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We apply the continuation theorem of Mawhin to ensure that a fourth-order nonlinear difference equation of the form Δ4uðk
− 2Þ − aðkÞuαðkÞ + bðkÞuβðkÞ = 0 with periodic boundary conditions possesses at least one nontrivial positive solution, where Δ
uðkÞ = uðk + 1Þ − uðkÞ is the forward difference operator, α > 0, β > 0 and α ≠ β, aðkÞ, bðkÞ are T-periodic functions and aðkÞbðk
Þ > 0. As applications, we give some examples to illustrate the application of these theorems.

1. Introduction

In recent years, the theory of nonlinear difference equations
has been widely used in the study of discrete models in the
fields of economics, neural networks, ecology, etc. For the
general background of difference equations, in particular,
there are many authors who have discussed the existence
and multiplicity of periodic solutions for discrete boundary
value problems by exploiting various methods, including
the method of upper and lower solutions, Leray-Schauder
degree, fixed point theory, critical theory, and variational
methods; see Bereanu and Mawhin [1], Cabada and Dimi-
trov [2], Graef et al. [3, 4], and Cai et al. [5–10] and the ref-
erences therein.

Let ℕ+, Z, and ℝ denote the sets of all positive integers,
integers, and real numbers, respectively. This paper con-
siders the following fourth-order nonlinear difference equa-
tion:

Δ4u k − 2ð Þ − a kð Þuα kð Þ + b kð Þuβ kð Þ = 0, ð1Þ

where α > 0, β > 0 and α ≠ β, aðkÞ, bðkÞ are T-periodic func-
tions and ΔuðkÞ = uðk + 1Þ − uðkÞ is the forward difference
operator.

Equation (1) can be considered as a discrete analogue of
a special case of the following fourth-order nonlinear differ-

ential equation:

u′′′′ − a tð Þuα + b tð Þuβ = 0, t ∈ℝ, ð2Þ

which has been studied in [11, 12] when α = 1, β = 3. In [13],
Yang and Han proved the existence of a periodic solution to
equation (2) when α = n, β = n + 2, where n is a positive
integer.

When aðkÞ ≡ 0, β = 1, Peterson and Ridenhour [14] con-
sidered the disconjugacy of the following equation:

Δ4u k − 2ð Þ + b kð Þu kð Þ = 0, k ∈ Z: ð3Þ

In 2005, Cai et al. [5] studied the fourth-order nonlinear
difference equation

Δ4u k − 2ð Þ + f k, u kð Þð Þ = 0, k ∈ Z: ð4Þ

By applying the linking theorem, they obtained some cri-
teria for the existence and multiplicity of periodic solutions
of equation (4).

In fact, there is a big difference between the continuous
case and the discrete case. For example, the basic ideas of
calculus are not always applicable when studying difference
equations, such as the embedding theorem. Therefore, we
need to consider other methods to deal with the difference
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problem. The main tool used is the continuation theorem of
Mawhin (see [15]).

Motivated by the above works, the main aim of this
paper is to investigate the existence of at least one positive
T-periodic solution of (1). In order to obtain the main
results of (1), we assume that the coefficient functions aðkÞ
and bðkÞ satisfy the following condition:

F1: Suppose aðkÞ, bðkÞ are T − periodic functions and a
ðkÞbðkÞ > 0 for all k ∈ Z. Furthermore, we assume that there
exist positive constants a, A, b, B such that

a =min
k∈Z

a kð Þj j,

A =max
k∈Z

a kð Þj j,

b =min
k∈Z

b kð Þj j,

B =max
k∈Z

b kð Þj j:

ð5Þ

Let X be all real T-periodic sequences of the form u =
fuðkÞgk∈Z . Then, X is a Banach space under the norm kuk
= max

k∈½2,T+1�Z
juðkÞj.

The main results in this paper are stated next: Theorems
1 and 2.

Theorem 1. Let F1 hold, if α < β and the period T satisfies

16 ≤ T4 ≤
8

ARα−1
1 + BRβ−1

1

, ð6Þ

where R1 = ðA/bÞ1/ðβ−αÞ + ρ and ρ > 0 small enough such that

ða/BÞ1/ðβ−αÞ − ρ > 0; then, equation (1) admits at least one
positive T-periodic solution.

