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Hβ-Hausdorff functions for β ∈ ½0, 1� are introduced, and common fixed-point theorems for a pair of multivalued operators
satisfying generalized contraction conditions are proven in a b-metric space. Our results are proper extensions and new
variants of many contraction conditions existing in literature. In order to demonstrate applications of our result, we have
proven an existence theorem for a unique common multivalued fractal of a pair of iterated multifunction systems and also an
existence theorem for a common solution of a pair of Volterra-type integral equations.

1. Introduction

In the last few decades, a wide range of extensions, general-
izations, and applications of the infamous Banach contrac-
tion principle came into existence. In the sequel, Bakhtin
[1] initiated the idea of a b-metric space followed by Czerwik
[2], in which the author by weakening the triangular
inequality formally defined a b-metric space and proved
the Banach contraction principle in a b-metric space. Some
examples and other details of a b-metric space can be found
in Kirk and Shahzad [3] whereas a wide range of generalized
fixed-point theorems in a b-metric space can be found in
[4–7]. On the other hand, the study of a metric function
on the set of closed and bounded subsets of a metric space
was initiated by Pompeiu in [8] and then continued by
Hausdorff [9]. Such a metric function is referred to as the
Hausdorff-Pompeiu metric. Banach’s contraction principle
was extended to a multivalued function in a metric space
by Nadler [10] and in a b-metric space by Czerwik [2] using
the Hausdorff-Pompeiu metric H. Further generalized
results of multivalued contractions can be found in
([11–14]). Czerwik’s contraction was also generalized in
many directions to name a few: q-quasi-contraction [15],

Hardy-Rogers contraction [16], weak quasi-contraction
[17], Ciric contraction [18], etc. More results on multivalued
contraction mappings in a b-metric space can be found in
[19–23]. Very recently, Debnath [24] proved the set-valued
Meir–Keeler-type as well as Geraghty- and Edelstein-type
fixed-point theorems in a b-metric space whereas Altun
et al. [25] and Kumar and Luambano [26] proved fixed-
point results for multivalued F-contraction mappings in
complete metric space and partial metric space, respectively.
In [27], the authors introduced the concept of Hβ-Haus-
dorff-Pompeiu b-metric for some 0 ≤ β ≤ 1 and proved
fixed-point theorems for multivalued mappings belonging
to various classes of multivalued Hβ-contractions in a b
-metric space. Applications of fixed-point results in dealing
with solutions of nonlinear problems arising in engineering
and science are an important area in present-day research.
Fruitful applications of fixed-point problems in solution of
various types of integral equations, fractional differential
equations, and optimization problems can be found in
[28–32]. Barnsley [33] introduced the idea of data interpola-
tion using the fractal methodology of iterated function sys-
tems. Nowadays, fractal functions constitute a method of
approximation of nondifferentiable mappings, providing
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suitable tools for the description of irregular signals (see
[34–39]). The aim of this work is to prove common fixed-
point theorems for a pair of multivalued mappings in a b
-metric space using Hβ-Hausdorff-Pompeiu b-metric and
thereby extend and introduce new variants of various
fixed-point results for multivalued mappings existing in lit-
erature. We have provided two applications of our main
results: one to prove the existence of a unique common mul-
tivalued fractal of a pair of iterated multifunction system
defined on a b-metric space and the second to prove the
existence of a common solution of a pair of Volterra-type
nonlinear integral equations.

2. Preliminaries

In this section, we provide some preliminary definitions,
lemmas, and propositions required in our main results.

Definition 1 (see [1]). Let X be a nonempty set and ds : X
× X ⟶ ½0,∞Þ satisfy the following:

(1) dsðı, ȷÞ = 0 if and only if ı = ȷ for all ı, ȷ ∈ X
(2) dsðı, ȷÞ = dsðȷ, ıÞ for all ı, ȷ ∈ X
(3) There exists a real number s ≥ 1 such that dsðı, ȷÞ ≤

s½dsðı, ℓÞ + dsðℓ, ȷÞ� for all ı, ȷ, ℓ ∈ X
Then, ds is a b-metric on X and ðX, dsÞ is a b-metric

space with coefficient s.

Let CBdsðXÞ be the collection of all nonempty closed and
bounded subsets of a b-metric space ðX, dsÞ. For A, B ∈ C
BdsðXÞ, define dsðx, AÞ = inf fdsðx, aÞ: a ∈ Ag, δdsðA, BÞ =
supa∈Adsða, BÞ, and Hds

ðA, BÞ =max fδdsðA, BÞ, δdsðB, AÞg.
Czerwik [2] has shown that Hds

is a b-metric in the set C

BdsðXÞ and is called the Hausdorff-Pompeiu b-metric
induced by ds. In [27], the authors introduced the function
HβðA, BÞ =max fβδdsðA, BÞ + ð1 − βÞδdsðB, AÞ, βδdsðB,AÞ
+ ð1 − βÞδdsðA, BÞg for some β ∈ ½0, 1� and showed that Hβ

is a b-metric for the set CBdsðXÞ. They called this function
the Hβ-Hausdorff-Pompeiu b-metric induced by the b
-metric ds. Note that for β = 0 or 1, Hβ is the Hausdorff-
Pompeiu metric Hds

.

Proposition 2 (see [27]). For any x, y ∈ X, Hβðfxg, fygÞ =
dsðx, yÞ.

Definition 3 (see [18]). The b-metric ds is ∗-continuous if
and only if for any A ∈ CBdsðXÞ and sequence fxng in
ðX, dsÞ with limn⟶∞xn = x, we have limn⟶∞dsðxn, AÞ
= dsðx, AÞ.

Proposition 4 (see [19]). For any A ⊆ X,

a ∈ �A⇔ ds a, Að Þ = 0: ð1Þ

Lemma 5 (see [18]). Let fxng be a sequence in (X, ds). If
there exists λ ∈ ½0, 1Þ such that dsðxn, xn+1Þ ≤ λdsðxn−1, xnÞ
for all n ∈N, then fxng is a Cauchy sequence.

The following lemma follows immediately from the
above lemma.

Lemma 6. If for some λ, ϵ ∈ ½0, 1Þ, with λ < ϵ, dsðxn, xn+1Þ
≤ λdsðxn−1, xnÞ + ϵn for all n ∈N , then fxng is a Cauchy
sequence.

3. Main Results

We introduce pairwise Hβ-Hausdorff functions as follows:

Definition 7. Let S, T : X⟶ CBdsðXÞ. For any ı ∈ X, ȷ ∈ T
ıðor SıÞ and any ϵ > 0, if there exist ℓ ∈ SȷðorTȷÞ such that

ds ȷ, ℓð Þ ≤Hβ Tı, Sȷð Þ + ϵ or respectively ds ȷ, ℓð Þ
≤Hβ Sı, Tȷð Þ + ϵ,

ð2Þ

then we say that T and S are pairwise Hβ-Hausdorff
functions.

For S = T , we get the following.

Definition 8. For any ı ∈ X, ȷ ∈ Tı and any ϵ > 0 if there exist
ℓ ∈ Tȷ such that

ds ȷ, ℓð Þ ≤Hβ Tı, Tȷð Þ + ϵ, ð3Þ

then we say that T is a Hβ-Hausdorff function.

Remark 9.

