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The existence aspects along with the stability of solutions to a Hadamard variable order fractional boundary value problem are
investigated in this research study. Our results are obtained via generalized intervals and piecewise constant functions and the
relevant Green function, by converting the existing Hadamard variable order fractional boundary value problem to an
equivalent standard Hadamard fractional boundary problem of the fractional constant order. Further, Darbo’s fixed point
criterion along with Kuratowski’s measure of noncompactness is used in this direction. As well as, the Ulam-Hyers-Rassias
stability of the proposed Hadamard variable order fractional boundary value problem is established. A numerical example is
presented to express our results’ validity.

1. Introduction

Fractional calculus is fundamentally established by having
arbitrary numbers in the order of derivation operators
instead of natural numbers. This idea is considered prelimi-
nary and simple. However, it involves remarkable effects and
outcomes which describe some physical processes, dynam-
ics, mathematical modelings, control theory, bioengineering,
biomedical applications, etc. [1, 2]. The main effectiveness of
this field can be found in recent studies. For example, Thabet
et al. in [3] simulated a fractional model of pantograph in
the Caputo conformable settings. In [4], Khan et al. designed
a model of p-Laplacian FBVP in the form of a singular prob-
lem, and Matar et al. derived similar results for a new p-
Laplacian model via generalized fractional derivative [5].
The fractional Langevin impulsive equations are studied by

Rizwan et al. regarding existence property of solutions in
[6], and Zada et al. [7] analyzed the Ulam-Hyers stability
for an impulsive integro-differential equations. Etemad
et al. used a new property entitled approximate endpoint
for studying a novel fractional problem via the Caputo-
Hadamard operators [8].

Thabet et al. also modeled COVID-19 transmission by
Caputo-Fabrizio operators and analyzed its dynamical
behavior [9]. In [10], Shah et al. compared the results of
two classical and fractional models of COVID-19 and
showed the accuracy of fractional operators in simulation
of processes. Pratap et al. [11] studied finite-time Mittag-
Leffler stability criteria for fractional quaternion-valued
memristive neural networks. Along with these, Boulares
et al. [12] conducted a theoretical research on the general-
ized weakly singular integral inequalities and their
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applications to generalized FBVPs. Naifar et al. [13] studied
a global Mittag-Leffler stabilization by output feedback in
relation to a class of nonlinear systems of FBVPs.

It is notable that in recent advanced mathematical
models, constant fractional orders have not needed effective-
ness for describing the specifications of some processes and
phenomena, and consequently, some researchers had to
model their boundary problems via the fractional operators
equipped with orders as a real-valued functions. These oper-
ators are known as variable order ones [14, 15]. The investi-
gation of the variable order fractional boundary problems
(VOFBVPs) in the field of existence theory is considered as
a new and important branch of fractional calculus, which
are published limited research works in this regard. In
2018, Yang et al. presented a numerical scheme for a
VOFBVP and analyzed their system from numerical point
of view [16]. Zhang studied the solutions of a singular two-
point VOFBVP for the first time in [17]. In recent years,
Zhang et al. [18, 19] derived approximate solutions of two
different VOFIVP on the half-axis in 2018 and 2019. In
addition, a multiterm FBVP involving the nonlinear frac-
tional differential equation (NFDE) of the variable order
type was investigated in detail by Bouazza et al. in [20]. In
this paper, motivated by other related works in this regard,
we investigate the solutions’ existence of the Hadamard non-
linear VOFBVP as follows:

HD
ϑ tð Þ
1+ r tð Þ +m1 t, r tð Þð Þ = 0, t ∈U≔ 1,T½ �, ð1Þ

via boundary conditions rð1Þ = rðT Þ = 0, where 1 <T < +∞,
1 < ϑðtÞ ≤ 2, and m1 : U × S ⟶ S.

S is a continuous function (S is a real (or complex)

space) and HD
ϑðtÞ
1+ specifies the Hadamard derivative of var-

iable order ψðtÞ. For the first time, as the novelty of this
research, we here consider a FBVP in the variable order
Hadamard settings and establish the existence specifications
of solutions to mentioned system on the generalized subin-
tervals by combining the existing notions in relation to the
Kuratowski’s measure of noncompactness (KMNCS) in the
context of Darbo fixed point criterion. The piecewise con-
stant functions will play a vital role in our study for convert-
ing the Hadamard VOFBVP (1) to the standard Hadamard
FBVP. Lastly, another criterion of the behavior of solutions
like the Ulam-Hyers-Rassias stability (UHRS) is analyzed,
and a numerical illustrative example will complete the con-
sistency of our findings.

2. Essential Preliminaries

Basic definitions are discussed in this section to be used later.
Throughout the paper, the set S stands for the real numbers.

The symbol CðU , SÞ denotes a set that contains all contin-
uous functions f : U⟶ S. It is a Banach space by defining

fk k = sup f tð Þj j: t ∈Uf g, U≔ 1,T½ �: ð2Þ

Definition 1 (see [21, 22]). For 1 ≤ a1 < a2 < +∞, we consider
the mappings h1ðtÞ: ½a1, a2�⟶ ð0,+∞Þ and qðtÞ: ½a1, a2�

⟶ ðn − 1, nÞ. The Hadamard ðϑðtÞÞth variable order integral
of h1 is

HI
ϑ tð Þ
a+1

h1 tð Þ = 1
Γ ϑ tð Þð Þ

ðt
a1

log t
s

� �ϑ tð Þ−1 h1 sð Þ
s

ds, t > a1,

ð3Þ

and the Hadamard ðqðtÞÞth variable order derivative of h1 is

HD
q tð Þ
a+1

h1
� �

tð Þ = 1
Γ n − q tð Þð Þ t

d
dt

� �n

�
ðt
a1

log t
s

� �n−q tð Þ−1 h1 sð Þ
s

ds, t > a1:

ð4Þ

Obviously, in case of ϑðtÞ and qðtÞ are constant, then both
above Hadamard variable order operators are in coincidence
with the usual Hadamard constant order operators (refer to
[1, 21, 22]).

Lemma 2 (see [1]). Assume that a1 > 1, γ1, γ2 > 0, h1 ∈ L
ða1, a2Þ, and HD

γ1
a+1
h1 ∈ Lða1, a2Þ. Then, the homogeneous

differential equation

HD
γ1
a+1
h1 = 0 ð5Þ

admits the unique solution

h1 tð Þ = ω1 log t
a1

� �γ1−1

+ ω2 log t
a1

� �γ1−2

+⋯ + ωn log t
a1

� �γ1−n

,

HI
γ1
a+1

HDγ1
a+1

� �
h1 tð Þ = h1 tð Þ + ω1 log t

a1

� �γ1−1

+ ω2 log t
a1

� �γ1−2

+⋯ + ωn log t
a1

� �γ1−n

,

ð6Þ

with n = ½γ1� + 1, ωȷ ∈ℝ, and j = 1, 2,⋯, n.