Theorem 2. Let F1 hold, if α > β and the period T satisfies

16 ≤ T4 ≤
8

AQα−1
1 + BQβ−1

1

, ð7Þ

where Q1 = ðB/aÞ1/ðα−βÞ + τ and τ > 0 small enough such that

ðb/AÞ1/ðα−βÞ − τ > 0; then, equation (1) admits at least one
positive T-periodic solution.

Theorem 3. Suppose aðkÞbðkÞ ≤ 0 and aðkÞ, bðkÞ are not
identical to zero for all k ∈ Z; then, equation (1) has no posi-
tive solution.

This paper is organized as follows: in Section 2, we give
some lemmas needed to prove the main results. Section 3
contains the proof of Theorem 1. Section 4 contains the
proof of Theorem 2. Section 5 contains the proof of Theo-
rem 3.

2. Preliminary Results

In this section, we introduce some notations and well-
known results which will be used in the subsequent sections.

Definition 4 (see [7], p. 12, B.1). Let X, Y be real Banach
spaces, L : DomL ⊂ X⟶ Y be a linear mapping. The map-
ping L is said to be a Fredholm mapping of index zero if

(a) Im L is closed in Y

(b) dim Ker L = codim Im L < +∞

If L is a Fredholm mapping of index zero, then there
exist continuous projectors P : X ⟶ X and Q : Y ⟶ Y
such that

Im P = Ker L,
Ker Q = Im L = Im I −Qð Þ:

ð8Þ

It follows that the restriction

LDomL∩Ker P : I − Pð ÞX ⟶ Im L ð9Þ

has an inverse which is denoted by KP .

Definition 5 (see [7], pp. 12–13, B.1, B.2). Let N : X⟶ Y be
a continuous mapping. If Ω is a bounded open subset of X,
N is called L − compact on �Ω if QNð�ΩÞ is bounded and
KPðI −QÞN : �Ω⟶ X is compact. Since Im Q is isomor-
phic to Ker L, there exists an isomorphism J : Im Q⟶
Ker L.

Lemma 6 (Mawhin’s continuation theorem, see [7], Theo-
rem IV.1). Let L be a Fredholm mapping of index zero, Ω ⊂
X is an open bounded set, and let N be L − compact on �Ω.
Suppose

(1) for each λ ∈ ð0, 1Þ, Lu ≠ λNu for all u ∈ ∂Ω ∩DomL

(2) QNu ≠ 0, for all u ∈ ∂Ω ∩Ker L

(3) deg ðJQN ,Ω ∩Ker L, 0Þ ≠ 0, where J : Im Q⟶
Ker L is an isomorphism

Then, the equation Lu =Nu has at least one solution in
�Ω ∩DomL.

Define the operator L : X⟶ X by setting

L u = Δ4u k − 2ð Þ, u ∈ X: ð10Þ

Direct calculation shows that

Ker L =ℝ and Im L = v 〠
T+1

i=2
v ið Þ = 0

�����
( )

: ð11Þ

Indeed, if v = fvðkÞgk∈Z ∈ Im L, then there is u =
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fuðkÞgk∈Z ∈ X such that

v kð Þ = Δ4u k − 2ð Þ, k ∈ Z: ð12Þ

Thus,

〠
T+1

i=2
v ið Þ = 〠

T+1

i=2
Δ4u i − 2ð Þ: ð13Þ

Note that fuðkÞgk∈Z ∈ X, it follows that

Δ3u kð Þ� �
k∈Z ∈ X: ð14Þ

Furthermore, direct calculation shows that

〠
T+1

i=2
Δ4u i − 2ð Þ = Δ3u 1ð Þ − Δ3u 0ð Þ� �

+ Δ3u 2ð Þ − Δ3u 1ð Þ� �
+⋯+ Δ3u Tð Þ − Δ3u T − 1ð Þ� �

= Δ3u Tð Þ − Δ3u 0ð Þ = Δ3u 0ð Þ − Δ3u 0ð Þ = 0:
ð15Þ

By virtue of the above facts, we have

〠
T+1

i=2
v ið Þ = 〠

T+1

i=2
Δ4u i − 2ð Þ = 0: ð16Þ

Since dim X = T and L is a linear mapping, by the
knowledge of linear algebra, we know that dim Ker L ⊕
dim Im L = dim X. It is easy to see that dim Ker L = codim
Im L = 1 and dim Im L = T − 1. It follows that Im L is
closed in X. Therefore, the operator L is a Fredholm opera-
tor with index zero.

