
Research Article
The Long-Time Behavior of 2D Nonautonomous g-Navier-Stokes
Equations with Weak Dampness and Time Delay

Xiaoxia Wang and Jinping Jiang

College of Mathematics and Computer Science, Yan’an University, Yan’an, 716000 Shaanxi, China

Correspondence should be addressed to Xiaoxia Wang; yd-wxx@163.com

Received 1 May 2022; Accepted 4 July 2022; Published 25 July 2022

Academic Editor: Baowei Feng

Copyright © 2022 Xiaoxia Wang and Jinping Jiang. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

In this paper, we discuss the long-time behavior of g-Navier-Stokes equations with weak dampnesss and time delay. The
uniformly attracting sets of processes are obtained. On the basis of the method with asymptotic compactness, the existence of
the uniform attractor for the equation is proved with the restriction of the forcing term belonging to translational compacted
function space.

1. Introduction

The understanding of the behavior with dynamical systems
was one of the most important problems of modern mathe-
matical physics (see [1–17]). In the last decades, g-Navier-
Stokes equations have received increasing attention due to
their importance in the fluid motion. In [2–4], the existence
of weak solution and strong solution for the 2D g-Navier-
Stokes equation on some bounded domain was studied.
The Hausdorff and fractal dimension of the global attractor
about the 2D g-Navier-Stokes equation for the periodic
and Dirichlet boundary conditions and the global attractor
of the 2D g-Navier-Stokes equation on some unbounded
domains were researched in [5]. In [6–10], the finite
dimensional global attractor and the pullback attractor
for g-Navier-Stokes equation were studied. Moreover,
Anh et al. studied long-time behavior for 2D nonautono-
mous g-Navier-Stokes equations and the stability of solu-
tions to stochastic 2D g-Navier-Stokes equation with
finite delays in [11, 12]; Quyee researched the stationary
solutions to 2D g-Navier-Stokes equation and pullback
attractor for 2D g-Navier-Stokes equation with infinite
delays in [13]. Recently, the random attractors for the
2D stochastic g-Navier-Stokes equation were researched
in [14]. From these researches, we can see that the attrac-
tor of 2D g-Navier-Stokes equation is still important. We

would like to use the theory of uniform attractors to study
it. So, the present research is necessary and has a theoret-
ical basis.

In this paper, we study the existence of the uniform
attractor of the g-Navier-Stokes equation with weak damp-
ness and time delay which have the following form:

∂u
∂t

− νΔu + u · ∇ð Þu + αu+∇p = f x, tð Þ + h t, utð Þ, on τ,+∞ð Þ ×Ω,

∇· guð Þ = 0, on τ,+∞ð Þ ×Ω,
u x, tð Þ = 0, on τ,+∞ð Þ × ∂Ω,

u τ, xð Þ = u0 xð Þ x ∈Ω,
ð1Þ

where uðt, xÞ ∈ R2 and pðt, xÞ ∈ R denote the velocity and
pressure, respectively. ν > 0 is the viscosity coefficient, αu
denotes linear dampness, and α > 0 is positive constant.
f = f ðx, tÞ ∈ ðL2ðΩÞÞ2 is the time-dependent external force
term, hðt, utÞ is another external force term with time
delay. 0 <m0 ≤ g = gðx1, x2Þ ≤M0 and g = gðx1, x2Þ are
suitable real-valued smooth functions; when g = 1, Equa-
tion (1) becomes the usual 2D Navier-Stokes equations.

This paper is organized as follows. In Section 2, we first
introduce some notations and preliminary results for the g
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-Navier-Stokes equation. In Section 3, we prove existence of
the uniform attractor of 2D g-Navier-Stokes equation with
weak dampness and time delay on the bounded domains.

2. Preliminaries

We assume that the Poincare inequality holds on Ω, i.e.,
there exists λ1 > 0, such thatð

Ω

ϕ2gdx ≤
1
λ1

ð
Ω

∇ϕj j2gdx,∀ϕ ∈H1
0 Ωð Þ: ð2Þ

Let L2ðgÞ = ðL2ðΩÞÞ2 with the inner products ðu, vÞ =Ð
Ω
u · νgdx and the norms j·j = ð·, · Þ1/2, u, v ∈ L2ðgÞ: Let H1

0
ðgÞ = ðH1

0ðΩÞÞ2, which is endowed with the inner products
ððu, vÞÞ = Ð

Ω
Σ2
j=1∇uj · ∇vjgdx and the norms k·k =

ðð·, · ÞÞ1/2, where u = ðu1, u2Þ, v = ðv1, v2Þ ∈H1
0ðgÞ:

Let DðΩÞ be the space of C∞ function with the compact
support contained in Ω, and let ℵ = fv ∈ ðDðΩÞÞ2 : ∇ · gv
= 0 onΩg; the closure of ℵ in L2ðgÞ is Hg; the closure of

ℵ in H1
0ðgÞ is Vg. Hg has the inner product and norm of

L2ðgÞ, And Vg has the inner product and norm of H1
0ðgÞ.

It follows from (2) that

uj j2 ≤ 1
λ1

uk k2,∀u ∈ Vg: ð3Þ

We define a g-Laplacian operator as follows: −Δgu =
−ð1/gÞð∇·g∇Þu = −Δu − ð1/gÞ∇g · ∇u.

Using the g-Laplacian operator, we rewrite the first
Equation (1) as follows:

∂u
∂t

− νΔgu + ν
∇g
g

· ∇u + u,∇ð Þu + αu+∇p = f + h t, utð Þ:

ð4Þ

From [2], we can define a g-orthogonal projection Pg : L2

ðgÞ⟶Hg and a g-Stokes operator Agu = −Pgðð1/gÞð∇·ðg∇
uÞÞÞ.

