Research Article

On Atangana–Baleanu-Type Nonlocal Boundary Fractional Differential Equations

Mohammed A. Almalahi, Satish K. Panchal, Mohammed S. Abdo, and Fahd Jarad

1Department of Mathematics, Hajjah University, Hajjah, Yemen
2Department of Mathematics, Dr.Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra 431001, India
3Department of Mathematics, Hodeidah University, Al-Hudaydah, Yemen
4Department of Mathematics, Çankaya University, 06790 Etimesgut, Ankara, Turkey
5Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan

Correspondence should be addressed to Mohammed A. Almalahi; dralmalahi@gmail.com and Fahd Jarad; fahd@cankaya.edu.tr

Received 18 December 2021; Accepted 26 January 2022; Published 18 March 2022

Copyright © 2022 Mohammed A. Almalahi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This research paper is devoted to investigating two classes of boundary value problems for nonlinear Atangana–Baleanu-type fractional differential equations with Atangana–Baleanu fractional integral conditions. The applied fractional derivatives work as the nonlocal and nonsingular kernel. Upon using Krasnoselskii’s and Banach’s fixed point techniques, we establish the existence and uniqueness of solutions for proposed problems. Moreover, the Ulam–Hyers stability theory is constructed by using nonlinear analysis. Eventually, we provide two interesting examples to illustrate the effectiveness of our acquired results.

1. Introduction

Fractional calculus and its potential applications have become a powerful tool to model many complex phenomena in apparently wide-ranging fields of science and technology [1–8]. To meet the needs of modeling many practical problems in different fields of science and engineering, some researchers have realized the necessity development of the concept of fractional calculus by searching for new fractional derivatives with different singular or nonsingular kernels. From this perspective, new fractional operators have turned into the best effective tool of numerous specialists and researchers with their contribution to physical phenomena and their performance in applying to real-world problems. Until 2015, all fractional derivatives had only singular kernels. Therefore, it is difficult to use these singularities to simulate physical phenomena. In 2015, Caputo and Fabrizio [9] studied a new kind of FD in the exponential kernel. Some properties of this new type had been discussed by Losada and Nieto in [10]. A new type and interesting FD with Mittag-Leffler kernels has been investigated by Atangana and Baleanu (A-B) in [11]. Abdeljawad in [12] extended the kind investigated by A-B from order between zero and one to higher arbitrary order and formulated their associated integral operators. Also, he proved some properties such as the existence and uniqueness theorems for two classes of fractional derivative, Riemann type (ABR) and Caputo type (ABC), for initial value problems in higher arbitrary order and proved a Lyapunov-type inequality in the frame of Mittag-Leffler kernels for the ABR fractional boundary value problems of order $2 < \alpha \leq 3$. Abdeljawad and Baleanu, in [13, 14], deliberated the discrete versions of those new operators. For some theoretical works on Atangana–Baleanu FDEs, we refer the reader to a series of papers [15–17]. For important applications and mathematical modeling of the ABC fractional operator, see [18–21]. On the contrary, there are some important numerical approaches regarding nonsingular kernels; for example, in [22], via a spectral collocation method based on the shifted Legendre polynomials with extending the unknown functions and their derivatives...
using the shifted Legendre basis, Tuan et al. solved fractional rheological models and Newell–Whitehead–Segel equations with the nonlocal and nonsingular kernels. Nikan et al. in [23] developed the solution of the two-dimensional time-fractional evolution model using a finite difference scheme derived from the radial basis function (RBF-FD) method. Ganji et al. in [24] studied the multivariable-order differential equations (MVODEs) with the nonlocal and non-singular kernels in the Atangana and Baleanu sense of variable orders. They used the fifth-kind Chebyshev polynomials as basic functions to obtain operational matrices and used them with the collocation method to transform the original equations to a system of algebraic equations. Firuzjaee et al. in [25] studied the Fokker–Planck equation (FPE) with CF-FD being considered. They presented a numerical approach that is based on the Ritz method with known basis functions to transform this equation into an optimization problem. Baleanu et al. in [26] showed that four fractional integrodifferential inclusions have solutions. Also, they showed that the dimension of the set of solutions for the second fractional integrodifferential inclusion problem is infinite-dimensional under some different conditions. By using the fractional CF derivative, Aydogan et al. [27] introduced two types of new high-order derivations called CFD and DCF. Also, they studied the existence of solutions for two such types of high-order fractional integrodifferential equations. Guoa et al. in [28, 29] studied the existence and HU stability of the FDEs with impulse and group property. In consequence, our results will be a useful contribution to the existing literature on these interesting operators.

To the best of our understanding, this is the first work that transacts with ABC and ABR fractional derivatives of a higher order, especially with AB integral conditions. Also, we studied existence and uniqueness without using the semigroup property. In consequence, our results will be a useful contribution to the existing literature on these interesting operators.

The paper is organized as follows. In Section 2, we present some notations and some preliminary facts which are used throughout the paper. In Section 3, we derive the formula of an equivalent integral equation for ABR-type FDEs (4). Section 4 discusses the existence and uniqueness results for ABR-type FDEs (4) and ABC-type FDEs (5). In Section 4, we discuss the stability results in the frame of UH. Section 5 provides two examples to illustrate the validity of our results. Concluding remarks about our results are in the last section.

2. Preliminaries

Let $J = [a, b] \subset \mathbb{R}$ and $C(J, \mathbb{R})$ be the space of all continuous functions $\theta : J \rightarrow \mathbb{R}$ with the norm $\|\theta\| = \max \{|\theta(\sigma)| : \sigma \in J\}$. Then, $(C(J, \mathbb{R}), \| \cdot \|)$ is a Banach space.

Definition 1 (see [11]). Let $0 < p \leq 1$. Then, the left-sided ABC and ABR fractional derivatives of order p for a function θ are defined by

$$\text{ABC} D_a^p \theta(\sigma) = \frac{\mathcal{B}(p)}{1 - p} \int_a^\sigma E_p\left(\frac{p}{1 - (\sigma - \theta)^p}\right) \theta'(\theta)d\theta, \quad \sigma > a,$$

$$\text{ABR} D_a^p \theta(\sigma) = \frac{\mathcal{B}(p)}{1 - p} \frac{d}{d\sigma} \int_a^\sigma E_p\left(\frac{p}{1 - (\sigma - \theta)^p}\right) \theta'(\theta)d\theta, \quad \sigma > a,$$

(6)

respectively, where $\mathcal{B}(p)$ is the normalization function such that $\mathcal{B}(0) = \mathcal{B}(1) = 1$ and E_p is the Mittag-Leffler function defined by

$$E_p(\theta) = \sum_{l=0}^{\infty} \frac{\theta^l}{\Gamma(lp + 1)}, \quad \text{Re}(p) > 0, \theta \in \mathbb{C}. \quad (7)$$

The analogous AB fractional integral is given by
Lemma 1 (see [13]). Let $0 < p \leq 1$. If the ABC fractional derivative exists, then we have
\[
\text{AB}_a^p \vartheta(a) = \frac{1 - p}{\mathfrak{B}(p)} \vartheta(a) + \frac{p}{\mathfrak{B}(p) \Gamma(p)} \int_a^\sigma (\sigma - s)^{p-1} \vartheta(s) \mathrm{d}s.
\]
(8)

Remark 1. By applying $\text{AB}_a^p \vartheta(a)$ on both sides of the equation defined in Definition 2 and using Lemma 1, we get
\[
\text{AB}_a^p \vartheta(a) = \text{AB}_a^p \vartheta(a).
\]
(9)

Definition 2 (see [12]). The relation between the ABR and ABC fractional derivatives is given by
\[
\text{ABC}_a^\alpha \vartheta(a) = \text{AB}_a^p \vartheta(a)
\]
\[
- \frac{\mathfrak{B}(p)}{1 - p} \vartheta(a) E_p \left(\frac{p}{p - 1} (\sigma - a)^p \right).
\]
(10)

Lemma 2 (see [11]). Let $\vartheta > 0$. Then, $\text{AB}_a^p \vartheta(a)$ is bounded from $C(J, \mathbb{R})$ into $C(J, \mathbb{R})$.

