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In general, we have constructed the operator ideal generated by extended s-fuzzy numbers and a certain space of sequences of
fuzzy numbers. An investigation into the conditions sufficient for variable exponent Cesàro sequence space of fuzzy functions
furnished with the definite function to create pre-quasi-Banach and closed is carried out. The ðRÞ and the normal structural
properties of this space are shown. Fixed points for Kannan contraction and nonexpansive mapping have been introduced.
Lastly, we explore whether the Kannan contraction mapping has a fixed point in its associated pre-quasioperator ideal. The
existence of solutions to nonlinear difference equations is illustrated with a few real-world examples and applications.

1. Introduction

Probability theory, fuzzy set theory, soft sets, and rough sets
have contributed substantially to the study of uncertainty.
But there are drawbacks to these theories that must be con-
sidered. After Zadeh [1] established the concept of fuzzy sets
and fuzzy set operations, many researchers adopted the con-
cept of fuzziness in cybernetics and artificial intelligence as
well as in expert systems and fuzzy control. For more infor-
mation and real-world examples, some comparable fixed
point results were discussed by Javed et al. [2] to ensure that
a fixed point exists and is unique in R-fuzzy b-metric spaces.
The viability of the proposed methodologies was demon-
strated through a challenging case study. There was no
doubt about the superiority of the findings delivered. For
the first type of Fredholm-type integral equation, an applica-
tion was described. In [3], Al-Masarwah and Ahmad defined
and investigated the m-Polar ðα, βÞ-Fuzzy Ideals in BCK/
BCI-Algebras and explored some pertinent properties. There
are many other orthogonal fuzzy metric spaces; however,
Javed et al. [4] expanded the orthogonal image fuzzy metric
space concept. In the context of the newly specified struc-

ture, they displayed some fixed point outcomes. Fuzzy
sequence spaces were introduced, and their various features
were studied by many workers on sequence spaces and sum-
mability theory. Nuray and Savas [5] defined and studied the
Nakano sequences of fuzzy numbers, ℓFðτÞ equipped with
the function h. The operator ideal is very important in fixed
point theory, Banach space geometry, normal series theory,
approximation theory, and ideal transformations. See [6–8]
for further proof. Pre-quasioperator ideals are more exten-
sive than quasioperator ideals, according to Faried and Bak-
ery [9]. The learning about the variable exponent Lebesgue
spaces obtained impetus from the mathematical description
of the hydrodynamics of non-Newtonian fluids (see [10,
11]). There are numerous uses for electrorheological fluids,
which include military science, civil engineering, and ortho-
pedic. There have been many developments in mathematics
since the Banach fixed point theorem [12] was first pub-
lished. While contractions have fixed point actions, Kannan
[13] cited an example of a type of mapping that is not con-
tinuous. In Reference [14], the only attempt was made to
explain Kannan operators in modular vector spaces. For
more details on Kannan’s fixed point theorems, see
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[15–20]. Given that the proof of many fixed point theorems
in a given space requires either growing the space itself or
expanding the self-mapping that acts on it, both options
are viable. Hence, we have constructed the Cesàro sequence
spaces of fuzzy functions and have presented the solutions of
a fuzzy nonlinear dynamical system in this newly created
space. This work is aimed at introducing the certain space
of sequences of fuzzy numbers, in short (cssf), under a cer-
tain function to be pre-quasi (cssf). This space and s-num-
bers have been used to describe the structure of the ideal
operators. We explain the sufficient conditions of variable
exponent Cesàro sequence space of fuzzy functions, which
is denoted by CF

τð:Þ, equipped with the definite function h
to be pre-quasi-Banach and closed (cssf). The ðRÞ and the
normal structure property of this space are shown. Fixed
points for Kannan contraction and nonexpansive mapping
have been introduced. Lastly, we explore whether the Kan-
nan contraction mapping has a fixed point in its associated
pre-quasioperator ideal. The existence of solutions to non-
linear difference equations is illustrated with a few real-
world examples and applications.

2. Definitions and Preliminaries

As a reminder, Matloka [21] presented the notion of ordinary
convergence of sequences of fuzzy numbers, where he intro-
duced bounded and convergent fuzzy numbers, explored
some of their features, and proved that any convergent fuzzy
number sequence is bounded. Nanda [22] studied the
sequences of fuzzy numbers and showed the set of all conver-
gent sequences of fuzzy numbers from a complete metric
space. Kumar et al. [23] investigated the notion of limit points
and cluster points of sequences of fuzzy numbers. AssumeΩ is
the set of all closed and bounded intervals on the real line R.
For f = ½ f1, f2� and g = ½g1, g2� in Ω, suppose

f ≤ g, if and only if f1 ≤ g1 and f2 ≤ g2: ð1Þ

Define a metric ρ on Ω by

ρ f , gð Þ =max f1 − g1j j, f2 − g2j jf g: ð2Þ

Matloka [21] showed that ρ is a metric onΩ and ðΩ, ρÞ is
a complete metric space. Also, the relation ≤ is a partial order
on Ω.

Definition 1. A fuzzy number g is a fuzzy subset of R, i.e., a
mapping g : R⟶ ½0, 1� which verifies the following four
settings:

(a) g is fuzzy convex, i.e., for x, y ∈R and α ∈ ½0, 1�,
gðαx + ð1 − αÞyÞ ≥min fgðxÞ, gðyÞg

(b) g is normal, i.e., there is y0 ∈R such that gðy0Þ = 1

(c) g is an upper semicontinuous, i.e., for all α > 0, g−1

ð½0, x+αÞÞ for all x ∈ ½0, 1� is open in the usual topol-
ogy of R

(d) the closure of g0 ≔ fy ∈R : gðyÞ > 0g is compact

The β-level set of a fuzzy real number g, 0 < β < 1, indi-
cated by gβ is defined as

gβ = y ∈R : g yð Þ ≥ βf g: ð3Þ

The set of every upper semicontinuous, normal, convex
fuzzy number, and gβ is compact is denoted by Rð½0, 1�Þ.
The set R can be embedded in Rð½0, 1�Þ, if we define r ∈R
ð½0, 1�Þ by

�r tð Þ =
1, t = r,
0, t ≠ r:

(
ð4Þ

The additive identity and multiplicative identity in
R½0, 1� are denoted by �0 and �1, respectively.

The arithmetic operations onR½0, 1� are defined as follows:

f ⊕ gð Þ yð Þ = sup
y∈R

min f xð Þ, g y − xð Þf g,

f !gð Þ yð Þ = sup
y∈R

min f xð Þ, g x − yð Þf g,

f ⊗ gð Þ yð Þ = sup
y∈R

min f xð Þ, g y
x

� �n o
,

f
g

� �
yð Þ = sup

y∈R
min f xyð Þ, g xð Þf g,

xf yð Þ = f x−1y
� �

, x ≠ 0,
0, x = 0:

(

ð5Þ

The absolute value j f j of f ∈R½0, 1� is defined by

fj j yð Þ =
max f yð Þ, f −yð Þf g, if y ≥ 0,
0, if y < 0:

(
ð6Þ

Suppose f , g ∈R½0, 1� and the β-level sets are ½ f �β = ½ f β1 ,
f β2 �, ½g�β = ½gβ1 , gβ2 �, and β ∈ ½0, 1�. A partial ordering for any
f , g ∈R½0, 1� as follows: f °g, if and only if f β ≤ gβ, for all
β ∈ ½0, 1�. Then, the above operations can be defined in terms
of β-level sets as follows:

f ⊕ g½ �β = f β1 + gβ1 , f
β
2 + gβ2

h i
,

f !g½ �β = f β1 − gβ2 , f
β
2 − gβ1

h i
,

f ⊗ g½ �β = min
j∈ 1,2f g

f βj g
β
j , max

j∈ 1,2f g
f βj g

β
j

� 	
,

f −1

 �β = f β2

� �−1
, f β1
� �−1� 	

, f βj > 0, for every β ∈ 0, 1ð �,

xf½ �β =
xf β1 , xf

β
2

h i
, x ≥ 0,

xf β2 , xf
β
1

h i
, x < 0:

8><
>:

ð7Þ
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Assume �ρ : R½0, 1� ×R½0, 1�⟶R+ ∪ f0g is defined by
�ρð f , gÞ = sup0≤β≤1ρð f β, gβÞ:

Recall that

(1) ðR½0, 1�, �ρÞ is a complete metric space

(2) �ρð f + k, g + kÞ = �ρð f , gÞ for all f , g, k ∈R½0, 1�
(3) �ρð f + k, g + lÞ ≤ �ρð f , gÞ + �ρðk, lÞ.
(4) �ρðξf , ξgÞ = jξj�ρð f , gÞ, for all ξ ∈R:

Definition 2. A sequence f = ð f jÞ of fuzzy numbers is said to be

(a) bounded if the set f f j : j ∈N g of fuzzy numbers is
bounded, i.e., if a sequence ð f jÞ is bounded, then
there are two fuzzy numbers g, l such that g ≤ f j ≤ l

(b) convergent to a fuzzy real number f0 if for every ε > 0,
there exists n0 ∈N such that �ρð f j, f0Þ < ε, for all j ≥ j0

Lemma 3 (see [24]). Suppose τa ≥ 1 and va, ta ∈R, for every
a ∈N , then jva + tajτa ≤ 2K−1ðjvajτa + jtajτaÞ, where K =max
f1, supaτag.

3. Main Results

3.1. Some Properties of CF
τð:Þ. In this section, we have intro-

duced the certain space of sequences of fuzzy numbers or
in short (cssf), under the definite function to form pre-
quasi (cssf). We explain the sufficient setting of CF

τð:Þ
equipped with the definite function h to construct pre-
quasi-Banach and closed (cssf). The Fatou property of vari-
ous pre-quasinorms h on CF

τð:Þ has been investigated. We
have presented this space’s k-nearly uniformly convex, the
property ðRÞ, and the h-normal structure-property, which
are connected with the fixed point theorem.