Moreover, for constants αj > 0, j = 1, 2,

HD
α1
a+1

HI
α1
a+1

� �
h1 tð Þ = h1 tð Þ,

HI
α1
a+1

HI
α2
a+1

� �
h1 tð Þ= HI

α2
a+1

HI
α1
a+1

� �
h1 tð Þ= HI

α1+α1
a+1

h1 tð Þ:
ð7Þ

Remark 3. The semigroup property is not fulfilled for the
functions ϑðtÞ and qðtÞ, i.e.,

HI
ϑ tð Þ
a+1

HI
q tð Þ
a+1

� �
h1 tð Þ ≠ HI

ϑ tð Þ+q tð Þ
a+1

h1 tð Þ: ð8Þ
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Example 1. Let

ϑ tð Þ =
1, t ∈ 1, 2½ �,
2, t ∈ 2, 4� �,

(

q tð Þ =
3, t ∈ 1, 2½ �,
4, t ∈ 2, 4� �,

(
h1 tð Þ = 2t2,
t ∈ 1, 4½ �:

ð9Þ

We obtain

HI
ϑ tð Þ
1+

HI
q tð Þ
1+

� �
h1 tð Þ = 1

Γ ϑ tð Þð Þ
ðt
1

1
s

log t
s

� �Ψ tð Þ−1

� 1
Γ q sð Þð Þ

ðs
1
log s

τ

� �q sð Þ−1 h1 τð Þ
τ

dτ
� �
� ds = 1

Γ Ψ tð Þð Þ
ð2
1

1
s

log t
s

� �Ψ tð Þ−1 1
Γ q sð Þð Þ

ðs
1
log s

τ

� �q sð Þ−1 h1 τð Þ
τ

dτ
� �

� ds + 1
Γ ϑ tð Þð Þ

ðt
2

1
s

log t
s

� �ϑ tð Þ−1 1
Γ q sð Þð Þ

ðs
1
log s

τ

� �q sð Þ−1 h1 τð Þ
τ

dτ
� �

� ds = 1
Γ 1ð Þ

ð2
1

1
s

log t
s

� �0ðs
1

1
Γ 3ð Þ log s

τ

� �2
2τdτds + 1

Γ 2ð Þ
ðt
2

1
s

log t
s

� �
� 1

Γ 3ð Þ
ð2
1
log s

τ

� �2
2τdτ + 1

Γ 4ð Þ
ðs
2
log s

τ

� �3
2τdτ

� �
ds,

=
ð2
1

s
4 −

1
2s log sð Þ2 − 1

2s log sð Þ − 1
4s

� �
ds +

ðt
2

1
s

log t
s

� �
� −

2
3 log s

2
� �3

+ log s
2

� �2
+ log s

2
� �

−
1
2 log sð Þ2 − 1

2 log sð Þ + 1
8 s

2 + 1
4

� �
ds,

ð10Þ

HI
ϑ tð Þ+q tð Þ
1+ h1 tð Þ = 1

Γ ϑ tð Þ + q tð Þð Þ
ðt
1

log t
s

� �ϑ tð Þ+q tð Þ−1 h1 sð Þ
s

ds:

ð11Þ
So,

HI
ϑ tð Þ
1+

HI
q tð Þ
1+

� �
h1 tð Þjt=3 = −

1
30 log 3

2

� �5
+ 1
24 log 3

2

� �4

+ 1
12 log 3

2

� �3
+ 1
8 log 3

2

� �2
−
1
4 log 3

2

� �
−
1
6 log 2ð Þ2 log 3

2

� �2
−
1
6 log 2ð Þ log 3

2

� �3
−

log 2ð Þ3
6

−
log 2ð Þ2
4 −

log 2
4 −

1
4 log 2ð Þ log 3

2

� �2
+ 17
32 ≃ 0:0522:

ð12Þ

On the other side,

HI
ϑ tð Þ+q tð Þ
1+ h1 tð Þjt=3 =

ð2
1

1
Γ 4ð Þ log 3

s

� �3
2sds +

ð3
2

1
Γ 6ð Þ log 3

s

� �5

� 2sds = −
1
30 log 3

2

� �5
−

1
12 log 3

2

� �4
+ 1
3 log 3

2

� �3
+ 3
4 log 3

2

� �2

+ 3
4 log 3

2

� �
−
1
6 log 3ð Þ3 − 1

4 log 3ð Þ2 − 1
4 log 3ð Þ + 17

32 ≃ 0:1809:

ð13Þ

Therefore, we obtain

HI
ϑ tð Þ
1+

HI
q tð Þ
1+

� �
h1 tð Þjt=3 ≠ HI

ϑ tð Þ+q tð Þ
1+ h1 tð Þjt=3: ð14Þ

Lemma 4 (see [23, 24]). If ϑ : U⟶ ð1, 2� has the continuity
property, then for

h1 ∈Cβ U, Sð Þ
= h1 tð Þ ∈C U, Sð Þ, log tð Þβh1 tð Þ ∈C U, Sð Þ
n o

,  0 ≤ β ≤ 1,

ð15Þ

the integral HI
ϑðtÞ
1+ h1ðtÞ admits a finite value ∀t ∈U.

Lemma 5 (see [23, 24]). Assume that ϑ : U⟶ ð1, 2� has the
continuity property. Then,

HI
ϑ tð Þ
1+ h1 tð Þ ∈C U, Sð Þfor h1 ∈C U, Sð Þ: ð16Þ

Definition 6 (see [25–27]). I ⊆ℝ is termed as a generalized
interval if I is either an interval, or fa1g, or ∅. A finite set
F is defined to be a partition of I if every x ∈ I belongs to
exactly one and one generalized interval I in F . Finally, w
: I ⟶ S is piecewise constant w.r.t F as a partition of I; if
∀I ∈F , w is constant on I.

2.1. Some Properties regarding KMNCS. Here, we regard S as
a Banach space.

Definition 7 (see [28]). Suppose that ωS is a bounded set in
S . The KMNCS is the function Φ : ωS ⟶ ½0,∞� as

Φ Pð Þ = inf δ > 0 : P ⊆ ∪n
=1Pȷ,Diam Pȷ

� 	
≤ δ, P ∈ ωSð Þ
 �

,
ð17Þ

in which

Diam Pȷ

� 	
= sup x − rk k: x, r ∈Pȷ


 �
: ð18Þ

The symbol Diam denotes the diameter of the given set.
Some valid properties KMNCS are as follows.