Applying the projection Pg into (4), we can obtain the
following weak formulation of (1): let f ∈ Vg and u0 ∈Hg,
we find that

u ∈ L∞ 0, T ;Hg

� �
∩ L2 0, T ; Vg

� �
, T > 0, ð5Þ

such that ∀v ∈ Vg, ∀t > 0.

d
dt

u, vð Þ + ν u, vð Þð Þ + bg u, u, vð Þ + α u, vð Þ
+ ν Ru, vð Þ = f , vh i + h t, utð Þ, vh i,

ð6Þ

u 0ð Þ = u0, ð7Þ

where bg : Vg ×Vg ×Vg ⟶ R is given by

bg u, v,wð Þ = 〠
2

i,j=1

ð
ui
∂vj
∂x

wjgdx, ð8Þ

and Ru = Pg½ð1/gÞð∇g · ∇Þu�, such that ðRu, vÞ = bð∇g/g, u,
vÞ, ∀u, v ∈ Vg. Then, the weak formulation of (6) and (7) is
equivalent to the functional equations

du
dt

+ νAgu + Bu + αu + νRu = f + h, ð9Þ

u 0ð Þ = u0, ð10Þ
where Ag : Vg ⟶Vg′ is the g-Stokes operator defined by
hAgu, vi = ððu, vÞÞ, ∀u, v ∈ Vg:BðuÞ = Bðu, uÞ = Pgðu · ∇Þu is

bilinear operator and B : Vg ×Vg ⟶Vg′ ,
hBðu, vÞ,wi = bgðu, v,wÞ, ∀u, v,w ∈ Vg, where B and R sat-
isfy the following inequalities [2, 4]:

B uð Þk kVg
′ ≤ c uj j uj jj j, Ruk kVg

′ ≤
∇gj j∞
m0λ

1/2
1

uj jj j,∀u ∈ Vg: ð11Þ

Let T > τ, u : ðτ − r, TÞ⟶ ðL2ðΩÞÞ2. For every t ∈ ðτ,
TÞ, we define utðsÞ = uðt + sÞ, s ∈ ð−h, 0Þ. For convenience,
we denote CHg

= C0ð½−h, 0� ;HgÞ, CVg
= C0ð½−h, 0� ; VgÞ,

L2Hg
= L2ð−h, 0 ;HgÞ, L2Vg

= L2ð−h, 0 ; VgÞ.
Let h : R × CHg

⟶ ðL2ðΩÞÞ2 satisfy the following

assumptions:

(I) ∀ξ ∈ CHg
, t ∈ R⟶ hðt, ξÞ ∈ ðL2ðΩÞÞ2 is

measureable,

(II) ∀t ∈ R, hðt, 0Þ = 0,
(III) ∃Lg > 0, such that ∀t ∈ R, ∀ξ, η ∈ CHg

, there is jhðt
, ξÞ − hðt, ηÞj ≤ Lgkξ − ηkCHg

:

(IV) ∃m0 ≥ 0, Cg > 0, ∀m ∈ ½0,m0�, τ ≤ t, u, v ∈ C0ð½τ − r,
t� ;HgÞ, such that

ðt
τ

ems h s, usð Þ − h s, vsð Þj j2ds ≤ C2
g

ðt
τ−r

ems u sð Þ − v sð Þj j2ds:

ð12Þ

∀t ∈ ½τ, T�, ∀u, v ∈ L2ðτ − r, T ;HgÞ, from (IV), we haveðt
τ

h s, usð Þ − h s, vsð Þj j2
L2 Ωð Þð Þ2ds ≤ C2

g

ðt
τ−r

u sð Þ − v sð Þj j2ds:

ð13Þ

Definition 1. Let u0 ∈Hg, ϕ ∈ L2Hg
, f ∈ L2LocðR ; Vg′Þ and h : R

× CHg
⟶ ðL2ðΩÞÞ2 satisfy the hypotheses (I)-(IV). For
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every τ ∈ R, a function u ∈ L2ðτ, T ; VgÞ ∩ L∞ðτ, T ;HgÞ, ∀T
> τ is called a weak solution of problem (1) if it fulfils

d
dt

u tð Þ + νAgu tð Þ + B u tð Þð Þ + αu tð Þ + νR u tð Þð Þ
= f tð Þ + h t, utð ÞonD′ τ,+∞;Vg′

� �
u τð Þ = u0:

ð14Þ

We can obtain the following theorem by the standard
Faedo-Galerkin methods, where we let T > τ > 0. Other cases
can be similarly proved.

Theorem 2. Let f ∈ L2LocðR ; Vg′Þ, u0ðxÞ ∈Hg, h ∈ ðL2ðΩÞÞ2
satisfies the assumptions (I)-(IV), there exists a unique solu-
tion

u x, tð Þ ∈ L∞ 0, T ;Hg

� �
∩ L2 0, T ; Vg

� �
, ∀T > 0ð Þ, ð15Þ

such that (6) and (7) holds.

Proof. We apply the Faedo-Galerkin methods. Since Vg is
separable and ℵ is dense in Vg, there exists a sequence
fwigi∈N ∈ℵ, which forms a complete orthonormal system
in Hg and a basic for Vg. Letm be a positive integer, for each
m, we define an approximate solution um of (6) as um =
∑m

i=1ϕimðtÞwi, which satisfies

um′ tð Þ,wj

� �
+ ν um tð Þ,wj

� �� �
+ b um tð Þ, um tð Þ,wj

� �
+ α um tð Þ,wj

� �
+ b

∇g
g

, um tð Þ,wj

� �
= f tð Þ,wj

� 	
+ H t, utð Þ,wj

� 	
,

ð16Þ

for t ∈ ½0, T�, j = 1,⋯,m and umð0Þ = u0m, where u0m is the
orthegonal projection in Hg of u0 onto the space spanned
by w1,⋯,wm. Then, we can obtain