Definition 3 (see Definition 3.1 of [12]). Let $0 < p \leq n + 1$ and ϑ be such that $\vartheta^{(n)} \in H^1(a, b)$. Set $\beta = p - n$. Then, $0 < \beta \leq 1$, and we define
\[
\left(\text{AB}_a^p \vartheta(a) \right)^{(n)} = \left(\text{AB}_a^p \vartheta(a)^{(n)} \right)^{(0)}(a),
\]
\[
\left(\text{AB}_a^p \vartheta(a) \right)^{(-n)} = \left(\text{AB}_a^p \vartheta(a)^{(-n)} \right)^{(0)}(a).
\]
(12)

The corresponding AB fractional integral is given by
\[
\left(\text{AB}_a^p \vartheta(a) \right)^{(n)} = \left(\text{I}_a^\beta \text{AB}_a^p \vartheta(a) \right)^{(n)}(a).
\]
(13)

Lemma 3 (see Proposition 3.1 of [12]). For $\vartheta(a)$ defined on J and $n < p \leq n + 1$, for some $n \in \mathbb{N}_0$, we have
\[
(i) \quad \left(\text{AB}_a^p \text{AB}_a^p \vartheta(a) \right)^{(n)} = \vartheta(a),
\]
\[
(ii) \quad \left(\text{AB}_a^p \text{AB}_a^p \vartheta(a) \right)^{(n)} = \vartheta(a) - \sum_{i=0}^{n-1} \left(\vartheta^{(i)}(a)/i! \right)(\sigma - a)^i
\]

\[
\text{AB}_a^\beta \vartheta(a) = \frac{1 - \beta}{\mathfrak{B}(\beta)} \vartheta(a) + \frac{\beta}{\mathfrak{B}(\beta) \Gamma(\beta)} \int_a^\sigma (\sigma - s)^{\beta-1} \vartheta(s) \mathrm{d}s = \frac{3 - p}{\mathfrak{B}(p - 2)} \vartheta(a) + \frac{p - 2}{\mathfrak{B}(p - 2) \Gamma(p - 2)} \int_a^\sigma (\sigma - s)^{p-3} h(s) \mathrm{d}s,
\]
(17)

\[
\text{AB}_a^\beta \vartheta(a) = \int_a^\sigma (\sigma - s)^{\beta-1} \vartheta(s) \mathrm{d}s + \frac{p - 2}{\mathfrak{B}(p - 2) \Gamma(p - 2)} \int_a^\sigma (\sigma - s)^{p-3} h(s) \mathrm{d}s.
\]
(18)

Lemma 6 (see Example 3.3 of [12]). Let $p \in (1, 2]$ and $h \in C(J, \mathbb{R})$. Then, the solution of the following linear problem,
\[
\left\{ \begin{array}{l}
\text{AB}_a^p \vartheta(a) = h(a), \\
\vartheta(a) = c_1, \vartheta(b) = c_2,
\end{array} \right.
\]
(15)

is given by
\[
\vartheta(a) = c_1 + c_2 (\sigma - a) + \text{I}_a^\beta \text{AB}_a^p h(a), \quad 0 < \beta = (p - 2) \leq 1,
\]
(16)

where
\[
\text{AB}_a^p \vartheta(a) = \frac{1 - p}{\mathfrak{B}(p)} \vartheta(a) + \frac{p}{\mathfrak{B}(p) \Gamma(p)} \int_a^\sigma (\sigma - s)^{p-1} \vartheta(s) \mathrm{d}s.
\]
(19)
\[\vartheta(\sigma) = c_1 + c_2 (\sigma - a) + A^{\mathcal{B}} D^p_a, h(\sigma), \]
(20)

where
\[A^{\mathcal{B}} I^p_a, h(\sigma) = \frac{2 - p}{\mathcal{B}(p - 1)} \int_a^\sigma h(s) ds \]
\[+ \frac{p - 1}{\mathcal{B}(p - 1)^{1/p}} \int_a^\sigma (s - \sigma)^{p-1} h(s) ds. \]
(21)

3. Equivalent Integral Equation for Problem (4)

Lemma 7. Let \(p \in (2, 3], \delta \in (0, 1], \Lambda = (b - a) - A^{\mathcal{B}} I^p_a, \) \((\zeta - a) \neq 0, \) and \(h_1 \in C(J, \mathbb{R}). \) A function \(\vartheta \) is a solution of the following ABR problem,
\[\begin{align*}
\begin{cases}
A^{\mathcal{B}} D^p_a, \vartheta(\sigma) = h_1(\sigma), & \sigma \in J, \\
\vartheta(a) = 0, \vartheta(b) = A^{\mathcal{B}} I^p_a, \vartheta(\zeta), & \zeta \in (a, b),
\end{cases}
\end{align*} \]
(22)

if and only if \(\vartheta \) satisfies the following fractional integral equation:
\[\vartheta(\sigma) = \frac{(a - \sigma)}{\Lambda} \left[A^{\mathcal{B}} I^p_a, h_1(\zeta) - A^{\mathcal{B}} I^p_a, h_1(b) \right] + A^{\mathcal{B}} I^p_a, h_1(\sigma). \]
(23)

Proof. Assume that \(\vartheta \) is the solution to the first equation of (22). Then, via Lemma 5, we have
\[\vartheta(\sigma) = c_1 + c_2 (\sigma - a) + A^{\mathcal{B}} I^p_a, h_1(\sigma). \]
(24)

Now, by condition \(\vartheta(a) = 0, \) we get \(c_1 = 0, \) and hence, equation (24) reduces to
\[\vartheta(\sigma) = c_2 (\sigma - a) + A^{\mathcal{B}} I^p_a, h_1(\sigma). \]
(25)

Taking the operator \(A^{\mathcal{B}} I^p_a, \) on both sides of equation (25), we have
\[A^{\mathcal{B}} I^p_a, \vartheta(\sigma) = A^{\mathcal{B}} I^p_a, c_2 (\sigma - a) + A^{\mathcal{B}} I^p_a, A^{\mathcal{B}} I^p_a, h_1(\sigma). \]
(26)

Now, replacing \(\sigma \) by \(\zeta, \) we get
\[A^{\mathcal{B}} I^p_a, \vartheta(\zeta) = A^{\mathcal{B}} I^p_a, c_2 (\zeta - a) + A^{\mathcal{B}} I^p_a, A^{\mathcal{B}} I^p_a, h_1(\zeta). \]
(27)

By the second condition \(\vartheta(b) = A^{\mathcal{B}} I^p_a, \vartheta(\zeta) \) together with equations (25) and (27), we get
\[c_2 = \frac{1}{\Lambda} \left[A^{\mathcal{B}} I^p_a, A^{\mathcal{B}} I^p_a, h_1(\zeta) - A^{\mathcal{B}} I^p_a, h_1(b) \right]. \]
(28)

Substituting \(c_1 \) and \(c_2 \) in (24), we get (23).

Conversely, assume that \(\vartheta \) satisfies (23). Then, by applying the operator \(A^{\mathcal{B}} D^p_a, \) on both sides of (23) and using Lemmas 3 and 4, we get
\[A^{\mathcal{B}} D^p_a, \vartheta(\sigma) = \frac{A^{\mathcal{B}} I^p_a, (\sigma - a)}{\Lambda} \left[A^{\mathcal{B}} I^p_a, A^{\mathcal{B}} I^p_a, h_1(\zeta) - A^{\mathcal{B}} I^p_a, h_1(b) \right] \]
\[+ A^{\mathcal{B}} I^p_a, A^{\mathcal{B}} I^p_a, h_1(\sigma). \]
(29)

Next, taking \(\sigma \to a \) in (23), we get \(\vartheta(a) = 0. \) On the contrary, applying \(A^{\mathcal{B}} I^p_a, \) on both sides of (23), we get
\[A^{\mathcal{B}} I^p_a, \vartheta(\sigma) = \frac{A^{\mathcal{B}} I^p_a, (\sigma - a)}{\Lambda} \left[A^{\mathcal{B}} I^p_a, A^{\mathcal{B}} I^p_a, h_1(\zeta) - A^{\mathcal{B}} I^p_a, h_1(b) \right] \]
\[+ A^{\mathcal{B}} I^p_a, A^{\mathcal{B}} I^p_a, h_1(\sigma). \]
(30)

Replacing \(\sigma \) by \(\zeta, \) we get
\[A^{\mathcal{B}} I^p_a, \vartheta(\zeta) = \frac{A^{\mathcal{B}} I^p_a, (\zeta - a)}{\Lambda} \left[A^{\mathcal{B}} I^p_a, A^{\mathcal{B}} I^p_a, h_1(\zeta) - A^{\mathcal{B}} I^p_a, h_1(b) \right] \]
\[+ A^{\mathcal{B}} I^p_a, A^{\mathcal{B}} I^p_a, h_1(\zeta). \]
(31)

