Research Article

The Construction and Approximation of ReLU Neural Network Operators

Hengjie Chen,1 Dansheng Yu,2 and Zhong Li1,3

1Department of Mathematical Sciences, School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
2School of Mathematics, Hangzhou Normal University, Hangzhou 310036, China
3School of Information Engineering, Huzhou University, Huzhou 313000, China

Correspondence should be addressed to Zhong Li; lizhong@zstu.edu.cn

Received 10 August 2022; Accepted 14 September 2022; Published 28 September 2022

Academic Editor: Yoshihiro Sawano

Copyright © 2022 Hengjie Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the present paper, we construct a new type of two-hidden-layer feedforward neural network operators with ReLU activation function. We estimate the rate of approximation by the new operators by using the modulus of continuity of the target function. Furthermore, we analyze features such as parameter sharing and local connectivity in this kind of network structure.

1. Introduction

Artificial neural network is a fundamental method in machine learning, which has been applied in many fields such as pattern recognition, automatic control, signal processing, auxiliary decision-making, and artificial intelligence. In particular, the successful applications of deep (multilayer) neural networks in image recognition, natural language processing, computer vision, etc. developed in recent years have made neural networks attract great attention. In fact, ever the function of XOR gate was implemented by adding one layer from the simplest perceptron, which led to the single-hidden-layer feedforward neural network.

A single-hidden-layer feedforward neural network has the expression form

\[ N(x) = \sum_{i=1}^{n_1} c_i \phi(\omega_i \cdot x + \theta_i), \quad (1) \]

where \( c_i, \theta_i (i = 1, 2, \cdots, n) \) are called as output weights and thresholds, the dimension of input weights \( \omega_i (i = 1, 2, \cdots, n) \) corresponds to that of the input \( x, \phi \), is called the activation function of this network, and \( n_1 \) is the number of neurons in the hidden layer. If \( x \in \mathbb{R}^d, A_1 = [\omega_1, \omega_2, \cdots, \omega_{n_1}]^T \) (T denotes the transpose) is the input weight matrix of size \( n_1 \times d, \Theta_1 = [\theta_1, \theta_2, \cdots, \theta_{n_1}]^T \) and \( C_1 = [c_1, c_2, \cdots, c_{n_1}]^T \) are vectors of thresholds and output weights, respectively, then (1) can be written as

\[ N(x) = C_1^T \phi(A_1 x + \Theta_1), \quad (2) \]

where \( \phi(A_1 x + \Theta_1) \) means that \( \phi \) acts on each component of \( A_1 x + \Theta_1 \). Now, the architecture of the neural network with two hidden layers is really not difficult to understand. If the second hidden layer contains \( n_2 \) neurons, the input weight matrix \( A_2 \) is the size of \( n_2 \times n_1 \), the vector of thresholds is \( \Theta_2 \), and the output weight vector is \( O \), then, the two-hidden-layer feedforward neural network can be mathematically expressed as

\[ \tilde{N}(x) = O^T \phi(A_2 \phi(A_1 x + \Theta_1) + \Theta_2), \quad (3) \]

We call \( w = \max \{n_1, n_2\} \) as the width of the network \( \tilde{N}(x) \), and its depth is naturally 2.

The theoretical research and applications of the single-hidden-layer neural network model had been greatly developed in the 80’s and 90’s of last century; particularly, there were also some research results on the neural networks with multihidden layers at that time. So, in [1], Pinkus pointed

...
out that “Nonetheless there seems to be reasonable to conjecture that the two-hidden-layer model may be significantly more promising than the single layer model, at least from a purely approximation-theoretical point of view. This problem certainly warrants further study.” However, whether it is a single-hidden-layer or multihidden-layer neural network, three fundamental issues are always involved: density, complexity, and algorithms.

The so-called density or universal approximation of a neural network structure means that for any given error accuracy and the target function in a function space with some metrics, there is a specific neural network model (except for the input x, other parameters are determined) such that the error between the output and target is less than the preaccuracy. In the 1980s and 1990s, the research on the density of feedforward neural network has achieved many satisfactory results [2–9]. Since the single-hidden-layer neural network is an extreme case of the multilayer neural networks, the current focus of neural network research is still on complexity and algorithms. So-called the complexity of a neural network means that to guarantee a prescribed degree of approximation, a neural network model requires the numbers of structural parameters, including the number of layers (or depth), the number of neuron in each layer (sometimes use width), and the number of link weights and the number of thresholds. In particular, it is of interest to have more equal weights and thresholds, which is called as the parameter sharing, as this reduces computational complexity. The representation ability that has attracted much attention in deep neural networks is actually the study of complexity problem, which needs to be investigated extensively and urgently.