〠
m

i=1
wi:wj

� �
ϕim′ tð Þ + ν〠

m

i=1
wi,wj

� �� �
ϕim tð Þ

+ 〠
m

i,l=1
b wi,wl,wj

� �
ϕim tð Þϕlm tð Þ + α〠

m

i=1
wi,wj

� �
ϕim tð Þ

+ 〠
m

i=1
b

∇g
g

,wi,wj

� �
ϕim tð Þ = f tð Þ,wj

� 	
+ h t, utð Þ,wj

� 	
:

ð17Þ

We can write the differential equations in the usual form

〠
m

i=1
ϕim′ tð Þ + 〠

m

j=1
αijϕjm tð Þ + 〠

m

j,k=1
αijkϕjm tð Þϕkm tð Þ

= 〠
m

j=1
βij f tð Þ,wj

� 	
+ 〠

m

j=1
γij h t, utð Þ,wj

� 	
,

ð18Þ

where αij, αijk, βij ∈ R.

Let ϕimð0Þ be the ith component of u0m. The nonlinear
ordinary differential system (18) has a maximal solution
defined on some interval ½0, tm�. If tm < T , then jumðtÞj
⟶∞ as t⟶ tm. The following we will prove tm = T .
We need several estimates to do.

We multiply (16) by ϕjmðtÞ and add these equations for
j = 1,⋯,m to obtain

um′ tð Þ, um tð Þ
� �

+ ν um tð Þk k2 = f tð Þ, um tð Þh i

+ h t, utð Þ, um tð Þh i − α um tð Þj j2 − b
∇g
g

· ∇
� �

um tð Þ, um tð Þ
� �

:

ð19Þ

Then, we have

d
dt

um tð Þj j2 + 2ν um tð Þk k2 = 2 f tð Þ, um tð Þh i + 2 h t, utð Þ, um tð Þh i

− 2b ∇g
g

· ∇
� �

um tð Þ, um tð Þ
� �

− 2α um tð Þj j2

≤ 2 f tð Þk kVg
′ um tð Þk kVg

+ 2 h t, utð Þk kVg
′ um tð Þk kVg

+ 2
m

∇gj j∞ um tð Þj j um tð Þk k + um tð Þk k2 + 2α um tð Þj j2

≤ ν um tð Þk k2 + 8
ν

f tð Þk k2 + ν um tð Þk k2 + 8
ν

h t, utð Þk k2

+ 2
νm2 ∇gj j2∞ um tð Þj j2 + ν um tð Þj j2 + 2α um tð Þj j2,

ð20Þ

so that

d
dt

um tð Þj j2 ≤ 8
ν

f tð Þk k2 + h t, utð Þk k2� �
+ 2

νm2 ∇gj j2∞ + ν + 2α
� �

um tð Þj j2:
ð21Þ

Let K = 2/νm2j∇gj2∞ + ν + 2α, then

d
dt

um tð Þj j2 ≤ K um tð Þj j2 + 8
ν

f tð Þk k2 + h t, utð Þk k2� �
: ð22Þ

By the Gronwall inequality, we have

um tð Þj j2 ≤ eKt um 0ð Þj j2 + 8
ν

ðt
0

f sð Þk k2Vg
′ + h t, usð Þk k2

� �
ds:

�
ð23Þ

Hence,

sup
s∈ 0,T½ �

um sð Þj j2 ≤ eKT um 0ð Þj j2 + 8
ν

ðt
0

f sð Þk k2Vg
′ + h t, usð Þk k2

� �
ds

�
,

ð24Þ

which implies that the sequence um remains in bounded set
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of L∞ð0, T ;HgÞ. From (22), we have

d
dt

um tð Þj j2 ≤ K
λ1

um tð Þk k2 + 8
ν

f tð Þk k2 + h t, utð Þk k2� �
:

ð25Þ

Then,

d
dt

um tð Þj j2 − K
λ1

um tð Þk k2 ≤ 8
ν

f tð Þk k2 + h t, utð Þk k2� �
:

ð26Þ

We intergrate (26) from 0 to T ; we have

um tð Þj j2 − K
λ1

ðT
0

um tð Þk k2dt ≤ u0mj j2

+ 8
ν

ðT
0

f tð Þk k2 + h t, utð Þk k2� �
dt:

ð27Þ

So, the um remains in a bounded set of L2ð0, T ; VgÞ.
Let ~um denotes the function from R into Vg, which is

equal to um on ½0, T� and to 0 on the complement of this
interval. The Fourier transform of ~um is denoted by ûm.
Then, we will show that there exist a positive constant C
and γ such that ð+∞

−∞
τj j2γ ûm τð Þj j2dτ < C: ð28Þ

Since the um remains in a bounded set of L2ð0, T ; VgÞ,
the ~um remains in a bounded set of HγðR ; Vg,HgÞ. Since
~um has two discontinuities at 0 and T , the distribute deriva-
tive of ~um is given by

d
dt

~um = eϕm + um 0ð Þδ0 − um Tð ÞδT , ð29Þ

where δ0 and δT are the dirac distributions at 0 and T , and
ϕm = um′ is the derivative of um on ½0, T�. We obtain that

d
dt

ûm,wj

� 	
= f̂ m,wj

D E
+ u0m,wj

� 	
δ0 − um Tð Þ,wj

� 	
δT ,

ð30Þ

for j = 1,⋯,m, where δ0 and δT are distributions at 0 and T ,
f m = f + h − νAum − bum − νRum − αum and ~f m = f m on ½0,
T�. By the Fourier transform, we have

2iπτ ûm,wj

� 	
= f̂ m,wj

D E
+ u0m,wj

� 	
− um Tð Þ,wj

� 	
exp −2iπTτð Þ,

ð31Þ

where ûm and f̂ m denoting the Fourier transforms of ~um and
~f m, respectively. We multiply (31) by bϕ jmðτÞ and add the

resulting equations for j = 1,⋯,m; we get

2iπτ ûm τð Þj j2 = f̂ m τð Þ, ûm τð Þ
D E

+ u0m, ûm τð Þh i
− um Tð Þ, ûm τð Þh i exp −2iπTτð Þ:

ð32Þ

We obtainðT
0

f m tð Þk kdt ≤
ðT
0

f tð Þk k + h t, utð Þk k + ν um tð Þk kð

+ c ∇gk k∞ umk k + α

λ1
umk k2 + c um tð Þk k2Þdt:

ð33Þ

So, f mðtÞ belongs to a bounded set in the space L1

ð0, T ; Vg′Þ. For ∀m, we have supτ∈Rk f̂ mðτÞk ≤ C: Since
umð0Þj and jumðTÞj are bounded, from (31), we obtain

τj j ûm τð Þj j2 ≤ C1 ûm τð Þk k + C2 ûm τð Þj j ≤ C3 ûm τð Þk k: ð34Þ

Let γ < ð1/4Þ, we have

τj j2γ ≤ C4 γð Þ 1 + τj j
1 + τj j1−2γ ,∀τ ∈ R, ð35Þ

thenð+∞
−∞

τj j2γ ûm τð Þj j2dτ ≤ C4 γð Þ
ð+∞
−∞

1 + τj j
1 + τj j1−2γ ûm τð Þj j2dτ:

≤ C5

ð+∞
−∞

ûm τð Þk kVg

1 + τj j1−2γ dτ+C6

ð+∞
−∞

ûm τð Þk k2dτ:

ð36Þ

Since um ∈ L2ð0, T ; VgÞ, by the Parseval equalityÐ +∞
−∞kûmðτÞk2Vg

dτ < C and by the Schwarz inequality

and the Parseval equality, we obtain

ð+∞
−∞

ûm τð Þk kVg

1 + τj j1−2γ dτ ≤
ð+∞
−∞

1
1 + τj j1−2γ� �2 dτ

 !1/2

�
ð+∞
−∞

um τð Þk k2dτ
� �1/2

< C:

ð37Þ

So, um ∈HγðR ; Vg,HgÞ, and um remains in a

bounded set of L∞ð0, T ;HgÞ, L2ð0, T ; VgÞ and HγðR ;
Vg,HgÞ. There exists an element u ∈ L2ð0, T ; VgÞ ∩ L∞ð
0, T ;HgÞ and a subsequence um′ such that um′ ⟶ u
in L2ð0, T ; VgÞ weakly and um′ ⟶ u in L∞ð0, T ; VgÞ
weak-star as m′ ⟶∞. For any B ∈ Rn, we have um′
jB ⟶ ujB strongly in L2ð0, T ;HgðBÞÞ.

For any support Bj of wj, we have um′ jB j
⟶ uj

B j

strongly in L2ð0, T ;HgðBjÞÞ. Let ψ be a continuously differ-
entiable function on ½0, T� with ψðTÞ = 0, we multiply (16)
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by ψðtÞ, then integrate by parts,

−
ðT
0

um tð Þ, ψ′ tð Þwj

� �
dt + ν

ðT
0

um tð Þ,wjψ tð Þ� �� �
dt

+
ðT
0
b um tð Þ, um tð Þ,wjψ tð Þ� �

dt +
ðT
0
α um tð Þ,wjψ tð Þ� �

dt

+
ðT
0
b

∇g
g

, um tð Þ,wjψ tð Þ
� �

dt = u0m,wj

� �
ψ 0ð Þ

+
ðT
0

f tð Þ + h t, utð Þ,wjψ tð Þ� 	
dt:

ð38Þ

We have

−
ðT
0

u tð Þ, vψ′ tð Þ
� �

dt + ν
ðT
0

u tð Þ, vψ tð Þð Þð Þdt

+
ðT
0
b u tð Þ, u tð Þ, vψ tð Þð Þdt +

ðT
0
α u tð Þ, vψ tð Þð Þdt

+
ðT
0
b

∇g
g

, u tð Þ, vψ tð Þ
� �

dt = u0, vð Þψ 0ð Þ

+
ðT
0

f tð Þ + h t, utð Þ, vψ tð Þh idt:

ð39Þ

where ∀v ∈ Vg.
Finally, we prove that u satisfies (7). We multiply (6) by

ψ and integrate

−
ðT
0

u tð Þ, vψ′ tð Þ
� �

dt + ν
ðT
0

u tð Þ, vψ tð Þð Þð Þdt

+
ðT
0
b u tð Þ, u tð Þ, vψ tð Þð Þdt +

ðT
0
α u tð Þ, vψ tð Þð Þdt

+
ðT
0
b

∇g
g

, u tð Þ, vψ tð Þ
� �

dt = u 0ð Þ, vð Þψ 0ð Þ

+
ðT
0

f tð Þ + h t, utð Þ, vψ tð Þh idt:

ð40Þ

We compare (39) with (40) to obtain ðuð0Þ − u0, vÞψð0Þ
= 0. Let ψð0Þ = 1, then we have ðuð0Þ − u0, vÞ = 0, ∀v ∈ Vg.
So, uð0Þ = u0.