By the definition of \(\Lambda, \) we can rewrite (31) as
\[A^{\mathcal{B}} I^p_a, \vartheta(\zeta) = \frac{(b - a) - (b - a) - A^{\mathcal{B}} I^p_a, (\zeta - a)}{(b - a) - A^{\mathcal{B}} I^p_a, (\zeta - a)} \]
\[\left[A^{\mathcal{B}} I^p_a, A^{\mathcal{B}} I^p_a, h_1(\zeta) - A^{\mathcal{B}} I^p_a, h_1(b) \right] + A^{\mathcal{B}} I^p_a, A^{\mathcal{B}} I^p_a, h_1(\zeta) \]
\[= (b - a) \]
\[(b - a) - A^{\mathcal{B}} I^p_a, (\zeta - a) \]
\[\left[A^{\mathcal{B}} I^p_a, A^{\mathcal{B}} I^p_a, h_1(\zeta) - A^{\mathcal{B}} I^p_a, h_1(b) \right] + A^{\mathcal{B}} I^p_a, h_1(b) \]
\[= (b - a) \]
\[\left[A^{\mathcal{B}} I^p_a, A^{\mathcal{B}} I^p_a, h_1(\zeta) - A^{\mathcal{B}} I^p_a, h_1(b) \right] + A^{\mathcal{B}} I^p_a, h_1(b) \]
\[= \vartheta(b). \]
(32)

Thus, the Atangana–Baleanu fractional integral conditions are satisfied. \(\square \)

As a result of Lemma 7, we get the following theorem.

Theorem 3. Let \(p \in (2, 3], \delta \in (0, 1], \Lambda = (b - a) - A^{\mathcal{B}} I^p_a, \) \((\zeta - a) \neq 0, \) and \(f : J \times \mathbb{R} \to \mathbb{R} \) be a continuous function. Then, ABR-type FDEs (4) are equivalent to the following FIE:

\[\text{Journal of Function Spaces} \]
\[\Theta(\sigma) = \frac{(\sigma - a)}{\Lambda} \left[A_1 \int_a^\zeta (\zeta - s) f(s, \Theta(s))ds + \frac{A_2}{\Gamma(p - 2)} \int_a^\zeta (\zeta - s)^{p-1} f(s, \Theta(s))ds \right. \\
+ \frac{A_3}{\Gamma(\delta)} \int_a^\zeta (\zeta - s)^{\delta-1} \int_a^\zeta (s - \eta) f(\eta, \Theta(\eta)) d\eta ds + \frac{A_4}{\Gamma(\delta + p - 2)} \int_a^\zeta (\zeta - s)^{\delta+p-1} f(s, \Theta(s))ds \\
- \frac{A_5}{\Gamma(p - 2)} \int_a^b (b - s) f(s, \Theta(s))ds - \frac{A_6}{\Gamma(p - 2)} \int_a^b (b - s)^{p-1} f(s, \Theta(s))ds \right] \\
+ \frac{A_5}{\Gamma(p - 2)} \int_a^\alpha (\sigma - s) f(s, \Theta(s))ds + \frac{A_6}{\Gamma(p - 2)} \int_a^\alpha (\sigma - s)^{p-1} f(s, \Theta(s))ds, \] (33)

where
\[A_1 = \frac{(1 - \delta)(3 - p)}{\mathcal{B}(\delta)\mathcal{B}(p - 2)}, \]
\[A_2 = \frac{(1 - \delta)(p - 2)}{\mathcal{B}(\delta)\mathcal{B}(p - 2)}, \]
\[A_3 = \frac{\delta(3 - p)}{\mathcal{B}(\delta)\mathcal{B}(p - 2)}, \]
\[A_4 = \frac{\delta(p - 2)}{\mathcal{B}(\delta)\mathcal{B}(p - 2)}, \]
\[A_5 = \frac{3 - p}{\mathcal{B}(p - 2)}, \]
\[A_6 = \frac{p - 2}{\mathcal{B}(p - 2)}. \]

Proof. In view of Lemma 7, we have
\[\Theta(\sigma) = \frac{(\sigma - a)}{\Lambda} \left[A_1^{\delta} A_2^{\delta} f(\zeta, \Theta(\zeta)) - A_1^{p-1} \right] + \frac{A_5 f(\sigma, \Theta(\sigma))}{\Gamma(p - 2)}. \] (34)

By using definitions of A_1^{δ} in the case $\delta \in (0, 1)$ defined in (8) and A_1^{p-1} in the case $p \in (2, 3)$ defined in (18), we can rewrite equation (35) as follows:

\[\Theta(\sigma) = \frac{(\sigma - a)}{\Lambda} \left[\frac{3 - p}{\mathcal{B}(p - 2)} \int_a^\zeta (\zeta - s) f(s, \Theta(s))ds + \frac{p - 2}{\mathcal{B}(p - 2)\Gamma(p - 2)} \int_a^\zeta (\zeta - s)^{p-1} f(s, \Theta(s))ds \right. \\
+ \frac{\delta}{\mathcal{B}(\delta)\Gamma(\delta)} \int_a^\zeta (\zeta - s)^{\delta-1} \int_a^\zeta (s - \eta) f(\eta, \Theta(\eta)) d\eta ds + \frac{p - 2}{\mathcal{B}(p - 2)\Gamma(p - 2)} \int_a^\zeta (s - \eta)^{p-1} f(\eta, \Theta(\eta)) d\eta \right] \\
- \frac{3 - p}{\mathcal{B}(p - 2)} \int_a^b (b - s) f(s, \Theta(s))ds - \frac{p - 2}{\mathcal{B}(p - 2)\Gamma(p - 2)} \int_a^b (b - s)^{p-1} f(s, \Theta(s))ds \]
\[+ \frac{3 - p}{\mathcal{B}(p - 2)} \int_a^\alpha (\sigma - s) f(s, \Theta(s))ds + \frac{p - 2}{\mathcal{B}(p - 2)\Gamma(p - 2)} \int_a^\alpha (\sigma - s)^{p-1} f(s, \Theta(s))ds \]
\[= \frac{(\sigma - a)}{\Lambda} \left[\frac{1 - \delta}{\mathcal{B}(\delta)\mathcal{B}(p - 2)} \int_a^\zeta (\zeta - s) f(s, \Theta(s))ds \\
+ \frac{(1 - \delta)(3 - p)}{\mathcal{B}(\delta)\mathcal{B}(p - 2)\Gamma(p - 2)} \int_a^\zeta (\zeta - s)^{p-1} f(s, \Theta(s))ds \right. \\
+ \frac{(1 - \delta)(p - 2)}{\mathcal{B}(\delta)\mathcal{B}(p - 2)\Gamma(p - 2)} \int_a^\zeta (\zeta - s)^{p-1} f(s, \Theta(s))ds \]
\[\begin{align*}
+ \frac{3-p}{\mathcal{B}(p-2)} \frac{\delta}{\mathcal{B}(\delta)\Gamma(\delta)} \int_a^\xi (\zeta - s)^{\delta-1} \int_a^\varepsilon (s-\eta) f(\eta, \Theta(\eta)) d\eta ds \\
+ \frac{p-2}{\mathcal{B}(p-2)\Gamma(p-2)} \frac{\delta}{\mathcal{B}(\delta)\Gamma(\delta)} \int_a^\xi (\zeta - s)^{\delta-1} \int_a^\varepsilon (s-\eta) f(\eta, \Theta(\eta)) d\eta ds \\
- \frac{3-p}{\mathcal{B}(p-2)} \int_a^b (b-s) f(s, \Theta(s)) ds - \frac{p-2}{\mathcal{B}(p-2)\Gamma(p-2)} \int_a^b (b-s)^{p-1} f(s, \Theta(s)) ds \\
+ \frac{3-p}{\mathcal{B}(p-2)} \int_a^\sigma (\sigma-s) f(s, \Theta(s)) ds + \frac{p-2}{\mathcal{B}(p-2)\Gamma(p-2)} \int_a^\sigma (\sigma-s)^{p-1} f(s, \Theta(s)) ds \\
+ \frac{(\sigma-a)}{\Lambda} [\mathcal{D}_1^\xi (\zeta-s) f(s, \Theta(s)) ds + \frac{\mathcal{D}_2^\xi (\zeta-s)^{p-1} f(s, \Theta(s)) ds}{\mathcal{B}(p-2)} \int_a^\xi (\zeta - s)^{\delta-1} \int_a^\varepsilon (s-\eta) f(\eta, \Theta(\eta)) d\eta ds. \\
\end{align*} \]