Let us define N : X ⟶ X by

Nuð Þ kð Þ = a kð Þuα kð Þ − b kð Þuβ kð Þ: ð17Þ

We define P : X ⟶Ker L and Q : X⟶ X as follows:

Puð Þ kð Þ = Quð Þ kð Þ = 1
T
〠
T+1

i=2
u ið Þ: ð18Þ

The operators P and Q are projections. Hence,

Im P = Ker L, Ker Q = Im L: ð19Þ

It follows that LjDom L∩Ker P : ðI − PÞX⟶ Im L has an
inverse which is denoted by KP.

In view of (17) and (18), for any u ∈ X, we can see that

QNuð Þ kð Þ = 1
T
〠
T+1

i=2
a ið Þuα ið Þ − b ið Þuβ ið Þ
h i

, ð20Þ

I −Qð ÞNuð Þ kð Þ = a kð Þuα kð Þ − b kð Þuβ kð Þ − 1
T
〠
T+1

i=2
a ið Þuα ið Þ − b ið Þuβ ið Þ
h i

:

ð21Þ
Since the Banach space X is finite dimensional, KP is lin-

ear. By virtue of the relations (20) and (21), we see that QN
and KPðI −QÞN are continuous on X. Hence, we know that
if Ω is an open and bounded subset of X, then QNð�ΩÞ is
bounded. It follows that

KP I −Qð ÞN : �Ω⟶ X ð22Þ

is compact. Therefore, the mapping N is L-compact on
�Ω with any open and bounded subset Ω ⊂ X.

Lemma 7 (see [16], Lemma 2.3). Let fuðkÞgk∈Z be a real T
-periodic sequence; then,

max
2≤i,j≤T+1

u ið Þ − u jð Þj j ≤ T3

16
〠
T+1

k=2
Δ4u k − 2ð Þ�� ��: ð23Þ

3. Proof of Theorem 1

Proof. The content of Theorem 1 is as follows: let F1 hold, if
α < β and the period T satisfies

16 ≤ T4 ≤
8

ARα−1
1 + BRβ−1

1
, ð24Þ

where R1 = ðA/bÞ1/ðβ−αÞ + ρ and ρ > 0 small enough such that

ða/BÞ1/ðβ−αÞ − ρ > 0; then, equation (1) admits at least one
positive T-periodic solution. Now, we prove that the conclu-
sion holds. We assume that α < β. From condition F1, we
know that aðkÞbðkÞ > 0, which include both positive and
negative cases. So we need to classify the cases where both
aðkÞ and bðkÞ are positive and both negative.

Case 1. If coefficient functions aðkÞ and bðkÞ are positive T
-periodic functions, in view of F1, we have that 0 < a ≤ aðkÞ
≤ A and 0 < b ≤ bðkÞ ≤ B.

Let

Ω1 = u ∈ X H1 < u kð Þ < R1jf g, ð25Þ

which is an open set in X, where

R1 = R + ρ, R = A
b

� �1/ β−αð Þ
, ð26Þ

H1 =H − ρ,H = a
B

	 
1/ β−αð Þ
, ð27Þ

where ρ > 0 small enough such that ða/BÞ1/ðβ−αÞ − ρ > 0.
Obviously, H1 and R1 are well defined.
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By