Now, we will prove the solution of (6) and (7) is unique.
We let u1 and u2 be the solutions of (9) and u = u1 − u2. We
have

∂u
∂t

+ νAu + Bu + νRu + αu = −Bu1 + Bu2, ð41Þ

u 0ð Þ = 0: ð42Þ

We take the scalar product of (41) with uðtÞ, then
d
dt

u tð Þj j2 + 2ν u tð Þk k2 + 2b ∇g
g

, u tð Þ, u tð Þ
� �

+ 2α u tð Þj j2

= 2b u2 tð Þ, u2 tð Þ, u tð Þð Þ − 2b u1 tð Þ, u1 tð Þ, u tð Þð Þ
= −2b u tð Þ, u2 tð Þ, uð Þ,
2b u tð Þ, u2 tð Þ, uð Þj j ≤ C u tð Þj j u tð Þk k u2 tð Þk k

≤ ν u tð Þk k2 + C2

ν
u tð Þj j2 u2 tð Þk k2,

2b ∇g
g

, u tð Þ, u tð Þ
� �



 



 ≤ 2C ∇gk k∞ uk k uj j ≤ ν u tð Þk k2

+ C2

ν
∇gk k2∞ u tð Þj j2:

ð43Þ

Therefore,

d
dt

u tð Þj j2 + 2ν u tð Þk k2 ≤ ν u tð Þk k2 + C2

ν
∇gk k2∞ u tð Þj j2

+ ν u tð Þk k2 + C2

ν
u tð Þj j2 u2 tð Þk k2 + α u tð Þj j2:

ð44Þ

Then,

d
dt

u tð Þj j2 ≤ C2

ν
∇gk k2∞ + C2

ν
u2 tð Þk k2 + α

� �
u tð Þj j2: ð45Þ

We have

u tð Þj j2 ≤ u 0ð Þj j2 exp
ðt
0

C2

ν
∇gk k2∞ + C2

ν
u2 tð Þk k2 + α

� �
ds

� �
:

ð46Þ

Hence, juðtÞj2 = 0, ∀t ∈ ½0, T�. So, u1 = u2.
From [15], we can define a family of two parametric

maps fUf ðt, τÞg = fUf ðt, τÞ ∣ t ≥ τ, τ ∈ Rg in Hg,

Uf t, τð Þ: E⟶ E, t ≥ τ, τ ∈ R: ð47Þ

Here, f ∈ L∞ðR+ ; Vg′Þ is called the time symbol of the sys-

tem. We have the following concepts and conclusions
from [15].

Definition 3. For the given time symbol f ∈ L∞ðR+ ; Vg′Þ, a
family of two-parametric maps fUðt, τÞg with t ≥ τ ≥ 0 is
called a process in Hg, if

U f t, sð ÞU s, τð Þ =U f t, τð Þ,∀t ≥ s ≥ τ, τ ∈ R,
Uf τ, τð Þ = Id, τ ∈ R:

ð48Þ

Now, we define translation operator in L∞ðR+ ; Vg′Þ. ∀f
∈ L∞ðR+ ;Vg′Þ.
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T hð Þf sð Þ = f s + hð Þ,∀h ≥ 0, s ∈ R: ð49Þ

We have

T hð Þfk kL∞ R+;Vg
′ð Þ ≤ fk kL∞ R+;Vg

′ð Þ,∀h ≥ 0, f ∈ L∞ R+ ; Vg′
� �

:

ð50Þ

Denote Σ = fTðhÞf ðx, sÞ = f ðx, s + hÞ,∀h ∈ Rg, where T
ð·Þ is the positive invariant semigroups acting on Σ and
satifying TðhÞΣ ⊂ Σ, ∀h ≥ 0 and

UT hð Þf t, τð Þ =Uf t + h, τ + hð Þ,∀h ≥ 0, t ≥ τ ≥ 0: ð51Þ

Let ρF > 0 be a constant, obviously

Σ ⊂ f ∈ L∞ R+ ; Vg′
� �

: fk kL∞ R+;Vg
′ð Þ ≤ ρF

n o
: ð52Þ

Let E be the Banach space; we use BðEÞ to denote the
set of all bounded sets on E and consider a family of pro-
cesses fU f ðt, τÞg with f ∈ Σ, the parameter f is called the
symbols of the process family fU f ðt, τÞg, Σ is called the
symbol space, and we assume that Σ is a complete metric
space.

Definition 4. A family of processes fUf ðt, τÞg, f ∈ Σ is
called uniformly bounded (w:r:t:f ∈ Σ), if any B ∈BðEÞ,
both [

f ∈Σ

[
τ∈R

[
t≥τ

Uf t, τð ÞB ∈B Eð Þ: ð53Þ

Definition 5. A set B0 ⊂ E is said to be uniformly absorbing
for the family of processes fU f ðt, τÞg, f ∈ Σg, if for any τ

∈ R and each B ∈BðEÞ, there exists t0 = t0ðτ, BÞ ≥ τ, such
that for all t ≥ t0, [

f ∈Σ

U f t, τð ÞB ⊆ B0: ð54Þ

Definition 6. A set P ⊂ E is said uniformly atttracting set of
fU f ðt, τÞg,f ∈ Σg, if for any τ ∈ R, there is

lim
t⟶+∞

sup
f ∈Σ

distE U f t, τð ÞB, P� � !
= 0: ð55Þ

A family of processes fUf ðt, τÞg, f ∈ Σg is said to uni-
formly compact, if there exists a compacted uniformly
absorbed set in fUf ðt, τÞg, f ∈ Σg. A family of processes
fU f ðt, τÞg, f ∈ Σg is said to uniformly asymptotic com-
pact, if there exists a compacted uniformly atttracting set
in fU f ðt, τÞg, f ∈ Σg.

Definition 7. A closed set AΣ ⊂ E is said to be the uniform
attractor of the family of processes fUf ðt, τÞg, f ∈ Σg, if

(1) AΣ ⊂ E is uniformly attractive

(2) AΣ ⊂ Eis included in any uniformly attracting set of
fUf ðt, τÞg, f ∈ Σg, that is AΣ ⊂A ′:

Theorem 8. Let f f γðθÞ: γ ∈ Γg ⊂ C = Cð½−r, 0� ; XÞ be equi-
continuous and for any ∀θ ∈ ½−r, 0�, f f γðθÞ: γ ∈ Γg is quasi-
compact in X, then f f γðθÞ: γ ∈ Γg is relatively compact in
Cð½−r, 0� ; XÞ.