For simplicity, we set

\[\begin{align*}
\rho_1 &= \frac{\mathcal{D}_1^\xi (\zeta-a)^2}{2} + \frac{\mathcal{D}_2^\xi (\zeta-a)^p}{\Gamma(p-1)} + \frac{\mathcal{D}_3^\xi (\zeta-a)^{\delta+1}}{\Gamma(\delta+1)} \\
+ \frac{\mathcal{D}_4^\xi (\zeta-a)^{\delta p}}{\Gamma(\delta+p-1)} + \frac{\mathcal{D}_5^\xi (b-a)^2}{2} + \frac{\mathcal{D}_6^\xi (b-a)^p}{\Gamma(p-1)}, \\
\rho_2 &= \frac{\mathcal{D}_5^\xi (b-a)^2}{2} + \frac{\mathcal{D}_6^\xi (b-a)^p}{\Gamma(p-1)}, \\
\rho_3 &= \frac{\mathcal{D}_7^\xi (\zeta-a)^2}{2} + \frac{\mathcal{D}_8^\xi (\zeta-a)^p}{\Gamma(p+1)} + \frac{\mathcal{D}_9^\xi (\zeta-a)^{\delta+1}}{\Gamma(\delta+1)} \\
+ \frac{\mathcal{D}_{10}^\xi (\zeta-a)^{\delta p}}{\Gamma(\delta+p+1)} + \frac{\mathcal{D}_{11}^\xi (b-a)^2}{2} + \frac{\mathcal{D}_{12}^\xi (b-a)^p}{\Gamma(p+1)}, \\
\rho_4 &= \frac{\mathcal{D}_{11}^\xi (b-a)^2}{2} + \frac{\mathcal{D}_{12}^\xi (b-a)^p}{\Gamma(p+1)}, \\
\end{align*} \]

4. Existence and Uniqueness of Solutions for Problem (4)

In this section, we devote our intention to prove the existence and uniqueness of solutions for ABR-type FDEs (4).

Theorem 4. Suppose that \(f: J\times \mathbb{R} \rightarrow \mathbb{R} \) is a continuous function. Moreover, we assume that

\[|f(a, u) - f(\sigma, \pi)| \leq L_f |u - \pi|, \quad L_f > 0, u, \pi \in \mathbb{R}. \]

If

\[\mathcal{X} = L_f \left(\frac{\rho_1(b-a)}{\Lambda} + \rho_2 \right) < 1, \]

then ABR-type FDEs (4) have a unique solution in \(J \).

Proof. Consider the operator \(\Xi: C(J, \mathbb{R}) \rightarrow C(J, \mathbb{R}) \) defined by

\[\Xi \Theta(\sigma) = \frac{(\sigma-a)}{\Lambda} [\mathcal{D}_1^\xi (\zeta-s) f(s, \Theta(s)) ds + \frac{\mathcal{D}_2^\xi (\zeta-s)^{p-1} f(s, \Theta(s)) ds}{\mathcal{B}(p-2)} \int_a^\xi (\zeta - s)^{\delta-1} \int_a^\varepsilon (s-\eta) f(\eta, \Theta(\eta)) d\eta ds. \]

With radius \(\mid \phi \mid \leq \varphi \) by (38), we have
\[
\| \Xi \| \leq \left(\frac{L_f \varphi + \omega_f}{\Lambda} \right) \frac{(\sigma - a)}{\varrho_1} + \left(\frac{L_f \varphi + \omega_f}{\Lambda} \right) \frac{(b - a)}{\varrho_1 + \varrho_2} \omega_f
\]
\[
\leq L_f \left(\frac{(b - a)}{\varrho_1 + \varrho_2} \right) \varphi + \left(\frac{(b - a)}{\varrho_1 + \varrho_2} \right) \omega_f
\]
\[
= \Xi \varphi + \Xi_1 \varphi < \varphi.
\]
Thus, \(\Xi \Pi \varphi \subset \Pi \varphi \). Next, we will show that \(\Xi \) is a contraction mapping. Let \(\hat{\vartheta}, \hat{\vartheta} \in \mathcal{C}(J, \mathbb{R}) \) and \(\sigma \in J \). Then, we have

Define a closed ball \(\Pi \varphi \) as
\[
\Pi \varphi = \{ \vartheta \in \mathcal{C}(J, \mathbb{R}) : \| \vartheta \| \leq \varphi \}, \tag{41}
\]
with radius \(\varphi \geq (\Xi_1 \varphi / (1 - \Xi)) \), where

By (38), we have
\[
|f(\vartheta, \vartheta(\sigma))|
= |f(\vartheta, \vartheta(\sigma)) - f(\vartheta, 0)| + |f(\vartheta, 0)| \leq L_f \| \vartheta(\sigma) \| + |f(\vartheta, 0)| \leq L_f \varphi + \omega_f.
\]

Hence,
\[|(\Xi \theta)(\sigma) - (\Xi \bar{\theta})(\sigma)| \leq \frac{(\sigma - a)}{\Lambda} \left[\mathcal{A}_1 \int_a^\zeta (\zeta - s)|f(s, \theta(s)) - f(s, \bar{\theta}(s))|ds + \frac{\mathcal{A}_2}{\Gamma(p - 2)} \int_a^\zeta (\zeta - s)^{p - 1}|f(s, \theta(s)) - f(s, \bar{\theta}(s))|ds \right] \]

\[+ \frac{\mathcal{A}_3}{\Gamma(\delta)} \int_a^\zeta (\zeta - s)^{\delta - 1} \int_a^s (s - \eta)|f(\eta, \theta(\eta)) - f(\eta, \bar{\theta}(\eta))|d\eta ds \]

\[+ \frac{\mathcal{A}_4}{\Gamma(\delta + p - 2)} \int_a^\zeta (\zeta - s)^{\delta + p - 1}|f(s, \theta(s)) - f(s, \bar{\theta}(s))|ds \]

\[+ \mathcal{A}_5 \int_a^b (b - s)|f(s, \theta(s)) - f(s, \bar{\theta}(s))|ds \]

\[+ \frac{\mathcal{A}_6}{\Gamma(p - 2)} \int_a^\sigma (\sigma - s)^{p - 1}|f(s, \theta(s)) - f(s, \bar{\theta}(s))|ds \]

From our assumptions, we obtain

\[|f(s, \theta(s)) - f(s, \bar{\theta}(s))| \leq L_f|\theta(s) - \bar{\theta}(s)| \leq L_f\|\theta - \bar{\theta}\|. \]

Hence,

\[\|\Xi \theta - \Xi \bar{\theta}\| \leq \frac{L_f(\sigma - a)}{\Lambda} \left[\mathcal{A}_1 (\zeta - a)^2 + \frac{\mathcal{A}_2 (\zeta - a)^p}{\Gamma(p - 1)} \right] \]

\[+ \frac{\mathcal{A}_3 (\zeta - a)^{\delta + 1}}{\Gamma(\delta + 1)} + \frac{\mathcal{A}_4 (\zeta - a)^{\delta + p}}{\Gamma(\delta + p - 1)} \]

\[+ \frac{\mathcal{A}_5 (b - a)^2}{2} + \frac{\mathcal{A}_6 (b - a)^p}{\Gamma(p - 1)} \|\theta - \bar{\theta}\| \]

\[+ L_f \left(\frac{\mathcal{A}_5 (\sigma - a)^2}{2} + \frac{\mathcal{A}_6 (\sigma - a)^p}{\Gamma(p - 1)} \right) \|\theta - \bar{\theta}\|. \]

Due to \(\mathcal{Z} < 1 \), we conclude that \(\Xi \) is a contraction operator. Hence, Theorem 1 implies that \(\Xi \) has a unique fixed point in \(J \).

Theorem 5. Assume that the conditions in Theorem 4 are satisfied. Then, ABR-type FDEs (4) have at least one solution in \(C(J, \mathbb{R}) \).

Proof. Let us consider the operator \(\Xi \) defined in Theorem 4. Now, we divide the operator \(\Xi \) into two operators \(\Xi_1 \) and \(\Xi_2 \) such that

\[(\Xi \theta)(\sigma) = (\Xi_1 \theta)(\sigma) + (\Xi_2 \theta)(\sigma). \]

where

\[(\Xi_1 \theta)(\sigma) = \frac{(\sigma - a)}{\Lambda} \left[\mathcal{A}_1 \int_a^\zeta (\zeta - s)f(s, \theta(s))ds + \frac{\mathcal{A}_2}{\Gamma(p - 2)} \int_a^\zeta (\zeta - s)^{p - 1}f(s, \theta(s))ds \right] \]

\[+ \frac{\mathcal{A}_3}{\Gamma(\delta)} \int_a^\zeta (\zeta - s)^{\delta - 1} \int_a^s (s - \eta)f(\eta, \theta(\eta))d\eta ds \]

\[+ \frac{\mathcal{A}_4}{\Gamma(\delta + p - 2)} \int_a^\zeta (\zeta - s)^{\delta + p - 1}f(s, \theta(s))ds \]
Let us consider a closed ball \(\Pi \), defined in Theorem 4. In order to apply Theorem 2, we will divide the proof into the following steps.