By ℓ∞ and ℓr , we denote the spaces of bounded and r
-absolutely summable sequences of real numbers, respec-
tively. Let ωðFÞ denote the classes of all sequence spaces of
fuzzy real numbers. Suppose τ = ðτaÞ ∈R+N , where R+N

is the space of positive real sequences. The variable exponent
Cesàro sequence space of fuzzy functions is denoted by the
following: CF

τð:Þ = fv = ðvaÞ ∈ ωðFÞ: hðμvÞ<∞,for some μ > 0g,
when hðvÞ =∑∞

a=0ð∑a
k=0�ρðvk, �0Þ/a + 1Þτa : If ðτaÞ ∈ ℓ∞, then

CF
τ :ð Þ = v = vað Þ ∈ ω Fð Þ: h μvð Þ<∞,for some μ > 0f g

= v = vað Þ ∈ ω Fð Þ: inf
a

μj jτa 〠
∞

a=0

∑a
k=0�ρ vk, �0ð Þ
a + 1

� �τa
(

≤ 〠
∞

a=0

∑a
k=0�ρ μvk, �0ð Þ

a + 1

� �τa

<∞,for some μ > 0
)

= v = vað Þ ∈ ω Fð Þ: 〠
∞

a=0

∑a
k=0�ρ vk, �0ð Þ
a + 1

� �τa

<∞
( )

= v = vað Þ ∈ ω Fð Þ: h μvð Þ<∞,for any μ > 0f g:

ð8Þ

Definition 4 (see [25]). The linear space U is said to be a certain
space of sequences of fuzzy numbers (cssf), if

(1) f�bqgq∈N ⊆U, where �bq = f�0, �0,⋯, �1, �0, �0,⋯g, while
�1 displays at the qth place

(2) suppose Y = ðYqÞ ∈ ωðFÞ, Z = ðZqÞ ∈U and jYqj ≤ j
Zqj, for all q ∈N , then Y ∈U

(3) ðY ½q/2�Þ∞q=0 ∈U, where ½q/2� marks the integral part of

q/2, if ðYqÞ∞q=0 ∈U

Definition 5 (see [25]). A subclass Uh of U is called a pre-
modular (cssf), if there is h ∈ ½0,∞ÞU satisfies the next
settings:

(i) If Y ∈U, Y = �ϑ⇔ hðYÞ = 0 with hðYÞ ≥ 0, where �ϑ
= ð�0, �0, �0,Þ

(ii) There is Q ≥ 1, and the inequality hðαYÞ ≤Qjαjh
ðYÞ holds, for every Y ∈U and α ∈R

(iii) There is P ≥ 1, and the inequality hðY + ZÞ ≤ Pðh
ðYÞ + hðZÞÞ holds, for every Y , Z ∈U

(iv) If jYqj ≤ jZqj, for every q ∈N , one has hððYqÞÞ ≤ h
ððZqÞÞ

(v) The inequality hððYqÞÞ ≤ hððY ½q/2�ÞÞ ≤ P0hððYqÞÞ
holds, for some P0 ≥ 1

(vi) Let E be the space of finite sequences of fuzzy num-
bers; then, the closure of E =Uh

(vii) There is σ > 0 with hð�α, �0, �0, �0,⋯Þ ≥ σjαjhð�1, �0, �0,
�0,⋯Þ, where

�α yð Þ =
1, y = α,
0, y ≠ α:

(
ð9Þ

Definition 6 (see [25]). Suppose U is a (cssf). The function
h ∈ ½0,∞ÞU is called a pre-quasinorm on U , if it satisfies
the following conditions:

(i) If Y ∈U, Y = �ϑ⇔ hðYÞ = 0 with hðYÞ ≥ 0, where �ϑ
= ð�0, �0, �0,Þ

(ii) There is Q ≥ 1, and the inequality hðαYÞ ≤QjαjhðYÞ
satisfies, for every Y ∈U and α ∈R

(iii) There is P ≥ 1, and the inequality hðY + ZÞ ≤ Pðh
ðYÞ + hðZÞÞ holds, for each Y , Z ∈U

Clearly, from the last two definitions, we conclude the
following two theorems:

Theorem 7 (see [25]). If U is a premodular (cssf), then it is
pre-quasinormed (cssf).
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Theorem 8 (see [25]). U is a pre-quasinormed (cssf) if it is
quasinormed (cssf).

Definition 9.

(a) The function h on CF
τð:Þ is named h-convex, if

h αY + 1 − αð ÞZð Þ ≤ αh Yð Þ + 1 − αð Þh Zð Þ, ð10Þ

for every α ∈ ½0, 1� and Y , Z ∈ CF
τð:Þ.

(b) fYqgq∈N ⊆ ðCF
τð:ÞÞh is h-convergent to Y ∈ ðCF

τð:ÞÞh, if
and only if limq⟶∞hðYq − YÞ = 0: When the h-limit
exists, then it is unique

(c) fYqgq∈N ⊆ ðCF
τð:ÞÞh is h-Cauchy, if limq,r⟶∞hðYq −

YrÞ = 0

(d) Γ ⊂ ðCF
τð:ÞÞh is h-closed, when for all h-converges

fYqga∈N ⊂ Γ to Y , then Y ∈ Γ

(e) Γ ⊂ ðCF
τð:ÞÞh is h-bounded, if δhðΓÞ = sup fhðY − ZÞ

: Y , Z ∈ Γg <∞

(f) The h-ball of radius ε ≥ 0 and center Y , for every Y

∈ ðCF
τð:ÞÞh, is described as follows:

Bh Y , εð Þ = Z ∈ CF
τ :ð Þ

� �
h
: h Y − Zð Þ ≤ ε

n o
: ð11Þ

(g) A pre-quasinorm h on CF
τð:Þ satisfies the Fatou prop-

erty, if for every sequence fZqg ⊆ ðCF
τð:ÞÞh under

limq⟶∞hðZq − ZÞ = 0 and all Y ∈ ðCF
τð:ÞÞh, one has

hðY − ZÞ ≤ supr inf q≥rhðY − ZqÞ

Note that the Fatou property implies the h-closed of the
h-balls. We will denote the space of all increasing sequences
of real numbers by I.

Theorem 10. ðCF
τð:ÞÞh, where hðYÞ = ½∑∞

q=0ð∑q
p=0�ρðYp, �0Þ/q

+ 1Þτq �1/K , for all Y ∈ CF
τð:Þ, is a premodular (cssf), when

ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1.

Proof. (i) Evidently, hðYÞ ≥ 0 and hðYÞ = 0⇔ Y = �ϑ
(1-i) Let Y , Z ∈ CF

τð:Þ. One has

h Y + Zð Þ = 〠
∞

q=0

∑q
p=0�ρ Yp + Zp, �0

� �
q + 1

 !τq
" #1/K

≤ 〠
∞

q=0

∑q
p=0�ρ Yp, �0

� �
q + 1

 !τq
" #1/K

+ 〠
∞

q=0

∑q
p=0�ρ Zp, �0

� �
q + 1

 !τq
" #1/K

= h Yð Þ + h Zð Þ <∞,

ð12Þ

and then, Y + Z ∈ CF
τð:Þ.

(iii) One gets P ≥ 1 with hðY + ZÞ ≤ PðhðYÞ + hðZÞÞ, for
all Y , Z ∈ CF

τð:Þ
(1-ii) Assume α ∈R and Y ∈ CF

τð:Þ, and we obtain

h αYð Þ = 〠
∞

q=0

∑q
p=0�ρ αYp, �0

� �
q + 1

 !τq
" #1/K

≤ sup
q

αj jτq/K

� 〠
∞

q=0

∑q
p=0�ρ Yp, �0

� �
q + 1

 !τq
" #1/K

≤Q αj jh Yð Þ <∞:

ð13Þ

As αY ∈ CF
τð:Þ. Hence, from conditions (1-i) and (1-ii),

one has CF
τð:Þ is linear. Also, �br ∈ C

F
τð:Þ, for all r ∈N , since h

ð�brÞ = ½∑∞
q=0ð∑q

p=0�ρð�br , �0Þ/q + 1Þτq �1/K ≤ ½∑∞
q=0ð1/q + 1Þτ0 �1/K

<∞:

(ii) There is Q =max f1, supqjαjτq/K−1g ≥ 1 with hðαYÞ
≤QjαjhðYÞ, for all Y ∈ CF

τð:Þ and α ∈R
(2) Assume jYqj ≤ jZqj, for all q ∈N and Z ∈ CF

τð:Þ. One
finds

h Yð Þ = 〠
∞

q=0

∑q
p=0�ρ Yp, �0

� �
q + 1

 !τq
" #1/K

≤ 〠
∞

q=0

∑q
p=0�ρ Zp, �0

� �
q + 1

 !τq
" #1/K

= h Zð Þ <∞,

ð14Þ

and then, Y ∈ CF
τð:Þ.

(iv) Obviously, from (2)
(3) Let ðYqÞ ∈ CF

τð:Þ, and we get

h Y q/2½ �
� �� �

= 〠
∞

q=0

∑q
p=0�ρ Y p/2½ �, �0

� �
q + 1

0
@

1
A

τq2
4

3
5
1/K

= 〠
∞

q=0

∑2q
p=0�ρ Y p/2½ �, �0

� �
2q + 1

0
@

1
A

τ2q2
4

+ 〠
∞

q=0

∑2q+1
p=0 �ρ Y p/2½ �, �0

� �
2q + 2

0
@

1
A

τ2q+135
1/K

≤ 21/K 〠
∞

q=0

∑q
p=0�ρ Yp, �0

� �
q + 1

 !τq
" #1/K

≤ 〠
∞

q=0

�ρ Yq, �0
� �

+ 2∑q
p=0�ρ Yp, �0

� �
q + 1

 !τq

+ 〠
∞

q=0

2∑q
p=0�ρ Yp, �0

� �
q + 1

 !τq
" #1/K

≤ 21/K 〠
∞

q=0

∑q
p=0�ρ Yp, �0

� �
q + 1

 !τq
" #1/K

≤ 〠
∞

q=0

3∑q
p=0�ρ Yp, �0

� �
q + 1

 !τq
"

+ 〠
∞

q=0

2∑q
p=0�ρ Yp, �0

� �
q + 1

 !τq
#1/K

≤ 3K + 2K
� �1/K 〠

∞

q=0

∑q
p=0�ρ Yp, �0

� �
q + 1

 !τq
" #1/K

= 3K + 2K
� �1/K

h Yq

� �� �
,

ð15Þ

and then, ðY ½p/2�Þ ∈ CF
τð:Þ.

(v) From (4), we obtain P0 = ð3K + 2KÞ1/K ≥ 1
(vi) Evidently the closure of E = CF

τð:Þ
(vii) There is 0 < σ ≤ supqjαjτq/K−1, for α ≠ 0 or σ > 0, for

α = 0 with hð�α, �0, �0, �0,⋯Þ ≥ σjαjhð�1, �0, �0, �0,⋯Þ
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Theorem 11. If ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, then ðCF
τð:ÞÞh is

a pre-quasi-Banach (cssf), where hðYÞ = ½∑∞
q=0ð∑q

p=0�ρðYp, �0Þ/
q + 1Þτq �1/K , for every Y ∈ CF

τð:Þ.

Proof. In view of Theorem 10 and Theorem 7, the space
ðCF

τð:ÞÞh is a pre-quasinormed (cssf). Assume Yl = ðYl
qÞ

∞
q=0 is

a Cauchy sequence in ðCF
τð:ÞÞh. Hence, for every ε ∈ ð0, 1Þ,

one has l0 ∈N such that for all l,m ≥ l0, one gets

h Yl − Ym
� �

= 〠
∞

q=0

∑q
p=0�ρ Yl

p − Ym
p , �0

� �
q + 1

0
@

1
A

τq2
4

3
5
1/K

< ε:

ð16Þ

That implies �ρðYl
q − Ym

q , �0Þ < ε: As ðR½0, 1�, �ρÞ is a com-
plete metric space. Then, ðYm

q Þ is a Cauchy sequence in R½
0, 1�, for fixed q ∈N , which implies limm⟶∞Ym

q = Y0
q, for

constant q ∈N . Hence, hðYl − Y0Þ < ε, for every l ≥ l0, since
hðY0Þ = hðY0 − Yl + YlÞ ≤ hðYl − Y0Þ + hðYlÞ <∞: So Y0 ∈
CF
τð:Þ.

Theorem 12. Suppose ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, then

ðCF
τð:ÞÞh is a pre-quasiclosed (cssf), where hðYÞ = ½∑∞

q=0
ð∑q

p=0�ρðYp, �0Þ/q + 1Þτq �1/K , for every Y ∈ CF
τð:Þ.

Proof. In view of Theorem 10 and Theorem 7, the space
ðCF

τð:ÞÞh is a pre-quasinormed (cssf). Assume Yl = ðYl
qÞ

∞
q=0 ∈

ðCF
τð:ÞÞh and liml⟶∞hðYl − Y0Þ = 0; then, for all ε ∈ ð0, 1Þ,

there is l0 ∈N such that for all l ≥ l0, we obtain

ε > h Yl − Y0
� �

= 〠
∞

q=0

∑q
p=0�ρ Yl

p − Y0
p, �0

� �
q + 1

0
@

1
A

τq2
4

3
5
1/K

, ð17Þ

which implies �ρðYl
q − Y0

q, �0Þ < ε: As ðR½0, 1�, �ρÞ is a com-

plete metric space, therefore, ðYl
qÞ is a convergent sequence in

R½0, 1�, for fixed q ∈N . So, liml⟶∞Yl
q = Y0

q, for fixed q ∈N .