Proposition 8 (see [28, 29]). LetP,P1,P2 be bounded in S .
Then,

(a) P is relatively compact if ΦðPÞ = 0

(b) Φð∅Þ = 0

(c) ΦðPÞ =Φð �PÞ
(d) P1 ⊂P2 ⇒ΦðP1Þ ≤ΦðP2Þ
(e) ΦðP1 +P2Þ ≤ΦðP1Þ +ΦðP2Þ
(f) ΦðλPÞ = jλjΦðPÞ, λ ∈ℝ
(g) ΦðP1 ∪P2Þ =max fΦðP1Þ,ΦðP2Þg
(h) ΦðP1 ∩P2Þ =min fΦðP1Þ,ΦðP2Þg
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(i) ΦðP + x0Þ =ΦðPÞ for any x0 ∈ℝ

Lemma 9 (see [30]). If the bounded setW ⊂CðU, SÞ is equi-
continuous, then

(i) ΦðW Þ has continuity, and

bΦ Wð Þ = sup
t∈U

Φ W tð Þð Þ ð19Þ

(ii) ΦðÐT0 rðθÞdθ : r ∈W Þ ≤ ÐT0 ΦðW ðθÞÞdθ,
where

W θð Þ = r θð Þ: r ∈Wf g, θ ∈U ð20Þ

In the next theorem, we point out the Darbo’s fixed
point criterion.

Theorem 10 (see [28]). Consider the closed, convex, and
bounded set Λ ≠∅ in S and the continuous map Ϝ : Λ
⟶Λ satisfying (k-set contractive property for Ϝ ).

Φ Ϝ Vð Þð Þ ≤ kΦ Vð Þ, ∀∅≠ V ⊂Λ, k ∈ 0, 1½ Þ: ð21Þ

Then, Ϝ admits at least a fixed point belonging to Λ.

3. Existence Criterion of Solutions

To achieve the main purpose of this section, some assump-
tions are proposed as:

(H1) Consider F = fU1 ≔ ½1,T 1�,U2 ≔ ðT 1,T 2�,U3
≔ ðT 2,T 3�,⋯,Un ≔ ðT n−1,T �g as a partition for the
interval U and ϑðtÞ: U⟶ ð1, 2� as a piecewise constant
function w.r.t F , i.e.,

ϑ tð Þ = 〠
n

i=1
ϑȷJ ȷ tð Þ =

ϑ1, if t ∈U1, 1 < ϑ1 ≤ 2,
ϑ2, if t ∈U2, 1 < ϑ2 ≤ 2,
⋅  

⋅  

⋅  

ϑn, if t ∈Un, 1 < ϑn ≤ 2,

8>>>>>>>>>>><>>>>>>>>>>>:
ð22Þ

in which J ȷ interprets the indicator of J ȷ interprets the indi-
cator of Uȷ ≔ ðT ȷ−1,T ȷ�, ∈ℕn

1 , so that T 0 = 1 and T n =T ,
and

J ȷ tð Þ =
1, for t ∈Uȷ,
0, for elsewhere:

(
ð23Þ

(H2) Let ðlog tÞβm1 : U × S ⟶ S be continuous, ð0 ≤

β ≤ 1Þ, and ∃K > 0, such that ðlog tÞβkm1ðt, rÞ −m1ðt, �rÞk
≤ Kkr −�rk, for any r, �r ∈ S and t ∈U.

Remark 11 (see [31]). Note that the inequality

Φ log tð Þβ m1 t, B1ð Þk k
� �

≤ KΦ B1ð Þ ð24Þ

is equivalent to (H2) for each B1 ⊂ S and t ∈U, where B1 is
bounded.

Further, for a supposed set W of all mappings w : U
⟶ S , define

W tð Þ = w tð Þ,w ∈Wf g, t ∈U, ð25Þ

W ðtÞ = fwðtÞ: w ∈W , t ∈Ug:
Let us now establish the solutions’ existence for the

Hadamard VOFBVP (1) via KMNCS and Darbo’s criterion
(Theorem 10).

Here, ∀ȷ ∈ f1, 2,⋯, n g, the symbol E ȷ =CðUȷ, rÞ, indi-
cated as Banach spaces of continuous mappings r : Uȷ ⟶

S is furnished with the norm

rk kEȷ
= sup

t∈Uȷ

r tð Þj j, ð26Þ

where ȷ ∈ f1, 2,⋯, n g.
First, we analyze the Hadamard VOFBVP defined in (1).

In the light of (4), the Hadamard VOFBVP (1) can be
rewritten by

1
Γ 2 − ϑ tð Þð Þ t

d
dt

� �2ðt
1

log t
s

� �1−ϑ tð Þ r sð Þ
s

ds +m1 t, r tð Þð Þ = 0, t ∈U:

ð27Þ

From (H1), equation (27) on the intervalUȷ, ∈ℕn
1 , can be

expressed as

t
d
dt

� �2 1
Γ 2 − ϑ1ð Þ

ðT 1

1
log t

s

� �1−ϑ1 r sð Þ
s

ds+⋯+ 1
Γ 2 − ϑȷ
� 	 

�
ðt
T ȷ−1

log t
s

� �1−ϑȷ r sð Þ
s

ds

!
+m1 t, r tð Þð Þ = 0, t ∈Uȷ:

ð28Þ

Definition 12. The Hadamard VOFBVP (1) admits a solu-
tion like functions rȷ, ȷ = 1, 2,⋯, n, if rȷ ∈Cð½1,T ȷ�, SÞ sat-
isfies equation (28) and rȷð1Þ = 0 = rȷðT ȷÞ.

From the above, the Hadamard VOFBVP (1) written in
(27) can be given as (28) on Uȷ, ∈ℕn

1 . For 1 ≤ t ≤T ȷ−1, put
rðtÞ ≡ 0. Then, (28) is formulated by

D
ϑȷ
T +

ȷ−1
r tð Þ +m1 t, r tð Þð Þ = 0, t ∈Uȷ: ð29Þ
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In this case, we follow our study by considering the stan-
dard Hadamard constant-order FBVP (COFBVP) as follows:

H
 D

ϑȷ
T +

ȷ−1
r tð Þ +m1 t, r tð Þð Þ, t ∈Uȷ,

r T ȷ−1
� 	

= 0, r T ȷ

� 	
= 0:

8<: ð30Þ

The fundamental part of our analysis regarding solutions
of the Hadamard COFBVP (30) is discussed below.