Step 1. We show that \(\Xi_1 \vartheta + \Xi_2 \bar{\vartheta} \in \Pi \) for all \(\vartheta, \bar{\vartheta} \in \Pi \). For operator \(\Xi_1 \), we have

\[
\|(\Xi_1 \vartheta)\| \leq \frac{(\sigma-a)}{\Lambda} \left(\mathcal{A}_1 \int_{\vartheta}^{\Xi}(\zeta-s)f(s,\vartheta(s))\,ds \right) + \frac{\mathcal{A}_2}{\Gamma(p-2)} \int_{a}^{\Xi} (\zeta-s)^{p-1}f(s,\vartheta(s))\,ds \\
+ \frac{\mathcal{A}_3}{\Gamma(\delta)} \int_{a}^{\Xi}(\zeta-s)^{\delta-1}(s-\eta)f(\eta,\vartheta(\eta))\,d\eta \\
+ \frac{\mathcal{A}_4}{\Gamma(\delta+p-2)} \int_{a}^{\Xi} (\zeta-s)^{\delta+p-1}f(s,\vartheta(s))\,ds \\
+ \mathcal{A}_5 \int_{a}^{b} (b-s)f(s,\vartheta(s))\,ds + \frac{\mathcal{A}_6}{\Gamma(p-2)} \int_{a}^{b} (b-s)^{p-1}f(s,\vartheta(s))\,ds.
\]

By (44), we get

\[
\|(\Xi_1 \vartheta)\| \leq \left(\mathcal{L}_f \phi + \lambda_0 \right) \frac{(b-a)}{\Lambda} \rho_1.
\]

(52)

In the same manner, one can prove that

\[
\|(\Xi_2 \bar{\vartheta})\| = \left(\mathcal{L}_f \phi + \lambda_0 \right) \rho_2.
\]

(53)

Inequalities (52) and (53) give

\[
\|(\Xi_1 \vartheta + \Xi_2 \bar{\vartheta})\| \leq \|(\Xi_1 \vartheta)\| + \|(\Xi_2 \bar{\vartheta})\|
\]

\[
\leq \left(\mathcal{L}_f \phi + \lambda_0 \right) \frac{(b-a)}{\Lambda} \rho_1 + \left(\mathcal{L}_f \phi + \lambda_0 \right) \rho_2,
\]

(54)

Step 2. \(\Xi_1 \) is a contraction map. Due to the operator \(\Xi \) being a contraction map, we conclude that \(\Xi_1 \) is contraction too.

Step 3. \(\Xi_2 \) is continuous and compact. Since \(f \) is continuous, \(\Xi_2 \) is continuous too. Also, by (53), \(\Xi_2 \) is uniformly bounded on \(\Pi \). Now, we show that \(\Xi_2 (\Pi) \) is equicontinuous. For this purpose, let \(\vartheta \in \Pi \) and \(a \leq \sigma_1 < \sigma_2 \leq b \).

Then, by using (44), we have

\[
\|(\Xi_2 \bar{\vartheta})(\sigma_2) - (\Xi_2 \bar{\vartheta})(\sigma_1)\|
\]

\[
\leq \mathcal{A}_5 \left[\int_{a}^{\sigma_1} (\sigma_2-s) - (\sigma_1-s) f(s,\vartheta(s))\,ds + \int_{\sigma_1}^{\sigma_2} (\sigma_2-s) f(s,\vartheta(s))\,ds \right] \\
+ \frac{\mathcal{A}_6}{\Gamma(p-2)} \int_{a}^{\sigma_1} [(\sigma_2-s)^{p-1} - (\sigma_1-s)^{p-1}] f(s,\vartheta(s))\,ds \\
+ \frac{\mathcal{A}_6}{\Gamma(p-2)} \int_{\sigma_1}^{\sigma_2} (\sigma_2-s)^{p-1} f(s,\vartheta(s))\,ds
\]

\[
\leq \left(\mathcal{L}_f \phi + \lambda_0 \right) \frac{(b-a)}{\Lambda} \rho_1 + \left(\mathcal{L}_f \phi + \lambda_0 \right) \rho_2 \\
+ \frac{\mathcal{A}_6}{\Gamma(p-2)} \left[(\sigma_2-a)^{2} - (\sigma_1-a)^{2} \right].
\]

(55)
Thus,
\[
\| (\Xi_2 \mathcal{B})(\sigma_2) - (\Xi_2 \mathcal{B})(\sigma_1) \| \to 0 \quad \text{as} \quad \sigma_2 \to \sigma_1. \quad (56)
\]

According to the above steps and Arzela–Ascoli theorem, we understand that \((\Xi_2 \Pi_\alpha)\) is relatively compact. Consequently, \(\Xi_2\) is completely continuous. Thus, by Theorem 2, we infer that ABR-type FDEs (4) have at least one solution in \(f\).

5. Existence of a Unique Solution for Problem (5)

In this section, we devote our intention to proving the existence of a unique solution for ABC-type FDEs (5).

Lemma 8. Let \(p \in (1, 2], \delta \in (0, 1], \Lambda = (b-a) - \AB\delta^{\alpha} (\zeta - a) \neq 0, \) and \(h_2 \in C(J, \mathbb{R})\). A function \(\theta\) is a solution of the following ABC problem,
\[
\begin{align*}
\ABC_{\alpha}^p \theta(a) &= h_2(a), \quad \sigma \in [a, b], \\
\theta(a) &= 0, \theta(b) = \AB\delta^{\alpha} \theta(\zeta), \quad \zeta \in (a, b),
\end{align*}
\]
\[
(57)
\]
if and only if \(\theta\) satisfies the following fractional integral equation:
\[
\theta(\sigma) = \frac{(\sigma - a)}{\Lambda} \left[\mathcal{A}_7 \int_a^\zeta f(s, \theta(s))ds + \mathcal{A}_8 \frac{\Gamma(p)}{\Gamma(\delta)} \int_a^\zeta (\zeta - s)^{p-1}(s, \theta(s))ds \\
+ \mathcal{A}_9 \int_a^b (\zeta - s)^{p-1} \int_a^s f(\eta, \theta(\eta))d\eta ds + \mathcal{A}_{10} \frac{\Gamma(p)}{\Gamma(\delta + p)} \int_a^\zeta (\zeta - s)^{p-1}(s, \theta(s))ds \\
- \mathcal{A}_{11} \int_a^b f(s, \theta(s))ds - \mathcal{A}_12 \frac{\Gamma(p)}{\Gamma(\delta + p)} \int_a^b (b-s)^{p-1}(s, \theta(s))ds \\
+ \mathcal{A}_{13} \int_a^\sigma f(s, \theta(s))ds + \mathcal{A}_{14} \frac{\Gamma(p)}{\Gamma(\delta)} \int_a^\sigma (\sigma - s)^{p-1}(s, \theta(s))ds,
\]
where
\[
\begin{align*}
\mathcal{A}_7 &= \frac{(1 - \delta)(2 - p)}{\mathfrak{B}(\delta) \mathfrak{B}(p - 1)}, \\
\mathcal{A}_8 &= \frac{(1 - \delta)(p - 1)}{\mathfrak{B}(\delta) \mathfrak{B}(p - 1)}, \\
\mathcal{A}_9 &= \frac{\delta(2 - p)}{\mathfrak{B}(\delta) \mathfrak{B}(p - 1)}, \\
\mathcal{A}_{10} &= \frac{\delta(p - 1)}{\mathfrak{B}(\delta) \mathfrak{B}(p - 1)}, \\
\mathcal{A}_{11} &= \frac{2 - p}{\mathfrak{B}(p - 1)}, \\
\mathcal{A}_{12} &= \frac{p - 1}{\mathfrak{B}(p - 1)}.
\end{align*}
\]

Proof. Assume that \(\theta\) is the solution to the first equation of (57). Then, via Lemma 6 and by the same way in Lemma 7, one can prove that the solution of equation (57) is given as (58), where \(\AB\delta^{\alpha} h_2(\sigma)\) is defined in (21).