(i) For β = 1, T : X⟶ CBðXÞ is always a Hβ-Haus-
dorff function

(ii) If for any 0 ≤ β1 ≤ 1, the function T : X ⟶ CBðXÞ is
a Hβ1-Hausdorff function, then for any 0 ≤ β1 ≤ β2
≤ 1, the function T : X⟶ CBðXÞ is a Hβ2-Haus-
dorff function

Example 10. Let X = ½0, 33/48�S f1g,

ds ı, ȷð Þ = ı − ȷj j2 for all ı, ȷ ∈ X: ð4Þ

and S, T : X ⟶ CBðXÞ be as follows:
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S ıð Þ =

ı
4
n o

, for ı ∈ 0, 3348

� �
,

33
48 , 1
� �

, for ı ∈ 0, 1f g,

8>>><
>>>:

T ıð Þ =

ı
2
n o

, for ı ∈ 0, 3348

� �
,

1
3 ,

33
48 , 1

� �
, for ı ∈ 0, 1f g:

8>>><
>>>:

ð5Þ

We will show that the functions S and T satisfy (2). We
will consider the values of ı in X as follows:

(i) ı ∈ ð0, 33/48�. In this case, Sı and Tȷ are singleton
sets and so (2) is obviously true

(ii) ı = 0. Sı = f33/48, 1g. If ȷ = 33/48, ȷ = f33/96g, then
we have ℓ = 33/96 and dsðȷ, ℓÞ = 1089/9216, δsðSı, T
ȷÞ = 3969/9216, δsðTȷ, SıÞ = 1089/9216, and H3/4ðSı,
TȷÞ = 3249/9216. Thus, (2) is true for all ϵ > 0. If j
= 1, Tj = f1/3, 33/48, 1g, then inequality (2) holds
with ℓ = 1

(iii) ı = 1. Sı = f33/48, 1g, and the result follows in the
same way as in (ii) above.

(iv) ı = 0. Tı = f1/3, 33/48, 1g. If ȷ = 1/3, Sȷ = f1/12g,
then we have ℓ = 1/12 and dsðȷ, ℓÞ = 9/144, δsðTı, Sȷ
Þ = 121/144, δsðSȷ, TıÞ = 9/144, and H3/4ðSı, TȷÞ =
93/144. Thus, (2) is true for all ϵ > 0. If ȷ = 33/48, S
ȷ = f33/192g, then we take ℓ = 33/192 and then dsðȷ
, ℓÞ = 1089/4096, δsðTı, SȷÞ = 2809/4096, δsðSȷ, TıÞ
= 961/36864, and H3/4ðTı, SȷÞ = 19201/36864. Thus,
(2) is true for all ϵ > 0. If ȷ = 1, Sȷ = f33/48, 1g,
inequality (2) holds with ℓ = 1

Thus, S and T are pairwise Hβ-Hausdorff functions for
β = 3/4. However, S and T are not pairwise Hβ-Hausdorff
functions for β = 1/2, as we see that inequality (2) is not sat-
isfied for i = 0, Tı = f1/3, 33/48, 1g, and ȷ = 33/48. In fact, S
and T are not pairwise Hβ-Hausdorff functions for 34/95
< β < 61/95.

We now present our main result as follows:

Theorem 11. Let ðX, dsÞ be a complete b-metric space with
constant s ≥ 1, ds be ∗-continuous, and T , S : X⟶ CBdsðX
Þ be multivalued pairwise Hβ-Hausdorff functions for some
1/2 ≤ β ≤ 1 and satisfying the following condition:

Hβ Tı, Sȷð Þ ≤ α1ds ı, Tıð Þ + α2ds ȷ, Sȷð Þ + α3ds ı, Sȷð Þ
+ α4ds ȷ, Tıð Þ + α5

ds ı, Sȷð Þ + ds ȷ, Tıð Þ
2

� �

+ α6
ds ı, Tıð Þds ȷ, Sȷð Þ

1 + ds ı, ȷð Þ + α7ds ı, ȷð Þ,

ð6Þ

for all ı, j ∈ X and some αk ≥ 0, k = 1, 2⋯ 7, with α1 + α2 + s
α5 + α6 + α7 +max f2sα3, 2sα4g < 1, sðα1 + α4 + ðα5/2ÞÞ < β,
and sðα2 + α3 + ðα5/2ÞÞ < β. Then, S and T have a common
fixed point.

Proof. Let ı0 ∈ X, ı1 ∈ Tı0, and 0 < ϵ < 1. By (2), there exist
ı2 ∈ Sı1, such that dsðı1, ı2Þ ≤HβðTı0, Sı1Þ + ϵ. By (2) again,
there exist ı3 ∈ Tı2, such that dsðı2, ı3Þ ≤HβðSı1, Tı2Þ + ϵ2:

Continuing these ways, we construct the sequence <ın >
such that

ı2n+1 ∈ Tı2n, ı2n+2 ∈ Sı2n+1,
ds ı2n+1, ı2n+2ð Þ ≤Hβ Tı2n, Sı2n+1ð Þ + ϵ2n+1,

ds ı2n+2, ı2n+3ð Þ ≤Hβ Sı2n+1, Tı2n+2ð Þ + ϵ2n+2:

ð7Þ

Now,

ds ı2n+1, ı2n+2ð Þ ≤Hβ Tı2n, Sı2n+1ð Þ + ϵ2n+1

≤ α1ds ı2n, Tı2nð Þ + α2ds ı2n+1, Sı2n+1ð Þ
+ α3ds ı2n, Sı2n+1ð Þ + α4ds ı2n+1, Tı2nð Þ
+ α5

ds ı2n, Sı2n+1ð Þ + ds ı2n+1, Tı2nð Þ
2

� �

+ α6
ds ı2n, Tı2nð Þ ∗ ds ı2n+1, Sı2n+1ð Þ

1 + ds ı2n, ı2n+1ð Þ
� �

+ α7ds ı2n, ı2n+1ð Þ + ϵ2n+1

≤ α1ds ı2n, ı2n+1ð Þ + α2ds ı2n+1, ı2n+2ð Þ
+ α3ds ı2n, ı2n+2ð Þ + α4 0ð Þ
+ α5

ds ı2n, ı2n+2ð Þ + 0
2

� �

+ α6
ds ı2n, ı2n+1ð Þ ∗ ds ı2n+1, ı2n+2ð Þ

1 + ds ı2n, ı2n+1ð Þ
�� �

+ α7ds ı2n, ı2n+1ð Þ + ϵ2n+1

≤ α1ds ı2n, ı2n+1ð Þ + α2ds ı2n+1, ı2n+2ð Þ
+ α3 s ds ı2n, ı2n+1ð Þ + ds ı2n+1, ı2n+2ð Þð Þ½ �
+ α5s

ds ı2n, ı2n+1ð Þ + ds ı2n+1, ı2n+2ð Þ
2

� �
+ α6ds ı2n+1, ı2n+2ð Þ + α7ds ı2n, ı2n+1ð Þ + ϵ2n+1:

ð8Þ

Therefore,

ds ı2n+1, ı2n+2ð Þ
≤

α1 + sα3 + sα5/2ð Þ + α7
1 − α2 − sα3 − sα5/2ð Þ − α6

ds ı2n, ı2n+1ð Þ + ϵ2n+1:
ð9Þ

Again,

ds ı2n+2, ı2n+3ð Þ
≤Hβ Sı2n+1, Tı2n+2ð Þ + ϵ2n+2 ≤ α max ds ı2n+1, ı2n+2ð Þ,f

� ds ı2n+2, Tı2n+2, ds ı2n+1, Sı2n+1ð Þ,ð
� ds ı2n+2, Sı2n+1ð Þ, ds ı2n+1, Tı2n+2ð Þg
+ L min ds ı2n+2, Sı2n+1ð Þ, ds ı2n+1, Tı2n+2ð Þf g + ϵ2n+2