Lemma 13. A function r ∈E ȷ is a solution of the Hadamard
COFBVP (30) if r fulfills the integral equation

r tð Þ =
ðT ȷ

T ȷ−1

1
s
Gȷ t, sð Þm1 s, r sð Þð Þds, t ∈Uȷ, ð31Þ

where Gȷðt, sÞ stands for the Green function formulated by

where ȷ ∈ℕn
1 .

Proof. Suppose that r ∈E ȷ satisfies the Hadamard COFBVP

(30). Let us employ the operator H
 I

ψȷ

T +
ȷ−1

on both sides

(30) and using Lemma 2, we get

r tð Þ = ω1 log t
τj−1

 !ϑ j−1

+ ω2 log t
τj−1

 !ϑ j−2 H

I
ϑ j
τ+j−1

m1 t, r tð Þð Þ, t ∈ uj, j ∈ℕn
1 :

ð33Þ

From definition of m1 along with rðT ȷ−1Þ = 0, we get
ω2 = 0.

Suppose that r satisfies rðT ȷÞ = 0. Hence,

ω1 = log
T ȷ

T ȷ−1

 !1−ϑȷ
H
ȷ I

ϑȷ

T +
ȷ−1
m1 T ȷ, r T ȷ

� 	� 	
: ð34Þ

Thus,

r tð Þ = log
T ȷ

T ȷ−1

 !1−ϑȷ
log t

T ȷ−1

 !ϑȷ−1H

� I ϑȷ
T +

ȷ−1
m1 T ȷ, r T ȷ

� 	� 	
−HI

ϑȷ
T +

ȷ−1
m1 t, r tð Þð Þ,

ð35Þ

Then, the solution of the Hadamard COFBVP (30) is
given by

r tð Þ = log
T ȷ

T ȷ−1

 !1−ϑȷ
log t

T ȷ−1

 !ϑȷ−1 1
Γ ϑȷ
� 	

�
ðT ȷ

T ȷ−1

log
T ȷ

s

� �ϑȷ−1 m1 s, r sð Þð Þ
s

� ds − 1
Γ ϑȷ
� 	 ðt

T ȷ−1

log t
s

� �ϑȷ−1 m1 s, r sð Þð Þ
s

� ds = 1
Γ ϑȷ
� 	 ðt

T ȷ−1

log
T ȷ

T ȷ−1

 !1−ϑȷ
log t

T ȷ−1

 !ϑi−1
2424

� log
T ȷ

s

� �ϑȷ−1
− log t

s

� �ϑȷ−1
#
m1 s, r sð Þð Þ

s

� ds +
ðT ȷ

t
log

T ȷ

T ȷ−1

 !1−ϑȷ
log t

T ȷ−1

 !ϑȷ−1

log
T ȷ

s

� �ϑȷ−1 m1 s, r sð Þð Þ
s

ds�,

ð36Þ

and the continuity property of the Green function gives

r tð Þ =
ðT ȷ

T ȷ−1

1
s
Gȷ t, sð Þm1 s, r sð Þð Þds, t ∈Uȷ: ð37Þ

Conversely, let r ∈Eȷ be the integral equation’s (31) solu-

tion. Because of the continuity of ðlog tÞβm1 and by Lemma
2, it is simply verified that r satisfies the Hadamard COFBVP
(30) solution.

Proposition 14. Assume that ðlog tÞβm1, ð0 ≤ β ≤ 1Þ belongs
to CðU × S , SÞ and ϑðtÞ: U⟶ ð1, 2� satisfies (H1). Then,
Gȷðt, sÞ given by (32) satisfy the following: (ȷ ∈ℕn

1)

(1) 0 ≤Gȷðt, sÞ, ∀T ȷ−1 ≤ t, s ≤T ȷ

(2) maxt∈Uȷ
Gȷðt, sÞ =Gȷðs, sÞ, s ∈Uȷ

(3) Gȷðs, sÞ has a maximum value uniquely given by

Gȷ t, sð Þ = 1
Γ ϑȷ
� 	 log

T ȷ

T ȷ−1

 !1−ϑȷ
log t

T ȷ−1

 !
log

T ȷ

s

� �" #ϑȷ−1
− log t

s

� �ϑȷ−1
, T −1 ≤ s ≤ t ≤T ȷ,

log
T ȷ

T ȷ−1

 !1−ϑȷ
log t

T ȷ−1

 !
log

T ȷ

s

� �" #ϑȷ−1
, T −1 ≤ t ≤ s ≤T ȷ,

8>>>>>><>>>>>>:
ð32Þ
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maxs∈Uȷ
Gȷ s, sð Þ = 1

Γ ϑȷ
� 	 log T ȷ − log T −1

4

� �ϑȷ−1

, ð38Þ

where ȷ = 1, 2,⋯, n

Proof. Let φðt, sÞ = ðlog ðT ȷ/T ȷ−1ÞÞ1−ϑȷ
½ðlog ðt/T ȷ−1ÞÞðlog ðT ȷ/sÞÞ�ϑȷ−1 − ðlog ðt/sÞÞϑȷ−1: We see that

φt t, sð Þ = ϑȷ − 1
t

� �
log

T ȷ

T ȷ−1

 !1−ϑȷ
log

T ȷ

s

� �ϑȷ−1
log t

T ȷ−1

 !ϑȷ−2

−
ϑȷ − 1
t

� �
log t

s

� �ϑȷ−2
≤

ϑȷ − 1
t

� �
log

T ȷ

s

� �1−ϑȷ

� log
T ȷ

s

� �ϑȷ−1
log t

s

� �ϑȷ−2
−

ϑȷ − 1
t

� �
log t

s

� �ϑȷ−2
= 0,

ð39Þ

which means that φðt, sÞ is nonincreasing w.r.t t, so φðt, sÞ
≥ φðT ȷ, sÞ = 0, for T ȷ−1 ≤ s ≤ t ≤T ȷ: Thus, 0 ≤Gȷðt, sÞ for
any T ȷ−1 ≤ t, s ≤T ȷ, ȷ = 1,⋯, n: :

Since φðt, sÞ is nonincreasing w.r.t t, then φðt, sÞ ≤ φðs, sÞ
for T ȷ−1 ≤ s ≤ t ≤T ȷ:

On the other hand, for T ȷ−1 ≤ t ≤ s ≤T ȷ, we get

log
T ȷ

T ȷ−1

 ! !1−ϑȷ
log t

T ȷ−1

 !
log

T ȷ

s

� � !ϑȷ−1

≤ log
T ȷ

T ȷ−1

 ! !1−ϑȷ
log s

T ȷ−1

 !
log

T ȷ

s

� � !ϑȷ−1

:

ð40Þ

These confirm that maxt∈½T ȷ−1,T ȷ�Gȷðt, sÞ =Gȷðs, sÞ, s ∈ ½
T ȷ−1,T ȷ�, ȷ = 1,⋯, n: :