Remark 2. The AB fractional integral \(\AB\delta^{\alpha}\) used in Lemma 7 was defined in (18), while the AB fractional integral \(\AB\delta^{\alpha}\) used in Lemma 7 was defined in (21).

Theorem 6. Let \(p \in (1, 2], \delta \in (0, 1], \Lambda = (b-a) - \AB\delta^{\alpha} (\zeta - a) \neq 0, \) and \(f: J \times \mathbb{R} \to \mathbb{R}\) be a continuous function. Then, in the light of Lemma 6, ABC-type FDEs (5) are equivalent to the following FIE:

\[
\theta(\sigma) = \frac{(\sigma - a)}{\Lambda} \left[\AB\delta^{\alpha} \AB\delta^{\alpha} f(\zeta, \theta(\zeta)) - \AB\delta^{\alpha} f(b, \theta(b)) \right] \\
+ \AB\delta^{\alpha} f(\sigma, \theta(\sigma)).
\]

Proof. In view of Lemma 8, we have
\[
\theta(\sigma) = \frac{(\sigma - a)}{\Lambda} \left[\AB\delta^{\alpha} \AB\delta^{\alpha} f(\zeta, \theta(\zeta)) - \AB\delta^{\alpha} f(b, \theta(b)) \right] \\
+ \AB\delta^{\alpha} f(\sigma, \theta(\sigma)).
\]

By using definitions of \(\AB\delta^{\alpha}\) in the case \(\delta \in (0, 1)\) defined in (8) and \(\AB\delta^{\alpha}\) in the case \(p \in (1, 2)\) defined in (21), we can rewrite equation (61) as follows:
\[\vartheta(a) = \frac{(\sigma - a)}{\Lambda} \left[(1 - \delta) \frac{2 - p}{\mathcal{B}(p - 1)} \int_a^c f(s, \vartheta(s))ds + \frac{p - 1}{\mathcal{B}(p - 2)} \Gamma(p) \right] \int_a^c (\zeta - s)^{p - 1} (s, \vartheta(s))ds \]
\[+ \frac{\delta}{\mathcal{B}(\delta) \Gamma(\delta)} \int_a^c (\zeta - s)^{\eta - 1} \left\{ \int_a^c f(\eta, \vartheta(\eta))d\eta + \frac{p - 1}{\mathcal{B}(p - 2)} \Gamma(p) \right\} \int_a^c (s - \eta)^{p - 1} f(\eta, \vartheta(\eta))d\eta \right\} ds \]
\[- \frac{2 - p}{\mathcal{B}(p - 1)} \int_a^b f(s, \vartheta(s))ds - \frac{p - 1}{\mathcal{B}(p - 2)} \Gamma(p) \int_a^b (b - s)^{p - 1} (s, \vartheta(s))ds \]
\[+ \frac{2 - p}{\mathcal{B}(p - 1)} \int_a^\varphi f(s, \vartheta(s))ds + \frac{p - 1}{\mathcal{B}(p - 2)} \Gamma(p) \int_a^\varphi (\sigma - s)^{p - 1} (s, \vartheta(s))ds \]
\[= \frac{(\sigma - a)}{\Lambda} [\mathcal{A}_7 \int_a^c f(s, \vartheta(s))ds + \frac{\mathcal{A}_8}{\Gamma(p)} \int_a^c (\zeta - s)^{p - 1} (s, \vartheta(s))ds \]
\[+ \frac{\mathcal{A}_9}{\Gamma(\delta)} \int_a^c (\zeta - s)^{\delta - 1} \int_a^\delta f(\eta, \vartheta(\eta))d\eta ds + \frac{\mathcal{A}_{10}}{\Gamma(\delta + p)} \int_a^c (\zeta - s)^{\delta + p - 1} (s, \vartheta(s))ds \]
\[- \mathcal{A}_{11} \int_a^b f(s, \vartheta(s))ds - \frac{\mathcal{A}_{12}}{\Gamma(p)} \int_a^b (b - s)^{p - 1} (s, \vartheta(s))ds \]
\[+ \mathcal{A}_{11} \int_a^\varphi f(s, \vartheta(s))ds + \frac{\mathcal{A}_{12}}{\Gamma(p)} \int_a^\varphi (\sigma - s)^{p - 1} (s, \vartheta(s))ds. \]

Theorem 7. Suppose that \(f : J \times \mathbb{R} \to \mathbb{R} \) is a continuous function and there exists a constant number \(L_f > 0 \) such that \(|f(\sigma, u) - f(\sigma, \bar{u})| \leq L_f |u - \bar{u}| \) for any \(u, \bar{u} \in J \). If
\[\mathcal{L}_3 = L_f \left(\frac{\rho_3 (b - a)}{\Lambda} + \rho_4 \right) < 1, \]
then ABC-type FDEs (5) have a unique solution in \(J \).

Proof. Define the operator \(\varphi : C(J, \mathbb{R}) \to C(J, \mathbb{R}) \) by
\[\varphi \vartheta(a) = \frac{(\sigma - a)}{\Lambda} \left[\mathcal{A}_7 \int_a^c f(s, \vartheta(s))ds + \frac{\mathcal{A}_8}{\Gamma(p)} \int_a^c (\zeta - s)^{p - 1} (s, \vartheta(s))ds \]
\[+ \frac{\mathcal{A}_9}{\Gamma(\delta)} \int_a^c (\zeta - s)^{\delta - 1} \int_a^\delta f(\eta, \vartheta(\eta))d\eta ds + \frac{\mathcal{A}_{10}}{\Gamma(\delta + p)} \int_a^c (\zeta - s)^{\delta + p - 1} (s, \vartheta(s))ds \]
\[- \mathcal{A}_{11} \int_a^b f(s, \vartheta(s))ds - \frac{\mathcal{A}_{12}}{\Gamma(p)} \int_a^b (b - s)^{p - 1} (s, \vartheta(s))ds \]
\[+ \mathcal{A}_{11} \int_a^\varphi f(s, \vartheta(s))ds + \frac{\mathcal{A}_{12}}{\Gamma(p)} \int_a^\varphi (\sigma - s)^{p - 1} (s, \vartheta(s))ds. \]

Define a closed ball \(\Theta_{\varphi} \) as
\[\Theta_{\varphi} = \{ \vartheta \in C(J, \mathbb{R}) : \|\vartheta\| \leq \varphi \}, \]
with radius \(\varphi \geq (\mathcal{L}_2)/(1 - \mathcal{L}_3) \), where
\[\mathcal{L}_2 = \left(\frac{b - a}{\Lambda} \rho_3 + \rho_4 \right) \omega_f. \]

Now, we will show that \(\Xi \Theta_{\varphi} \subset \Theta_{\varphi} \). For all \(\vartheta \in \Theta_{\varphi} \) and \(\sigma \in J \) and by (47), we have
\[\|f\| \leq \frac{(L_f^1 + \omega_f)(\sigma - a)}{\Lambda} \rho_3 + (L_f^1 + \omega_f) \rho_4 \]
\[\leq L_f \left(\frac{(b - a)}{\Lambda} \rho_3 + \rho_4 \right) + \left(\frac{(b - a)}{\Lambda} \rho_3 + \rho_4 \right) \omega_f \]
\[= \mathcal{L}_3 \eta + \mathcal{L}_2 \eta \leq \eta. \]

Thus, \(\mathcal{L}_2 \eta \leq \mathcal{L}_3 \eta \leq \eta. \) Next, we need to prove that \(\mathcal{L}_2 \) is a contraction map. Let \(\mathcal{L}_2 \eta \leq \mathcal{C} \) and \(\sigma \in J. \) Then,

\[\|\mathcal{L}_2 \eta - (\mathcal{L}_2 \eta)\| \]
\[\leq \frac{(\sigma - a)}{\Lambda} \int_a^b |f(s, \mathcal{L}_2 \eta(s)) - f(s, \mathcal{L}_2 \eta(s))|ds \]
\[+ \frac{\mathcal{J}_{8}}{\Gamma(p)} \int_a^b (\mathcal{L}_2 \eta(s))^{p-1} |f(s, \mathcal{L}_2 \eta(s)) - f(s, \mathcal{L}_2 \eta(s))|ds \]
\[+ \frac{\mathcal{J}_{9}}{\Gamma(\delta)} \int_a^b (\mathcal{L}_2 \eta(s))^{\delta-1} |f(s, \mathcal{L}_2 \eta(s)) - f(s, \mathcal{L}_2 \eta(s))|ds \]
\[+ \frac{\mathcal{J}_{10}}{\Gamma(\delta + p)} \int_a^b (\mathcal{L}_2 \eta(s))^{\delta - p - 1} |f(s, \mathcal{L}_2 \eta(s)) - f(s, \mathcal{L}_2 \eta(s))|ds \]
\[- \mathcal{J}_{11} \int_a^b |f(s, \mathcal{L}_2 \eta(s)) - f(s, \mathcal{L}_2 \eta(s))|ds \]
\[- \mathcal{J}_{12} \int_a^b \|f(s, \mathcal{L}_2 \eta(s)) - f(s, \mathcal{L}_2 \eta(s))\|ds \]
\[+ \mathcal{J}_{11} \int_a^\sigma |f(s, \mathcal{L}_2 \eta(s)) - f(s, \mathcal{L}_2 \eta(s))|ds \]
\[+ \mathcal{J}_{12} \int_a^\sigma \|f(s, \mathcal{L}_2 \eta(s)) - f(s, \mathcal{L}_2 \eta(s))\|ds. \]