≤ α max ds ı2n+1, ı2n+2ð Þ, ds ı2n+2, ı2n+3,ðf
� ds ı2n+1, ı2n+2ð Þ, ds ı2n+2, ı2n+2ð Þ, ds ı2n+1, ı2n+3ð Þg
+ L min ds ı2n+2, ı2n+2ð Þ, ds ı2n+1, ı2n+3ð Þf g + ϵ2n+2,

ð10Þ
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or ds ı2n+2, ı2n+3ð Þ
≤

α2 + sα4 + sα5/2ð Þ + α7
1 − α1 − sα4 − sα5/2ð Þ − α6

ds ı2n+1, ı2n+3ð Þ + ϵ2n+2:

ð11Þ

Thus, we have

ds ın, ın+1ð Þ ≤ λds ın−1, ınð Þ + ϵn, ð12Þ

where λ =max fðα1 + sα3 + ðsα5/2Þ + α7/1 − α2 − sα3 − ðsα5/
2Þ − α6Þ, ðα2 + sα4 + ðsα5/2Þ + α7/1 − α1 − sα4 − ðsα5/2Þ − α6Þ
g < 1.

By Lemma 6, the sequence <ın > is a Cauchy sequence.
Since ðX, dsÞ is complete, there exists ℏ ∈ X such that the
Cauchy sequence <ın > is convergent to ℏ. We will show
that ℏ ∈ Tℏ

T
Sℏ. By the definition of Hβ, we have

βδs Sı2n+1, Tℏð Þ + 1 − βð Þδs Tℏ, Sı2n+1ð Þ
≤Hβ Sı2n+1, Tℏð Þ ≤ α1ds ℏ, Tℏð Þ + α2ds ı2n+1, Sı2n+1ð Þ

+ α3ds ℏ, Sı2n+1ð Þ + α4ds ı2n+1, Tℏð Þ
+ α5

ds ℏ, Sı2n+1 + ds ı2n+1, Tℏð Þð
2

� �

+ α6
ds ℏ, Tℏð Þ ∗ ds ı2n+1, Sı2n+1ð Þ

1 + ds ℏ, ı2n+1ð Þ
+ α7ds ℏ, ı2n+1ð Þ + ϵ2n+1

≤ α1ds ℏ, Tℏð Þ + α2ds ı2n+1, ı2n+2ð Þ
+ α3ds ℏ, ı2n+2ð Þ + α4ds ı2n+1, Tℏð Þ
+ α5

ds ℏ, ı2n+2ð Þ + ds ı2n+1, Tℏð Þ
2

� �

+ α6
ds ℏ, Tℏð Þds ı2n+1, ı2n+2ð Þ

1 + ds ℏ, ı2n+1ð
+ α7ds ℏ, ı2n+1ð Þ + ϵ2n+1:

ð13Þ

It follows that

lim
n⟶∞

βsδs Sı2n+1, Tℏð Þ + 1 − βð Þδs Tℏ, Sı2n+1ð Þ
≤ lim α1ds ℏ, Tℏð Þ + α2ds ı2n+1, ı2n+2ð Þ½

+ α3ds ℏ, ı2n+2ð Þ + α4ds ı2n+1, Tℏð Þ
+ α5

ds ℏ, ı2n+1ð Þ + ds ı2n+1, Tℏð Þ
2

� �

+ α6
ds ℏ, Tℏð Þds ı2n+1, ı2n+2ð Þ

1 + ds ℏ, ı2n+1ð + α7ds ℏ, ı2n+1ð Þ

≤ α1ds ℏ, Tℏð Þ + α4ds ℏ, Tℏð Þ + α5
ds ℏ, Tℏð Þ

2
≤ α1 + α4 +

α5
2

� 	
ds ℏ, Tℏð Þ:

ð14Þ

Since

limn⟶∞βδs Sı2n+1, Tℏð Þ + limn⟶∞ 1 − βð Þδs Tℏ, Sı2n+1ð Þ
≤ limn⟶∞βsδs Sı2n+1, Tℏð Þ + 1 − βð Þδs Tℏ, Sı2n+1ð Þ,

ð15Þ

we have

lim
n⟶∞

βδs Sı2n+1, Tℏð Þ + lim
n⟶∞

1 − βð Þδs Tℏ, Sı2n+1ð Þ

≤ α1 + α4 +
α5
2

� 	
ds ℏ, Tℏð Þ:

ð16Þ

This implies

lim
n⟶∞

βδs Sı2n+1, Tℏð Þ ≤ α1 + α4 +
α5
2

� 	
ds ℏ, Tℏð Þ: ð17Þ

Again, we have

βδs Tı2n, Sℏð Þ + 1 − βð Þδs Sℏ, Tı2nð Þ
≤Hβ Tı2n, Sℏð Þ ≤ α1ds ı2n, Tı2nð Þ + α2ds ℏ, Sℏð Þ

+ α3ds ı2n, Sℏð Þ + α4ds ℏ, Tı2nð Þ
+ α5

ds ℏ, Tı2n + ds ı2n, Sℏð Þð Þ
2

� �

+ α6
ds ℏ, Sℏð Þds ı2n, Tı2nð Þ

1 + ds ℏ, ı2nð Þ
� �

+ α7ds ℏ, ı2nð Þ + ϵ2n+1

≤ α1ds ı2n, ı2n+1ð Þ + α2ds ℏ, Sℏð Þ + α3ds ı2n, Sℏð Þ
+ α4ds ℏ, ı2n+1ð Þ + α5

ds ℏ, ı2n+1ð Þ + ds ı2n, Sℏð Þ
2

� �

+ α6
ds ℏ, Sℏð Þds ı2n, ı2n+1ð Þ

1 + ds ℏ, ı2nð Þ + α7ds ℏ, ı2nð Þ + ϵ2n+1:

ð18Þ

It follows that

lim
n⟶∞

βsδs Tı2n, Sℏð Þ + 1 − βð Þδs Sℏ, Tı2nð Þ

≤ lim
�
α1ds ı2n, ı2n+1ð Þ + α2ds ℏ, Sℏð Þ

+ α3ds ı2n, Sℏð Þ + α4ds ℏ, i2n+1ð Þ
+ α5

ds ℏ, ı2n+1ð Þ + ds ı2n, Sℏð Þ
2

� �

+ α6
ds ℏ, Sℏð Þds ı2n, ı2n+1ð Þ

1 + ds ℏ, ı2nð Þ + α7ds ℏ, ı2nð Þ
�

≤ α2ds ℏ, Sℏð Þ + α3ds ℏ, Sℏð Þ + α5
ds ℏ, Sℏð Þ

2
≤ α2 + α3 +

α5
2

� 	
ds ℏ, Sℏð Þ:

ð19Þ

Since

limn⟶∞βδs Tı2n, Sℏð Þ + limn⟶∞ 1 − βð Þδs Sℏ, Tı2nð Þ
≤ limn⟶∞βsδs Tı2n, Sℏð Þ + 1 − βð Þδs Sℏ, Tı2nð Þ, ð20Þ
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we have

lim
n⟶∞

βδs Tı2n, Sℏð Þ + lim
n⟶∞

1 − βð Þδs Sℏ, Tı2nð Þ

≤ α2 + α3 +
α5
2

� 	
ds ℏ, Sℏð Þ:

ð21Þ

This implies

lim
n⟶∞

βδs Tı2n, Sℏð Þ ≤ α2 + α3 +
α5
2

� 	
ds ℏ, Sℏð Þ: ð22Þ

Now

ds ℏ, Tℏð Þ ≤ s ds ℏ, ı2n+2ð Þ + δs Sı2n+1, Tℏð Þ½ ,
ds ℏ, Sℏð Þ ≤ s ds ℏ, ı2n+1ð Þ + δs Tı2n, Sℏð Þ½ Þ:

ð23Þ

Using (17) and (22) in the above two inequalities, we get

ds ℏ, Tℏð Þ ≤ s lim
n⟶∞

ds ℏ, ı2n+2ð Þ + s lim
n⟶∞

δs Sı2n+1, Tℏð Þ

≤
s α1 + α4 + α5/2ð Þð Þ

β
ds ℏ, Tℏð Þ,

ds ℏ, Sℏð Þ ≤ s lim
n⟶∞

ds ℏ, ı2n+1ð Þ + s lim
n⟶∞

δs Tı2n, Sℏð Þ

≤
s α2 + α3 + α5/2ð Þð Þ

β
ds ℏ, Sℏð Þ:

ð24Þ

This gives dsðℏ, TℏÞ = 0 and dsðℏ, SℏÞ = 0. Since T and S
are closed, we have ℏ ∈ T and ℏ ∈ S.

Our next result provides an extension and new variants
of Ciric’s quasi-contraction [15] and multivalued weak
quasi-contraction [17], for a pair of multivalued mappings
in a b-metric space.

Theorem 12. Let ðX, dsÞ be a complete b-metric space with
constant s ≥ 1, ds be ∗-continuous, and T , S : X⟶ CBdsðX
Þ be multivalued pairwise Hβ-Hausdorff functions for some
1/2 ≤ β ≤ 1 and satisfying the following condition:

Hβ Tı, Sȷð Þ ≤ α max ds ı, ȷð Þ, d ı, Tıð Þ, ds ȷ, Sȷð Þ, ds ı, Sȷð Þ, ds ȷ, Tıð Þf g
+ L min ds ı, Sȷð Þ, ds ȷ, Tıð Þf g,

ð25Þ

for all ı, ȷ ∈ X, some α ≥ 0 with 0 ≤ sα < 1/2 and L ≥ 0. Then, S
and T have a common fixed point.

Proof. Proceeding as in the proof of Theorem 11, for some
ı0 ∈ X, ı1 ∈ Tı0, and 0 < ϵ < 1, we construct the sequence <
ın > satisfying (7). Then, we have

ds ı2n+1, ı2n+2ð Þ
≤Hβ Tı2n, Sı2n+1ð Þ + ϵ2n+1

≤ α max ds ı2n, ı2n+1ð Þ, ds ı2n, Tı2nð Þ, ds ı2n+1, Sı2n+1ð Þ,f
� ds ı2n, Sı2n+1ð Þ, ds ı2n+1, Tı2nð Þg
+ L min ds ı2n, Sı2n+1ð Þ, ds ı2n+1, Tı2nð Þf g + ϵ2n+1

≤ α max ds ı2n, ı2n+1ð Þ, ds ı2n, ı2n+1ð Þ, ds ı2n+1, ı2n+2ð Þ,f
� ds ı2n, ı2n+2ð Þ, ds ı2n+1, ı2n+1ð Þg
+ L min ds ı2n, ı2n+2ð Þ, ds ı2n+1, ı2n+1ð Þf g + ϵ2n+1:

ð26Þ

Therefore,

ds ı2n+1, ı2n+2ð Þ ≤ sα
1 − sα

ds ı2n, ı2n+1ð Þ + ϵ2n+1: ð27Þ

Again,

ds ı2n+2, ı2n+3ð Þ
≤Hβ Sı2n+1, Tı2n+2ð Þ + ϵ2n+2

≤ α max ds ı2n+1, ı2n+2ð Þ, ds ı2n+2, Tı2n+2,ðf
� ds ı2n+1, Sı2n+1ð Þ, ds ı2n+2, Sı2n+1ð Þ, ds ı2n+1, Tı2n+2ð Þg

+ L min ds ı2n+2, Sı2n+1ð Þ, ds ı2n+1, Tı2n+2ð Þf g + ϵ2n+2

≤ α max ds ı2n+1, ı2n+2ð Þ, ds ı2n+2, ı2n+3,ðf
� ds ı2n+1, ı2n+2ð Þ, ds ı2n+2, ı2n+2ð Þ, ds ı2n+1, ı2n+3ð Þg

+ L min ds ı2n+2, ı2n+2ð Þ, ds ı2n+1, ı2n+3ð Þf g + ϵ2n+2,
ð28Þ

and we get

ds ı2n+2, ı2n+3ð Þ ≤ sα
1 − sα

ds sı2n+1, ı2n+3ð Þ + ϵ2n+2: ð29Þ

Thus, we have

ds ın, ın+1ð Þ ≤ λds ın−1, ınð Þ + ϵn, ð30Þ

where λ = ðsα/ð1 − sαÞÞ < 1:

By Lemma 6, the sequence <ın > is a Cauchy sequence.
Since ðX, dsÞ is complete, there exists ℏ ∈ X such that the
Cauchy sequence <ın > is convergent to ℏ. We will show
that ℏ ∈ Tℏ

T
Sℏ. By the definition of Hβ, we have

βδs Sı2n+1, Tℏð Þ + 1 − βð Þδs Tℏ, Sı2n+1ð Þ
≤Hβ Sı2n+1, Tℏð Þ ≤ α max ds ı2n+1, ℏð Þ, ds ℏ, Tℏð Þ,f

� ds ı2n+1, Si2n+1ð Þ, ds ℏ, Sı2n+1ð Þ, ds ı2n+1, Tℏð Þg
+ L min ds ℏ, Sı2n+1ð Þ, ds ı2n+1, Tℏð Þf g + ϵ2n+2

≤ α max ds ı2n+1, ℏð Þ, ds ℏ, Tℏ, ds ı2n+1, ı2n+2ð Þ,ðf
� ds ℏ, ı2n+2ð Þ, ds ı2n+1, Tℏð Þg
+ L min ds ℏ, ı2n+2ð Þ, ds ı2n+1, Tℏð Þf g + ϵ2n+2:

ð31Þ
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It follows that

lim
n⟶∞

βsδs Sı2n+1, Tℏð Þ + 1 − βð Þδs Tℏ, Sı2n+1ð Þ
≤ lim α max ds ı2n+1, ℏð Þ, ds ℏ, Tℏð Þ,f½

� ds ı2n+1, ı2n+2ð Þ, ds ℏ, ı2n+2ð Þ, ds ı2n+1, Tℏð Þg
+ L min ds ℏ, ı2n+2ð Þ, ds ı2n+1, Tℏð Þf gϵ2n+2�

≤ α ds ℏ, Tℏð Þ:

ð32Þ

Since

limn⟶∞βδs Sı2n+1, Tℏð Þ + limn⟶∞ 1 − βð Þδs Tℏ, Sı2n+1ð Þ
≤ limn⟶∞βsδs Sı2n+1, Tℏð Þ + 1 − βð Þδs Tℏ, Sı2n+1ð Þ,