The constructive method is an important approach to the study of complexity, which is applicable to single- and multiple-hidden-layer neural network. In fact, there are two cases here: one is that the depth, width, and approximation degree are given, while the weights and thresholds are uncertain; the other is that all these are given; that is, the two cases here: one is that the depth, width, and approximation degree are given, while the weights and thresholds are uncertain; the other is that all these are given; that is, the numbers of structural parameters, including the number of layers (or depth), the number of neuron in each layer (sometimes use width), and the number of link weights and the number of thresholds. In particular, it is of interest to have more equal weights and thresholds, which is called as the parameter sharing, as this reduces computational complexity. The representation ability that has attracted much attention in deep neural networks is actually the study of complexity problem, which needs to be investigated extensively and urgently.

2. Construction of ReLU Neural Network Operators and Its Approximation Properties

Let \( r : \mathbb{R} \rightarrow \mathbb{R} \) denote the rectified linear unit (ReLU), i.e., \( r(x) = \max\{0, x\} \). For any \((x_1, x_2) \in \mathbb{R} \times \mathbb{R} = \mathbb{R}^2\), we define

\[
\sigma(x_1, x_2) = \frac{3}{4} r \left( 1 - \frac{1}{2} |x_1 + x_2| - \frac{1}{2} |x_1 - x_2| \right).
\]

(4)

Obviously, \( \sigma \) is a continuous function of two variables supported on \([-1, 1]^2\). By using the fact that \(|x| = r(x) + r(-x)\), \( \sigma \) can be rewritten as follows:

\[
\sigma(x_1, x_2) = \frac{3}{4} r \left( 1 - \frac{1}{2} [r(x_1 + x_2) + r(x_1 - x_2)] + r(-x_1 - x_2) + r(-x_1 + x_2) \right).
\]

(5)

From the above representation, we see that \( \sigma(x_1, x_2) \) can be explained as the output of a two-hidden-layer feedforward neural network. It is obvious that \( \sigma \) possesses the following some important properties:

(A1) \( \sigma(-x_1, x_2) = \sigma(x_1, x_2) \), \( \sigma(x_1, -x_2) = \sigma(x_1, x_2) \)

(A2) For any given \( x_1 \in \mathbb{R}, \sigma(x_1, x_2) \), it is nondecreasing for \( x_2 \leq 0 \) and nonincreasing for \( x_2 \geq 0 \). Simultaneously, for any given \( x_2 \in \mathbb{R}, \sigma(x_1, x_2) \) is nondecreasing for \( x_1 \leq 0 \) and nonincreasing for \( x_1 \geq 0 \)

(A3) \( 0 \leq \sigma(x_1, x_2) \leq 3/4 \)

(A4) \( \int_{-1}^{1} \int_{-1}^{1} \sigma(x_1, x_2) dx_1 dx_2 = 1 \)

For any continuous function \( f(x_1, x_2) \) on \([-1, 1]^2\), we define the following neural network operator:

\[
\mathcal{N}_n(f : x_1, x_2) = \frac{1}{n} \sum_{k_1 = [-n^{-1/4}], k_2 = [-n^{-1/4}]}^{[n^{1/4}], [n^{1/4}]} f \left( \frac{k_1}{n + \sqrt{n}}, \frac{k_2}{n + \sqrt{n}} \right) \cdot \sigma \left( \frac{n x_1 - k_1}{\sqrt{n}}, \frac{n x_2 - k_2}{\sqrt{n}} \right).
\]

(6)

where \( |x| \) is the largest integer not greater than \( x \), and \( \lfloor x \rfloor \) denotes the smallest integer not less than \( x \).