α < β, 0 < a ≤ a kð Þ ≤ A,
0 < b ≤ b kð Þ ≤ B,

ð28Þ

we obtain

0 <H1 <H ≤
a kð Þ
b kð Þ

� �1/ β−αð Þ
≤ R < R1, ð29Þ

uniformly for k ∈ Z.
Furthermore, it follows from (26), (27), and (29) that

a kð Þ − b kð ÞHβ−α
1 ≥ a − BHβ−α

1 > 0,

a kð Þ − b kð ÞRβ−α
1 ≤ A − bRβ−α

1 < 0:
ð30Þ

Therefore,

a kð Þ − b kð ÞHβ−α
1 > 0,

a kð Þ − b kð ÞRβ−α
1 < 0:

ð31Þ

We prove that condition (1) of Lemma 6 holds. Let 0
< λ < 1 and u be such that

Δ4u k − 2ð Þ − λa kð Þuα kð Þ + λb kð Þuβ kð Þ = 0: ð32Þ

Summing from 2 to T + 1, we can see that

〠
T+1

i=2
Δ4u i − 2ð Þ − λa ið Þuα ið Þ + λb ið Þuβ ið Þ
h i

= 0: ð33Þ

Firstly, we claim that for each λ ∈ ð0, 1Þ and u ∈ ∂Ω1 ∩
Dom L, Lu ≠ λNu. In fact, in view of (25), if u ∈ ∂Ω1, then
kuk =H1 or kuk = R1. We only prove the case of kuk =H1,
similar to the proof of kuk = R1.

When kuk =H1, we can get that max
2≤l,j≤T+1

juðlÞ − uðjÞj <
H1/2 or max

2≤l,j≤T+1
juðlÞ − uðjÞj ≥H1/2 holds. If max

2≤l,j≤T+1
juðlÞ −

uðjÞj <H1/2, thus H1/2 < u ≤H1. According to the above
facts, we have

0 = 〠
T+1

i=2
λa ið Þuα ið Þ − λb ið Þuβ ið Þ
h i

= λ 〠
T+1

i=2
uα ið Þ a ið Þ − b ið Þuβ−α ið Þ

h i

≥ λ a − BHβ−α
1

	 

〠
T+1

i=2
uα ið Þ > 0:

ð34Þ

This is a contradiction.

If max
2≤l,j≤T+1

juðlÞ − uðjÞj ≥H1/2, we see from Lemma 7 that

0 = 〠
T+1

i=2
Δ4u i − 2ð Þ − λa ið Þuα ið Þ + λb ið Þuβ ið Þ
h i�����

�����
≥ 〠

T+1

i=2
Δ4u i − 2ð Þ�� �� − 〠

T+1

i=2
λa ið Þuα ið Þ + λb ið Þuβ ið Þ
��� ���

> 〠
T+1

i=2
Δ4u i − 2ð Þ�� �� − 〠

T+1

i=2
a ið Þuα ið Þ + b ið Þuβ ið Þ
��� ���

≥
16
T3 max

2≤l,j≤T+1
u lð Þ − u jð Þj j − T AHα−1

1 + BHβ−1
1

	 

uk k

≥
8
T3 uk k − T AHα−1

1 + BHβ−1
1

	 

uk k

= 8
T3 − T AHα−1

1 + BHβ−1
1

	 
� �
uk k

≥ 0:
ð35Þ

This is a contradiction.
When kuk = R1, we can get that max

2≤l,j≤T+1
juðlÞ − uðjÞj <

R1/2 or max
2≤l,j≤T+1

juðlÞ − uðjÞj ≥ R1/2 holds. If max
2≤l,j≤T+1

juðlÞ − u

ðjÞj < R1/2, thus R1/2 < u ≤ R1; further, we have

0 = 〠
T+1

i=2
λa ið Þuα ið Þ − λb ið Þuβ ið Þ
h i

= λ 〠
T+1

i=2
uα ið Þ a ið Þ − b ið Þuβ−α ið Þ

h i

≤ λ A − bRβ−α
1

	 

〠
T+1

i=2
uα ið Þ < 0:

ð36Þ

This is a contradiction.
If max

2≤l,j≤T+1
juðlÞ − uðjÞj ≥ R1/2, from Lemma 7, we have

that

0 = 〠
T+1

i=2
Δ4u i − 2ð Þ − λa ið Þuα ið Þ + λb ið Þuβ ið Þ
h i�����

�����
≥ 〠

T+1

i=2
Δ4u i − 2ð Þ�� �� − 〠

T+1

i=2
λa ið Þuα ið Þ + λb ið Þuβ ið Þ
��� ���

> 〠
T+1

i=2
Δ4u i − 2ð Þ�� �� − 〠

T+1

i=2
a ið Þuα ið Þ + b ið Þuβ ið Þ
��� ���

≥
16
T3 max

2≤l,j≤T+1
u lð Þ − u jð Þj j − T ARα−1

1 + BRβ−1
1

	 

uk k

≥
8
T3 uk k − T ARα−1

1 + BRβ−1
1

	 

uk k

= 8
T3 − T ARα−1

1 + BRβ−1
1

	 
� �
uk k

≥ 0,

ð37Þ
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but this is a contradiction. Hence, for u ∈ ∂Ω1 and λ ∈ ð
0, 1Þ, we have

Δ4u k − 2ð Þ − λa kð Þuα kð Þ + λb kð Þuβ kð Þ ≠ 0: ð38Þ

Therefore, we verify that condition (1) of Lemma 6 holds
for Ω1.

If u ∈ ∂Ω1 ∩ Ker L, then u = fH1gk∈Z or u = fR1gk∈Z . By
virtue of (31), we conclude that

QNuð Þ kð Þ = 1
T
〠
T+1

i=2
uα ið Þ a ið Þ − b ið Þuβ−α ið Þ

h i
≠ 0: ð39Þ

Hence, QNu ≠ 0 for each u ∈ ∂Ω1 ∩Ker L.
Next let us consider ðH1 + R1Þ/2, the arithmetic mean of

H1 and R1. We define G : X ×ℝ⟶ X as follows, for all μ
∈ ½0, 1�,

G u, μð Þ = − 1 − μð Þ u − H1 + R1
2

� �
+ μ

1
T
〠
T+1

i=2
uα ið Þ a ið Þ − b ið Þuβ−α ið Þ

h i
:

ð40Þ

Clearly, we find that

G u, μð Þ ≠ 0,∀u ∈ ∂Ω1 ∩Ker L: ð41Þ

By using the homotopy invariance theorem, it is easy to
see that

deg QN ,Ω1 ∩Ker L, 0ð Þ = deg G u, 1ð Þ,Ω1 ∩ Ker L, 0ð Þ
= deg G u, 0ð Þ,Ω1 ∩ Ker L, 0ð Þ
= −1 ≠ 0:

ð42Þ

Therefore, conditions (1)–(3) of Lemma 6 hold for Ω1.
Furthermore, according to the above reasoning, we

deduce that (1) has at least one positive solution in �Ω1:

Case 2. If the coefficient functions aðkÞ, bðkÞ are negative T
-periodic functions, in view of F1, we have that −A ≤ aðkÞ
≤ −a < 0 and −B ≤ bðkÞ ≤ −b < 0.

Let ~aðkÞ = −aðkÞ, ~bðkÞ = −bðkÞ; then, we see that

0 < a ≤ ~a kð Þ ≤ A,

0 < b ≤ ~b kð Þ ≤ B:
ð43Þ

It is obvious that (1) is equivalent to the equation

Δ4u k − 2ð Þ + ~a kð Þuα kð Þ − ~b kð Þuβ kð Þ = 0: ð44Þ

Let 0 < λ < 1 and u be such that

Δ4u k − 2ð Þ + λ~a kð Þuα kð Þ − λ~b kð Þuβ kð Þ = 0: ð45Þ

Summing from 2 to T + 1, we can see that

〠
T+1

i=2
Δ4u i − 2ð Þ + λ~a ið Þuα ið Þ − λ~b ið Þuβ ið Þ
h i

= 0: ð46Þ

Firstly, we claim that for each λ ∈ ð0, 1Þ and u ∈ ∂Ω1 ∩
Dom L, Lu ≠ λNu. In fact, in view of (25), if u ∈ ∂Ω1, then
kuk =H1 or kuk = R1. We only prove the case of kuk =H1,
similar to the proof of kuk = R1.