Since hðY0Þ = hðY0 − Yl + YlÞ ≤ hðYl − Y0Þ + hðYlÞ <∞, one
has Y0 ∈ CF

τð:Þ.

Theorem 13. The function hðYÞ = ½∑∞
q=0ð∑q

p=0�ρðYp, �0Þ/q +
1Þτq �1/K verifies the Fatou property, when ðτqÞq∈N ∈ ℓ∞ ∩ I

with τ0 > 1, for all Y ∈ CF
τð:Þ.

Proof. Let fZrg ⊆ ðCF
τð:ÞÞh such that limr⟶∞hðZr − ZÞ = 0:

Since ðCF
τð:ÞÞh is a pre-quasiclosed space, one has Z ∈

ðCF
τð:ÞÞh. For all Y ∈ ðCF

τð:ÞÞh, one gets

h Y − Zð Þ = 〠
∞

q=0

∑q
p=0�ρ Yp − Zp, �0

� �
q + 1

 !τq
" #1/K

≤ 〠
∞

q=0

∑q
p=0�ρ Yp − Zr

p, �0
� �
q + 1

0
@

1
A

τq2
4

3
5
1/K

+ 〠
∞

q=0

∑q
p=0�ρ Zr

p − Zp, �0
� �
q + 1

0
@

1
A

τq2
4

3
5
1/K

≤ sup
m

inf
r≥m

h Y − Zrð Þ:

ð18Þ

Theorem 14. The function hðYÞ =∑∞
q=0ð∑q

p=0�ρðYp, �0Þ/q + 1Þτq
does not satisfy the Fatou property, for all Y ∈ CF

τð:Þ, when ðτqÞ
∈ ℓ∞ and τq > 1, for all q ∈N .

Proof. Let fZrg ⊆ ðCF
τð:ÞÞh so that limr⟶∞hðZr − ZÞ = 0:

Since ðCF
τð:ÞÞh is a pre-quasiclosed space, one gets Z ∈

ðCF
τð:ÞÞh. For every Z ∈ ðCF

τð:ÞÞh, we obtain

h Y − Zð Þ = 〠
∞

q=0

∑q
p=0�ρ Yp − Zp, �0

� �
q + 1

 !τq

≤ 2K−1 〠
∞

q=0

∑q
p=0�ρ Yp − Zr

p, �0
� �
q + 1

0
@

1
A

τq0
@

+ 〠
∞

q=0

∑q
p=0�ρ Zr

p − Zp, �0
� �
q + 1

0
@

1
A

τq1A
≤ 2K−1 sup

m
inf
r≥m

h Y − Zrð Þ:

ð19Þ

Example 1. For ðτqÞ ∈ ½1,∞ÞN , the function hðYÞ = inf fα
> 0 : ∑q∈N ð∑q

p=0�ρðYp/α, �0Þ/q + 1Þτq ≤ 1g is a norm on CF
τð:Þ.

Example 2. The function hðYÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑q∈N ð∑q

p=0�ρðYp, �0Þ/q + 1Þ3q+2/q+13
q

is a pre-quasinorm (not a norm) on CFðð3q + 2/q + 1Þ∞q=0Þ.

Example 3. The function hðYÞ =∑q∈N ð∑q
p=0�ρðYp, �0Þ/q +

1Þ3q+2/q+1 is a pre-quasinorm (not a quasinorm)
on CFðð3q + 2/q + 1Þ∞q=0Þ.

Example 4. The function hðYÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑q∈N ð∑q

p=0�ρðYp, �0Þ/q + 1Þdd
q

is a pre-quasinorm, quasinorm, and not a norm on CF
d , for

0 < d < 1.
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In the next part of this section, we will use the func-

tion h as hðYÞ = ½∑∞
q=0ð∑q

p=0�ρðYp, �0Þ/q + 1Þτq �1/K , for every

Y ∈ CF
τð:Þ.

Definition 15 [26]. The function h is said to be strictly
convex, (SC), if for all Y , Z ∈Uh such that hðYÞ = hðZÞ and
hðY + Z/2Þ = hðYÞ + hðZÞ/2, we get Y = Z:

Definition 16 [27]. A sequence fYpg ⊆U is said to be ε

-separated sequence for some ε > 0, if

sep Yp

� �
= inf h Yp − Yq

� �
: p ≠ q

 �
> ε: ð20Þ

Definition 17 (see [27]). Let k ≥ 2 be an integer, and a Banach
space U is called k-nearly uniformly convex (k-NUC), if for
any ε > 0, there exists δ ∈ ð0, 1Þ such that for any sequence
fYpg ⊆ Bhð0, 1Þ, with sepðYpÞ ≥ ε, there are p1, p2, p3,⋯, pk
∈N , such that

h
Yp1

+ Yp2
+ Yp3

+⋯+Ypk

k

� �
< 1 − δ: ð21Þ

Definition 18 (see [28]). A function h is said to satisfy the δ2
-condition (h ∈ δ2), if for any ε > 0, there exists a constant
k ≥ 2 and a > 0 such that hð2uÞ ≤ khðuÞ + ε, for each u ∈ Xh,
with hðuÞ ≤ a:

If h satisfies the δ2-condition for any a > 0 with k ≥ 2
depending on a, we say that h satisfies the strong δ2-condi-
tion (ρ ∈ δs2).

The following known results are very important for our
consideration.

Theorem 19 (see [28], Lemma 2.1). If h ∈ δs2, then for any
L > 0 and ε > 0, there exists δ > 0 such that jhðx + yÞ − hðxÞj
< ε, where x, y ∈ Xh, with hðxÞ ≤ L and hðyÞ ≤ δ.

Theorem 20. Pick an ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1; then, for

any L > 0 and ε > 0, there exists δ > 0 such that jhðx + yÞ −
hðxÞj < ε, for all x, y ∈ ðCF

τð:ÞÞh, with hðxÞ ≤ L and hðyÞ ≤ δ.

Proof. Since ðτqÞ is bounded, it is easy to see that h ∈ δs2.
Hence, the proposition is obtained directly from Theorem
19.

Theorem 21. Suppose ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1; then,

ðCF
τð:ÞÞh is k-NUC, for any integer k ≥ 2.

Proof. Let ε ∈ ð0, 1Þ and fxng ⊆ Bhð0, 1Þ with sepðxnÞ ≥ ε, for
each m ∈N , and let xmn = ð0, 0, 0,⋯, xnðmÞ, xnðm + 1Þ,⋯Þ.
Since for each i ∈N , ðxnðiÞÞ∞n=0 is bounded, and by using
the diagonal method, we can find a subsequence ðxnj

Þ of

ðxnÞ such that ðxnj
ðiÞÞ converges for each i ∈N , 0 ≤ i ≤m.

Therefore, there exists an increasing sequence of positive
integers ðtmÞ such that sepððxmnj

Þ
j>tm

Þ ≥ ε. Hence, there is a

sequence of positive integers ðrmÞ∞m=0 with r0 < r1 < r2 <⋯,
such that

hK xmrm

� �
≥
ε

2 , ð22Þ

for each m ∈N . For fixed integer k ≥ 2, let ε1 = ðkp0−1 −
1/ðk − 1Þkp0Þðε/4Þ; then, by Theorem 20, there exists δ > 0
such that

hK x + yð Þ − hK xð Þ�� �� < ε1, ð23Þ

whenever hKðxÞ ≤ 1 and hKðyÞ ≤ δ. Since hKðxnÞ ≤ 1, for
any n ∈N , then there exist positive integers miði = 0, 1, 2,
⋯, k − 2Þ with m0 <m1 <m2 <⋯<mk−2 such that hKðxmi

i Þ
≤ δ. Define mk−1 =mk−2 + 1. By inequality (1), we have hð
xmk
rmk

Þ ≥ ε/2. Let si = i for 0 ≤ i ≤ k − 2 and sk−1 = rmk−1
. Then,

in virtue of inequality (1), inequality (2), and convexity of
the function f nðuÞ = jujτn for any n ∈N , we have

hK
xs0 + xs1 + xs2+:⋯ +xsk−1

k

� �

= 〠
∞

n=0

∑n
i=0�ρ xs0 ið Þ + xs1 ið Þ++xsk−1 ið Þ/k, �0� �

n + 1

 !τn

= 〠
m1−1

n=0

∑n
i=0�ρ xs0 ið Þ + xs1 ið Þ++xsk−1 ið Þ/n + 1, �0
� �

n + 1

 !τn

+ 〠
∞

n=m1

∑n
i=0�ρ xs0 ið Þ + xs1 ið Þ++xsk−1 ið Þ/k, �0� �

n + 1

 !τn

≤ 〠
m1−1

n=0

∑n
i=0�ρ xs0 ið Þ + xs1 ið Þ++xsk−1 ið Þ/k, �0� �

n + 1

 !τn

+ 〠
∞

n=m1

∑n
i=0�ρ xs1 ið Þ + xs2 ið Þ++xsk−1 ið Þ/k, �0� �

n + 1

 !τn

+ ε1 ≤ 〠
m1−1

n=0

1
k
〠
k−1

j=0

∑n
i=0�ρ xsj ið Þ, �0
� �
n + 1

0
@

1
A

τn

+ 〠
m2−1

n=m1

∑n
i=0�ρ xs1 ið Þ + xs2 ið Þ++xsk−1 ið Þ/k, �0� �

n + 1

 !τn

+ 〠
∞

n=m2

∑n
i=0�ρ xs1 ið Þ + xs2 ið Þ++xsk−1 ið Þ/k, �0� �

n + 1

 !τn

+ ε1 ≤ 〠
m1−1

n=0

1
k
〠
k−1

j=0

∑n
i=0�ρ xsj ið Þ, �0
� �
n + 1

0
@

1
A

τn

+ 〠
m2−1

n=m1

∑n
i=0�ρ xs1 ið Þ + xs2 ið Þ++xsk−1 ið Þ/k, �0� �

n + 1

 !τn
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+ 〠
∞

n=m2

∑n
i=0�ρ xs2 ið Þ + xs3 ið Þ++xsk−1 ið Þ/k, �0� �

n + 1

 !τn

+ 2ε1

≤ 〠
m1−1

n=0

1
k
〠
k−1

j=0

∑n
i=0�ρ xsj ið Þ, �0
� �
n + 1

0
@

1
A

τn

+ 〠
m2−1

n=m1

1
k
〠
k−1

j=1

∑n
i=0�ρ xsj ið Þ, �0
� �
n + 1

0
@

1
A

τn

+ 〠
m3−1

n=m2

1
k
〠
k−1

j=2

∑n
i=0�ρ xsj ið Þ, �0
� �
n + 1

0
@

1
A

τn

++ 〠
mk−1

n=mk−1

1
k
〠
k−1

j=k−2

∑n
i=0�ρ xsj ið Þ, �0
� �
n + 1

0
@

1
A

τn

+ 〠
∞

n=mk

∑n
i=0�ρ xsk ið Þ/k, �0� �

n + 1

 !τn

+ k − 1ð Þε1

≤
hK xs0 + xs1 + xs2+:⋯ +xsk−2
� �

k

+ 1
k
〠
mk−1

n=0

∑n
i=0�ρ xsk ið Þ, �0� �

n + 1

 !τn

+ 〠
∞

n=mk

∑n
i=0�ρ xsk ið Þ/k, �0� �

n + 1

 !τn

+ k − 1ð Þε1 ≤
k − 1
k

+ 1
k
〠
mk−1

n=0

∑n
i=0�ρ xsk ið Þ, �0� �

n + 1

 !τn

+ 1
kp0

〠
∞

n=mk

∑n
i=0�ρ xsk ið Þ, �0� �

n + 1

 !τn

+ k − 1ð Þε1 ≤ 1 − 1
k

+ 1
k

1 − 〠
∞

n=mk

∑n
i=0�ρ xsk ið Þ, �0� �

n + 1

 !τn
 !