Lemma 9 (Uniform Gronwall lemma). Let g, h, y be local
integrable function on ðt0,∞Þ, y′ is also local integrable on
ðt0,∞Þ, and y′ðtÞ ≤ gðtÞyðtÞ + hðtÞ, ∀t ≥ t0:Ð t+r
t gðsÞds ≤ a1,

Ð t+r
t hðsÞds ≤ a2,

Ð t+r
t yðsÞds ≤ a3, where r, a1,

a2, a3 is positive constant. Then,

y tð Þ ≤ a3
r
+ a2

� �
exp a1ð Þ,∀t ≥ t0: ð56Þ

3. The Existence of Uniform Attractor for 2D
g-Navier-Stokes Equations in
Bounded Domain

First, we prove the existence of uniformly absorbing set in
CHg

and CVg
; we define uð·Þ = uð·;τ, ðu0, ϕÞ, f Þ, where f is

translation compact function. That is,

fj j2b = fk k2L2b R,Hgð Þ = sup
t∈R

ðt+1
t

f sð Þj j2ds <∞: ð57Þ

The following we use L2c ðR,HgÞ to represent the transla-
tion compact function class.

Lemma 10. Let for any τ ≤ t, m0 > 0, f ∈ L2c ðR,HgÞ, assume
that (I)-(IV) hold, then there exist bounded absorbing sets
fBtgt∈R of process family fUf ðt, τÞ: t ≥ τg in CHg

.

Proof. Since ~D ⊂M2
Hg

=Hg × CHg
is bounded, then there

exists ~d ≥ 0, such that

u0j j2 + ϕk k2L2Hg
≤ ed2,∀ u0, ϕð Þ ∈ ~D: ð58Þ

For any ðu0, ϕÞ ∈ ~D, τ ∈ R, we define uð·Þ = uð·;τ, ðu0, ϕÞÞ,
then taking the inner product of (9) with uðtÞ, we have
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1
2
d
dt

uj j2 + ν uk k2 + α u, uð Þ + ν Ru, uð Þ = f , uð Þ + h t, utð Þ, uð Þ
d
dt

uj j2 + 2ν uk k2 + 2α uj j2

= 2 f , uð Þ + 2 h t, utð Þ, uð Þ − 2ν Ru, uð Þ

≤
fj j2
σ

+ σ uj j2 + 1
Cg

h t, utð Þj j2 + Cg uj j2 + 2ν ∇gj j∞
m0λ

1/2
1

uk k2

d
dt

uj j2 + 2ν 1 − ∇gj j∞
m0λ

1/2
1

� �
uk k2 + 2α uj j2

≤
fj j2
σ

+ σ uj j2 + 1
Cg

h t, utð Þj j2 + Cg uj j2

d
dt

uj j2 + 2νλ1 1 − ∇gj j∞
m0λ

1/2
1

+ 2α
� �

uj j2

≤
fj j2
σ

+ σ uj j2 + 1
Cg

h t, utð Þj j2 + Cg uj j2

d
dt

emt u tð Þj j2� �
=memt u tð Þj j2 + emt d

dt
u tð Þj j2

≤memt u tð Þj j2 + emt fj j2
σ

+ 1
Cg

h t, utð Þj j2
"

+ σ + Cg

� �
uj j2 − 2νλ1 1 − ∇gj j∞

m0λ
1/2
1

+ 2α
� �

uj j2
#
:

ð59Þ

Let β = 1 − ðj∇gj∞/m0λ
1/2
1 Þ + 2α, then

d
dt

emt u tð Þj j2� �
≤memt u tð Þj j2

+ emt fj j2
σ

+ 1
Cg

h t, utð Þj j2 + σ + Cg − 2νλ1β
� �

uj j2
" #

:

ð60Þ

Integrating both sides from τ to t, then

emt u tð Þj j2 − emτ u τð Þj j2 ≤
ðt
τ

ems fj j2
σ

ds +
ðt
τ

ems

Cg
h s, usð Þj j2ds

+
ðt
τ

ems m + σ + Cg − 2νλ1β
� �� �

u sð Þj j2ds:

ð61Þ

Then,

emt u tð Þj j2 ≤
ðt
τ

ems fj j2
σ

ds +
ðt
τ

ems

Cg
h t, utð Þj j2ds

+
ðt
τ

ems m + σ + Cg − 2νλ1β
�� �

u sð Þj j2ds

u tð Þj j2 ≤ e−mt
ðt
τ

ems fj j2
σ

ds + e−mt
ðt
τ

ems

Cg
h t, utð Þj j2ds

+ e−mt
ðt
τ

ems m + σ + Cg − 2νλ1β
� �� �

u sð Þj j2ds,

ð62Þ

for

e−mt
ðt
τ

ems

Cg
h t, utð Þj j2ds ≤ e−mtCg

ðτ
τ−h

ems ϕ s − τð Þj j2ds: ð63Þ

Let s − τ = θ, then

e−mt
ðt
τ

ems

Cg
h t, utð Þj j2ds ≤ e−mtCge

mτ
ð0
−h

ϕ θð Þj j2dθ

e−mt
ðt
τ

ems fj j2
2 ds = 1

σ

ðt
τ

e−m t−sð Þ fj j2ds

≤
1
σ

ðt
t−1

e−m t−sð Þ f sð Þj j2ds +
ðt−1
t−2

e−m t−sð Þ f sð Þj j2ds+⋯
 �

≤
1
σ

1 + e−m + e−2m+⋯
� �

sup
t∈R

ðt+1
t

fj j2ds

= 1
σ 1 − e−mð Þ fj j2b:

ð64Þ

Taking m ∈ ð0,m0Þ, such that m + σ + Cg − 2νλ1β < 1,
then j∇gj∞ < ððm0½2νλ1ð1 + 2αÞ − σ − Cg + 1�Þ/2νλ1/21 Þ, so

u tð Þj j2 ≤ 1
σ 1 − e−mð Þ fj j2b + ~d

2 1 + Cg

� �
e−mt · emτ t ≥ τð Þ: ð65Þ

Let t ≥ τ + h, ∀θ ∈ ½−h, 0�, then

u t + θð Þj j2 ≤ fj j2b
σ 1 − e−mð Þ + ~d

2 1 + Cg

� �
e−m t+θð Þ · emτ

≤
fj j2b

σ 1 − e−mð Þ + ~d
2
emh 1 + Cg

� �
e−mt · emτ:

ð66Þ

Then,

utk k2CHg
≤

fj j2b
σ 1 − e−mð Þ +

~d
2
emh 1 + Cg

� �
e−mt · emτ t ≥ τ + hð Þ:

ð67Þ

Let B1 = fut ∣ kutk2CHg
≤ ðj f j2b/σð1 − e−mÞÞg, we will prove

the existence of the uniformly absorbing bounded set in CVg
.

First, we must prove the boundedness of
Ð t+1
t kuðsÞk2ds.

Lemma 11. Given that D ∈BðM2
Hg
Þ, then there exist THg

ðDÞ
and constant IVg

, such that

ðt+1
t

u sð Þk k2ds ≤ IVg
:∀t ≥ THg

Dð Þ + r + 1, ð68Þ

where BðM2
Hg
Þ denotes any bounded set on the M2

Hg
.
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Proof. Taking the inner product of (9) with uðtÞ,

d
dt

uj j2 + 2ν uk k2 + 2α uj j2 = 2 f , uð Þ + 2 h t, utð Þ, uð Þ

− 2ν Ru, uð Þ ≤ fj j2
σ

+ σ uj j2 + 1
Cg

h t, utð Þj j2 + Cg uj j2

+ 2ν ∇gj j∞
m0λ

1/2
1

uk k2 ≤ fj j2
σ

+ σ

λ1
uk k2 + 1

Cg
h t, utð Þj j2

+
Cg

λ1
uk k2 + 2ν ∇gj j∞

m0λ
1/2
1

uk k2:

ð69Þ

Then,

d
dt

uj j2 + 2ν − σ

λ1
−
Cg

λ1
−
2ν ∇gj j∞
m0λ

1/2
1

� �
uk k2

+ 2α uj j2 ≤ fj j2
σ

+ 1
Cg

h t, utð Þj j2:
ð70Þ

Integrating on both sides in ½t, t + 1�, we have

u t + 1ð Þj j2 − u tð Þj j2 + 2ν − σ

λ1
−
Cg

λ1
−
2ν ∇gj j∞
m0λ

1/2
1

� �
�
ðt+1
t

uk k2ds ≤
ðt+1
t

fj j2
σ

ds + 1
Cg

ðt+1
t

h t, utð Þj j2ds

≤ fj j2b + Cg

ðt+1
t−h

u sð Þj j2ds ≤ fj j2b + Cg

ðt
t−h

u sð Þj j2ds

+ Cg

ðt+1
t

u sð Þj j2ds ≤ fj j2b + Cg

ðt
t−h

u sð Þj j2ds

+
Cg

λ1

ðt+1
t

u sð Þk k2ds:

ð71Þ

Then,

2ν − σ

λ1
−
2Cg

λ1
−
2ν ∇gj j∞
m0λ

1/2
1

� �ðt+1
t

uk k2ds ≤ fj j2b

+ Cg

ðt
t−h

u sð Þj j2ds + u tð Þj j2 ≤ fj j2b + Cg

ðt
t−h

usk k2CHg
ds + ρ2Hg

≤ fj j2b + 1 + hCg

� �
ρ2Hg

:

ð72Þ

When 2ν − ðσ/λ1Þ − ð2Cg/λ1Þ − ð2νj∇gj∞/m0λ
1/2
1 Þ > 0,

that is j∇gj∞ < ðð2νλ1 − σ − 2CgÞ/2νλ1/21 Þ, we have

ðt+1
t

u sð Þk k2ds ≤ IVg
:∀t ≥ THg

Dð Þ + r + 1, ð73Þ

where

IVg
= 1
2ν − σ/λ1ð Þ − 2Cg/λ1

� �
− 2ν ∇gj j∞/m0λ

1/2
1

� �
� fj j2b + 1 + hCg

� �
ρ2Hg

� �
:ρHg

= fj j2b
σ 1 − e−mð Þ :

ð74Þ

Lemma 12. For any τ ≤ t, m0 > 0, f ∈ L2c ðR,HgÞ. Assume that
(I)-(IV) hold, then there exists uniformly bounded absorbing
set B2 ⊂ CVg

of process family fUf ðt, τÞ: t ≥ τg in CVg
.

Proof. Let D ∈BðM2
Hg
Þ, taking the inner product of (9) with

Agu, we obtain

1
2
d
dt

uk k2 + ν Agu


 

2 + α uk k2 + B u, u, Agu

� �
+ ν Ru, Agu
� �

= f ,Agu
� �

+ h t, utð Þ, Agu
� �

,
d
dt

uk k2 + 2ν Agu


 

2 + 2α uk k2 ≤ 2 f , Agu

� �
+ 2 h t, utð Þ, Agu
� �

− 2B u, u, Agu
� �

− 2ν Ru, Agu
� �

,
ð75Þ

for

2 f , Agu
� �

+ 2 h t, utð Þ, Agu
� �

≤ 2 Agu


 

 fj j + h t, utð Þj jð Þ

≤
ν

2 Agu


 

2 + 4

ν
fj j2 + h t, utð Þj j2� �

,

2 B u, u, Agu
� �

 

 ≤ 2c1 uj j1/2 uk k Agu



 

3/2 ≤ ν

2 Agu


 