We prove that the rate of approximation by \( \mathcal{N}_n(f) \) can be estimated by using the modulus of smoothness of the target function. In fact, we have

**Theorem 1.** Let \( f(x_1, x_2) \) is a continuous function defined on \([-1, 1]^2\). Then,

\[
|\mathcal{N}_n(f : x_1, x_2) - f(x_1, x_2)| \leq \frac{3}{4} r \left( 2 + \frac{1}{\sqrt{n}} \right)^2 \omega \left( f; \frac{1}{\sqrt{n}} \right) + \frac{2M}{\sqrt{n}} \left( II + \frac{3}{2\sqrt{n}} \right), (x_1, x_2) \in [-1, 1]^2,
\]

(7)
where $M_f = \max_{(x_1, x_2) \in [-1, 1]^2} |f(x_1, x_2)|$ and $\omega(f; (1/\sqrt{n}))$ are the modulus of continuity of $f$ defined by

$$\omega(f; \delta) = \sup_{|x_i - x'_i| \leq \delta} \left| f(x_1, x_2) - f(x'_1, x'_2) \right|.$$  

(8)

Remark 2. For $0 < \alpha < 1$, we define the following neural network operators:

$$\mathcal{N}_n(f; x_1, x_2) = \frac{1}{n^{\alpha}} \sum_{[-n^{-\alpha}]} \sum_{[-n^{-\alpha}]} f\left( \frac{k_1}{n + n^\alpha}, \frac{k_2}{n + n^\alpha} \right) \cdot \alpha\left( \frac{nx_1 - k_1}{n^\alpha}, \frac{nx_2 - k_2}{n^\alpha} \right), (x_1, x_2) \in [-1, 1]^2.$$  

(9)

Using a similar process of the proof in Theorem 1, we can get

$$\left| \mathcal{N}_n(f; x_1, x_2) - f(x_1, x_2) \right| \leq \frac{3}{2} \left( 2 + \frac{1}{n^\alpha} \right)^2 \omega(f; \frac{1}{n^{1-\alpha}}) + \frac{2M_f}{n^\alpha} \left( 11 + \frac{3}{2n^\alpha} \right), (x_1, x_2) \in [-1, 1]^2.$$  

(10)

Remark 3. Let $\beta (0 < \beta \leq 1)$ be a fixed number, if there is a constant $L > 0$ such that

$$|f(x_1, x_2) - f(x'_1, x'_2)| \leq L \left( \sqrt{(x_1 - x'_1)^2 + (x_2 - x'_2)^2} \right)^\beta,$$  

(11)

for any $(x_1, x_2), (x'_1, x'_2) \in [-1, 1]^2$, we say that $f$ is a Lipschitz function of order $\beta$ and write $f \in \text{Lip}_\beta$. Obviously, when $f \in \text{Lip}_1^\beta$, we have $\omega(f; \delta) \leq \sqrt{2L} \delta$. Consequently, it follows from (7) that

$$\left| \mathcal{N}_n(f; x_1, x_2) - f(x_1, x_2) \right| \leq \frac{3}{2} \left( 2 + \frac{1}{n^\alpha} \right)^2 \frac{\sqrt{2L}}{n^{1-\alpha}\beta} + \frac{2M_f}{n^\alpha} \left( 11 + \frac{3}{2n^\alpha} \right), (x_1, x_2) \in [-1, 1]^2.$$  

(12)

Remark 4. Now, we describe the structure of $\mathcal{N}_n(f)$ by using the form (3).

The input matrix of the first hidden layer is

$$A_1 = \left[ \begin{array}{cccccccc} \sqrt{n} & -\sqrt{n} & -\sqrt{n} & \sqrt{n} & \sqrt{n} & \sqrt{n} & \sqrt{n} & \sqrt{n} \\ -\sqrt{n} & -\sqrt{n} & -\sqrt{n} & \sqrt{n} & \sqrt{n} & -\sqrt{n} & -\sqrt{n} & -\sqrt{n} \\ \end{array} \right]^T,$$  

(13)

and its size is $4([n + \sqrt{n}] - [n - \sqrt{n}])^2 \times 2$. The bias vector of the first hidden layer is

$$\Theta_1 = \left[ \begin{array}{cccccccc} -\frac{2[n + \sqrt{n}]}{\sqrt{n}} & \frac{2[n + \sqrt{n}]}{\sqrt{n}} & 0 & 0 & \cdots \\ -\frac{k_1 + k_2}{\sqrt{n}} & \frac{k_1 + k_2}{\sqrt{n}} & \frac{k_1 - k_2}{\sqrt{n}} & \frac{k_2 - k_1}{\sqrt{n}} & \cdots \end{array} \right]^T,$$  

(14)

and the dimension is $4([n + \sqrt{n}] - [n - \sqrt{n}])^2$. The input matrix of the second hidden layer is

$$A_2 = \left[ \begin{array}{cccccccc} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ \cdots & \cdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} \right],$$  