ð33Þ

we have

lim
n⟶∞

βδs Sı2n+1, Tℏð Þ + lim
n⟶∞

1 − βð Þδs Tℏ, Sı2n+1ð Þ
≤ α ds ℏ, Tℏð Þ:

ð34Þ

This implies

lim
n⟶∞

βδs Sı2n+1, Tℏð Þ ≤ α ds ℏ, Tℏð Þ: ð35Þ

Again, we have

βδs Tı2n, Sℏð Þ + 1 − βð Þδs Sℏ, Tı2nð Þ
≤Hβ Tı2n, Sℏð Þ ≤ α max ds ı2n, ℏð Þ, ds ı2n, Tı2nð Þ,f

� ds ℏ, Sℏð Þ, ds ı2n, Sℏð Þ, ds ℏ, Tı2nð Þg
+ L min ds ı2n, Sℏð Þ, ds ℏ, Tı2nð Þf g + ϵ2n+1

≤ α max ds ı2n, ℏð Þ, ds ı2n, ı2n+1ð Þ,f
� ds ℏ, Sℏð Þ, ds ı2n, Sℏð Þ, ds ℏ, ı2n+1ð Þg
+ L min ds ı2n, Sℏð Þ, ds ℏ, ı2n+1ð Þf g + ϵ2n+1:

ð36Þ

It follows that

lim
n⟶∞

βsδs Tı2n, Sℏð Þ + 1 − βð Þδs Sℏ, Tı2nð Þ
≤ lim α max ds ı2n, ℏð Þ, ds ı2n, ı2n+1ð Þ,f½

� ds ℏ, Sℏð Þ, ds ı2n, Sℏð Þ, ds ℏ, ı2n+1ð Þ
+ L min ds ı2n, Sℏð Þ, ds ℏ, ı2n+1ð Þf g + ϵ2n+1



≤ α ds ℏ, Sℏð Þ:

ð37Þ

Since

limn⟶∞βδs Tı2n, Sℏð Þ + limn⟶∞ 1 − βð Þδs Sℏ, Tı2nð Þ
≤ limn⟶∞βsδs Tı2n, Sℏð Þ + 1 − βð Þδs Sℏ, Tı2nð Þ, ð38Þ

we have

lim
n⟶∞

βδs Tı2n, Sℏð Þ + lim
n⟶∞

1 − βð Þδs Sℏ, Tı2nð Þ ≤ α ds ℏ, Sℏð Þ:
ð39Þ

This implies

lim
n⟶∞

βδs Tı2n, Sℏð Þ ≤ α ds ℏ, Sℏð Þ: ð40Þ

Now,

ds ℏ, Tℏð Þ ≤ s ds ℏ, ı2n+2ð Þ + δs Sı2n+1, Tℏð Þ½ ,
ds ℏ, Sℏð Þ ≤ s ds ℏ, ı2n+1ð Þ + δs Tı2n, Sℏð Þ½ Þ:

ð41Þ

Using (35) and (40) in the above two inequalities, we get

ds ℏ, Tℏð Þ ≤ s lim
n⟶∞

ds ℏ, ı2n+2ð Þ + s lim
n⟶∞

δs Sı2n+1, Tℏð Þ

≤
sα
β
ds ℏ, Tℏð Þ,

ds ℏ, Sℏð Þ ≤ s lim
n⟶∞

ds ℏ, ı2n+1ð Þ + s lim
n⟶∞

δs Tı2n, Sℏð Þ

≤
sα
β
ds ℏ, Tℏð Þ:

ð42Þ

Since sα < 1/2 and 1/2 ≤ β ≤ 1, we get dsðℏ, TℏÞ = 0 and
dsðℏ, SℏÞ = 0. As T and S are closed, we have ℏ ∈ T and ℏ ∈
S.

Applying the same technique as in the proof of Theorem
12, we can prove the following extension and new variant of
Ciric’s contraction for a pair of multivalued mappings in a b
-metric space.

Theorem 13. Let ðX, dsÞ be a complete b-metric space with
constant s ≥ 1, ds be ∗-continuous, and T , S : X ⟶ CBdsðX
ÞðXÞ be multivalued pairwise Hβ-Hausdorff functions for
some 1/2 ≤ β ≤ 1 and satisfying the following condition:

Hβ Tı, Sȷð Þ ≤ α max
�
ds ı, ȷð Þ, ds ı, Tıð Þ, ds ȷ, Sȷð Þ,

� ds ı, Sȷð Þ + ds ȷ, Tıð Þ
2

�
,

ð43Þ

for all i, j ∈ X and some α ≥ 0 with sα < β. Then, S and T have
a common fixed point.

For S = T in Theorem 11, we get the following result:

Corollary 14. Let ðX, dsÞ be a complete b-metric space with
constant s ≥ 1, ds be ∗-continuous, and T : X ⟶ CBdsðXÞ
be a multivalued Hβ-Hausdorff function for some 1/2 ≤ β ≤
1 and satisfying the following condition:

Hβ Tı, Tȷð Þ ≤ α1ds ı, Tıð Þ + α2ds ȷ, Tȷð Þ + α3ds ı, Tȷð Þ
+ α4ds ȷ, Tıð Þ + α5

ds ı, Tȷð Þ + ds ȷ, Tıð Þ
2

� �

+ α6
ds ı, Tıð Þds ȷ, Tȷð Þ

1 + ds ı, ȷð Þ + α7ds ı, ȷð Þ,

ð44Þ
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for all ı, ȷ ∈ X and some αk ≥ 0, 1 ≤ k ≤ 7, with α1 + α2 + sα5
+ α6 + α7 +max f2sα3, 2sα4g < 1, sðα1 + α4 + ðα5/2ÞÞ < β,
and sðα2 + α3 + ðα5/2ÞÞ < β. Then, T has a fixed point.

Example 15. Let X = ½0, 5/12�S f2g, dsðı, ȷÞ = jı − ȷj2 for all
ı, ȷ ∈ X, and S, T : X⟶ CBðXÞ be as follows:

S ıð Þ =

ı
4
n o

, for ı ∈ 0, 5
12

� �
,

0, 13 , 2
� �

, for ı = 2,

8>>><
>>>:

T ıð Þ =

ı
4
n o

, for ı ∈ 0, 5
12

� �
,

0, 5
12 , 2

� �
, for ı = 2:

8>>><
>>>:

ð45Þ

We will show that the functions S and T satisfy contrac-
tion condition (6) for β = 1/2.

Case 1. ı, ȷ ∈ ½0, 5/12�. By Proposition 2, we have

H1/2 Sı, Tȷð Þ =H1/2 ı
4
n o

, ȷ
4
n o� 	

= ds
ı
4 ,

ȷ
4

� 	
= ı

4 −
ȷ
4

��� ���2
≤ α1 ı − ȷj j2, for any α7 ≥

1
16 = α7dx ı, ȷð Þ:

ð46Þ

Case 2. ı ∈ ½0, 5/12�, ȷ = 2. We have dsðı, ȷÞ = j2 − ıj2. The min-
imum value of dsðı, ȷÞ for ı ∈ ½0, 5/12� is 361/144.