Further, we verify (3) of Proposition 14. Clearly, the
maximum points of Gȷðs, sÞ are not T ȷ−1 and T ȷ, ȷ = ∈ℕn

1 .
For s ∈ ½T ȷ−1,T ȷ�, ȷ = 1,⋯, n: , we have

dGȷ s, sð Þ
ds

=
ϑȷ − 1
s

� �
log

T ȷ

T ȷ−1

 !1−ϑȷ
log s

T ȷ−1

 !ϑȷ−2

� log
T ȷ

s

� �ϑȷ−2
log

T ȷ

s

� �
− log s

T ȷ−1

 !" #
,

=
ϑȷ − 1
s

� �
log

T ȷ

T ȷ−1

 !1−ϑȷ
log s

T ȷ−1

 !ϑȷ−2

� log
T ȷ

s

� �ϑȷ−2
log T ȷT ȷ−1
� 	

− log s2
� 	� 


,

ð41Þ

which indicates that the maximum points of Gȷðs, sÞ is
s = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T ȷT ȷ−1
p , ȷ = 1,⋯, n:

Hence, for ȷ = 1,⋯, n,

maxs∈ T ȷ−1,T ȷ½ �Gȷ s, sð Þ =Gȷ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T ȷT ȷ−1

q
,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T ȷT ȷ−1

q� �
= 1
Γ ϑȷ
� 	 1

4 log
T ȷ

T ȷ−1

 !ϑȷ−1

= 1
Γ ϑȷ
� 	 log T ȷ − log T ȷ−1

4

� �ϑȷ−1
:

ð42Þ

This shows the completion of the proof.

The existence criterion of solutions for the Hadamard
VOFBVP (1) in this work depends on the hypotheses of
Theorem 10 which we investigate them in this position.

Theorem 15. Suppose that both (H1) and (H2) hold, and

K log T ȷ

� 	1−β − log T ȷ−1
� 	1−β� �

log T ȷ − log T ȷ−1
� 	ϑȷ−1

4ϑȷ−1 1 − βð ÞΓ ϑȷ
� 	 < 1:

ð43Þ

Then, there is a solution to the Hadamard VOFBVP (1)
on U.

Proof. We construct the operator

Z : Eȷ ⟶E ȷ ð44Þ

by

Zr tð Þ =
ðT ȷ

T ȷ−1

1
s
Gȷ t, sð Þm s, r sð Þð Þds, t ∈Uȷ: ð45Þ

Some properties of fractional integrals along with the
continuity for the function ðlogÞβm1 imply that the operator
Z : Eȷ ⟶E ȷ defined in (45) is well-defined.

Let ∃Rȷ > 0 so that

Rȷ ≥
m⋆ log T ȷ − log T ȷ−1
� 	ϑȷ /4ϑȷ−1Γ ϑȷ

� 	
1 − K log T ȷ

� 	1−β − log T ȷ−1
� 	1−β� �

log T ȷ − log T ȷ−1
� 	ϑȷ−1/4ϑȷ−1 1 − βð ÞΓ ϑȷ

� 	� � ,
ð46Þ

with

m⋆ = sup
t∈Uȷ

m1 t, 0ð Þk k: ð47Þ

Let us consider the following set:

BRȷ
= r ∈Eȷ, rk kEȷ

≤ Rȷ

n o
: ð48Þ
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Clearly BRȷ
≠∅ contains all three properties of the con-

vexity, boundedness, and closedness.
We shall show that Z satisfies Theorem 10 in four

stages.
Step A. Claim: ZðBRȷ

Þ ⊆ ðBRȷ
Þ: For r ∈ BRȷ

, by Proposi-

tion 14 and (H2), we get

Zr tð Þk k =
ðT ȷ

T ȷ−1

1
s
Gȷ t, xð Þm1 s, r sð Þð Þds

�����
�����

≤
ðT ȷ

T ȷ−1

1
s
Gȷ t, sð Þ m1 s, r sð Þð Þk k

� ds ≤ 1
Γ ϑȷ
� 	 log T ȷ − log T ȷ−1

4

� �ϑȷ−1

�
ðT ȷ

T ȷ−1

1
s

m1 s, r sð Þð Þk kds ≤ 1
Γ ϑȷ
� 	

� log T ȷ − log T ȷ−1
4

� �ϑȷ−1ðT ȷ

T ȷ−1

1
s

m1 s, r sð Þð Þk

−m1 s, 0ð Þkds + 1
Γ ϑȷ
� 	 log T ȷ − log T ȷ−1

4

� �ϑȷ−1

�
ðT ȷ

T ȷ−1

1
s

m1 s, 0ð Þk kds ≤ 1
Γ ϑȷ
� 	 log T ȷ − log T ȷ−1

4

� �ϑȷ−1

�
ðT ȷ

T −1

1
s
log sð Þ−β K r sð Þk kð Þds + m⋆ log T ȷ − log T ȷ−1

� 	ϑȷ
4ϑȷ−1Γ ϑȷ

� 	
≤

K

Γ ϑȷ
� 	 log T ȷ − log T ȷ−1

4

� �ϑȷ−1
rk kG ȷ

ðT ȷ

T ȷ−1

1
s
log sð Þ−β

� ds + m⋆ log T ȷ − log T ȷ−1
� 	ϑȷ

4ϑȷ−1Γ ϑȷ
� 	 ≤

K

Γ ϑȷ
� 	 log T ȷ − log T ȷ−1

4

� �ϑȷ−1

� Rȷ

log T ȷ

� 	1−β − log T ȷ−1
� 	1−β

1 − β

 !
+
m⋆ log T ȷ − log T ȷ−1
� 	ϑȷ

4ϑȷ−1Γ ϑȷ
� 	

≤
K log T ȷ

� 	1−β − log T ȷ−1
� 	1−β� �

log T ȷ − log T ȷ−1
� 	ϑȷ−1

4ϑȷ−1 1 − βð ÞΓ ϑȷ
� 	

� Rȷ +
m⋆ log T ȷ − log T ȷ−1
� 	ϑȷ

4ϑȷ−1Γ ϑȷ
� 	 ≤ Rȷ,

ð49Þ

which means that ZðBRȷ
Þ ⊆ BRȷ

.

