinear integral member of Kadomstev-
Petviashvili hierarchy differential equations have been deter-
mined by Gepreel [38].

A modified F–expansion method is proposed by taking
full advantages of F expansion method and Riccati equation
in seeking exact solutions of nonlinear PDEs. Darvishi and
Najafi [39] used a modified F-expansion method to handle
the foam Drainage equation. Aasaraai [40] used this method
to construct new solutions of the nonlinear ð1 + 2Þ-dimen-
sional Maccari’s system. Aasaraai and Mehrlatifan [41]
applied this method to coupled system of equation. Ali
et al. [42] derived dispersive analytical soliton solutions of
some nonlinear wave’s dynamical model with the help of
modified F–expansion method. Darvishi et al. [43] found
traveling wave solutions for the ð3 + 1Þ-dimensional break-
ing soliton equation.

This article organized it as follows: in Section 2, we pres-
ent beta-derivative and its properties. The descriptions of
strategies are given in Section 3. In Section 4, we present a

mathematical analysis of the models and its solutions via
proposed methods. In Section 5, some graphical representa-
tions for some analytical solutions are presented. Some con-
clusions are drawn in the last section.

2. Beta-Derivative and Its Properties

Definition: suppose a function hðxÞ that is defined ∀ non-
negative x. Therefore, the beta-derivative of the function hð
xÞ is given as [4]:

Dβ h xð Þð Þ = lim
ε⟶0

h x + ε x + 1/Γ βð Þð Þð Þ1−β
� �

− h xð Þ
ε

, 0 < β ≤ 1:

ð2Þ

Properties: assuming that a and b are real numbers, gðxÞ
and hðxÞ are two functions β − differentiable and β ∈ ð0, 1�,
then, the following relations can be satisfied

i:Dβ ag xð Þ + bh xð Þð Þ = aDβ g xð Þð Þ + bDβ h xð Þð Þ,∀a, b ∈ R:
ð3Þ

ii:Dβ g xð Þh xð Þð Þ = h xð ÞDβ g xð Þð Þ + g xð ÞDβ h xð Þð Þ: ð4Þ

iii:Dβ g xð Þ
h xð Þ
� �

= h xð ÞDβ g xð Þð Þ + g xð ÞDβ h xð Þð Þ
h xð Þð Þ2 : ð5Þ

iv:Dβ g xð Þð Þ = dg xð Þ
dx

x + 1
Γ βð Þ

� �1−β
: ð6Þ

3. Description of Strategies

3.1. The Modified ðG′/G2Þ-Expansion Method. Let us con-
sider the nonlinear PDE is in the form

Q u, ut , ux, uxx, uxt , utt ,⋯ð Þ = 0, ð7Þ

where u = uðx, tÞ is an unknown function, and Q is a poly-
nomial depending on uðx, tÞ and its various partial
derivatives.

Step 1. By wave transformation

η = x − νt, u x, tð Þ =U ηð Þ: ð8Þ

Here, ν is the speed of traveling wave.
The wave variable permits us to reduce Eq. (8) into a

nonlinear ordinary differential equation (ODE) for U =Uð
ηÞ:

R U ,U ′,U ′′,U ′′′,⋯
� �

= 0, ð9Þ

where R is a polynomial of UðηÞ and its total derivative
with respect to η.
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Step 2. Extend the solutions of Eq. (9) in the following form

U ηð Þ = 〠
m

i=0
αi

G′
G2

 !i

, ð10Þ

where αiði = 0, 1, 2, 3,⋯,mÞ are constants and find to be
later. It is important that αi ≠ 0: Integerm can be determined
by considering the homogenous balance between the gov-
erning nonlinear terms and the highest order derivatives in
Eq. (9).

The function G =GðηÞ satisfies the following Riccati
equation,

G′
G2

 !
′ = λ1

G′
G2

 !2

+ λ0, ð11Þ

where λ0 and λ1 are constants. We gain the below solu-
tions to Eq. (11) due to different conditions of λ0:

When λ0λ1 < 0,

G′
G2

 !
= −

ffiffiffiffiffiffiffiffiffiffiffiffi
λ0λ1j jp
λ1

+
ffiffiffiffiffiffiffiffiffiffiffiffi
λ0λ1j jp
2

C1 sinh
ffiffiffiffiffiffiffiffiffi
λ0λ1

p
η

� �
+ C2 cosh

ffiffiffiffiffiffiffiffiffi
λ0λ1

p
η

� �
C1 cosh

ffiffiffiffiffiffiffiffiffi
λ0λ1

p
η

� �
+ C2 sinh

ffiffiffiffiffiffiffiffiffi
λ0λ1

p
η

� �
2
4

3
5:

ð12Þ

When λ0λ1 > 0,

G′
G2

 !
=

ffiffiffiffiffi
λ0
λ1

s
C1 cos

ffiffiffiffiffiffiffiffiffi
λ0λ1

p
η

� �
+ C2 sin

ffiffiffiffiffiffiffiffiffi
λ0λ1

p
η

� �
C1 sin

ffiffiffiffiffiffiffiffiffi
λ0λ1

p
η

� �
− C2 sin

ffiffiffiffiffiffiffiffiffi
λ0λ1

p
η

� �
2
4

3
5:
ð13Þ

When λ0 = 0 and λ1 ≠ 0,

G′
G2

 !
= −

C1
λ1 C1η + C2ð Þ : ð14Þ

where C1 and C2 are arbitrary constant.

Step 3. By substituting Eq. (10) into Eq. (9) along with Eq.

(11) and tracing all coefficients of eachðG′/G2Þi to zero, then
solving that algebraic equations generated in the term ai,
λ0, λ1, C1, C2 and other parameters.

Step 4. By substituting Eq. (10) of which αi, ν and other
parameters that are found in step 3 into Eq. (8), we get the
solutions of Eq. (7).

3.2. The Modified F − Expansion Method. Here, we will
describe the basic steps of F − expansion method [34].

U ηð Þ = a0 + 〠
m

i=1
aiF

i ηð Þ + 〠
m

i=1
biF

−i ηð Þ, ð15Þ

where a0,ai, and bi are constants to be determined. FðηÞ sat-

isfies the Riccati equation:

F ′ ηð Þ = A + BF ηð Þ + CF2 ηð Þ, ð16Þ

where A,B, and C are constants to be determined. The prime
denotes d/dη. Integer m can be determined by considering
the homogenous balance between the governing nonlinear
terms and the highest order derivatives of UðηÞ in Eq. (9).
Given different values of A, B, and C, the different Riccati
function solution FðηÞ can be obtained from Eq. (16) (see
Table 1).

Step 1. Consider Eqs. (7), (8), and (9).

Step 2. Extend the solution of Eq. (9) in the following form

Step 3. Substituting Eq. (15) along with Eq. (16) into Eq. (9)
and collect coefficients of FiðηÞ to zero yields a system of
algebraic equations for ai and bi:

Step 4. Solve the system of algebraic equations, probably
with the aid of Mathematica. ai and bi can be expressed by
A, B, and C (or the coefficients of Eq. (9)). Substituting these
results into (16), we can obtain the general form of traveling
wave solutions to Eq. (9).

Step 5. Selecting A, B, C, and FðηÞ from Table 1 and
substituting them along with ai and bi into Eq. (15), a series
of soliton-like solutions, trigonmetric function solutions,
and rational solutions to Eq. (7) can be obtained.

The modified F-expansion method is more effective in
obtaining the soliton-like solution, trigonometric function
solutions, exponential solutions, and rational solutions of
the nonlinear partial deferential equations. This method will
yield more rich types solutions of the nonlinear partial def-
erential equations. It shows that the modified F-expansion
method is more powerful in constructing exact solutions of
nonlinear PDEs.

4. Application

Time-fractional Clannish Random Walker’s Parabolic
equation:

Let us assume the transformations:

u x, tð Þ =U ηð Þ, η = x −
c
β

t + 1
Γ βð Þ

� �β

, ð17Þ

where c is constant. By using Eq. (17) into Eq. (1), we get
the following ordinary differential equation.

2 s − cð ÞU + qU2 + 2rU ′ = 0: ð18Þ

In the following subsections, the proposed methods are
applied to extract the required solutions:

4.1. Solutions with the Modified ðG′/G2Þ − Expansion
Method. By applying the homogenous balance technique
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between the terms U ′ and U2 into Eq. (18), we get m = 1:
For m = 1, Eq. (10) reduces into