From our assumption, we obtain
\[|f(s, \mathcal{L}_2 \eta(s)) - f(s, \mathcal{L}_2 \eta(s))| \leq L_f \|\mathcal{L}_2 \eta - \mathcal{L}_2 \eta\|. \]
\[\leq L_f \|\mathcal{L}_2 \eta - \mathcal{L}_2 \eta\|. \]

Hence,
\[\|f\| - \mathcal{L}_2 \eta \leq \frac{(L_f^1 + \omega_f)(\sigma - a)}{\Lambda} \left[\mathcal{J}_{7}(\zeta - a) + \frac{\mathcal{J}_{8}(\zeta - a)^p}{\Gamma(p + 1)} \right. \]
\[\left. + \frac{\mathcal{J}_{9}(\zeta - a)^{\delta + 1}}{\Gamma(\delta + 1)} + \frac{\mathcal{J}_{10}(\zeta - a)^{\delta + p}}{\Gamma(\delta + p + 1)} \right] \]
\[- \mathcal{J}_{11} \frac{(b - a)}{\Lambda} \rho_3 + \rho_4 \rho_4 \omega_f \]
\[+ \mathcal{J}_{12} \frac{(b - a)^p}{\Gamma(p + 1)} \|\Theta - \mathcal{L}_2 \eta\| \]
\[\leq \left(\frac{L_f \rho_3 (b - a)}{\Lambda} + L_f \rho_4 \right) \|\Theta - \mathcal{L}_2 \eta\| \]
\[\leq \left(\frac{L_f \rho_3 (b - a)}{\Lambda} + L_f \rho_4 \right) \|\Theta - \mathcal{L}_2 \eta\| \]
\[= \mathcal{L}_3 \|\Theta - \mathcal{L}_2 \eta\|. \]

Due to \(\mathcal{L}_3 < 1, \) we conclude that \(\mathcal{L}_2 \) is a contraction operator. Hence, by Theorem 1, we conclude that \(\mathcal{L}_2 \) has a unique fixed point in \(J. \) Consequently, ABC-type FDEs (5) have a unique solution in \(J. \)

6. Ulam–Hyers Stability

In this part, we will discuss two kinds of stability results for ABR-type FDEs (4) and ABC-type FDEs (5), namely, UH and GUH stabilities. Before that, for \(\epsilon > 0, \) we consider the following inequality:
\[\int^{\sigma}_{\mathcal{L}_2(\sigma)} \left| \mathcal{L}_2(\sigma) \right| \leq \epsilon, \quad \sigma \in J. \]

Definition 4. The problem ABR-type FDEs (4) is Ulam–Hyers stable if there exists a real number \(C_f > 0 \) such that, for each \(\epsilon > 0 \) and for each solution \(\mathcal{L}_2 \in C(J, \mathbb{R}) \) of inequality (71), there exists a unique solution \(\mathcal{L}_2 \in C(J, \mathbb{R}) \) of ABR-type FDEs (4) with
\[\left| \mathcal{L}_2(\sigma) - \mathcal{L}_2(\sigma) \right| \leq C_f \epsilon. \]

Also, ABR-type FDEs (4) have generalized Ulam–Hyers stability if we can find \(\phi_f : \mathbb{R} \times J \rightarrow \mathbb{R} \), with \(\phi_f(0) = 0 \) such that
\[\left| \mathcal{L}_2(\sigma) - \mathcal{L}_2(\sigma) \right| \leq \phi_f \epsilon. \]

Remark 3. Let \(\mathcal{L}_2 \in C(J, \mathbb{R}) \) be the solution of inequality (71) if and only if we have a function \(h \in C(J, \mathbb{R}) \) which depends on \(\theta \) such that
\[\left(i \right) \left| h(\sigma) \right| \leq \epsilon \text{ for all } \sigma \in J \]
\[\left(ii \right) \mathcal{L}_2(\sigma) = f(\sigma, \mathcal{L}_2(\sigma)) + h(\sigma), \quad \sigma \in J \]

Lemma 9. If \(\theta \in C(J, \mathbb{R}) \) is a solution to inequality (71), then \(\theta \) satisfies the following inequality:
where

\[
\begin{align*}
\Psi_\theta &= \frac{(\sigma - a)}{\Lambda} [\mathcal{A}_1 \int_a^\zeta (\zeta - s) f(s, \tilde{\theta}(s))ds + \frac{\mathcal{A}_2}{\Gamma(p - 2)} \int_a^\zeta (\zeta - s)^{p-1} f(s, \tilde{\theta}(s))ds \\
&\quad + \frac{\mathcal{A}_3}{\Gamma(\delta)} \int_a^\zeta (\zeta - s)^{\delta-1} \int_a^s (s - \eta) f(\eta, \tilde{\theta}(\eta))d\eta ds + \frac{\mathcal{A}_4}{\Gamma(\delta + p - 2)} \int_a^\zeta (\zeta - s)^{\delta+p-1} f(s, \tilde{\theta}(s))ds \\
&\quad - \mathcal{A}_5 \int_a^b (b - s) f(s, \tilde{\theta}(s))ds - \frac{\mathcal{A}_6}{\Gamma(p - 2)} \int_a^b (b - s)^{p-1} f(s, \tilde{\theta}(s))ds].
\end{align*}
\]

\textbf{Proof.} In view of Remark 3, we have

\[
\begin{align*}
\tilde{\theta}(\sigma) &= f(s, \tilde{\theta}(s)) + h(s), \\
\tilde{\theta}(a) &= 0, \\
\tilde{\theta}(b) &= ABR_{\mu, \nu} \tilde{\theta}(\zeta).
\end{align*}
\]

Then, by Theorem 3, we get

\[
\begin{align*}
\tilde{\theta}(\sigma) &= \frac{(\sigma - a)}{\Lambda} [\mathcal{A}_1 \int_a^\zeta (\zeta - s) (f(s, \tilde{\theta}(s)) + h(s))ds \\
&\quad + \frac{\mathcal{A}_2}{\Gamma(p - 2)} \int_a^\zeta (\zeta - s)^{p-1} (f(s, \tilde{\theta}(s)) + h(s))ds \\
&\quad + \frac{\mathcal{A}_3}{\Gamma(\delta)} \int_a^\zeta (\zeta - s)^{\delta-1} \int_a^s (s - \eta) (f(\eta, \tilde{\theta}(\eta)) + h(\eta))d\eta ds \\
&\quad + \frac{\mathcal{A}_4}{\Gamma(\delta + p - 2)} \int_a^\zeta (\zeta - s)^{\delta+p-1} (f(s, \tilde{\theta}(s)) + h(s))ds \\
&\quad - \mathcal{A}_5 \int_a^b (b - s) (f(s, \tilde{\theta}(s)) + h(s))ds \\
&\quad - \frac{\mathcal{A}_6}{\Gamma(p - 2)} \int_a^b (b - s)^{p-1} (f(s, \tilde{\theta}(s)) + h(s))ds] \\
&\quad + \mathcal{A}_5 \int_a^\sigma (\sigma - s) f(s, \tilde{\theta}(s)) + h(s)ds \\
&\quad + \frac{\mathcal{A}_6}{\Gamma(p - 2)} \int_a^\sigma (\sigma - s)^{p-1} (f(s, \tilde{\theta}(s)) + h(s))ds,
\end{align*}
\]

which implies
Suppose that (38) holds. If

\[L_f \left(\frac{\mathcal{A}_5(b-a)^2}{2} + \frac{\mathcal{A}_6(b-a)^p}{\Gamma(p-1)} \right) < 1, \]

then ABR-type FDEs (4) are Ulam–Hyers stable.