+ 1
kp0

〠
∞

n=mk

� ∑n
i=0�ρ xsk ið Þ, �0� �

n + 1

 !τn

+ k − 1ð Þε1 = 1 + k − 1ð Þε1

−
kp0−1 − 1

kp0

 !
〠
∞

n=mk

∑n
i=0�ρ xsk ið Þ, �0� �

n + 1

 !τn

≤ 1 + k − 1ð Þε1 −
kp0−1 − 1

kp0

 !
ε

2 = 1 − kp0−1 − 1
kp0

 !
ε

4 :

ð24Þ

Therefore, ðCF
τð:ÞÞh is k-NUC.

Recall that k-NUC implies reflexivity.

Definition 22. The space Uh satisfies the property ðRÞ, if and
only if, for all decreasing sequence fΓjgj∈N of h-closed

and h-convex nonempty subsets of Uh with supj∈NKhðY ,
ΓjÞ <∞, for some Y ∈Uh, one has

T
j∈N Γj ≠∅:

By fixing Γ a nonempty h-closed and h-convex subset of
ðCF

τð:ÞÞh.

Theorem 23. If ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, one has the

following:

(i) Suppose Y ∈ ðCF
τð:ÞÞh with KhðY , ΓÞ = inf fhðY − ZÞ

: Z ∈ Γg <∞: There is a unique λ ∈ Γ so that KhðY
, ΓÞ = hðY − λÞ

(ii) ðCF
τð:ÞÞh verifies the property ðRÞ.

Proof. To prove (i), assume Y ∉ Γ as Γ is h-closed. One has
C ≔KhðY , ΓÞ > 0. Hence, for all r ∈N , one has Zr ∈ Γ with
hðY − ZrÞ < Cð1 + 1/rÞ. If fZr/2g is not h-Cauchy, one gets
a subsequence fZgðrÞ/2g and l0 > 0 with hðZgðrÞ − ZgðjÞ/2Þ ≥
l0, for every r > j ≥ 0, since

max h Y − Zg rð Þ
� �

, h Y − Zg jð Þ
� �� �

≤ C 1 + 1
g jð Þ

� �
,

h
Zg rð Þ − Zg jð Þ

2

� �
≥ l0 ≥ C 1 + 1

g jð Þ
� �

l0
2C ,

ð25Þ

for every r > j ≥ 0. Since ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1,
then the function f nðuÞ = jujτn is strictly convex, for any n
∈N . Therefore, the space ðCF

τð:ÞÞh is strictly convex; hence,

h Y −
Zg rð Þ + Zg jð Þ

2

� �
< C 1 + 1

g jð Þ
� �

: ð26Þ

Then,

C =Kh Y , Γð Þ < C 1 + 1
g jð Þ

� �
, ð27Þ

for all j ∈N . By putting j⟶∞, one has a contradic-
tion. So fZr/2g is h-Cauchy. As ðCF

τð:ÞÞh is h-complete, then

fZr/2gh-converges to some Z. For all j ∈N , one gets fZr

+ Zj/2gh-converges to Z + Zj/2. Since Γ is h-closed and h
-convex, then Z + Zj/2 ∈ Γ: Since Z + Zj/2h-converges to 2
Z, then 2Z ∈ Γ: Let λ = 2z, and from Theorem 13, since h
satisfies the Fatou property, one has

Kh Y , Γð Þ ≤ h Y − λð Þ ≤ sup
i

inf
j≥i

h Y − Z +
Zj

2

� �� �

≤ sup
i

inf
j≥i

sup
i

inf
r≥i

h Y −
Zr + Zj

2

� �

≤
1
2 sup

i
inf
r≥i

sup
i

inf
r≥i

h Y − Zrð Þ + h Y − Zj

� �
 �
=Kh Y , Γð Þ:

ð28Þ
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Then hðY − λÞ =KhðY , ΓÞ: Since h is (SC), this implies
the uniqueness of λ. To prove (ii), assume Y ∉ Γr0

, for some
r0 ∈N : Since ðKhðY , ΓrÞÞr∈N ∈ ℓ∞ is increasing, put
limr⟶∞KhðY , ΓrÞ = C, when C > 0. Otherwise, Y ∈ Γr , for
all r ∈N . According to (i), there is one point Zr ∈ Γr with
KhðY , ΓrÞ = hðY − ZrÞ, for every r ∈N . A similar proof will
prove that fZr/2gh-converges to some Z ∈ ðCF

τð:ÞÞh. As fΓrg
is h-convex, decreasing, and h-closed, one has 2Z ∈ ∩ r∈N
Γr:

Definition 24. The space Uh verifies the h-normal structure-
property, if and only if, for all nonempty h-bounded, h
-convex and h-closed subset Γ of Uh not decreased to one
point, and one has Y ∈ Γ with

sup
Z∈Γ

h Y − Zð Þ < δh Γð Þ≔ sup h Y − Zð Þ: Y , Z ∈ Γf g <∞:

ð29Þ

Definition 25 (see [29]). Uh is a real Banach space, and SðUhÞ
is the unit sphere of Uh. The weakly convergent sequence
coefficient of Uh, denoted by WCSðUhÞ, is defined as fol-
lows:

WCS Uhð Þ = inf A xnf gð Þ: xnf g∞n=1 ⊂ S Uhð Þ, A xnf gð Þ
= A1 xnf gð Þ, xnw ⟶ 0g,

ð30Þ

where

A xnf gð Þ = limsup
n⟶∞

xi − xj
�� ��: i, j ≥ n, i ≠ j
 �

,

A1 xnf gð Þ = liminf
n⟶∞

xi − xj
�� ��: i, j ≥ n, i ≠ j
 �

:
ð31Þ

Theorem 26 (see [30]). A reflexive Banach space Uh with
WCSðUhÞ > 1 has normal structure-property.

Theorem 27. If ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, then ðCF
τð:ÞÞh

holds the h-normal structure-property.

Proof. Take any ε > 0 and an asymptotic equidistant
sequence fxng ⊂ SððCF

τð:ÞÞhÞ with xn
w ⟶ 0 and put v1 = x1.

There exists i1 ∈N such that hð∑∞
i=i1+1v1ðiÞ�biÞ < ε: Since xn

⟶ 0 coordinate-wise, there exists n2 ∈N such that hð
∑i1

i=1xnðiÞ�biÞ < ε, whenever n ≥ n2. Take v2 = xn2 ; then, there
is i2 > i1 such that hð∑∞

i=i2+1v1ðiÞ�biÞ < ε: Since xnðiÞ⟶ 0
coordinate-wise, there exists n3 ∈N such that hð∑i2

i=1xnðiÞ
�biÞ < ε, whenever n ≥ n3. Continuing this process in such a
way by induction, we get a subsequence fvng of fxng such
that

h 〠
∞

i=in+1
vn ið Þ�bi

 !
< ε,

h 〠
in

i=1
vn+1 ið Þ�bi

 !
< ε:

ð32Þ

Put zn =∑in
i=in−1+1vnðiÞ�bi, for n = 2, 3,⋯ Then,

1 ≥ h znð Þ = h 〠
∞

i=1
vn ið Þ�bi − 〠

in−1

i=1
vn ið Þ�bi − 〠

∞

i=in+1
vn ið Þ�bi

 !

≥ h 〠
∞

i=1
vn ið Þ�bi

 !
− h 〠

in−1

i=1
vn ið Þ�bi

 !

− h 〠
∞

i=in+1
vn ið Þ�bi

 !
> 1 − 2ε:

ð33Þ

Moreover, for any n,m ∈N with n ≠m, we have

h vn − vmð Þ = h 〠
∞

i=1
vn ið Þ�bi − 〠

∞

i=1
vm ið Þ�bi

 !

≥ h 〠
in

i=in−1+1
vn ið Þ�bi − 〠

im

i=im−1+1
vm ið Þ�bi

 !

− h 〠
in−1

i=1
vn ið Þ�bi

 !
− h 〠

∞

i=in+1
vn ið Þ�bi

 !

− h 〠
im−1

i=1
vm ið Þ�bi

 !
− h 〠

∞

i=im+1
vm ið Þ�bi

 !

≥ h zn − zmð Þ − 4ε:

ð34Þ

This means that AðfxngÞ = AðfvngÞ ≥ AðfzngÞ − 4ε: Put
un = zn/kznk, for n = 2, 3,⋯ Then,

un ∈ S CF
τ :ð Þ

� �
h

� �
, ð35Þ

A xnf gð Þ ≥ 1 − εA unf gð Þ − 4ε: ð36Þ
On the other hand,

h vn − vmð Þ ≤ h zn − zmð Þ + 4ε ≤ h un − umð Þ + 4ε, ð37Þ

for any n,m ∈N with n ≠m. Therefore,

A unf gð Þ ≥ A xnf gð Þ − 4ε: ð38Þ

By the arbitrariness of ε > 0, we have from the relations
(35), (36), and (38) that

WCS CF
τ :ð Þ

� �
h

� �
= inf A unf gð Þf g, ð39Þ
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such that

un = 〠
in

i=in−1+1
un ið Þ�bi ∈ S CF

τ :ð Þ
� �

h

� �
, 0 = i0 < i1

<⋯,unw ⟶ 0 and unf g is asymptotic equidistant:
ð40Þ

Take m ∈N large enough such that ∑∞
k=im−1+1ðb/kÞ

τk < ε,

where b≔∑in
i=in−1+1junðiÞj: We have for n <m that

hK un − umð Þ = 〠
im−1

k=in−1+1

1
k
〠
k

i=1
�ρ un ið Þ, �0ð Þ

 !τk

+ 〠
∞

k=im−1+1

1
k

b + 〠
k

i=1
�ρ um ið Þ, �0ð Þ

 ! !τk

≥ 〠
im−1

k=in−1+1

1
k
〠
k

i=1
�ρ un ið Þ, �0ð Þ

 !τk

+ 〠
∞

k=im−1+1

1
k
〠
k

i=1
�ρ um ið Þ, �0ð Þ

 !τk

= 〠
∞

k=in−1+1

1
k
〠
k

i=1
�ρ un ið Þ, �0ð Þ

 !τk

− 〠
∞

k=im−1+1

b
k

� �τk

+ 〠
∞

k=im−1+1

1
k
〠
k

i=1
�ρ um ið Þ, �0ð Þ

 !τk

> 1 − ε + 1 = 2 − ε,
ð41Þ

that is, AnðfungÞ ≥ ð2 − εÞ1/K . Note that

〠
∞

k=im−1+1

1
k

b + 〠
k

i=1
�ρ um ið Þ, �0ð Þ

 ! !τk
" #1/K

≤ 〠
∞

k=im−1+1

b
k

� �τk
" #1/K

+ 〠
∞

k=im−1+1

1
k
〠
k

i=1
�ρ um ið Þ, �0ð Þ

 !τk
" #1/K

< ε1/K + 1:

ð42Þ

Therefore,

hK un − umð Þ = 〠
im−1

k=in−1+1

1
k
〠
k

i=1
�ρ um ið Þ, �0ð Þ

 !τk

+ 〠
∞

k=im−1+1

1
k

b + 〠
k

i=1
�ρ um ið Þ, �0ð Þ

 ! !τk

≤ 〠
∞

k=in−1+1

1
k
〠
k

i=1
�ρ um ið Þ, �0ð Þ

 !τk

+ 〠
∞

k=im−1+1

1
k

b + 〠
k

i=1
�ρ um ið Þ, �0ð Þ

 ! !τk

≤ 1 + 1 + ε1/K
� �K ,

ð43Þ

for any n,m ∈N with n ≠m. Therefore, AnðfungÞ ≤
ð1 + ð1 + ε1/KÞKÞ1/K , and by the arbitrariness of ε > 0, we
obtain WCSððCF

τð:ÞÞhÞ = 21/K . From Theorem 21 and Theo-

rem 26, the sequence space ðCF
τð:ÞÞh has the h-normal struc-

ture-property.