Step B. Claim: Z is continuous.
The sequence ðrnÞ is supposed to be convergent to r in

Eȷ and t ∈Uȷ. Then,

Zrnð Þ tð Þ − Zrð Þ tð Þk k ≤
ðT ȷ

T ȷ−1

1
s
Gȷ t, sð Þ m1 s, rn sð Þð Þ −m1 s, r sð Þð Þk kds

≤
1

Γ ϑȷ
� 	 log T ȷ − log T ȷ−1

4

� �ϑȷ−1ðT ȷ

T ȷ−1

1
s

m1 s, rn sð Þð Þ −m1 s, r sð Þð Þk kds

≤
1

Γ ϑȷ
� 	 log T ȷ − log T ȷ−1

4

� �ϑȷ−1ðT ȷ

T ȷ−1

1
s
log sð Þ−β K rn sð Þ − r sð Þk kð Þds

≤
1

Γ ϑȷ
� 	 log T ȷ − log T ȷ−1

4

� �ϑȷ−1
K rn − yk kG ȷ

� �ðT ȷ

T ȷ−1

1
s
log sð Þ−βds

≤
K log T ȷ

� 	1−β − log T ȷ−1
� 	1−β� �

log T ȷ − log T ȷ−1
� 	ϑȷ−1

4ϑȷ−1 1 − βð ÞΓ ϑȷ
� 	 rn − rk kG ȷ

,

ð50Þ

i.e., we get

Zrnð Þ − Zrð Þk kG ȷ
⟶ 0 as n⟶∞, ð51Þ

and the correctness of the claim in this step is confirmed for Z.
Step C. Claim: Z is bounded and equicontinuous.
From A, ZðBRȷ

Þ = fZðrÞ: r ∈ BRȷ
g ⊂ BRȷ

; thus, for each

r ∈ BRȷ
, we get kZðrÞkEȷ

≤ Rȷ; in other ways, it means that

ZðBRȷ
Þ is bounded. It remains to check the equicontinuity

of ZðBRȷ
Þ.

Now, ∀t1 < t2 ∈Uȷ, t1 < t2 and r ∈ BRȷ
, we write

Zrð Þ t2ð Þ − Zrð Þ t1ð Þk k =
ðT ȷ

T ȷ−1

1
s
Gȷ t2, sð Þm1 s, r sð Þð Þ

�����
� ds −

ðT ȷ

T ȷ−1

1
s
Gȷ t1, sð Þm1 s, r sð Þð Þds

����� ≤
ðT ȷ

T ȷ−1

� 1
s

Gȷ t2, sð Þ −Gȷ t1, sð Þ� 	
m1 s, r sð Þð Þ�� ��

� ds ≤
ðT ȷ

T ȷ−1

1
s

Gȷ t2, sð Þ −Gȷ t1, sð Þ�� �� m1 s, r sð Þð Þk k

� ds ≤
ðT ȷ

T ȷ−1

1
s

Gȷ t2, sð Þ −Gi t1, sð Þ�� �� m1 s, r sð Þð Þ −m1 s, 0ð Þk kð

+ m1 s, 0ð Þk kÞds ≤
ðT ȷ

T ȷ−1

1
s

Gȷ t2, sð Þ −Gȷ t1, sð Þ�� ��
� log sð Þ−β K r sð Þk kð Þ +m⋆
h i

ds ≤
ðT ȷ

T ȷ−1

Gȷ t2, sð Þ −Gȷ t1, sð Þ�� ��
� 1

s
log sð Þ−β K rk kEȷ

� �
+ 1

s
m⋆

� �
ds ≤

K log T ȷ−1
� 	−β

T ȷ−1
rk kEȷ

�
ðT ȷ

T ȷ−1

Gȷ t2, sð Þ −Gȷ t1, sð Þ�� ��ds + m⋆

T ȷ−1

ðT ȷ

T ȷ−1

Gȷ t2, sð Þ −Gȷ t1, sð Þ�� ��ds,
ð52Þ

using the continuity of G. Hence, kðZrÞðt2Þ − ðZrÞðt1ÞkE ȷ

⟶ 0 as jt2 − t1j⟶ 0. It yields that ZðBRȷ
Þ is

equicontinuous.
Step D. Claim: Z is k-set contraction.
This time, let W ∈ BRȷ

and t ∈Uȷ. So,

Φ Z Wð Þ tð Þð Þ =Φ Zrð Þ tð Þ, r ∈Wð Þ

≤
ðT ȷ

T ȷ−1

1
s
Gȷ t, sð ÞΦm1 s, r sð Þð Þds r ∈W

( )
:

ð53Þ

Remark 11 indicates that

Φ Z Wð Þ tð Þð Þ ≤
ðT ȷ

T ȷ−1

1
s
Gȷ t, sð Þ KΦ r sð Þ, r ∈Wf gð Þ½ �

( )

≤
1

Γ ϑȷ
� 	 log T ȷ − log T ȷ−1

4

� �ϑȷ−1
K bΦ Wð Þ

ðT ȷ

T ȷ−1

1
s
logsð Þ−βds

" #
, r ∈W

( )

≤
K log T ȷ

1−β
� �

− log T ȷ−1
1−β

� �� �
log T ȷ − log T ȷ−1
� 	ϑȷ−1

4ϑȷ−1 1 − βð ÞΓ ϑȷ
� 	 bΦ Wð Þ,

ð54Þ

for any s ∈Uȷ.
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Therefore,

bΦ ZWð Þ ≤
K log T ȷ

1−β
� �

− log T ȷ−1
1−β

� �� �
log T ȷ − log T ȷ−1
� 	ϑȷ−1

4ϑȷ−1 1 − βð ÞΓ ϑȷ
� 	 bΦ Wð Þ:

ð55Þ

Consequently by (43), we deduce that Z admits a set
contraction.

The conclusion of Theorem 10 gives this result that the
Hadamard COFBVP (30) involves at least a solution erȷ in
BRȷ

.

Assume that

rȷ =
0, t ∈ 1,T ȷ−1

� 

,

~rȷ, t ∈Uȷ:

(
ð56Þ

We know that rȷ ∈Cð½1,T ȷ�, SÞ defined by (56) satisfies
equation

d2

dt2

ðT 1

1

t − sð Þ1−ϑ1
Γ 2 − ϑ1ð Þ rȷ sð Þds+⋯+

ðt
T ȷ−1

t − sð Þ1−ϑȷ
Γ 2 − ϑȷ
� 	 rȷ sð Þds

 !
+m1 s, rȷ sð Þ

� 	
= 0,

ð57Þ

for t ∈Uȷ, which implies that rȷ is regarded as a solution for
(28) along with rȷð1Þ = 0 and rȷðT ȷÞ =~rȷðT ȷÞ = 0.

Then,

r tð Þ

r1 tð Þ, t ∈U1,

r2 tð Þ =
0, t ∈U1,
~x2, t ∈U2,

(
:

:

:

rȷ tð Þ =
0, t ∈ 1,T ȷ−1

� 

,

~rȷ, t ∈Uȷ

(

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

ð58Þ

gives the solution for the Hadamard VOFBVP (1) and this
completes the argument.