When kuk =H1, we can get that

max
2≤l,j≤T+1

u lð Þ − u jð Þj j < H1
2 ð47Þ

or

max
2≤l,j≤T+1

u lð Þ − u jð Þj j ≥ H1
2 ð48Þ

holds.
If max

2≤l,j≤T+1
juðlÞ − uðjÞj <H1/2, thus

H1
2 < u ≤H1: ð49Þ

Further, we have

0 = 〠
T+1

i=2
λ~a ið Þuα ið Þ − λ~b ið Þuβ ið Þ
h i

= λ 〠
T+1

i=2
uα ið Þ ~a ið Þ − ~b ið Þuβ−α ið Þ

h i

≥ λ a − BHβ−α
1

	 

〠
T+1

i=2
uα ið Þ > 0:

ð50Þ

This is a contradiction.
If max

2≤l,j≤T+1
juðlÞ − uðjÞj ≥H1/2, we see from Lemma 7 that

0 = 〠
T+1

i=2
Δ4u i − 2ð Þ − λ~a ið Þuα ið Þ + λ~b ið Þuβ ið Þ
h i�����

�����
≥ 〠

T+1

i=2
Δ4u i − 2ð Þ�� �� − 〠

T+1

i=2
λ~a ið Þuα ið Þ + λ~b ið Þuβ ið Þ
��� ���

> 〠
T+1

i=2
Δ4u i − 2ð Þ�� �� − 〠

T+1

i=2
~a ið Þuα ið Þ + ~b ið Þuβ ið Þ
��� ���

≥
16
T3 max

2≤l,j≤T+1
u lð Þ − u jð Þj j − T AHα−1

1 + BHβ−1
1

	 

uk k

≥
8
T3 uk k − T AHα−1

1 + BHβ−1
1

	 

uk k

= 8
T3 − T AHα−1

1 + BHβ−1
1

	 
� �
uk k ≥ 0,

ð51Þ
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but this is a contradiction. Hence, for all u ∈ ∂Ω1 and λ
∈ ð0, 1Þ, we have

Δ4u k − 2ð Þ + λ~a kð Þuα kð Þ − λ~b kð Þuβ kð Þ ≠ 0: ð52Þ

Therefore, we verify that condition (1) of Lemma 6 holds
for Ω1.

The remaining proof is similar to the proof of Case 1,
and so we omit it. Furthermore, according to the above rea-
soning, we deduce that (44) has at least one positive solution
in �Ω1:

4. Proof of Theorem 2

Proof. The content of Theorem 2 is as follows: let F1 hold, if
α > β and the period T satisfies

16 ≤ T4 ≤
8

AQα−1
1 + BQβ−1

1
, ð53Þ

where Q1 = ðB/aÞ1/ðα−βÞ + τ and τ > 0 small enough such that

ðb/AÞ1/ðα−βÞ − τ > 0; then, equation (1) admits at least one
positive T-periodic solution.Now, we prove that the conclu-
sion holds. Similarly, in the case of α > β, we need to discuss
the case where the coefficient functions aðkÞ and bðkÞ are
both positive and negative, respectively.

Case 1. If coefficient functions aðkÞ and bðkÞ are positive T
-periodic functions, we have that 0 < a ≤ aðkÞ ≤ A and 0 < b
≤ bðkÞ ≤ B.

Let

Ω2 = u ∈ X P1 < u kð Þ <Q1jf g, ð54Þ

which is an open set in X, where

Q1 =Q + τ,Q = B
a

� �1/ α−βð Þ
, ð55Þ

P1 = P − τ, P = b
A

� �1/ α−βð Þ
, ð56Þ

where τ > 0 small enough such that ðb/AÞ1/ðα−βÞ − τ > 0.
Obviously, P1 and Q1 are well defined.