4. Kannan Contraction Mapping on CF
τð:Þ

In this section, we look at how to configure ðCF
τð:ÞÞh with dif-

ferent h so that there is only one fixed point of Kannan con-
traction mapping.

Definition 28. An operator V : Uh ⟶Uh is said to be a
Kannan h-contraction, if one gets α ∈ ½0, 1/2Þ with hðVY −
VZÞ ≤ αðhðVY − YÞ + hðVZ − ZÞÞ, for all Y , Z ∈Uh. The
operator V is called Kannan h-nonexpansive, when α = 1/2.

An element Y ∈Uh is called a fixed point of V when V
ðYÞ = Y :

Theorem 29. If ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, and V

: ðCF
τð:ÞÞh ⟶ ðCF

τð:ÞÞh is Kannan h-contraction mapping,

where hðYÞ = ½∑∞
q=0ð∑q

p=0�ρðYp, �0Þ/q + 1Þτq �1/K , for all Y ∈
CF
τð:Þ, then V has a unique fixed point.

Proof. If Y ∈ CF
τð:Þ, one has V

pY ∈ CF
τð:Þ. As V is a Kannan h

-contraction mapping, one gets

h Vl+1Y − VlY
� �

≤ α h Vl+1Y −VlY
� �

+ h VlY − Vl−1Y
� �� �

⇒ h Vl+1Y −VlY
� �

≤
α

1 − α
h VlY −Vl−1Y
� �

≤
α

1 − α

� �2
h Vl−1Y − Vl−2Y
� �

≤ ≤
α

1 − α

� �l
h VY − Yð Þ:

ð44Þ

So for all l,m ∈N with m > l, one gets

h VlY − VmY
� �

≤ α h VlY − Vl−1Y
� �

+ h VmY − Vm−1Y
� �� �

≤ α
α

1 − α

� �l−1
+ α

1 − α

� �m−1� �
h VY − Yð Þ:

ð45Þ

Then, fVlYg is a Cauchy sequence in ðCF
τð:ÞÞh. As the

space ðCF
τð:ÞÞh is pre-quasi-Banach space, one has Z ∈

ðCF
τð:ÞÞh with liml⟶∞VlY = Z. To prove that VZ = Z, since

h has the Fatou property, one obtains

h VZ − Zð Þ ≤ sup
i

inf
l≥i

h Vl+1Y −VlY
� �

≤ sup
i

inf
l≥i

α

1 − α

� �l
h VY − Yð Þ = 0,

ð46Þ
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and then, VZ = Z. So Z is a fixed point of V . To show the
uniqueness. Let Y , Z ∈ ðCF

τð:ÞÞh be two not equal fixed points

of V . One has

h Y − Zð Þ ≤ h VY −VZð Þ ≤ α h VY − Yð Þ + h VZ − Zð Þð Þ = 0:
ð47Þ

So, Y = Z:

Corollary 30. If ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, and V

: ðCF
τð:ÞÞh ⟶ ðCF

τð:ÞÞh is Kannan h-contraction mapping,

where hðYÞ = ½∑∞
q=0ð∑q

p=0�ρðYp, �0Þ/q + 1Þτq �1/K , for all Y ∈
CF
τð:Þ, one has V has unique fixed point Z so that hðVlY − ZÞ
≤ αða/1 − αÞl−1hðVY − YÞ:

Proof. In view of Theorem 29, one has a unique fixed point Z
of V . So

h VlY − Z
� �

= h VlY −VZ
� �

≤ α h VlY − Vl−1Y
� �

+ h VZ − Zð Þ
� �

= α
α

1 − α

� �l−1
h VY − Yð Þ:

ð48Þ

Example 5. Assume V : ðCFðð2q + 3/q + 2Þ∞q=0ÞÞh ⟶
ðCFðð2q + 3/q + 2Þ∞q=0ÞÞh, where hðgÞ =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑∞
q=0ð∑q

p=0�ρðgp, �0Þ/q + 1Þ2q+3/q+2
q

, for every g ∈ CFð
ð2q + 3/q + 2Þ∞q=0Þ and

V gð Þ =
g
4 , h gð Þ ∈ 0, 1½ Þ,
g
5 , h gð Þ ∈ 1,∞½ Þ:

8><
>: ð49Þ

As for each g1, g2 ∈ ðCFðð2q + 3/q + 2Þ∞q=0ÞÞh with hðg1Þ,
hðg2Þ ∈ ½0, 1Þ, one has

h Vg1 −Vg2ð Þ = h
g1
4 −

g2
4

� �
≤

1ffiffiffiffiffi
274

p h
3g1
4

� �
+ h

3g2
4

� �� �

= 1ffiffiffiffiffi
274

p h Vg1 − g1ð Þ + h Vg2 − g2ð Þð Þ:

ð50Þ

For all g1, g2 ∈ ðCFðð2q + 3/q + 2Þ∞q=0ÞÞh with hðg1Þ, h
ðg2Þ ∈ ½1,∞Þ, one has

h Vg1 −Vg2ð Þ = h
g1
5 −

g2
5

� �
≤

1ffiffiffiffiffi
644

p h
4g1
5

� �
+ h

4g2
5

� �� �

= 1ffiffiffiffiffi
644

p h Vg1 − g1ð Þ + h Vg2 − g2ð Þð Þ:

ð51Þ

For all g1, g2 ∈ ðCFðð2q + 3/q + 2Þ∞q=0ÞÞh with hðg1Þ ∈
½0, 1Þ and hðg2Þ ∈ ½1,∞Þ, we get

h Vg1 − Vg2ð Þ = h
g1
4 −

g2
5

� �
≤

1ffiffiffiffiffi
274

p h
3g1
4

� �
+ 1ffiffiffiffiffi

644
p h

4g2
5

� �

≤
1ffiffiffiffiffi
274

p h
3g1
4

� �
+ h

4g2
5

� �� �

= 1ffiffiffiffiffi
274

p h Vg1 − g1ð Þ + h Vg2 − g2ð Þð Þ:

ð52Þ

Hence,V is Kannan h-contraction. As h satisfies the Fatou
property, from Theorem 29, one has V holds one fixed point
�ϑ ∈ ðCFðð2q + 3/q + 2Þ∞q=0ÞÞh:

Definition 31. Pick up Uh be a pre-quasinormed (cssf), V
: Uh ⟶Uh, and Z ∈Uh: The operator V is called h
-sequentially continuous at Z, if and only if when limq⟶∞
hðYq − ZÞ = 0, then limq⟶∞hðVYq −VZÞ = 0.

Example 6. Suppose V : ðCFððq + 1/2q + 4Þ∞q=0ÞÞh ⟶
ðCFððq + 1/2q + 4Þ∞q=0ÞÞh, where hðZÞ = ½∑∞

q=0ð∑q
p=0�ρðZp, �0Þ/

q + 1Þq+1/2q+4�4, for every Z ∈ CFððq + 1/2q + 4Þ∞q=0Þ and

V Zð Þ =

1
18

�b0 + Z
� �

, Z0 yð Þ ∈ 0, 1
17

� �
,

1
17

�b0, Z0 yð Þ = 1
17 ,

1
18

�b0, Z0 yð Þ ∈ 1
17 , 1
� 	

:

8>>>>>>>><
>>>>>>>>:

ð53Þ

V is clearly both h-sequentially continuous and discon-
tinuous at 1/17�b0 ∈ ðCFððq + 1/2q + 4Þ∞q=0ÞÞh.

Example 7. Assume V is defined as in Example 5. Suppose
fZðnÞg ⊆ ðCFðð2q + 3/q + 2Þ∞q=0ÞÞh such that limn⟶∞hðZðnÞ

− Zð0ÞÞ = 0, where Zð0Þ ∈ ðCFðð2q + 3/q + 2Þ∞q=0ÞÞh with hð
Zð0ÞÞ = 1.

As the pre-quasinorm h is continuous, we have

lim
n⟶∞

h VZ nð Þ − VZ 0ð Þ
� �

= lim
n⟶∞

h
Z nð Þ

4 −
Z 0ð Þ

5

 !
= h

Z 0ð Þ

20

 !
> 0:

ð54Þ

Therefore, V is not h-sequentially continuous at Zð0Þ.
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Theorem 32. If ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, V : ðCF
τð:ÞÞh

⟶ ðCF
τð:ÞÞh, where hðYÞ =∑∞

q=0ð∑q
p=0�ρðYp, �0Þ/q + 1Þτq , for

all Y ∈ CF
τð:Þ. Suppose

(1) V is Kannan h-contraction mapping

(2) V is h-sequentially continuous at Z ∈ ðCF
τð:ÞÞh

(3) there is Y ∈ ðCF
τð:ÞÞh with fVlYg has fVljYg converg-

ing to Z

Then, Z ∈ ðCF
τð:ÞÞh is the only fixed point of V :

Proof. Assume Z is not a fixed point of V , and one has VZ
≠ Z. From parts (2) and (4), we get

lim
l j⟶∞

h VljY − Z
� �

= 0,

lim
l j⟶∞

h Vlj+1Y −VZ
� �

= 0:
ð55Þ

As V is Kannan h-contraction, one obtains

0 < h VZ − Zð Þ = h VZ − Vlj+1Y
� �

+ VljY − Z
� ��

+ Vlj+1Y − VljY
� ��

≤ 2
2 sup

i
τi−2

� h Vlj+1Y −VZ
� �

+ 2
2 sup

i
τi−2

h VljY − Z
� �

+ 2
sup
i

τi−1
α

α

1 − α

� �l j−1
h VY − Yð Þ:

ð56Þ

As l j ⟶∞, one has a contradiction. Then, Z is a fixed

point of V . To show the uniqueness, let Z, Y ∈ ðCF
τð:ÞÞh be

two not equal fixed points of V . One obtains

h Z − Yð Þ ≤ h VZ −VYð Þ ≤ α h VZ − Zð Þ + h VY − Yð Þð Þ = 0:
ð57Þ

Hence, Z = Y :

Example 8. Assume V is defined as in Example 5. Let hðYÞ
=∑q∈N ð∑q

p=0�ρðYp, �0Þ/q + 1Þ2q+3/q+2, for all v ∈ CFðð2q + 3/
q + 2Þ∞q=0Þ. Since for all Y1, Y2 ∈ ðCFðð2q + 3/q + 2Þ∞q=0ÞÞh
with hðY1Þ, hðY2Þ ∈ ½0, 1Þ, one gets hðVY1 −VY2Þ = hðY1/4
− Y2/4Þ ≤ 2/

ffiffiffiffiffi
27

p ðhð3Y1/4Þ + hð3Y2/4ÞÞ = 2/
ffiffiffiffiffi
27

p ðhðVY1 −
Y1Þ + hðVY2 − Y2ÞÞ: For all Y1, Y2 ∈ ðCFðð2q + 3/q + 2Þ∞q=0
ÞÞh with hðY1Þ, hðY2Þ ∈ ½1,∞Þ, one gets

h VY1 −VY2ð Þ = h
Y1
5 −

Y2
5

� �
≤
1
4 h

4Y1
5

� �
+ h

4Y2
5

� �� �

= 1
4 h VY1 − Y1ð Þ + h VY2 − Y2ð Þð Þ:

ð58Þ

For all Y1, Y2 ∈ ðCFðð2q + 3/q + 2Þ∞q=0ÞÞh with hðY1Þ ∈ ½
0, 1Þ and hðY2Þ ∈ ½1,∞Þ, one gets

h VY1 − VY2ð Þ = h
Y1
4 −

Y2
5

� �
≤

2ffiffiffiffiffi
27

p h
3Y1
4

� �
+ 1
4 h

4Y2
5

� �

≤
2ffiffiffiffiffi
27

p h
3Y1
4

� �
+ h

4Y2
5

� �� �

= 2ffiffiffiffiffi
27

p h VY1 − Y1ð Þ + h VY2 − Y2ð Þð Þ:

ð59Þ

So V is Kannan h-contraction and VpðYÞ =

Y/4p, hðYÞ ∈ ½0, 1Þ,
Y/5p, hðYÞ ∈ ½1,∞Þ:

(

Obviously, V is h-sequentially continuous at �ϑ ∈
ðCFðð2q + 3/q + 2Þ∞q=0ÞÞh, and fV

pYg holds fVljYg converges
to �ϑ. By Theorem 32, the point �ϑ ∈ ðCFðð2q + 3/q + 2Þ∞q=0ÞÞh is
the only fixed point of V .