4. Ulam-Hyers-Rassias Stability

The stability issue has gained substantially important atten-
tion in several research fields through applications. There are
many kinds of stability; one of them is the stability intro-
duced by Ulam in 1940. Since then, the problem is known
as Ulam-Hyers stability or simply Ulam stability. Later,
other generalizations of this notion were introduced by other
researchers. Its applications for many types of equations
have been investigated by many mathematicians. Ben Makh-
louf [32] derived sufficient conditions of different types of
stability such as uniform stability, Mittag-Leffler stability,
and asymptotic uniform stability for a nonlinear Caputo
fraction BVP via a method with respect to Lyapunov-like

functions. Ahmad et al. [33] investigated the notion of sta-
bility for a nonlinear coupled implicit switched singular frac-
tional differential system with p-Laplacian operator. Now,
we aim to accomplish an argument regarding the UHRS sta-
bility of the given Hadamard VOFBVP (1) in the framework
of Theorem 17.

Definition 16 (see [34]). Let ϱ ∈CðU, SÞ. Then, the Hada-
mard VOFBVP (1) is Ulam-Hyers-Rassias stable (UHRS)
w.r.t ϱ if ∃cm > 0, so that ∀ϵ > 0 and for every solution ς ∈
CðU, SÞ of

HD
ϑ tð Þ
1+ ς tð Þ − −m1 t, ς tð Þð Þð Þ

��� ��� ≤ ϵϱ tð Þ, t ∈U, ð59Þ

∃ a solution r ∈CðU, SÞ of (1) with

ς tð Þ − r tð Þk k ≤ cmϵϱ tð Þ: ð60Þ

Theorem 17. Let both (H1) and (H2) along with (43) hold.
Also,

(H3) Let ϱ ∈CðUȷ, SÞ is a increasing function and ∃
λϱ > 0 provided

H
 I

ϑȷ
T ȷ−1

+ϱ tð Þ ≤ λϱ tð Þϱ tð Þ, for any t ∈Uȷ: ð61Þ

Then, the Hadamard VOFBVP (1) is UHRS stable w.r.t
the function ϱ.

Proof. Assume that ϵ > 0 is chosen arbitrarily and ς from ς

∈CðUȷ,ℝÞ satisfies (59). Now, ∀ȷ ∈ℕn
1 , the following are

defined: ς1ðtÞ ≡ ςðtÞ, t ∈ ½1,T 1� and for ȷ = 2, 3,⋯, n :

ςȷ tð Þ =
0, t ∈ 0,T ȷ−1

� 

,

ς tð Þ, t ∈Uȷ:

(
ð62Þ

Taking H
 I

ϑȷ
T +

ȷ−1
on both sides (59), we get

ς tð Þ − −
ðT I

T I−1

1
s
GI t, sð Þm1 s, ς sð Þð Þds

 !�����
�����

≤
ϵ

Γ ϑIð Þ
ðt
T I−1

1
s

log t
s

� �ϑI −1
ϱ sð Þds ≤ ϵλϱ tð Þϱ tð Þ:

ð63Þ

According to the argument above, the Hadamard
VOFBVP (1) involves a solution r ∈CðU,ℝÞ formulated as
rðtÞ = rI ðtÞ for t ∈UI , ∈ℕn

1 , in which

r j =
0, t ∈ 0,T J−1

� 

,

~rj, t ∈UJ ,

( )
ð64Þ

and ~rI ∈EI is a solution of the Hadamard COFBVP (30).
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In accordance with Lemma 13, we have

~rI tð Þ = −
T I −T I−1ð Þ−1 t −T I−1ð Þ

Γ ϑIð Þ

�
ðT I

T I−1

T I − sð ÞϑI−1m1 s,~rI sð Þð Þds + 1
Γ ϑIð Þ

�
ðt
T I−1

t − sð ÞϑI−1m1 s,~rI sð Þð Þds:

ð65Þ

Suppose that t ∈UI , = 1, 2,⋯, n. Then, by equations
(64) and (65), we get

ς tð Þ − r tð Þk k = ς tð Þ − rI tð Þk k = ςI tð Þ −~rI tð Þk k

= ςI tð Þ −
ðT I

T I−1

1
s
GI t, sð Þm1 s,~rI sð Þð Þds

�����
����� ≤ ςI tð Þ −

ðT I

T I−1

�����
� 1
s
GI t, sð Þm1 s, ςI sð Þð Þdsk +

ðT I

T I−1

1
s
GI t, sð Þ m1 s, ςI sð Þð Þk

−m1 s,~rI sð Þð Þkds ≤ ςI tð Þ +
ðT I

T −1

1
s
GI t, sð Þm1 s, ςI sð Þð Þ

�����
� dsk +

ðT I

T I−1

1
s
GI t, sð Þ m1 s, ςI sð Þð Þ −m1 s,e~rI sð Þ

� ���� ���
� ds ≤ λϱ tð Þϵϱ tð Þ + 1

Γ ϑIð Þ
log T I − log T I−1

4

� �ϑI −1

�
ðT I

T I−1

log sð Þ−β K ςI sð Þ −~rI sð Þk k
s

ds ≤ λϱ tð Þϵϱ tð Þ

+ K
Γ ϑIð Þ

log T I − log T I−1
4

� �ϑI−1
ςI −~rIk kGI

ðT I

T I−1

� 1
s
log sð Þ−βds ≤ λϱ tð Þϵϱ tð Þ

+
K log T Ið Þ1−β − log T I−1ð Þ1−β
� �

log T I − log T I−1ð ÞϑI −1

1 − βð Þ4ϑI −1Γ ϑIð Þ
� ςI −~rIk kGI

≤ λϱ tð Þϵϱ tð Þ + μ ς − rk k,
ð66Þ

where

μ =maxI=1,2,⋯,n
K log T Ið Þ1−β − log T I−1ð Þ1−β
� �

log T I − log T I−1ð ÞϑI −1

1 − βð Þ4ϑI −1Γ ϑIð Þ :

ð67Þ

Then,

ς − rk k 1 − μð Þ ≤ λϱ tð Þϵϱ tð Þ, ð68Þ

and so by assuming cm1
≔ λϱðtÞ/ð1 − μÞ,

ς tð Þ − r tð Þk k ≤ λϱ tð Þϱ tð Þ
1 − μð Þ ϵ ≔ cm1

ϵϱ tð Þ: ð69Þ

Therefore, the Hadamard VOFBVP (1) is UHRS stable
w.r.t ϱ. This result completes the proof.