U ηð Þ = a0 + a1
G′
G2

 !
, ð19Þ

where a0 and a1 are unknown parameters. By using Eq. (19)
along with Eq. (11) into Eq. (18) and summing up all coeffi-
cients of same order of ðG′/G2Þ, we get the set of algebraic

equations involving a0, a1 and other parameters. Solving
the obtained set of algebraic equations with Mathematica,
we reach the following results:

a0 = ± 2ir
ffiffiffiffiffi
λ0

p ffiffiffiffiffi
λ1

p
q

, a1 =
−2rλ1
q

, c = s ± 2ir
ffiffiffiffiffi
λ0

p ffiffiffiffiffi
λ1

p
: ð20Þ

Now we use the Eqs. (19) and (12)–(14) into Eq. (19)
and set the below cases.

ifλ0λ1 < 0, then

u1 x, tð Þ = ± 2ir
ffiffiffiffiffiffiffiffiffi
λ0λ1

p
q

+ 2r
ffiffiffiffiffiffiffiffiffiffiffiffi
λ0λ1j jp
q

1 − λ1
2

C1 sinh
ffiffiffiffiffiffiffiffiffi
λ0λ1

p
η

� �
+ C2 cosh

ffiffiffiffiffiffiffiffiffi
λ0λ1

p
η

� �
C1 cosh

ffiffiffiffiffiffiffiffiffi
λ0λ1

p
η

� �
+ C2 sinh

ffiffiffiffiffiffiffiffiffi
λ0λ1

p
η

� �
2
4

3
5

0
@

1
A:

ð21Þ

If λ0λ1 > 0,then

u2 x, tð Þ = ± 2ir
ffiffiffiffiffiffiffiffiffi
λ0λ1

p
q

−
2rλ1
q

ffiffiffiffiffi
λ0
λ1

s
C1 cos

ffiffiffiffiffiffiffiffiffi
λ0λ1

p
η

� �
+ C2 sin

ffiffiffiffiffiffiffiffiffi
λ0λ1

p
η

� �
C1 sin

ffiffiffiffiffiffiffiffiffi
λ0λ1

p
η

� �
− C2 cos

ffiffiffiffiffiffiffiffiffi
λ0λ1

p
η

� �
2
4

3
5

0
@

1
A,

ð22Þ

If λ0 = 0, λ1 ≠ 0,then

u3 x, tð Þ = 2r
q

C1
C1η + C2

� �
: ð23Þ

4.2. Solutions with the Modified F − Expansion Method. By
applying the homogenous balance technique between the
terms U ′ and U2 into Eq. (18), we get m = 1: For m = 1,
Eq. (15) reduces into:

U ηð Þ = a0 + a1F + b1
F
, ð24Þ

where a0 and a1 are unknown parameters. By using Eq. (24)
along with Eq. (16) into Eq. (18) and summing up all the
coefficients of same order of F, we get the set of algebraic
equations involving a0, a1 and other parameters. Solving
the obtained set of algebraic equations with Mathematica,
we reach the following results.

Table 1: Relations between A, B, C and corresponding FðηÞ in Eq. (16) [34].

A B C F ηð Þ
0 1 -1 1/2 + 1/2 tanh η/2ð Þ
0 -1 1 1/2 − 1/2 coth η/2ð Þ
1/2 0 -1/2 coth ηð Þ ± csch ηð Þ, tanh ηð Þ ± i sech ηð Þ
1 0 -1 tanh ηð Þ, coth ηð Þ
1/2 0 ½ sec ηð Þ + tan ηð Þ, csc ηð Þ − cot ηð Þ
-1/2 0 -1/2 sec ηð Þ − tan ηð Þ, csc ηð Þ + cot ηð Þ
1(-1) 0 1(-1) tan ηð Þ, cot ηð Þ
0 0 ≠ 0 − 1/Cη +mð Þ mis an arbitrary constantð Þ
Arbitrary constant 0 0 Aη

Arbitrary constant ≠ 0 0 exp Bð Þ − Að Þ/B
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Figure 1: 2D and 3D graphics for hyperbolic traveling wave
solution (21)
at fβ = 0:5, r = 1, q = 1, λ0 = 0:5, λ1 = 0:5, C1 = 1, C2 = 0, c = 1g:
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Put Eq. (24) into Eq. (18) along with the solution of Eq.
(16), we get

For A = 0, B = 1, and C = −1:

a0 = −
2r
q
, a1 =

2r
q
, b1 = 0, c = s − r: ð25Þ

Put Eq. (25) into Eq. (24) along with the solution of Eq.
(16), we get

u1 x, tð Þ = −
r
q

1 − tanh η

2
� �� �

: ð26Þ

For A = 0, B = −1, and C = 1.