5. Kannan Nonexpansive Mapping on ðCF
τð:ÞÞh

We introduce the sufficient conditions of ðCF
τð:ÞÞh, where

hðgÞ = ½∑∞
m=0�ρðgm, �0Þτm �1/K , for every g ∈ CF

τð:Þ, such that
the Kannan nonexpansive mapping on it has a fixed point,
by fixing Γ a nonempty h-bounded, h-convex, and h
-closed subset of ðCF

τð:ÞÞh.

Lemma 33. If ðCF
τð:ÞÞh verifies the ðRÞ property and the h

-quasinormal property. Assume V : Γ⟶ Γ is a Kannan
h-nonexpansive mapping. For t > 0, let Gt = fY ∈ Γ : hðY
−VðYÞÞ ≤ tg ≠∅. Put

Γt =
\

Bh r, jð Þ: V Gtð Þ ⊂ Bh r, jð Þf g ∩ Γ: ð60Þ

Then, Γt ≠∅, h-convex, h-closed subset of Γ, and V
ðΓtÞ ⊂ Γt ⊂Gt and δhðΓtÞ ≤ t:

Proof. Since VðGtÞ ⊂ Γt , then Γt ≠∅. As the h-balls are h
-convex and h-closed, then Γt is a h-closed and h-convex
subset of Γ. To show that Γt ⊂Gt , assume Y ∈ Γt: When
hðY −VðYÞÞ = 0, one has Y ∈Gt: Else, assume hðY −VðYÞÞ
> 0: Put

r = sup h V Zð Þ −V Yð Þð Þ: Z ∈ Gtf g: ð61Þ

From the definition of r, one gets VðGtÞ ⊂ BhðVðYÞ, rÞ:
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Therefore, Γt ⊂ BhðVðYÞ, rÞ, then hðY − VðYÞÞ ≤ r: Let l > 0:
One has Z ∈Gt with r − l ≤ hðVðZÞ −VðYÞÞ. So

h Y −V Yð Þð Þ − l ≤ r − l ≤ h V Zð Þ −V Yð Þð Þ
≤
1
2 h Y − V Yð Þð Þ + h Z −V Zð Þð Þð Þ

≤
1
2 h Y − V Yð Þð Þ + tð Þ:

ð62Þ

As l is an arbitrary positive, one obtains hðY −VðYÞÞ ≤ t;
then, Y ∈Gt . Since VðGtÞ ⊂ Γt , one gets VðΓtÞ ⊂VðGtÞ ⊂ Γt ,
so Γt is V-invariant, to show that δhðΓtÞ ≤ t, since

h V Yð Þ −V Zð Þð Þ ≤ 1
2 h Y −V Yð Þð Þð Þ + h Z −V Zð Þð ÞÞ, ð63Þ

for all Y , Z ∈ Gt: Let Y ∈Gt: Then, VðGtÞ ⊂ BhðVðYÞ, tÞ:
The definition of Γt gives Γt ⊂ BhðVðYÞ, tÞ: Therefore, VðYÞ
∈
T

t∈Γt
BhðZ, tÞ: One has hðZ − YÞ ≤ t, for all Z, Y ∈ Γt , so

δhðΓtÞ ≤ t:

Theorem 34. If ðCF
τð:ÞÞh satisfies the h-quasinormal property

and the ðRÞ property, let V : Γ⟶ Γ be a Kannan h-non-
expansive mapping. Then, V has a fixed point.

Proof. Let t0 = inf fhðY − VðYÞÞ: Y ∈ Γg and tr = t0 + 1/r,
for every r ≥ 1: By the definition of t0, one gets Gtr

= fY ∈
Γ : hðY −VðYÞÞ ≤ trg ≠∅, for every r ≥ 1: Assume Γtr

is
defined as in Lemma 33. Clearly, fΓtr

g is a decreasing
sequence of nonempty h-bounded, h-closed, and h-convex
subsets of Γ. The property ðRÞ investigates that Γ∞ =Tr≥1
Γtr

≠∅: Let Y ∈ Γ∞, and one has hðY −VðYÞÞ ≤ tr , for all
r ≥ 1: Suppose r⟶∞; then, hðY − VðYÞÞ ≤ t0, so hðY −
VðYÞÞ = t0: Therefore, Gt0

≠∅: Then, t0 = 0. Else, t0 > 0;
then, V fails to have a fixed point. Let Γt0

be defined in
Lemma 33. As V fails to have a fixed point and Γt0

is V
-invariant, then Γt0

has more than one point, so δhðΓt0
Þ >

0. By the h-quasinormal property, one has Y ∈ Γt0
with

h Y − Zð Þ < δh Γt0

� �
≤ t0, ð64Þ

for all Z ∈ Γt0
: From Lemma 33, we get Γt0

⊂Gt0
: From

definition of Γt0
, VðYÞ ∈Gt0

⊂ Γt0
: Then,

h Y −V Yð Þð Þ < δh Γt0

� �
≤ t0, ð65Þ

which contradicts the definition of t0. Then, t0 = 0 which
gives that any point in Gt0

is a fixed point of V .

According to Theorems 23, 27, and 34, we conclude the
following:

Corollary 35. Assume ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, and V

: Γ⟶ Γ is a Kannan h-nonexpansive mapping. Then, V
has a fixed point.

Example 9. Assume V : Γ⟶ Γ with VðYÞ =

Y/4, hðYÞ ∈ ½0, 1Þ,
Y/5, hðYÞ ∈ ½1,∞Þ,

(
where Γ = fY ∈ ðCFðð2q + 3/q + 2

Þ∞q=0ÞÞh : Y0 = Y1 = �0g and hðYÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑q∈N �ρðYq, �0Þ2q+3/q+2

q
,

for every Y ∈ ðCFðð2q + 3/q + 2Þ∞q=0ÞÞh. By using Example 8,

V is Kannan h-contraction. So it is Kannan h-nonexpan-
sive. By Corollary 35, V has a fixed point �ϑ in Γ.

6. Kannan Contraction and Structure of
Operator Ideal

The structure of the operator ideal by ðCF
τð:ÞÞh equipped with

the definite function h, where hðgÞ = ½∑∞
q=0ð∑q

p=0�ρðgp, �0Þ/q +
1Þτq �1/K , for every g ∈ CF

τð:Þ, and s-numbers has been
explained. Finally, we examine the idea of Kannan contrac-
tion mapping in its associated pre-quasioperator ideal. As
well, the existence of a fixed point of Kannan contraction
mapping has been introduced. We indicate the space of all
bounded, finite rank linear operators from a Banach space
Δ into a Banach space Λ by LðΔ,ΛÞ, and FðΔ,ΛÞ, and if
Δ =Λ, we inscribe LðΔÞ and FðΔÞ.

Definition 36 (see [31]). An s-number function is s : LðΔ,
ΛÞ⟶R+N which sorts every V ∈LðΔ,ΛÞ a ðsdðVÞÞ∞d=0
verifies the following settings:

(a) kVk = s0ðVÞ ≥ s1ðVÞ ≥ s2ðVÞ ≥⋯≥0, for allV ∈LðΔ
,ΛÞ

(b) sl+d−1ðV1 +V2Þ ≤ slðV1Þ + sdðV2Þ, for all V1, V2 ∈L
ðΔ,ΛÞ and l, d ∈N

(c) sdðVYWÞ ≤ kVksdðYÞkWk, for all W ∈LðΔ0, ΔÞ,
Y ∈LðΔ,ΛÞ, and V ∈LðΛ,Λ0Þ, where Δ0 and Λ0
are arbitrary Banach spaces

(d) If V ∈LðΔ,ΛÞ and γ ∈R, then sdðγVÞ = jγjsdðVÞ
(e) Suppose rank ðVÞ ≤ d, and then, sdðVÞ = 0, for each

V ∈LðΔ,ΛÞ
(f) sl≥aðIaÞ = 0 or sl<aðIaÞ = 1, where Ia denotes the unit

map on the a-dimensional Hilbert space ℓa2

Definition 37 (see [8]).

(i) L is the class of all bounded linear operators within
any two arbitrary Banach spaces. A subclass U ofL
is said to be an operator ideal, if all UðΔ,ΛÞ =U

∩LðΔ,ΛÞ verifies the following conditions: IΓ ∈
U, where Γ denotes Banach space of one dimension

(ii) The space UðΔ,ΛÞ is linear over R
(iii) Assume W ∈LðΔ0, ΔÞ, X ∈UðΔ,ΛÞ, and Y ∈L

ðΛ,Λ0Þ, then YXW ∈UðΔ0,Λ0Þ
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Notation 38.

�✠U ≔ �✠U Δ,Λð Þf g ð66Þ

,where

�✠U Δ,Λð Þ≔ V ∈L Δ,Λð Þ: �sd Vð Þ� �∞
d=0

�
∈U

n o
, ð67Þ

where

�sd Vð Þ xð Þ =
1, x = sd Vð Þ,
0, x ≠ sd Vð Þ:

(
ð68Þ

Theorem 39. Suppose U is a (cssf); then, �✠U is an operator
ideal.

Proof.

(i) Assume V ∈FðΔ,ΛÞ and rank ðVÞ = n for all n ∈N ;
as �bi ∈U for all i ∈N and U is a linear space, one has

ðsiðVÞ ¯Þ∞i=0 = ð �s0ðVÞ, �s1ðVÞ,⋯, �sn1ðVÞ, �0, �0, �0,⋯Þ =∑n−1
i=0

�siðVÞ�bi ∈U; for that V ∈ �✠UðΔ,ΛÞ then FðΔ,ΛÞ ⊆ �✠EðΔ,ΛÞ.