(15)

and its size is $([n + \sqrt{n}] - [n - \sqrt{n}])^2 \times 4 ([n + \sqrt{n}] - [n - \sqrt{n}])^2$. $\Theta_2$ is a constant 1 vector with dimension $([n + \sqrt{n}] - [n - \sqrt{n}])^2$. The output weight vector is

$$O = \left[ \begin{array}{cccccccc} f\left( \frac{[n + \sqrt{n}]}{n + \sqrt{n}}, \frac{n + \sqrt{n}}{n + \sqrt{n}} \right) & \cdots & f\left( \frac{[n - \sqrt{n}]}{n - \sqrt{n}}, \frac{n - \sqrt{n}}{n - \sqrt{n}} \right) \end{array} \right]^T.$$  

(16)

Its general term and dimension are $f((k_1/n + \sqrt{n}), (k_2/n + \sqrt{n}))$ and $([n + \sqrt{n}] - [n - \sqrt{n}])^2$, respectively.

We can see that there are two different numbers in weight matrices $A_1$ and $A_2$, respectively. That is, neural network operators $\mathcal{N}_n(f)$ have a strong weight sharing feature. There are some results about the constructions of this kind of neural networks [14, 27-29]. Moreover, $A_2$ shows that this neural network is locally connected. Finally, the simplicity of bias vector $\Theta_2$ also greatly reduces the complexity of the neural network.

3. Proof of the Main Result

To prove Theorem 1, we need the following auxiliary lemma.
Lemma 5. For function $\sigma(x_1, x_2)$, we have

$$
\int_{-n-\sqrt{n}}^{x_1} \int_{-n-\sqrt{n}}^{x_2} \sigma\left(\frac{nx_1 - t_1}{\sqrt{n}}, \frac{nx_2 - t_2}{\sqrt{n}}\right) dt_1 dt_2
\leq \sum_{k_i = -n-\sqrt{n}}^{k_i+1} \int_{-n-\sqrt{n}}^{x_1} \int_{-n-\sqrt{n}}^{x_2} \sigma\left(\frac{nx_1 - k_i}{\sqrt{n}}, \frac{nx_2 - k_i}{\sqrt{n}}\right) dt_1 dt_2,
$$

for $k_i = [nx_1] - 1$ and $i = 1, 2$.

Proof. We only prove (1), and (2), (3), and (4) can be proved similarly.

(1) When $k_i - 1 < k_i < k_i + 1 \leq [nx_i] - 1 (i = 1, 2)$, we have

$$
nx_i - (k_i - 1) > nx_i - k_i > nx_i - (k_i + 1).\quad (18)
$$

Considering the monotonicity of $\sigma(x_1, x_2)$, we have

$$
\sigma\left(\frac{nx_1 - k_i}{\sqrt{n}}, \frac{nx_2 - k_i}{\sqrt{n}}\right) \leq \int_{k_i}^{k_i+1} \sigma\left(\frac{nx_1 - t_1}{\sqrt{n}}, \frac{nx_2 - t_2}{\sqrt{n}}\right) dt_1,
$$

(19)

Combining (19) and (20) leads to

$$
\sigma\left(\frac{nx_1 - k_i}{\sqrt{n}}, \frac{nx_2 - k_i}{\sqrt{n}}\right) \leq \int_{k_i}^{k_i+1} \sigma\left(\frac{nx_1 - t_1}{\sqrt{n}}, \frac{nx_2 - t_2}{\sqrt{n}}\right) dt_1 dt_2.
$$

(21)

Similarly, we have

$$
\sigma\left(\frac{nx_1 - k_i}{\sqrt{n}}, \frac{nx_2 - k_i}{\sqrt{n}}\right) \geq \int_{k_i}^{k_i+1} \sigma\left(\frac{nx_1 - t_1}{\sqrt{n}}, \frac{nx_2 - t_2}{\sqrt{n}}\right) dt_1 dt_2.
$$

(22)

By (21), (22), and summation from $[n-\sqrt{n}]$ to $[nx_i] - 1(i = 1, 2)$, we obtain (1) of Lemma 5.