δs Sı, Tȷð Þ = δs
ı
4
n o

, 0, 5
12 , 2

� �� �
= ı2

16 ,

δs Tȷ, Sıð Þ = δs 0, 5
12 , 1

� �
, ı

4
n o� �

= 2 − ı
4

� 	2
,

H1/2 Sı, Tȷð Þ = 1
2

ı2

16 + 2 − ı
4

� 	2� �
:

ð47Þ

The maximum value of H1/2ðSı, TjÞ for ı ∈ ½0, 5/12� is 2
(at ı = 0). Thus, H1/2ðSı, TȷÞ ≤ α7dsðı, ȷÞ for any α7 ≥ 288/
361.

Case 3. ı = 2, ȷ ∈ ½0, 5/12�. We have dsðı, ȷÞ = j2 − ȷj2. The min-
imum value of dsðı, ȷÞ for ȷ ∈ ½0, 5/12� is 361/144. δsðSı, TȷÞ
= δsðf0, 5/12, 2g, fȷ/4gÞ = ð2 − ðȷ/4ÞÞ2.

δs Tȷ, Sıð Þ = δs
ı
4
n o

, 0, 5
12 , 1

� �� �
= ȷ2

16 ,

H1/2 Sı, Tȷð Þ = 1
2

ȷ2

16 + 2 − ȷ
4

� 	2� �
:

ð48Þ

The maximum value of H1/2ðSı, TȷÞ for ȷ ∈ ½0, 5/12� is 2
(at ȷ = 0). Thus, H1/2ðSı, TȷÞ ≤ α7dsðı, ȷÞ for any α7 ≥ 288/
361.

Thus, S and T satisfy contraction condition (6) for β =
1/2, 288/361 ≤ α7 < 1 and α1 = α2 = α3 = α4 = α5 = α6 = 0.
Simple calculations show that S and T are pairwise Hβ-
Hausdorff functions. All conditions of Theorem 11 are satis-
fied, and 0 is a common fixed point of S and T . However, we
see that at ı = 0, ȷ = 2, S and T do not satisfy contraction con-
dition (6) for β = 1 and so do not satisfy Nadler’s contraction
and Czerwik’s contraction.

Remark 16. In Example 15, simple calculations show that S
and T do not satisfy contraction condition (6) for 62/100
< β ≤ 1. However, in view of Remark 9 (i), there may exist
functions S and T which satisfy contraction condition (6)
for β = 1 but may not satisfy for β < 1. Thus, for β = 1, The-
orem 11 is an extension of Nadler’s contraction [10], Czer-
wik’s contraction [2], and many of their generalizations.
For β < 1, Theorem 11 provides new variants of Nadler’s
contraction [10], Czerwik’s contraction [2], and many of
their generalizations.

Example 17. Let X = f0, 1/4, 1g,

ds ı, ȷð Þ = ı − ȷj j2 for all ı, ȷ ∈ X: ð49Þ

and T : X ⟶ CBðXÞ be as follows:

T xð Þ =
0f g, for ı ∈ 0, 14

� �
,

0, 1f g, for ı = 1:

8><
>: ð50Þ

We will show that T satisfies (44) with β ∈ ð7/16, 9/16Þ.
For if ı, ȷ ∈ f0, 1/4g, then the result is clear. Suppose ı ∈

f0, 1/4g and ȷ = 1. Then, δdsðTı, T1Þ = 0 and δdsðT1, TıÞ = 1
so that HβðTı, T1Þ =max fβ, 1 − βg. Also, we have dsðı, 1Þ
= 1 or 9/16.

If β ∈ ð7/16, 1/2�, then HβðTı, T1Þ = 1 − β. Now 1 − β ∈
½8/16, 9/16Þ. So 1 − β = 16/9ð1 − βÞ9/16 and 1 − β < ð16/9Þð
1 − βÞ1, that is, 1 − β ≤ ð16/9Þð1 − βÞdsðı, 1Þ. Thus, we have
HβðTı, T1Þ = 1 − β ≤ kdsðı, 1Þ, where k = 16/9ð1 − βÞ < 1.

Similarly, if β ∈ ½1/2, 9/16Þ, we get HβðTı, T1Þ = β ≤ kds
ðı, 1Þ, where k = 16/9β < 1.

However, for ı = 1/4 and ȷ = 1, we have

H T
1
4

� �
, T 1ð Þ

� �
=max δds T

1
4

� �
, T1

� �
, δds T1, T 1

4

� �� �� �

= 1 and ds
1
4 , 1
� �

= 9
16 :

ð51Þ

We see that T does not satisfy condition (2.2) of [24] and
condition (2.1) of [26]. Thus, Theorem 2.2 of Debnath [24]
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and Theorem 2.3 of Kumar and Luambano [26] are not
applicable.

Remark 18 (an open question). Obtain the version of results
in fixed points in the sense of Debnath [24], Kumar and
Luambano [26], and Altun et al. [25] for two or more map-
pings using Hβ-Hausdorff-Pompeiu b-metric, which will
give extension and new variants of the respective results
and will also generalize Corollary 19.

By taking different values of αk in Theorem 11, we get
the following extension and new variants of well-known
contraction principles:

For αk = 0, k = 1, 2, 3, 4, 5, 6, we have the following.

Corollary 19 (Nadler’s and Czerwik’s contraction). Let ðX,
dsÞ be a complete b-metric space with constant s ≥ 1 and T ,
S : X⟶ CBdsðXÞ be multivalued pairwise Hβ-Hausdorff
functions for some 1/2 ≤ β ≤ 1 and satisfying the following
condition:

Hβ Tı, Sȷð Þ ≤ αds ı, ȷð Þ, ð52Þ

for all ı, ȷ ∈ X and 0 ≤ α < 1. Then, S and T have a common
fixed point.

For αk = 0, k = 3, 4, 5, 6, 7, we have the following.

Corollary 20 (Kannan’s contraction). Let ðX, dsÞ be a com-
plete b-metric space with constant s ≥ 1 and T , S : X⟶ C
BdsðXÞ be multivalued pairwise Hβ-Hausdorff functions for
some 1/2 ≤ β ≤ 1 and satisfying the following condition:

Hβ Tı, Sȷð Þ ≤ α1ds ı, Tıð Þ + α2ds ȷ, Sȷð Þ, ð53Þ

for all ı, ȷ ∈ X and 0 ≤ α1 + α2 < 1. Then, S and T have a com-
mon fixed point.

For αk = 0, k = 1, 2, 5, 6, 7, we have the following.

Corollary 21 (Chattarjee contraction). Let ðX, dsÞ be a com-
plete b-metric space with constant s ≥ 1 and T , S : X⟶ C
BdsðXÞ be multivalued pairwise Hβ-Hausdorff functions for
some 1/2 ≤ β ≤ 1 and satisfying the following condition:

Hβ Tı, Sȷð Þ ≤ α3ds ı, Sıð Þ + α4ds ȷ, Tıð Þ, ð54Þ

for all ı, ȷ ∈ X andmax fsα3, sα4g < 1/2. Then, S and T have a
common fixed point.

For αk = 0, k = 5, 6, we have the following.

Corollary 22 (Hardy-Rogers contraction). Let ðX, dsÞ be a
complete b-metric space with constant s ≥ 1 and T , S : X
⟶ CBdsðXÞ be multivalued pairwise Hβ-Hausdorff func-

tions for some 1/2 ≤ β ≤ 1 and satisfying the following condi-
tion:

Hβ Tı, Sȷð Þ ≤ α1ds ı, Tıð Þ + α2ds ȷ, Sȷð Þ + α3ds ı, Sıð Þ
+ α4ds ȷ, Tıð Þ + α7ds ı, ȷð Þ,

ð55Þ

for all ı, ȷ ∈ X and α1 + α2 + α7 +max f2sα3, 2sα4g < 1, sðα1
+ α4Þ < β, and sðα2 + α3Þ < β. Then, S and T have a common
fixed point.