(ii) Suppose V1, V2 ∈ �✠UðΔ,ΛÞ and β1, β2 ∈R, then by
Definition 4 condition (33), one has ð �s½i/2�ðV1ÞÞ

∞
i=0

∈U and ð �s½i/2�ðV1ÞÞ
∞
i=0 ∈U, as i ≥ 2½i/2�; by the defi-

nition of s-numbers and siðPÞ is a decreasing
sequence, one gets �siðβ1V1 + β2V2Þ ≤ �s2½i/2�ðβ1V1
+ β2V2Þ ≤ �s½i/2�ðβ1V1Þ + s½i/2�ðβ2V2Þ = jβ1j �s½i/2�ðV1Þ
+ jβ2j �s½i/2�ðV2Þ, for each i ∈N . In view of Definition
4 condition (23) and U is a linear space, one obtains
ð �siðβ1V1 + β2V2ÞÞ

∞
i=0 ∈U; hence, β1V1 + β2V2 ∈ �✠U

ðΔ,ΛÞ.
(iii) Suppose P ∈LðΔ0, ΔÞ, T ∈ �✠UðΔ,ΛÞ, and R ∈L

ðΛ,Λ0Þ, one has ð �siðTÞÞ
∞
i=0 ∈U, and as �siðRTPÞ ≤

kRk �siðTÞkPk, by Definition 4 conditions (22) and
(23), one gets

ð �siðRTPÞÞ
∞
i=0 ∈U, and then, RTP ∈ �✠UðΔ0,Λ0Þ.

According to Theorems 10 and 39, one concludes the
following theorem.

Theorem 40. Let ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, and one has

�✠ðCF
τð:ÞÞh

is an operator ideal.

Definition 41 (see [9]). A function H ∈ ½0,∞ÞU is called a
pre-quasinorm on the ideal U if the next conditions hold:

(1) Let V ∈UðΔ,ΛÞ, HðVÞ ≥ 0, and HðVÞ = 0, if and
only if V = 0

(2) We have Q ≥ 1 so as to HðαVÞ ≤DjαjHðVÞ, for
every V ∈UðΔ,ΛÞ and α ∈R

(3) We have P ≥ 1 so that HðV1 +V2Þ ≤ P½HðV1Þ +Hð
V2Þ�, for each V1, V2 ∈UðΔ,ΛÞ

(4) We have σ ≥ 1 for V ∈LðΔ0, ΔÞ, X ∈UðΔ,ΛÞ, and
Y ∈LðΛ,Λ0Þ; then, HðYXVÞ ≤ σkYkHðXÞkVk.

Theorem 42 (see [9]). H is a pre-quasinorm on the ideal U if
H is a quasinorm on the ideal U.

Theorem 43. If ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, then the func-

tion H is a pre-quasinorm on �✠ðCF
τð:ÞÞh

, with HðZÞ = h

ð �sqðZÞÞ
∞
q=0, for all Z ∈ �✠ðCF

τð:ÞÞh
ðΔ,ΛÞ.

Proof.

(1) When X ∈ �✠ðCF
τð:ÞÞh

ðΔ,ΛÞ, HðXÞ = hð �sqðXÞÞ
∞
q=0 ≥ 0

and HðXÞ = hð �sqðXÞÞ
∞
q=0 = 0, if and only if �sqðXÞ = �0,

for all q ∈N , if and only if X = 0

(2) There is Q ≥ 1 with HðαXÞ = hð �sqðαXÞÞ
∞
q=0 ≤QjαjHð

XÞ, for all X ∈ �✠ðCF
τð:ÞÞh

ðΔ,ΛÞ and α ∈R

(3) One has PP0 ≥ 1 so that for X1, X2 ∈ �✠ðCF
τð:ÞÞh

ðΔ,ΛÞ,
one can see

H X1 + X2ð Þ = h �sq X1 + X2ð Þ� �∞
q=0

≤ P h �s q/2½ � X1ð Þ
� �∞

q=0
+ h �s q/2½ � X2ð Þ
� �∞

q=0

� �

≤ PP0 h �sq X1ð Þ� �∞
q=0 + h �sq X2ð Þ� �∞

q=0

� �
ð69Þ

(4) We have ρ ≥ 1, ifX ∈LðΔ0, ΔÞ,Y ∈ �✠ðCF
τð:ÞÞh

ðΔ,ΛÞ, and
Z ∈LðΛ,Λ0Þ, and then, HðZYXÞ = hð �sqðZYXÞÞ

∞
q=0

≤ hðkXkkZk �sqðYÞÞ
∞
q=0 ≤ ρkXkHðYÞkZk.

In the next theorems, we will use the notation ð�✠ðCF
τð:ÞÞh

,
HÞ, where HðVÞ = hðð �sqðVÞÞ

∞
q=0Þ, for all V ∈ �✠ðCF

τð:ÞÞh
.

Theorem 44. Suppose ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, and one

has ð�✠ðCF
τð:ÞÞh

,HÞ is a pre-quasi-Banach operator ideal.
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Proof. Suppose ðVaÞa∈N is a Cauchy sequence in �✠ðCF
τð:ÞÞh

ðΔ,ΛÞ. As LðΔ,ΛÞ ⊇ SðCF
τð:ÞÞh

ðΔ,ΛÞ, one has

H Vr −Vað Þ = h �sq VrVað Þ� �∞
q=0

� �
≥ h �s0 VrVað Þ, �0, �0, �0,⋯� �

≥ inf
q

Vr −Vak kτq/K 〠
∞

q=0

1
q + 1

� �τq
" #1/K

:

ð70Þ

Hence, ðVaÞa∈N is a Cauchy sequence in LðΔ,ΛÞ.
LðΔ,ΛÞ is a Banach space, so there exists V ∈LðΔ,ΛÞ so
that lima⟶∞kVa −Vk = 0 and since ð �sqðVaÞÞ

∞
q=0 ∈ ðCF

τð:ÞÞh,
for all a ∈N , and ðCF

τð:ÞÞh is a premodular (cssf). Hence, one

can see

H Vð Þ = h �sq Vð Þ� �∞
q=0

� �
≤ h �s q/2½ � VVað Þ

� �∞
q=0

� �

+ h �s q/2½ � Vað Þ∞q=0
� �� �

≤ h Va − Vk k�1ð Þ∞q=0
� �

+ 3K + 2K
� �1/K

h �sq Vað Þ� �∞
q=0

� �
< ε:

ð71Þ

We obtain ð �sqðVÞÞ∞
q=0 ∈ ðCF

τð:ÞÞh, and hence, V ∈ �✠ðCF
τð:ÞÞh

ðΔ,ΛÞ.

Theorem45. If ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, one has ð�✠ðCF
τð:ÞÞh

,
HÞ is a pre-quasiclosed operator ideal.

Proof. Suppose Va ∈ �✠ðCF
τð:ÞÞh

ðΔ,ΛÞ, for all a ∈N and

lima⟶∞HðVa −VÞ = 0. As LðΔ,ΛÞ ⊇ SðCF
τð:ÞÞh

ðΔ,ΛÞ, one

has

H Va −Vð Þ = h �sq VaVð Þ� �∞
q=0

� �
≥ h �s0 VaVð Þ, �0, �0, �0,⋯� �

≥ inf
q

Va −Vk kτq/K 〠
∞

q=0

1
q + 1

� �τq
" #1/K

:

ð72Þ

So ðVaÞa∈N is convergent in LðΔ,ΛÞ. i.e., lima⟶∞kVa

−Vk = 0, and since ð �sqðVaÞÞ
∞
q=0 ∈ ðCF

τð:ÞÞh, for all q ∈N and

ðCF
τð:ÞÞh is a premodular (cssf). Hence, one can see

H Vð Þ = h �sq Vð Þ� �∞
q=0

� �
≤ h �s q/2½ � VVað Þ

� �∞
q=0

� �

+ h �s q/2½ � Vað Þ∞q=0
� �� �

≤ h Va −Vk k�1ð Þ∞q=0
� �

+ 3K + 2K
� �1/K

h �sq Vað Þ� �∞
q=0

� �
< ε:

ð73Þ

We obtain ð �sqðVÞÞ
∞
q=0 ∈ ðCF

τð:ÞÞh, and hence, V ∈ �✠ðCF
τð:ÞÞh

ðΔ,
ΛÞ.

Definition 46. A pre-quasinorm H on the ideal �✠Uh
verifies

the Fatou property if for every fTqgq∈N ⊆ �✠Uh
ðΔ,ΛÞ so that

limq⟶∞HðTq − TÞ = 0 and M ∈ �✠Uh
ðΔ,ΛÞ, one gets

H M − Tð Þ ≤ sup
q

inf
j≥q

H M − T j

� �
: ð74Þ

Theorem 47. Suppose ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, then

ð�✠ðCF
τð:ÞÞh

,HÞ does not satisfy the Fatou property.

Proof. Assume fTqgq∈N ⊆ �✠ðCF
τð:ÞÞh

ðΔ,ΛÞ with limq⟶∞HðTq

− TÞ = 0: Since �✠ðCF
τð:ÞÞh

is a pre-quasiclosed ideal, then T ∈
�✠ðCF

τð:ÞÞh
ðΔ,ΛÞ. So for every M ∈ �✠ðCF

τð:ÞÞh
ðΔ,ΛÞ, one has

H M − Tð Þ = 〠
∞

q=0

∑q
p=0�ρ �sp MTð Þ, �0� �

q + 1

 !τq
" #1/K

≤ 〠
∞

q=0

∑q
p=0�ρ

�s p/2½ � MTj

� �
, �0

� �
q + 1

0
@

1
A

τq2
4

3
5
1/K

+ 〠
∞

q=0

∑q
p=0�ρ

�s p/2½ � T jT
� �

, �0
� �
q + 1

0
@

1
A

τq2
4

3
5
1/K

≤ 3K + 2K
� �1/K sup

r
inf
j≥r

〠
∞

q=0

∑q
p=0�ρ

�sp MT j

� �
, �0

� �
q + 1

0
@

1
A

τq2
4

3
5
1/K

:

ð75Þ

Definition 48. An operator V : �✠Uh
ðΔ,ΛÞ⟶ �✠Uh

ðΔ,ΛÞ is
said to be a Kannan H-contraction, if one has α ∈ ½0, 1/2Þ
with HðVT −VMÞ ≤ αðHðVT − TÞ +HðVM −MÞÞ, for all
T ,M ∈ �✠Uh

ðΔ,ΛÞ.

Definition 49. An operator V : �✠Uh
ðΔ,ΛÞ⟶ �✠Uh

ðΔ,ΛÞ is
said to be H-sequentially continuous at M, where M ∈
�✠Uh

ðΔ,ΛÞ, if and only if limr⟶∞HðTr −MÞ = 0⇒
limr⟶∞HðVTr −VMÞ = 0.

Example 10. V : �✠ðCFðð2q+3/q+2Þ∞q=0ÞÞhðΔ,ΛÞ⟶
�✠ðCFðð2q+3/q+2Þ∞q=0ÞÞhðΔ,ΛÞ,

where HðTÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑∞

q=0ð∑q
p=0�ρð �spðTÞ, �0Þ/q + 1Þ2q+3/q+2

q
, for

every T ∈ �✠ðCFðð2q+3/q+2Þ∞q=0ÞÞhðΔ,ΛÞ and

V Tð Þ =
T
6 , H Tð Þ ∈ 0, 1½ Þ,
T
7 , H Tð Þ ∈ 1,∞½ Þ:

8>><
>>: ð76Þ

Evidently, V is H-sequentially continuous at the zero
operator Θ ∈ �✠ðCFðð2q+3/q+2Þ∞q=0ÞÞh . Let fTðjÞg ⊆
�✠ðCFðð2q+3/q+2Þ∞q=0ÞÞh be such that limj⟶∞HðTðjÞ − Tð0ÞÞ = 0,
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where Tð0Þ ∈ �✠ðCFðð2q+3/q+2Þ∞q=0ÞÞh with HðTð0ÞÞ = 1. Since the

pre-quasinorm H is continuous, one gets

lim
j⟶∞

H VT jð Þ −VT 0ð Þ
� �

= lim
j⟶∞

H
T 0ð Þ

6 −
T 0ð Þ

7

 !