(2) When $k_2 + 1 > k_2 > k_2 - 1 \geq [nx_2] + 1$, we have

$$
nx_2 - (k_2 + 1) < nx_2 - k_2 < nx_2 - (k_2 - 1) \leq 1.\quad (23)
$$

From (18), (23), and in a similar way to the proof in proving (1), we get

$$
\int_{k_2}^{k_2+1} \int_{k_2}^{k_2+1} \sigma\left(\frac{nx_1 - t_1}{\sqrt{n}}, \frac{nx_2 - t_2}{\sqrt{n}}\right) dt_1 dt_2 \leq \int_{k_2}^{k_2+1} \int_{k_2}^{k_2+1} \sigma\left(\frac{nx_1 - k_2}{\sqrt{n}}, \frac{nx_2 - k_2}{\sqrt{n}}\right) dt_1 dt_2.
$$

(24)

By summation for $[n\sqrt{n}] 

\sigma\left(\frac{nx_1 - k_2}{\sqrt{n}}, \frac{nx_2 - k_2}{\sqrt{n}}\right) \leq \int_{k_2}^{k_2+1} \sigma\left(\frac{nx_1 - t_1}{\sqrt{n}}, \frac{nx_2 - t_2}{\sqrt{n}}\right) dt_1 dt_2.
$$

(25)

Proof of Theorem 6. Let

$$
M_f = \max_{(x_1, x_2) \in [0, 1]^2} |f(x_1, x_2)|.
$$

Then,

$$
\left|\mathcal{A}_n(f; x_1, x_2) - f(x_1, x_2)\right| \leq \frac{1}{n} \sum_{[n-\sqrt{n}]}^{[n+\sqrt{n}]} \sum_{[n-\sqrt{n}]}^{[n+\sqrt{n}]} \int_{k_1}^{k_1+1} \sigma\left(\frac{nx_1 - k_1}{\sqrt{n}}, \frac{nx_2 - k_2}{\sqrt{n}}\right) dt_1 dt_2.
$$

(26)

We further estimate $|\mathcal{A}_n(f; x_1, x_2) - f(x_1, x_2)|$ by estimating $I_1$ and $I_2$, respectively.
Set

\[
\sum_{[-\sqrt{n}]}^{[n+\sqrt{n}]} \sum_{[-\sqrt{n}]}^{[n+\sqrt{n}]} + \sum_{[-\sqrt{n}]}^{[n+\sqrt{n}]} \sum_{[-\sqrt{n}]}^{[n+\sqrt{n}]} + \sum_{[-\sqrt{n}]}^{[n+\sqrt{n}]} \sum_{[-\sqrt{n}]}^{[n+\sqrt{n}]} + \sum_{[-\sqrt{n}]}^{[n+\sqrt{n}]} \sum_{[-\sqrt{n}]}^{[n+\sqrt{n}]} = \sum^1 + \sum^2 + \sum^3 + \sum^4.
\]

(27)

Since in \(\sum^2 + \sum^3 + \sum^4\), at least one of inequalities \(|x_1 - k_1/n| \geq 1/\sqrt{n}\) and \(|x_2 - k_2/n| \geq 1/\sqrt{n}\) holds, so, either

\[
\left| \left( x_1 - \frac{k_1}{n} \right) + \left( x_2 - \frac{k_2}{n} \right) \right| + \left| \left( x_1 - \frac{k_1}{n} \right) + \left( x_2 - \frac{k_2}{n} \right) \right| \geq 2 \left| x_1 - \frac{k_1}{n} \right|
\]

(28)

or

\[
\left| \left( x_1 - \frac{k_1}{n} \right) + \left( x_2 - \frac{k_2}{n} \right) \right| + \left| \left( x_1 - \frac{k_1}{n} \right) + \left( x_2 - \frac{k_2}{n} \right) \right| \geq 2 \left| x_2 - \frac{k_1}{n} \right|
\]

(29)

is valid. Therefore,

\[
1 - \frac{1}{2} \left[ \frac{n x_1 - k_1}{\sqrt{n}} + \frac{n x_2 - k_2}{\sqrt{n}} \right] + \left[ \frac{n x_1 - k_1}{\sqrt{n}} - \frac{n x_2 - k_2}{\sqrt{n}} \right] \leq 0,
\]

(30)

which implies that

\[
\left( \sum^2 + \sum^3 + \sum^4 \right) f \left( \frac{k_1}{n + \sqrt{n}}, \frac{k_2}{n + \sqrt{n}} \right) - f(x_1, x_2) \sigma \left( \frac{n x_1 - k_1}{\sqrt{n}}, \frac{n x_2 - k_2}{\sqrt{n}} \right) = 0.
\]

(31)