Remark 23. Corollary 19 is an extension and new variant of
the results of Nadler [10] and Czerwik [2], Corollaries 20
and 21 are extended and new variants of the set-valued ver-
sions of the Kannan contraction and Chatterjee contraction,
respectively, whereas Corollary 22 is an extended and new
variant of the result of Mirmostaffae [16].

If T , S : X⟶ X are single-valued mappings and then by
Proposition 2, HβðTı, SȷÞ = dsðTı, SȷÞ for all 1/2 ≤ β ≤ 1. So
taking β = 1 in Theorem 11, we get the following results
for single-valued mappings.

Corollary 24. Let ðX, dsÞ be a complete b-metric space with
constant s ≥ 1 and T , S : X⟶ X be single-valued mappings
satisfying the following condition:

ds Tı, Sȷð Þ ≤ α1ds ı, Tıð Þ + α2ds ȷ, Sȷð Þ + α3ds ı, Sıð Þ
+ α4ds ȷ, Tıð Þ + α5

ds ı, Sȷð Þ + ds ȷ, Tıð Þ
2

� �

+ α6
ds ı, Tıð Þds ȷ, Sȷð Þ

1 + ds ı, ȷð Þ + α7ds ı, ȷð Þ,

ð56Þ

for all ı, ȷ ∈ X and α1 + α2 + s α5 + α6 + α7 +max f2sα3, 2sα4
g < 1, sðα1 + α4 + ðs α5/2ÞÞ < 1, and sðα2 + α3 + ðs α5/2ÞÞ < 1.
Then, S and T have a common fixed point.

Remark 25. Corollary 24 is an extension and b-metric ver-
sion of the result of Wong [40].

4. Applications

In this section, we provide two applications of our results.

4.1. Application to Multivalued Fractals. In this section
inspiring from some recent works in [20, 41, 42], we will
apply our result to prove the existence of a unique common
multivalued fractal for a pair of iterated multifunction sys-
tems. Let Pi,Qi : X⟶ CBdsðXÞ, i = 1, 2,⋯n, be upper
semicontinuous mappings. Then, P = ðP1, P2,⋯PnÞ and Q
= ðQ1,Q2,⋯QnÞ form a pair of iterated multifunction sys-
tems defined on the b-metric space ðX, dsÞ. The extended
multifractal operators generated by the iterated multifunc-
tion systems P = ðP1, P2,⋯PnÞ and Q = ðQ1,Q2,⋯QnÞ are
the operators TP , TQ : CBdsðXÞ⟶ CBdsðXÞ defined by TP

ðYÞ =Sn
i=1PiðYÞ and TQðYÞ =

Sn
i=1QiðYÞ, respectively. A

common fixed point of TP and TQ is called the common
multivalued fractal of the iterated multifunction systems P
= ðP1, P2,⋯PnÞ and Q = ðQ1,Q2,⋯QnÞ.
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Theorem 26. Let Pi,Qi : X⟶ CBdsðXÞ, i = 1, 2,⋯n, be
upper semicontinuous mappings satisfying the following
condition:

For i = 1, 2,⋯n, there exist β ∈ ½1/2, 1� and ai, ei ∈ ð0, 1Þ,
ai + 2sei < 1, such that for all x, y ∈ X,

Hβ Pix,Qiyð Þ ≤ ai:ds x, yð Þ + ei ds x,Qiyð Þ + ds y, Pixð Þ½ �: ð57Þ

Then,

(i) For all U1,U2 ∈ CBðXÞ, HβðTPðU1Þ, TQðU2ÞÞ ≤ a:
HβðU1,U2Þ + b:HβðU1, TPðU1ÞÞ + c:HβðU2, TQðU2Þ
Þ + e½HβðU1, TQðU2ÞÞ +HβðU2, TPðU1ÞÞ�

(v) The pair of systems P = ðP1, P2,⋯PnÞ and Q = ðQ1,
Q2,⋯QnÞ has a unique common multivalued fractal

Proof. Suppose condition (57) holds. Then, for U1,U2 ∈ CB
ðXÞ, we have

βδ Pi U1ð Þ,Qi U2ð Þð Þ + 1 − βð Þδ Qi U2ð Þ, Pi U1ð Þð Þ
= βsupx∈U1

inf y∈U2
Hβ Pi xð Þ,Qi yð Þð Þ

�
+ 1 − βð Þsupy∈U2

inf x∈U1
Hβ Pi xð Þ,Qi yð Þð Þ

�
≤ βsupx∈U1

inf y∈U2
ai:ds x, yð Þ + ei ds x,Qiyð Þ½f�

+ ds y, Pixð Þ�g + 1 − βð Þsupy∈U2
inf x∈U1

ai:ds x, yð Þf�
+ ei ds x,Qiyð Þ + ds y, Pixð Þ½ �g

= ai:H
β U1,U2ð Þ + ei HβU1,Qi U2ð Þ

� 	h
+Hβ U2, Pi U1ð Þð Þ

i
:

ð58Þ

Similarly, we get

βδδ Qi U2ð Þ, Pi U1ð Þð Þ + 1 − βð Þ Pi U1ð Þ,Qi U2ð Þð Þ
≤ ai:H

β U2,U1ð Þ + ei H
β U2, Pi U1ð Þ +Hβ U1,Qi U2ð Þð Þ
�h i

:
ð59Þ

Then, we have

Hβ Pi U1ð Þ,Qi U2ð Þð Þ
≤ ai:H

β U1,U2ð Þ + ei
h
Hβ
�
U2, Pi U1ð Þ

+Hβ U1,Qi U2ð Þð Þ
i
 i = 1, 2,⋯nÞ

≤ a:Hβ U2,U1ð Þ + e
h
Hβ
h
U2, Pi U1ð Þ

+Hβ U1,Qi U2ð Þð Þ
i
,

ð60Þ

where a =max fa1, a2,⋯ang and e =max fe1, e2,⋯ng. Note
that

Hβ
[n
i=1

Pi U1ð Þ,
[n
i=1

Qi U2ð Þ
 !

≤max Hβ P1 U1ð Þ,Q1 U2ð Þð Þ,
n

�Hβ P2 U1ð Þ,Q2 U2ð Þð Þ,⋯Hβ Pn U1ð Þ,Qn U2ð Þð Þ
o
,

ð61Þ

and so

Hβ TP U1ð Þ, TQ U2ð Þ� 
≤ a:Hβ U1,U2ð Þ + e Hβ U1, TQ U2ð Þ� h

+Hβ U2, TP U1ð Þð Þ
i
:

ð62Þ

Thus, TP, TQ : CBðXÞ⟶ CBðXÞ satisfies the conditions
of Corollary 24 in the metric space fCBðXÞ,Hβg and hence
has a common fixed point U∗ in CBðXÞ, which in turn is the
unique common multivalued fractal of the pair of iterated
multifunction systems P = ðP1, P2,⋯PnÞ and Q = ðQ1,Q2,⋯
QnÞ.

Remark 27. Since HβðA, BÞ ≤HðA, BÞ, Theorem 26 is a
proper improvement and generalization of Theorem 3.4 of
[20], Theorem 3.1 of [41], and Theorem 3.8 of [42].