5. Numerical Illustrative Example

Example 2. Consider the Hadamard VOFBVP (based on the
VOFBVP (1)) as follows:

HD
ϑ tð Þ
1+ r tð Þ + log tð Þϑ tð Þffiffiffi

π
p + 1

4 log tð Þ−1/4r tð Þ = 0,

t ∈U≔ 1, e½ �, r 1ð Þ = 0, r eð Þ = 0:
ð70Þ

Hence, T = e and

m1 t, rð Þ = log tð Þϑ tð Þffiffiffi
π

p + 1
4 log tð Þ−1/4r tð Þ,  t, rð Þ ∈ 1, e½ � × 0,+∞½ Þ,

ð71Þ

ϑ tð Þ
1:2, t ∈U1 ≔ 1, 2½ �,
1:6, t ∈U2 ≔ 2, e� �:

(
ð72Þ

Then, we get

log tð Þ1/4 m t, rð Þ −m t,�rð Þj j

= log tð Þ1/4 log tð Þϑ tð Þffiffiffi
π

p + 1
4 r tð Þ − log tð Þ1/4 log tð Þϑ tð Þffiffiffi

π
p −

1
4�r tð Þ

�����
�����

≤
1
4 r tð Þ − �r tð Þj j:

ð73Þ

(H2) holds with β = 1/4 and K = 1/4.
From (72), the Hadamard VOFBVP (70) is classified

into the following:

HD1:2
1+ r tð Þ + log tð Þ1:2ffiffiffi

π
p + 1

4 log tð Þ−1/4r tð Þ = 0, t ∈U1,

HD1:6
2+ r tð Þ + log tð Þ1:6ffiffiffi

π
p + 1

4 log tð Þ−1/4r tð Þ = 0, t ∈U2:

8>>>><>>>>:
ð74Þ

For t ∈U1, the Hadamard VOFBVP (70) is equivalent to
the Hadamard COFBVP

HD1:2
1+ r tð Þ + log tð Þ1:2ffiffiffi

π
p + 1

4 log tð Þ−1/4r tð Þ = 0, t ∈U1,

r 1ð Þ = 0, r 2ð Þ = 0:

8><>:
ð75Þ

Let us now show that condition (43) is satisfied. Clearly,
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the following value is obtained

K log T 1ð Þ1−β − log T 0ð Þ1−β
� �

log T 1 − log T 0ð Þϑ1−1

4ϑ1−1 1 − βð ÞΓ ϑ1ð Þ

= 1/4 log 2ð Þ3/4 log 2ð Þ0:2
40:2
� 	

3/4Γ 1:2ð Þ ≃ 0:1941 < 1:

ð76Þ

On the other side, let ϱðtÞ = ðlog tÞ1/2. In this case,

HI
ϑ1
1+ϱ tð Þ = 1

Γ 1:2ð Þ
ð2
1

log t
s

� �1:2−1 log tð Þ1/2
s

� ds ≤ log tð Þ1/2
Γ 1:2ð Þ

ð2
1

log 2
s

� �0:2

� ds
s
≤

log 2ð Þ1:2
Γ 2:2ð Þ log tð Þ1/2 ≔ λϱ tð Þϱ tð Þ:

ð77Þ

As a result, (H3) is fulfilled with ϱðtÞ = ffiffiffiffiffiffiffiffiffiffiffiffiffiðlog tÞp
and

λϱðtÞ = ðlog 2Þ1:2/Γð2:2Þ ∈ℝ.
Theorem 15 guarantees the existence of a solution for

the Hadamard COFBVP (75) like r1 ∈E1, and from Theo-
rem 17, the Hadamard constant-order system (75) is UHRS
stable. For t ∈U2, the Hadamard VOFBVP (70) can be writ-
ten as the following COFBVP, i.e.,

HD1:6
2+ r tð Þ + log tð Þ1:6ffiffiffi

π
p + 1

4 log tð Þ−1/4r tð Þ = 0, t ∈U2,

r 2ð Þ = 0, r eð Þ = 0:

8><>:
ð78Þ

We see that

K log T 2ð Þ1−β − log T 1ð Þ1−β
� �

log T 2 − log T 1ð Þϑ2−1

4ϑ2−1 1 − βð ÞΓ ϑ2ð Þ

=
1/4 1 − log 2ð Þ3/4
� �

1 − log 2ð Þ0:6

40:6
� 	

3/4ð ÞΓ 1:6ð Þ ≃ 0:0191 < 1:

ð79Þ

Accordingly, condition (43) is achieved on the subinter-
val U2. Further,

HI
ϑ1
2+ϱ tð Þ = 1

Γ 1:6ð Þ
ðe
2

log t
s

� �1:6−1 log tð Þ1/2
s

� ds ≤ log tð Þ1/2
Γ 1:6ð Þ

ðe
2
log e

s

� �0:6
� ds
s
≤

log e/2ð Þð Þ1:6
Γ 2:6ð Þ log tð Þ1/2 ≔ λϱ tð Þϱ tð Þ:

ð80Þ

As a result, (H3) is also valid with ϱðtÞ = ffiffiffiffiffiffiffiffiffiffiffiffiffiðlog tÞp
and

λϱðtÞ = ðlog ðe/2ÞÞ1:6/Γð2:6Þ ∈ℝ.
On account of Theorem 15, the Hadamard COFBVP

(78) possesses a solution ~x2 ∈E2. Further, Theorem 17 yields
that the mentioned Hadamard system (78) is UHRS stable.
It is known that

r2 tð Þ =
0, t ∈U1,
~r2 tð Þ, t ∈U2:

(
ð81Þ

Consequently, the Hadamard VOFBVP (70) has a solu-
tion

r tð Þ =
r1 tð Þ, t ∈U1,

r2 tð Þ =
0, t ∈U1,
~r2 tð Þ, t ∈U2:

(8>><>>: ð82Þ

From Theorem 17, the Hadamard VOFBVP given by
(70) is UHRS stable.

6. Conclusions

In this paper, the nonlinear Hadamard VOFBVP (1) was
considered in which we established some theorems regard-
ing existence and stability of solutions of it by following a
new method based on the generalized subintervals and
piecewise constant functions. By applying such notions, we
converted the given Hadamard VOFBVP (1) to the standard
Hadamard COFBVP (30). After investigating some specifi-
cations of the Green function, we focused on the solutions’
existence via a combined technique in terms of KMNCS in
the context of Darbo’s fixed point criterion. The UHRS sta-
bility of the proposed Hadamard VOFBVP was also studied.
At the end, a numerical example has been discussed to vali-
date the applicability of our results. In future works, our
results can be extended to other fractional mathematical
models equipped with variable orders such as studies on
simulations and dynamical behaviors of COVID-19.
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