Proof. Let \(\varepsilon > 0 \) and \(\bar{\theta} \in C(J, \mathbb{R}) \) be a function which satisfies inequality (71), and let \(\theta \in C(J, \mathbb{R}) \) be a unique solution of the following problem:

\[
\begin{aligned}
\theta_0 + \mathcal{A}_5 \int_a^\sigma (\sigma-s)f(s, \theta(s))ds &- \frac{\mathcal{A}_6}{\Gamma(p-2)} \int_a^\sigma (\sigma-s)^{p-1}f(s, \theta(s))ds \\ &
\leq \frac{(\sigma-a)}{\Lambda} \left[\mathcal{A}_1 \int_a^\zeta (\zeta-s)|h(s)|ds + \frac{\mathcal{A}_2}{\Gamma(p-2)} \int_a^\zeta (\zeta-s)^{p-1}|h(s)|ds \\ & + \frac{\mathcal{A}_3}{\Gamma(\delta)} \int_a^\zeta (\zeta-s)^{\delta-1}\int_a^s (s-\eta)|h(\eta)|d\eta ds \\ & + \frac{\mathcal{A}_4}{\Gamma(\delta + p-2)} \int_a^\zeta (\zeta-s)^{\delta+p-1}|h(s)|ds \\ & + \mathcal{A}_5 \int_a^b (b-s)|h(s)|ds + \frac{\mathcal{A}_6}{\Gamma(p-2)} \int_a^b (b-s)^{p-1}|h(s)|ds \\ & + \mathcal{A}_5 \int_a^\sigma (\sigma-s)|h(s)|ds + \frac{\mathcal{A}_6}{\Gamma(p-2)} \int_a^\sigma (\sigma-s)^{p-1}|h(s)|ds \\ & \leq \varepsilon \left(\frac{\rho_1(b-a)}{\Lambda} + \rho_2 \right).
\end{aligned}
\]

Then, by Theorem 3, we get

\[\bar{\theta}(\sigma) = \Psi_0 + \mathcal{A}_5 \int_a^\sigma (\sigma-s)f(s, \bar{\theta}(s))ds \\ - \frac{\mathcal{A}_6}{\Gamma(p-2)} \int_a^\sigma (\sigma-s)^{p-1}f(s, \bar{\theta}(s))ds. \]

Since \(\theta(a) = \bar{\theta}(a) = 0 \) and \(\theta(b) = \bar{\theta}(b) = \Lambda^R I_a^b \bar{\theta}(\zeta) \), \(\Psi_0 = \Psi_{\bar{\theta}} \), and hence, by Lemma 9 and (47), we have

\[\| \theta - \bar{\theta} \| \leq C_f \varepsilon, \]

\[\| \bar{\theta} \| \leq C_f \varepsilon. \]
where

\[
C_f = \frac{((\rho_1 (b-a)^{1/2} + \rho_2)}{1 - L_f \left((\mathcal{A}_1 (b-a)^{1/2} + (\mathcal{A}_2 (b-a)^{p}/\Gamma (p+1)) \right)).
\] (84)

Now, by choosing \(\varphi_f = \varphi \) such that \(\varphi_f = 0 \), ABR-type FDEs (4) have generalized Ulam–Hyers stability.

Theorem 9. Suppose that (38) holds. If

\[
L_f \left(\mathcal{A}_1 (b-a) + \mathcal{A}_2 (b-a)^p/\Gamma (p+1) \right) < 1,
\] (85)

then ABC-type FDEs (5) are Ulam–Hyers stable.

Proof. By the same technique of Theorem 8, one can prove that

\[
\|\theta - \tilde{\theta}\| \leq C_f \epsilon,
\] (86)

where

\[
C_f = \frac{((\rho_1 (b-a)/\Lambda + \rho_2)}{1 - L_f \left(\mathcal{A}_1 (b-a) + \mathcal{A}_2 (b-a)^p/\Gamma (p+1) \right)).
\] (87)

Now, by choosing \(\varphi_f = \varphi \) such that \(\varphi_f = 0 \), ABC-type FDEs (5) have generalized Ulam–Hyers stability. □

7. An Example

In this section, we justify the validity of Theorems 4, 5, and 7–9 through an example.

Example 1. For \(p \in (2,3] \), we consider the following ABR fractional problem:

\[
\begin{align*}
\text{ABR} D_{0+}^\alpha \tilde{\theta}(\sigma) &= \frac{\sigma^2}{10 e^{\sigma - 1}} \left(\frac{|\theta(\sigma)|}{1 + |\theta(\sigma)|} \right), \quad \sigma \in (0,1), \\
\tilde{\theta}(0) &= 0, \quad \tilde{\theta}(1) = \text{ABR} D_{0+}^{1/2} \tilde{\theta}(1/2).
\end{align*}
\] (88)

Here, \(p = (7/2) \in (2,3], \alpha = 0, b = 1, \delta = (1/2), \xi = (1/2), \) and \(f(\sigma, \theta(\sigma)) = (\sigma^2/10 e^{\sigma - 1})(|\theta(\sigma)|/(1 + |\theta(\sigma)|)). \) Let \(\sigma \in [0,1], u, \bar{u} \in \mathbb{R}. \) Then,

\[
|f(\sigma, u) - f(\sigma, \bar{u})| = \frac{\sigma^2}{10 e^{\sigma - 1}} \left(\frac{|u - \bar{u}|}{1 + |u - \bar{u}|} \right) \leq \frac{1}{10} |u - \bar{u}|.
\] (89)

Therefore, hypothesis \((H_1)\) holds with \(L_f = 1/10. \) Also, \(\rho_1 = 1.4, \rho_2 = 2.5, \Lambda = 0.66, \) and \(\mathcal{Z}_3 = \frac{1.4}{0.66} + 2.5 \approx 0.47 < 1. \) (95)

Then, all conditions in Theorem 7 are satisfied, and hence, ABC-type FDEs (5) have a unique solution. For every \(\epsilon = \max\{\epsilon_1, \epsilon_2\} > 0 \) and each \(\tilde{\theta} \in C(J, \mathbb{R}) \) satisfying

\[
|\text{ABR} D_{0+}^\alpha \tilde{\theta}(\sigma) - F_{\tilde{\theta}}(\sigma)| \leq \epsilon,
\] (96)

there exists a solution \(\tilde{\theta} \in C(J, \mathbb{R}) \) of ABC-type FDEs (5) satisfying

\[
\|\tilde{\theta} - \tilde{\theta}_1\| \leq C_f \epsilon,
\] (97)

where

\[
C_f = \frac{((\rho_1 (b-a)/\Lambda + \rho_2)}{1 - L_f \left(\mathcal{A}_1 (b-a) + \mathcal{A}_2 (\sigma-a)^p/\Gamma (p+1) \right)).
\] (98)

Therefore, all conditions in Theorem 9 are satisfied, and hence, ABC-type FDEs (5) are UH stable.
8. Conclusion Remarks

In recent interest, the theory of fractional operators in the frame of Atangana and Baleanu is novel and significant; thus, there are some researchers who studied and developed some qualitative properties of solutions of FDEs involving such operators. On the contrary, there are some important numerical approaches regarding nonsingular kernels that are explained in the introduction. For this purpose, the sufficient conditions of the existence and uniqueness of solutions for two classes of nonlinear Atangana–Baleanu FDEs on the interval \([a, b]\), subjected to integral conditions, have been developed and investigated. Furthermore, the stability results through mathematical analysis techniques have been analyzed. Two examples are provided to justify our results.

Observe that our approach used in this work is new because we prove the existence, uniqueness, and UH stability results without using the semigroup property and relies on a minimum number of hypotheses. Our approach was based on the reduction of the proposed problem into the fractional integral equation and using some standard fixed point theorems due to Banach type and Krasnoselskii type. Furthermore, through mathematical analysis techniques, we analyzed the stability results in the UH sense. An example was provided to justify the main results. In fact, our outcomes extended those in \([36, 37]\). The supposed problem with given integroderivative boundary conditions can describe some mathematical models of real and physical processes in which some parameters are frequently acclimated to appropriate circumstances. So, the value of these parameters can change the impacts of fractional integrals and derivatives. The main results are illustrated with a numerical example. In future works, we study the new numerical results regarding this operator with the higher order.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Disclosure

This work was conducted during the work of the first author at Hajjah University (Yemen).

Conflicts of Interest

All authors declare that they have no conflicts of interest.

References