4.2. Application to the Integral Equation. In this section,
motivated by the applications given in [28–30] and [31],
we establish the sufficient conditions for the existence of a
common solution of a pair of nonlinear Volterra-type inte-
gral equations.

For some real numbers a, b with 0 ≤ a < b and I = ½a, b�,
let X = CðI,ℝÞ be the Banach space of real continuous func-
tions defined on I equipped with a norm given by kık =
maxt∈I jıðtÞj: For some p ≥ 1, define a b-metric ds on X by

ds ı, ȷð Þ =max
t∈I

ı tð Þ − ȷ tð Þj jp, for all ı, ȷ ∈ X: ð63Þ

Then, ðX, ds, 2p−1Þ is a complete b-metric space. Con-
sider the following pair of Volterra-type integral equations:

ı tð Þ = q tð Þ +
ðμ tð Þ

a
P t, sð ÞK1 t, s, ı sð Þð Þds +

ðσ tð Þ

a
Q t, sð ÞK2 t, s, ȷ sð Þð Þds,

ȷ tð Þ = q tð Þ +
ðμ tð Þ

a
P t, sð ÞK2 t, s, ȷ sð Þð Þds +

ðσ tð Þ

a
Q t, sð ÞK1 t, s, ȷ sð Þð Þds,

8>>><
>>>:

ð64Þ
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for all t, s ∈ I = ½a, b� ⊆ℝ, jλj > 0, K i=1,2 : I × I × X⟶ℝ,
and q : I ⟶ℝ, and P ,Q : I × I ⟶ℝ are continuous
functions and μ, σ : I ⟶ I.

Suppose T , S : X⟶ X is self-mappings defined by

for all ı, ȷ ∈ X, where t ∈ I. It is obvious that ℏðtÞ is a solution
of (64) if and only if it has a common fixed point of T and S.

Theorem 28. Suppose that the following hypotheses hold:
(H1) TðXÞ and SðXÞ are closed in X
(H2) There exist nonnegative real numbers α1, α2, α3, α4,

α5, α6 , α7 with α1 + α2 + 2p max fα3, α4g + 2p−1α5 + α6 + α7
< 1 such that

K1 t, s, ı sð Þð Þ −K2 t, s, y sð Þð Þj jp ≤N T , S, p, tð Þ, ð66Þ

where

N T , S, p, tð Þ = α1 ı tð Þ − Tı tð Þj jp + α2 ȷ tð Þ − Sȷ tð Þj jp
+ α3 ı tð Þ − Sȷ tð Þj jp + α4 ȷ tð Þ − Tı tð Þj jp
+ α7 ı tð Þ − ȷ tð Þj jp

+ α5
ı tð Þ − Sȷ tð Þj jp + ȷ tð Þ − Tı tð Þj jp

2

� �

+ α6
ı tð Þ − Tı tð Þj jp ȷ tð Þ − Sȷ tð Þj jp

1 + ı tð Þ − ȷ tð Þj jp :

ð67Þ

(H3)
Ð μðtÞ
a P ðt, sÞds + Ð σðtÞa Qðt, sÞds ≤ 1/2p−1

Then, the system (64) of integral equations has unique
common solutions in X.

Proof. Using ðH2Þ and ðH3Þ, we have

ds Tı, Sȷð Þ =max
t∈I

Tı tð Þ − Sȷ tð Þj jp ≤max
t∈I

ðμ tð Þ

a
P t, sð ÞK1 t, s, ı sð Þð Þds

����
+
ðσ tð Þ

a
Q t, sð ÞK2 t, s, ȷ sð Þð Þds −

ðμ tð Þ

a
P t, sð ÞK2 t, s, ȷ sð Þð Þds

−
ðσ tð Þ

a
Q t, sð ÞK1 t, s, ȷ sð Þð Þds

����
p

≤max
t∈I

2p−1
( ðμ tð Þ

a
P t, sð ÞK1 t, s, ı sð Þð Þds

����
−
ðμ tð Þ

a
P t, sð ÞK2 t, s, ȷ sð Þð Þds

����
p

+
ðσ tð Þ

a
Q t, sð ÞK2 t, s, ȷ sð Þð Þds

����
−
ðσ tð Þ

a
Q t, sð ÞK1 t, s, ȷ sð Þð Þds

����
p
)

≤max
t∈I

2p−1
( ðμ tð Þ

a
P t, sð Þ K1 t, s, ı sð Þð Þ −K2 t, s, ȷ sð Þð Þð Þds

����
����
p

+
ðσ tð Þ

a
Q t, sð Þ K2 t, s, ȷ sð Þð Þ −K1 t, s, ȷ sð Þð Þð Þds

����
����
p
)

≤max
t∈I

2p−1
�ðμ tð Þ

a
P t, sð Þj jp K1 t, s, ı sð Þð Þ −K2 t, s, ȷ sð Þð Þð Þj jpds

+
ðσ tð Þ

a
Q t, sð Þj jp K2 t, s, ȷ sð Þð Þ −K1 t, s, ȷ sð Þð Þj jpds

�

≤max
t∈I

2p−1
ðμ tð Þ

a
P t, sð Þj jpN T , S, p, tð Þds

�

+
ðσ tð Þ

a
Q t, sð Þj jpN T , S, p, tð Þds

≤max
t∈I

2p−1N T , S, p, tð Þ
ðμ tð Þ

a
P t, sð Þj jpds +

ðσ tð Þ

a
Q t, sð Þj jpds

�
≤max

t∈I
N T , S, p, tð Þ ≤ α1ds ı, Tıð Þ + α2ds ȷ, Sȷð Þ

+ α3ds ı, Sȷð Þ + α4ds ȷ, Tıð Þ + α5
ds ı, Sȷð Þ + ds ȷ, Tıð Þ

2

� �

+ α6
ds ı, Tıð Þds ȷ, Sȷð Þ

1 + ds ı, ȷð Þ + α7ds ı, ȷð Þ:

ð68Þ

Thus, conditions of Theorem 11 are satisfied. Theorem
11 therefore ensures a common fixed point of T and S,
which in turn is a common solution of the pair of integral
equations (64).

Remark 29. Taking Qðt, sÞ = 0,P ðt, sÞ = 1, qðtÞ = 0, μðtÞ = t
and a = 0 in (64), we get the Volterra-type integral equations
considered in Rasham et al. [31] and Alshoraify et al. [30].

Remark 30. Taking Qðt, sÞ = 0, μðtÞ = 1 and a = 0 in (64), we
get the Fredholm-type integral equations (III.3) considered
in Shoaib et al. [29].

Remark 31. Taking Qðt, sÞ = 0,P ðt, sÞ = 1 and μðtÞ = b in
(64), we get the Fredholm-type integral equations (III.1)
considered in Shoaib et al. [29].

Tı tð Þ = q tð Þ +
ðμ tð Þ

a
P t, sð ÞK1 t, s, ı sð Þð Þds +

ðσ tð Þ

a
Q t, sð ÞK2 t, s, ȷ sð Þð Þds,

Sȷ tð Þ = q tð Þ +
ðμ tð Þ

a
P t, sð ÞK2 t, s, ȷ sð Þð Þds +

ðσ tð Þ

a
Q t, sð ÞK1 t, s, ȷ sð Þð Þds,

8>>><
>>>:

ð65Þ
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