By α > β, 0 < a ≤ aðkÞ ≤ A, and 0 < b ≤ bðkÞ ≤ B, we
obtain

0 < P1 < P ≤
a kð Þ
b kð Þ

� �1/ α−βð Þ
≤Q <Q1, ð57Þ

uniformly for k ∈ Z.
By virtue of (55) and (56), we obtain

a kð ÞPα−β
1 − b kð Þ ≤ APα−β

1 − b < 0,

a kð ÞQα−β
1 − b kð Þ ≥ aQα−β

1 − B > 0:
ð58Þ

Therefore,

a kð ÞPα−β
1 − b kð Þ < 0,

a kð ÞQα−β
1 − b kð Þ > 0,

ð59Þ

uniformly for k ∈ Z.
The remaining proof is similar to the proof of Theorem

1, and so we omit it. Furthermore, we deduce that (1) has at
least one positive T-periodic solution in �Ω2:

Case 2. If the coefficient functions aðkÞ, bðkÞ are negative T
-periodic functions, we have that −A ≤ aðkÞ ≤ −a < 0 and −
B ≤ bðkÞ ≤ −b < 0.

Let ~aðkÞ = −aðkÞ, ~bðkÞ = −bðkÞ. Then, we can see that

0 < a ≤ ~a kð Þ ≤ A,

0 < b ≤ ~b kð Þ ≤ B:
ð60Þ

It is obvious that

−~a kð ÞPα−β
1 + ~b kð Þ > 0,

−~a kð ÞQα−β
1 + ~b kð Þ < 0,

ð61Þ

uniformly for k ∈ Z.
The remaining proof is similar to the proof of Theorem

1, and so we omit it. Furthermore, we conclude that (1) has
at least one positive T-periodic solution in �Ω2:

5. Proof of Theorem 3

Proof. The content of Theorem 3 is as follows: suppose aðk
ÞbðkÞ ≤ 0 and aðkÞ, bðkÞ are not identical to zero for all k ∈
Z; then, equation (1) has no positive solution.

Summing equation (1) from 2 to T + 1, we obtain that

〠
T+1

i=2
Δ4u i − 2ð Þ − a ið Þuα ið Þ + b ið Þuβ ið Þ
h i

= 0: ð62Þ

In view of

Dom L = u u ∈ X, Δu k + Tð Þ = Δu kð Þ, Δ2u k + Tð Þ���
= Δ2u kð Þ, Δ3u k + Tð Þ = Δ3u kð Þg:

ð63Þ

Hence,

〠
T+1

i=2
−a ið Þuα ið Þ + b ið Þuβ ið Þ
h i

= 0: ð64Þ

If aðkÞ > 0 and bðkÞ ≤ 0, it follows from (64) that (1) does
not have any positive solution. Other cases are similar.
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6. Example

Example 1. The difference equation

Δ4u k − 2ð Þ − 1
100 sin 2kπ

T

� �
+ 1
50

� �
u kð Þ

+ 1
200 cos 2kπ

T

� �����
���� + 1

100

� �
u3 kð Þ = 0,

ð65Þ

is one of the form (1), where a = 1/100, A = 3/100, b = 1
/100, B = 3/200, α = 1, and β = 3. Let ρ =

ffiffiffi
6

p
/6, we obtain

16 < T4 ≤
3200

31 + 6
ffiffiffi
2

p : ð66Þ

Therefore, we can prove that (65) has at least one posi-
tive T-periodic solution in �Ω1, where

Ω1 = u ∈ X
ffiffiffi
2

p

6 < u kð Þ < 6
ffiffiffi
3

p
+

ffiffiffi
6

p

6

�����
( )

: ð67Þ

Example 2. The difference equation

Δ4u k − 2ð Þ + 1
5000 cos 2kπ

T

� �
+ 1
2500

� �
u3 kð Þ

−
1

2000 sin 2kπ
T

� �
+ 1
500

� �
u kð Þ = 0,

ð68Þ

is one of the form (1), where −a = −1/5000, −A = −3/
5000, −b = −3/2000, −B = −1/400, α = 3, and β = 1. Let τ =ffiffiffiffiffi
10

p
/4, we obtain

16 < T4 ≤
64000

83 + 12
ffiffiffi
5

p : ð69Þ

Therefore, we can prove that (68) has at least one posi-
tive T-periodic solution in �Ω2, where

Ω2 = u ∈ X
ffiffiffiffiffi
10

p

4 < u kð Þ < 11
ffiffiffiffiffi
10

p

4

�����
( )

: ð70Þ
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