=H
T 0ð Þ

42

 !
> 0:

ð77Þ

Therefore, V is not H-sequentially continuous at Tð0Þ.

Theorem 50. Pick up ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1 and V

: �✠ðCF
τð:ÞÞh

ðΔ,ΛÞ⟶ �✠ðCF
τð:ÞÞh

ðΔ,ΛÞ. Assume

(i) V is Kannan H-contraction mapping

(ii) V is H-sequentially continuous at an element A ∈
�✠ðCF

τð:ÞÞh
ðΔ,ΛÞ

(iii) there are G ∈ �✠ðCF
τð:ÞÞh

ðΔ,ΛÞ such that the sequence of

iterates fVrGg has a fVrmGg converging to M

Then, M ∈ �✠ðCF
τð:ÞÞh

ðΔ,ΛÞ is the unique fixed point of V .

Proof. Let M be not a fixed point of V ; hence, VM ≠M. By
using parts (ii) and (iii), we get

lim
rm⟶∞

H VrmG −Mð Þ = 0,

lim
rm⟶∞

H Vrm+1G −VM
� �

= 0:
ð78Þ

Since V is Kannan H-contraction, one obtains

0 <H VM −Mð Þ =H VM −Vrm+1G
� �

+ VrmGminus;Mð Þ�
+ Vrm+1G −VrmG
� ��

≤ 3K + 2K
� �1/K

H Vrm+1G −VM
� �

+ 3K + 2K
� �2/K

H VrmG −Mð Þ
+ 3K + 2K
� �2/K

α
α

1 − α

� �rm−1
H VG −Gð Þ:

ð79Þ

As rm ⟶∞, there is a contradiction. Hence, M is a
fixed point of V . To prove the uniqueness of the fixed point
M, suppose one has two not equal fixed points M, J ∈
�✠ðCF

τð:ÞÞh
ðΔ,ΛÞ of V . So, one gets HðM − JÞ ≤HðVM −VJÞ

≤ αðHðVM −MÞ +HðVJ − JÞÞ = 0: Then, M = J:

Example 11. Given Example 10, since for all T1, T2 ∈
�✠ðCFðð2q+3/q+2Þ∞q=0ÞÞh with HðT1Þ,HðT2Þ ∈ ½0, 1Þ, we have

H VT1 −VT2ð Þ =H
T1
6 −

T2
6

� �

≤
ffiffiffi
2

p
ffiffiffiffiffiffiffi
1254

p H
5T1
6

� �
+H

5T2
6

� �� �

=
ffiffiffi
2

p
ffiffiffiffiffiffiffi
1254

p H VT1 − T1ð Þ +H VT2 − T2ð Þð Þ:

ð80Þ

For all T1, T2 ∈ �✠ðCFðð2q+3/q+2Þ∞q=0ÞÞh with HðT1Þ,HðT2Þ
∈ ½1,∞Þ, we have

H VT1 −VT2ð Þ =H
T1
7 −

T2
7

� �

≤
ffiffiffi
2

p
ffiffiffiffiffiffiffi
2164

p H
6T1
7

� �
+H

6T2
7

� �� �

=
ffiffiffi
2

p
ffiffiffiffiffiffiffi
2164

p H VT1 − T1ð Þ +H VT2 − T2ð Þð Þ:

ð81Þ

For all T1, T2 ∈ �✠ðCFðð2q+3/q+2Þ∞q=0ÞÞh with HðT1Þ ∈ ½0, 1Þ
and HðT2Þ ∈ ½1,∞Þ, we have

H VT1 −VT2ð Þ =H
T1
6 −

T2
7

� �
≤

ffiffiffi
2

p
ffiffiffiffiffiffiffi
1254

p H
5T1
6

� �

+
ffiffiffi
2

p
ffiffiffiffiffiffiffi
2164

p H
6T2
7

� �
≤

ffiffiffi
2

p
ffiffiffiffiffiffiffi
1254

p H VT1 − T1ð Þð

+H VT2 − T2ð ÞÞ:
ð82Þ

Hence, V is Kannan H-contraction and VrðTÞ =

T/6r , HðTÞ ∈ ½0, 1Þ,
T/7r , HðTÞ ∈ ½1,∞Þ:

(

Obviously, V is H-sequentially continuous at Θ ∈
�✠ðCFðð2q+3/q+2Þ∞q=0ÞÞh , and fVrTg has a subsequence fVrmTg
converges to Θ. By Theorem 50, Θ is the only fixed point
of G.

7. Applications

Theorem 51. Consider the summable equation

Yp = Rp + 〠
∞

r=0
D p, rð Þm r, Yrð Þ, ð83Þ

which presented by many authors [32, 33, 34], and
assume V : ðCF

τð:ÞÞh ⟶ ðCF
τð:ÞÞh, where ðτqÞq∈N ∈ ℓ∞ ∩ I with
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τ0 > 1 and hðYÞ = ½∑∞
q=0ð∑q

p=0�ρðYp, �0Þ/q + 1Þτq �1/K , for all Y

∈ CF
τð:Þ, is defined by

V Yp

� �
p∈N

= Rp + 〠
∞

r=0
D p, rð Þm r, Yrð Þ

 !
p∈N

: ð84Þ

The summable equation (83) has a unique solution in
ðCF

τð:ÞÞh, if D : N 2 ⟶R, m : N ×R½0, 1�⟶R½0, 1�, R

: N ⟶R½0, 1�, and Z : N ⟶R½0, 1�; assume there is δ ∈
R such that supqjδjτq/K ∈ ½0; 0:5Þ, and for all q ∈N , let

〠
q

p=0
〠
∞

r=0
D p, rð Þ m r, Yrð Þ −m r, Zrð Þð Þ

" #

≤ δj j 〠
q

p=0
Rp − Yp + 〠

∞

r=0
D p, rð Þm r, Yrð Þ

 !"

+ 〠
q

p=0
Rp − Zp + 〠

∞

r=0
D p, rð Þm r, Zrð Þ

 !#
:

ð85Þ

Proof. One has

h VY − VZð Þ = 〠
∞

q=0

∑q
p=0�ρ VYp − VZp, �0

� �
q + 1

 !τq
" #1/K

= 〠
∞

q=0

∑q
p=0�ρ ∑∞

r=0D p, rð Þ m r, Yrð Þ −m r, Zrð Þ½ �, �0ð Þ
q + 1

 !τq
" #1/K

≤ sup
q

δj jτq/K 〠
∞

q=0

∑q
p=0�ρ Rp − Yp +∑∞

r=0D p, rð Þm r, Yrð Þ, �0� �
q + 1

 !τq
" #1/K

+ sup
q

δj jτq/K 〠
∞

q=0

∑q
p=0�ρ Rp − Zp +∑∞

r=0D p, rð Þm r, Zrð Þ, �0� �
q + 1

 !τq
" #1/K

= sup
q

δj jτq/K h VY − Yð Þ + h VZ − Zð Þð Þ:

ð86Þ

By Theorem 29, one gets a unique solution of equation
(83) in ðCF

τð:ÞÞh:

Example 12. Suppose ðCFðð2q + 3/q + 2Þ∞q=0ÞÞh, where hðYÞ
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑∞

q=0ð∑q
p=0�ρðYp, �0Þ/q + 1Þ2q+3/q+2

q
, for all Y ∈ CFð

ð2q + 3/q + 2Þ∞q=0Þ. Consider the summable equation

Yp = Rp + 〠
∞

r=0
−1ð Þp+r Yp

p2 + r2 + 1

� �t

, ð87Þ

with p ≥ 2 and t > 0. Suppose Γ = fY ∈
ðCFðð2q + 3/q + 2Þ∞q=0ÞÞh : Y0 = Y1 = �0g. Indeed, Γ is a non-

empty, h-convex, h-closed, and h-bounded subset of
ðCFðð2q + 3/q + 2Þ∞q=0ÞÞh. Let V : Γ⟶ Γ be defined by

V Yp

� �
p≥2 = Rp + 〠

∞

r=0
−1ð Þp+r Yp

p2 + r2 + 1

� �t
 !

p≥2

: ð88Þ

Obviously,

〠
q

p=0
〠
∞

r=0
−1ð Þp Yp

p2 + r2 + 1

� �t

−1ð Þr − −1ð Þrð Þ

≤
1ffiffiffi
2

p 〠
q

p=0
Rp − Yp + 〠

∞

r=0
−1ð Þp+r Yp

p2 + r2 + 1

� �t
 !"

+ 〠
q

p=0
Rp − Zp + 〠

∞

r=0
−1ð Þp+r Zp

p2 + r2 + 1

� �t
 !#

:

ð89Þ

By Corollary 35 and Theorem 51, the summable equa-
tion (87) has a solution in Γ.

Example 13. Suppose ðCFðð2q + 3/q + 2Þ∞q=0ÞÞh, where hðYÞ
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑∞

q=0ð∑q
p=0�ρðYp, �0Þ/q + 1Þ2q+3/q+2

q
, for every Y ∈ CFð

ð2q + 3/q + 2Þ∞q=0Þ. Consider the following nonlinear differ-
ence equation:

Yp = Rp + 〠
∞

l=0
−1ð Þp+l Yr

p−2

Yp
p−1 + l2 + 1

, ð90Þ

with r, p > 0, Y−2ðxÞ, Y−1ðxÞ > 0, for all x ∈R, and
assume V : CFðð2q + 3/q + 2Þ∞q=0Þ⟶ CFðð2q + 3/q + 2Þ∞q=0Þ
is defined by

V Yp

� �∞
p=0 = Rp + 〠

∞

l=0
−1ð Þp+l Yr

p−2

Yp
p−1 + l2 + 1

 !∞

p=0

: ð91Þ

Evidently,

〠
q

p=0
〠
∞

l=0
−1ð Þp Yr

p−2

Yp
p−1 + l2 + 1

−1ð Þl − −1ð Þl
� �

≤
1ffiffiffi
2

p 〠
q

p=0
Rp − Yp + 〠

∞

l=0
−1ð Þp+l Yr

p−2

Yp
p−1 + l2 + 1

 !"

+ 〠
q

p=0
Rp − Zp + 〠

∞

l=0
−1ð Þp+l Zr

p−2

Zp
p−1 + l2 + 1

 !#
:

ð92Þ

By Theorem 51, the nonlinear difference equation (90)
has a unique solution in CFðð2q + 3/q + 2Þ∞q=0Þ.

8. Conclusion

Rather than simply referring to a “quasi-normed” place, we
used the term “prequasi-normed.” It is the concept of a fixed
point of the Kannan pre-quasinorm contraction mapping in
the pre-quasi-Banach variable exponent Cesàro sequence
spaces of fuzzy functions (cssf). Pre-quasinormal structure
and ðRÞ are supported. The Kannan nonexpansive map-
ping’s presence of a fixed point was investigated. The
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presence of a fixed point of Kannan contraction mapping in
the pre-quasi-Banach operator ideal produced by variable
exponent Cesàro sequence spaces of fuzzy functions (cssf)
and s-fuzzy numbers has also been examined. To put our
findings to the test, we introduce several numerical experi-
ments. In addition, various effective implementations of
the stochastic nonlinear dynamical system are discussed.
The fixed points of any Kannan contraction and nonexpansive
mappings on this new fuzzy functions space, its associated
pre-quasi-ideal, and a new general space of solutions for many
stochastic nonlinear dynamical systems are investigated.
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