For \(\sum^1\), by the facts that \(|x_1 - k_1/n| < 1/\sqrt{n}\), \(|x_2 - k_2/n| < 1/\sqrt{n}\), for \((x_1, x_2) \in [-1, 1]^2\), we obtain that

\[
-\sqrt{n} < k_i - nx < \sqrt{n}, i = 1, 2; \quad \left| k_i \frac{n}{n + \sqrt{n}} - x_i \right| \leq \frac{|nx_i - k_i| + \sqrt{n}}{n + \sqrt{n}} \leq \frac{2}{\sqrt{n}}, i = 1, 2.
\]

(32)

Hence,

\[
\frac{1}{n} \left( \sum^1 \right) f \left( \frac{k_1}{n + \sqrt{n}}, \frac{k_2}{n + \sqrt{n}} \right) - f(x_1, x_2) \sigma \left( \frac{n x_1 - k_1}{\sqrt{n}}, \frac{n x_2 - k_2}{\sqrt{n}} \right) \leq \omega \left( f \left( \frac{2}{\sqrt{n}} \right) \right) \leq \frac{3}{2} \left( 2 + \frac{1}{\sqrt{n}} \right)^2 \omega \left( f \left( \frac{1}{\sqrt{n}} \right) \right).
\]

(33)

where we have used the inequality \(0 \leq \sigma \leq 3/4\), and the fact that the number of the terms in \(\sum^1\) is no more than \((2\sqrt{n} + 1)^2\). From (27)-(33), it follows that

\[
I_1 \leq \frac{3}{2} \left( 2 + \frac{1}{\sqrt{n}} \right)^2 \omega \left( f \left( \frac{1}{\sqrt{n}} \right) \right). \tag{34}
\]

Set

\[
D = \sum_{[\sqrt{n}]}^{[n+\sqrt{n}]} \sum_{[-\sqrt{n}]}^{[n+\sqrt{n}]} + \sum_{[-\sqrt{n}]}^{[n+\sqrt{n}]} \sum_{[-\sqrt{n}]}^{[n+\sqrt{n}]} + \sum_{[-\sqrt{n}]}^{[n+\sqrt{n}]} \sum_{[-\sqrt{n}]}^{[n+\sqrt{n}]} + \sum_{[-\sqrt{n}]}^{[n+\sqrt{n}]} \sum_{[-\sqrt{n}]}^{[n+\sqrt{n}]}.
\]

(35)

Then,

\[
I_2 \leq \left| D \left( \frac{1}{n} \sigma \left( \frac{n x_1 - k_1}{\sqrt{n}}, \frac{n x_2 - k_2}{\sqrt{n}} \right) \right) - 1 \right|
\]

(36)

and

\[
\sum_{[-n-\sqrt{n}]}^{[n+\sqrt{n}]} \sum_{[-\sqrt{n}]}^{[n+\sqrt{n}]} \sum_{[-\sqrt{n}]}^{[n+\sqrt{n}]} \sum_{[-\sqrt{n}]}^{[n+\sqrt{n}]} \sum_{[-\sqrt{n}]}^{[n+\sqrt{n}]} = I_{21} + I_{22} + I_{23} + I_{24} + I_{25}.
\]

Firstly, we have

\[
I_{22} = \frac{1}{n} \sum_{[n-\sqrt{n}]}^{[n+\sqrt{n}]} \sigma \left( \frac{n x_1 - k_1}{\sqrt{n}}, \frac{n x_2 - k_2}{\sqrt{n}} \right)
\]

(37)

Noting that \(|x_2 - k_2/n| \geq 1/\sqrt{n}\), we get \(\Delta_1 = 0\) by the similar arguments for estimating \(\sum^2 + \sum^3 + \sum^4\) in (27). Therefore,

\[
\Delta_2 = \frac{1}{n} \sum_{[x_2-k_2/n]}^{[x_2-k_2/n]} \sigma \left( \frac{n x_1 - k_1}{\sqrt{n}}, \frac{n x_2 - k_2}{\sqrt{n}} \right)
\]

(38)
Consequently,

\[ I_{22} \leq \frac{3}{2\sqrt{n}} \left(1 + \frac{1}{2\sqrt{n}}\right). \quad (39) \]

Similarly, we have

\[ I_{2i} \leq \frac{3}{2\sqrt{n}} \left(1 + \frac{1}{2\sqrt{n}}\right), \quad i = 3, 4, 5. \quad (40) \]