a0 =
2r
q
, a1 = −

2r
q
, b1 = 0, c = s + r, ð27Þ

u2 x, tð Þ = r
q

1 + coth η

2
� �� �

: ð28Þ

For A = 1/2, B = 0, C = −1/2.
Family-I

a0 = −
r
q
, a1 =

r
q
, b1 = 0, c = s − r, ð29Þ

u3 x, tð Þ = −
r
q

1 − coth ηð Þ + csch ηð Þð Þð Þ: ð30Þ

Family-II

a0 = −
r
q
, a1 = 0, b1 =

r
q
, c = s − r, ð31Þ

u4 x, tð Þ = −
r
q

1 − 1
coth ηð Þ + csch ηð Þð Þ

� �
: ð32Þ

Family-III

a0 =
2r
q
, a1 =

r
q
, b1 =

r
q
, c = 2r + s, ð33Þ

u5 x, tð Þ = 2r
q

2 + coth ηð Þ + csch ηð Þð Þ + 1
coth ηð Þ + csch ηð Þð Þ

� �� �
:

ð34Þ
For A = 1, B = 0, C = −1.
Family-I

a0 = −
2r
q
, a1 =

2r
q
, b1 =

r
q
, c = s − 2r, ð35Þ

u6 x, tð Þ = −
2r
q

1 − tanh ηð Þð Þ: ð36Þ

Family-II

a0 =
2r
q
, a1 = 0, b1 =

2r
q
, c = 2r + s, ð37Þ
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Figure 2: 2D and 3D graphics for hyperbolic traveling wave
solution (26) at fβ = 0:5, r = 1, q = 1, c = 1g.
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Figure 3: 2D and 3D graphics for hyperbolic traveling wave
solution (28) at fβ = 0:5, r = 1, q = 1, c = 1g.
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u7 x, tð Þ = 2r
q

1 + 1
tanh ηð Þ

� �
: ð38Þ

Family-III

a0 =
4r
q
, a1 =

2r
q
, b1 =

2r
q
, c = 4r + s, ð39Þ

u8 x, tð Þ = 2r
q

2 + tanh ηð Þ + 1
tanh ηð Þ

� �� �
: ð40Þ

For A = C = 1/2, B = 0.
Family-I

a0 = −
ir
q
, a1 = −

r
q
, b1 = 0, c = s − ir, ð41Þ

u9 x, tð Þ = −
r tan ηð Þ + sec ηð Þð Þ

q
−
ir
q
, ð42Þ

Family-II

a0 =
ir
q
, a1 = 0, b1 =

ir
q
, c = s + ir, ð43Þ

u10 x, tð Þ = ir
q tan ηð Þ + sec ηð Þð Þ + ir

q
: ð44Þ
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Figure 4: 2D and 3D graphics for hyperbolic traveling wave
solution (30) at fβ = 0:5, r = 1, q = 1, c = 1g.
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Figure 5: 2D and 3D graphics for hyperbolic traveling wave
solution (32) at fβ = 0:5, r = 1, q = 1, c = 1g:
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Figure 6: 2D and 3D graphics for hyperbolic traveling wave
solution (34) at fβ = 0:5, r = 1, q = 1, c = 1g:
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Family-III

a0 = −
2ir
q
, a1 = −

r
q
, b1 =

r
q
, c = s − 2ir, ð45Þ

u11 x, tð Þ = −
r tan ηð Þ + sec ηð Þð Þ − 1/ tan ηð Þ + sec ηð Þð Þð Þð Þ

q
−
2ir
q
:

ð46Þ
For A = C = −1/2, B = 0.
Family-I

a0 =
ir
q
, a1 =

r
q
, b1 = 0, c = s + ir, ð47Þ

u12 x, tð Þ = −
r sec ηð Þ − tan ηð Þð Þ

q
+ ir

q
: ð48Þ

Family-II

a0 =
ir
q
, a1 = 0, b1 = −

r
q
, c = s + ir, ð49Þ

u13 x, tð Þ = −
r

q sec ηð Þ − tan ηð Þð Þ + ir
q
: ð50Þ

Family-III

a0 =
2ir
q
, a1 =

r
q
, b1 = −

r
q
, c = s + 2ir, ð51Þ

u14 x, tð Þ = −
r sec ηð Þ − tan ηð Þð Þ + 1/ sec ηð Þ − tan ηð Þð Þð Þð Þ

q
+ 2ir

q
:

ð52Þ
For A = C = −1, B = 0.
Family-I

a0 = −
2ir
q
, a1 =

2r
q
, b1 = 0, c = s − 2ir, ð53Þ

u15 x, tð Þ = 2r cot ηð Þ
q

−
2ir
q
: ð54Þ

Family-II

a0 =
2ir
q
, a1 = 0, b1 = −

2r
q
, c = s + 2ir, ð55Þ

u16 x, tð Þ = −
2r

q cot ηð Þ + 2ir
q
: ð56Þ

Family-III

a0 =
4ir
q
, a1 =

2r
q
, b1 = −

2r
q
, c = s + 4ir, ð57Þ
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Figure 7: 2D and 3D graphics for trigonometric traveling wave
solution (22) at fβ = 0:5, r = 1, q = 1, λ0 = 0:5, λ1 = 0:5, C1 = 0, C2
= 1, c = 1g:
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Figure 8: 2D and 3D graphics for trigonometric traveling wave
solution (42) at fβ = 0:5, r = 1, q = 1, c = 1g:
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u17 x, tð Þ = 2r cot ηð Þ − 1/cot ηð Þð Þð Þ
q

+ 4ir
q
: ð58Þ

For A = 0, B = 0.

a0 = 0, a1 = −
2Cr
q

, b1 = 0, c = s, ð59Þ

u18 x, tð Þ = 2Cr
q Cη + εð Þ : ð60Þ

For B = 0, C = 0.

a0 = 0, a1 = 0, b1 =
2Ar
q

, c = s, ð61Þ

u19 x, tð Þ = 2Ar
q Aηð Þ : ð62Þ

For C = 0.

a0 =
2Br
q

, a1 = 0, b1 =
2Ar
q

, c = Br + s, ð63Þ

u20 x, tð Þ = 2Ar
q exp Bηð Þ − Að Þ/B + 2Br

q
: ð64Þ

5. Results and Discussion

In this section, we discuss the graphical interpretation of
obtained results. Two powerful analytical methods, namely,
modified ðG′/G2Þ − expansion method and modified F −
expansion method, are used to extract the trigonometric,
hyperbolic, and rational wave solutions of the governing
model. The physical significance of these solutions is shown
by assigning particular values of free parameters. The solu-
tions to Eqs. (22), (42), (44), (46), (48), (50), (52), (54),
(56), and (58) present as trigonometric function solutions;
the solutions of (21), (26), (28), (30), (32), (34), (36), (38),
and (40) present as hyperbolic function solutions; and the
solutions of (23), (60), (62), and (64) present as rational
function solutions. We explain the dynamic performance
of the hyperbolic function answers of Eqs. (21), (26), (28),
(30), (32), and (34) which are illustrated in Figures 1–6. In
particular, Figures 1–6 demonstrate the 3D shape and 2D
graph for different values of the fractional parameter β for
the trigonometric function answers of Eqs. (21), (26), (28),
(30), (32), and (34). Finally, we explain the dynamic perfor-
mance of the trigonometric function answers of Eqs. (22)
and (34) in Figures 7 and 8, which depict the 3D shape
and 2D graph for different values of the fractional parameter
β for the trigonometric function answers of Eqs. (22) and
(34). The implemented mathematical simulations acknowl-
edge that the answers are of periodic wave shapes and of
rational, hyperbolic, and trigonometric categorizations. Fur-
thermore, through observing the construction of the
acquired solutions, it could be understood that the parame-
ter β of fractional derivatives has important role in the for-
mulation of all the solutions.

6. Conclusions

In this work, we applied the modified ðG′/G2Þ-expansion
method and modified F − expansion method in a satisfac-
tory way to find the novel exact traveling wave solutions of
the time-fractional CRWP equation in the sense of beta-
derivative. Various obtained solutions are in the form of
hyperbolic, trigonometric, and rational forms. To describe
the physical phenomena of the time-fractional CRWP
model, some solutions are plotted in the form of 2D and
3D by assigning the specific value to the parameters under
the constrain conditions. All algebraic computations and
graphical representations in this work have been provided
for the obtained solutions at various parameters values with
the help of Mathematica. It is essential to note that these new
solutions of the time-fractional CRWP equation have not
been exposed in literature by employed our two analytical
modified mathematical methods. Lastly, the studied
methods can be potentially applied to solve various nonlin-
ear PDEs that are apparent in many important nonlinear
scientific phenomena in physics and engineering.
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