Thus, we already have

\[ I_{22} + I_{23} + I_{24} + I_{25} \leq \frac{6}{\sqrt{n}} \left(1 + \frac{1}{2\sqrt{n}}\right). \quad (41) \]

Now, let us estimate \( I_{21} \). By

\[
\frac{1}{n} \sum_{n_k=1}^{n} \int_{-n\sqrt{n}}^{0} \int_{-n\sqrt{n}}^{0} \sigma \left( \frac{n_{x_1} - t_1}{\sqrt{n}}, \frac{n_{x_2} - t_2}{\sqrt{n}} \right) dt_1 dt_2
\]

we deduce that

\[
\left| \int_{n_{x_1}=1}^{n_{x_1}=n} \int_{n_{x_2}=1}^{n_{x_2}=n} \sigma(t_1, t_2) dt_1 dt_2 \right| \leq \frac{4}{\sqrt{n}},
\]

where we used the fact that the support of \( \sigma(t_1, t_2) \) is \([-1, 1]^2\).

Similarly, by

\[
\frac{1}{n} \sum_{n_k=1}^{n} \int_{-n\sqrt{n}}^{0} \int_{-n\sqrt{n}}^{0} \sigma \left( \frac{n_{x_1} - t_1}{\sqrt{n}}, \frac{n_{x_2} - t_2}{\sqrt{n}} \right) dt_1 dt_2
\]

we have

\[
\left| \int_{n_{x_1}=1}^{n_{x_1}=n} \int_{n_{x_2}=1}^{n_{x_2}=n} \sigma(t_1, t_2) dt_1 dt_2 \right| \leq \frac{4}{\sqrt{n}},
\]

By (1) of Lemma 5, (43), and (45), we have

\[
\left| \int \int \sigma(t_1, t_2) dt_1 dt_2 \right| \leq \frac{4}{\sqrt{n}},
\]

By (2)-(4) of Lemma 5, and the arguments similar to (43) and (45), we obtain that

\[
\left| \int \int \sigma(t_1, t_2) dt_1 dt_2 \right| \leq \frac{4}{\sqrt{n}},
\]

By (46)-(49) and the identity \( \int_{-1}^{1} \int_{-1}^{1} \sigma(t_1, t_2) dt_1 dt_2 = 1 \), we have

\[
I_{21} = \left| D \left( \frac{1}{n} \sigma \left( \frac{n_{x_1} - k_1}{\sqrt{n}}, \frac{n_{x_2} - k_2}{\sqrt{n}} \right) \right) \right| - 1 \leq \frac{16}{\sqrt{n}}.
\]

It follows from (26), (34)-(41), and (50) that

\[
|W_n(f; x_1, x_2) - f(x_1, x_2)|
\]

\[
\leq \left( 2 + \frac{1}{\sqrt{n}} \right)^2 \omega(f; \frac{1}{\sqrt{n}})
+ \frac{2M}{\sqrt{n}} \left( \frac{11 + \frac{3}{2\sqrt{n}}}{\sqrt{n}} \right), \quad (x_1, x_2) \in [-1, 1]^2,
\]

which completes the proof of Theorem 6.
4. Numerical Experiments and Some Discussions

In this section, we give some numerical experiments to illustrate the theoretical results. We take $f(x_1, x_2) = x_1^2 + x_2^2$, $(x_1, x_2) \in [-1, 1]^2$ as the target function.

Set

$$e_n(x_1, x_2) = N_n(f; x_1, x_2) - f(x_1, x_2), (x_1, x_2) \in [-1, 1]^2.$$ (52)

Figures 1–3 show the results of $e_{100}(x_1, x_2), e_{1000}(x_1, x_2)$ and $e_{10000}(x_1, x_2)$, respectively. When $n$ equals to $10^6$, the amount of calculation of $N_n(f; x_1, x_2)$ is large. Therefore, we choose 6 specific points and the corresponding values of $e_n(x_1, x_2)$, which are shown in Table 1.

From the results of experiments we see that as the parameter $n$ of neural network operators increases, the approximation effect increases; we only need to notice $M_f = 2, \omega(f; (1/\sqrt{n})) = 4/\sqrt{n}$, and after the simple calculation, we can demonstrate the validity of the obtained result.

If we investigate network operators (6) carefully, we cannot help but ask why we use $f((k_1/n + \sqrt{n}), (k_2/n + \sqrt{n}))$
Figure 3: Errors of approximation of network operators (6) with $n = 10000$.

Table 1: The error values of $e_n(x_1, x_2)$ for 6 specific points with $n = 1000000$.

<table>
<thead>
<tr>
<th>$(x_1, x_2)$</th>
<th>$(0, -1)$</th>
<th>$(-1, 1)$</th>
<th>$(0.5, 0.5)$</th>
<th>$(0, 0)$</th>
<th>$(0.5, -0.6)$</th>
<th>$(0.25, 0.8)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e_n(x_1, x_2)$</td>
<td>0.0020</td>
<td>0.0040</td>
<td>-9.982e-04</td>
<td>3.992e-07</td>
<td>0.0012</td>
<td>-0.0014</td>
</tr>
</tbody>
</table>

Figure 4: Errors of approximation of network operators (53) with $n = 1000$.

Table 2: The error values of $\tilde{e}_n(x_1, x_2)$ and $e_n(x_1, x_2)$ for 6 specific points with $n = 10000$.

<table>
<thead>
<tr>
<th>$(x_1, x_2)$</th>
<th>$(0, -1)$</th>
<th>$(-1, 1)$</th>
<th>$(0.5, 0.5)$</th>
<th>$(0, 0)$</th>
<th>$(0.5, -0.6)$</th>
<th>$(0.25, 0.8)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e_n(x_1, x_2)$</td>
<td>-0.5000</td>
<td>-1.4862</td>
<td>2.749e-05</td>
<td>3.999e-05</td>
<td>2.47e-05</td>
<td>2.24e-05</td>
</tr>
<tr>
<td>$e_n(x_1, x_2)$</td>
<td>-0.0197</td>
<td>-0.0394</td>
<td>-0.0098</td>
<td>3.921e-05</td>
<td>-0.0120</td>
<td>-0.0138</td>
</tr>
</tbody>
</table>
instead of \( f((k_1/n), (k_2/n)) \) in (6). Because \((k_1/n), (k_2/n)\) are the conventional grid points on \([-1, 1]^2\), this will reduce the amount of calculation. Now, we might as well introduce the following network operators:

\[
\hat{N}_n(f; x_1, x_2) = \frac{1}{n} \sum_{k=-n}^{n} \sum_{k=-n}^{n} f\left(\frac{k_1}{n}, \frac{k_2}{n}\right) \sigma\left(\frac{nx_1 - k_1}{\sqrt{n}}, \frac{nx_2 - k_2}{\sqrt{n}}\right).
\]

(53)

Then, from the proof of Theorem 6, we have

\[
\begin{align*}
\left|\hat{N}_n(f; x_1, x_2) - f(x_1, x_2)\right| &\leq \frac{1}{n} \sum_{k=-n}^{n} \sum_{k=-n}^{n} f\left(\frac{k_1}{n}, \frac{k_2}{n}\right) - f(x_1, x_2) \left|\sigma\left(\frac{nx_1 - k_1}{\sqrt{n}}, \frac{nx_2 - k_2}{\sqrt{n}}\right)\right| \\
&\leq M_f \left(1 + \frac{1}{n} \sum_{k=-n}^{n} \sigma\left(\frac{nx_1 - k_1}{\sqrt{n}}, \frac{nx_2 - k_2}{\sqrt{n}}\right) - 1\right) \\
&= I' + M_f I'_2.
\end{align*}
\]

(54)

It is not difficult to obtain the same estimate of \( I'_2 \) as \( I_1 \), but it is not inconvenient to estimate \( I'_2 \). In fact, if we set

\[
\hat{c}_n(x_1, x_2) = \hat{N}_n(f; x_1, x_2) - f(x_1, x_2), \quad (x_1, x_2) \in [-1, 1]^2.
\]

(55)

Figure 4 shows the \( \hat{c}_n(x_1, x_2) \) with \( n = 1000 \). We can see that next to the border of \([-1, 1]^2\) the effect of \( \hat{N}_n(f; x_1, x_2) \) approximating \( f \) is not satisfactory. Particularly, we can see this phenomenon from Table 2 below. So, we modified \( f((k_1/n), (k_2/n)) \) to construct operators (6). Then, we obtain the error estimation of approximation of operators (6) and give the numerical experiments.

**Data Availability**

Data are available on request from the authors.

**Conflicts of Interest**

The authors declare that they have no conflicts of interest.

**Acknowledgments**

This research was supported by the National Natural Science Foundation of China under Grant No. 12171434 and Zhejiang Provincial Natural Science Foundation of China under Grant No. LZ19A010002.

**References**