2 + 2c1′

ν3
uj j2 uk k4,

2ν Ru, Agu


 

 ≤ 2ν Ruj j · Agu



 

 ≤ 2ν ∇gj j∞
m0

uk k · Agu


 



≤ 2ν ∇gj j∞
m0

1ffiffiffiffiffi
λ1

p Agu


 

2,∀u ∈D Agu

� �
:

ð76Þ

Then,

d
dt

uk k2 + 2ν Agu


 

2 ≤ ν

2 Agu


 

2 + 4

ν
fj j2 + h t, utð Þj j2� �

+ ν

2 Agu


 

2 + 2c1′

ν3
uj j2 uj jj j4 + 2ν ∇gj j∞

m0λ
1/2
1

Agu


 

2 − 2α uj jj j2,

d
dt

uk k2 + ν −
2ν ∇gj j∞
m0λ

1/2
1

� �
Agu


 

2 ≤ 4

ν
fj j2 + h t, utð Þj j2� �

+ 2c1′
ν3

uj j2 uk k4 − 2α uk k2,
d
dt

uk k2 + ν 1 − 2 ∇gj j∞
m0λ

1/2
1

� �
λ1 uk k2 ≤ 4

ν
fj j2 + L2g usk k2CHg

� �
+ 2c1′

ν3
uj j2 uk k4 − 2α uk k2 ≤ 4

ν
fj j2 + L2gρ

2
Hg

� �
+ 2c1′

ν3
uj j2 uk k4:

ð77Þ
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Applying Lemma 9,

u rð Þk k2 ≤ a3 + a2ð Þea1∀r ≥ t0 + 1, s ≥ ~T ~D, ð78Þ

where a3 = IVg
,a2 = 4/vðj f j2 + L2gρ

2
Hg
Þ,a1 = ð2c1′/ν3Þρ2Hg

IVg
: If

taking s ≥ ~T ~D + 1 + h, then

sup
θ∈ −h,0½ �

u t0 + θð Þk k2 ≤ a3 + a2ð Þea1 = ρ2Vg
: ð79Þ

Let uð·Þ = uð·;t − s, ðu0, ϕÞÞ, so utð·Þ ∈ CVg
, ∀s > h. Then,

B2 = ut ∣ utk kCVg
≤ ρVg

,∀t ∈ R, s ≥ ~T ~D + 1 + h
n o

: ð80Þ

From [16], we have the following definition.

Definition 13. Let E be Banach space, if ∀ε > 0, there exists
η > 0, such that

sup
ðt+η
t

fk k2Eds < ε: ð81Þ

Then, f ∈ L2locðR, EÞ is called normal function.

We will take the sets of all normal function classes in
L2locðR, EÞ as L2nðR ; EÞ. From [17], we can see that L2nðR ; EÞ
is the true subspace of L2c ðR ; EÞ. Therefore, the translation
compact function must be a normal function.

Theorem 14. Suppose that nonlinear term h satisfies (I)-(III),
f is translation compact function in L2locðR,HgÞ, then process
family fU f ð·, · Þ ∣ f ∈ Σg exist uniform attractor AΣ, and
AΣ ⊂Hg × CHg

.

Proof. Since B2 is bounded set in CVg
and uniform absorbed

set of fU f ð·, · Þ ∣ f ∈ Σg. For each τ ∈ R, we take a set

B3 =
[
f ∈Σ

Uf τ + r, τð Þj B2ð Þ, ð82Þ

where j denotes any compact self-adjoint operator, then B3
⊂ B2 ⊂ B1, and B3 is another uniform absorbing bounded
set of fU f ð·, · Þ ∣ f ∈ Σg in CVg

. Now, we will prove B3 is rel-

atively compact in CHg
. From Theorem 8, we only need to

prove B3 is equicontinuous and uniform bounded in CHg
.

From the definition of B3, we can obtain it is uniformly
bounded. Now, we will prove B3 is equicontinuous. For
any θ1, θ2 ∈ ½−r, 0�, ϕ ∈ B2, f ∈ Σ,

U f τ + r, τð Þ j ϕð Þð Þ θ1ð Þ −Uf τ + r, τð Þ j ϕð Þð Þ θ2ð Þ

 


= u τ + r + θ1 ; τ, j ϕð Þð Þ, fð Þ − u τ + r + θ2 ; τ, j ϕð Þð Þ, fð Þj j:

ð83Þ

Let θ2 > θ1, and denote uð·Þ = uð·;τ, jðϕÞ, f Þ as uð·Þ,
then

u τ + r + θ1ð Þ − u τ + r + θ2ð Þj j =
ðτ+r+θ2
τ+r+θ1

du sð Þ
dt

ds














≤
ðτ+r+θ2
τ+r+θ1

du sð Þ
dt

ds ≤
ðτ+r+θ2
τ+r+θ1

ν Agu sð Þ

 

 + α u sð Þj j�
+ B u sð Þð Þj j + fj j + h s, usð Þj j + ν R u sð Þð Þj jÞds

≤
ðτ+r+θ2
τ+r+θ1

ν Agu sð Þ

 

 + c1 Agu sð Þ

 

 u sð Þk k + α u sð Þj j�
+ fj j + h s, usð Þj j + ν R u sð Þð Þj jÞds

≤
ðτ+r+θ2
τ+r+θ1

ν + c1 u sð Þk kð Þ Agu sð Þ

 

 + Lg usk kCHg
+ ν ∇gj j∞

m0
uk k

 �
� ds +

ðτ+r+θ2
τ+r+θ1

fj jds +
ðτ+r+θ2
τ+r+θ1

α u sð Þj jds:

ð84Þ

We estimate the items on the right end of the above
formula, let θ1 ⟶ θ2,

ið Þ
ðτ+r+θ2
τ+r+θ1

fj jds ≤ sup
t∈R

ðt+θ2−θ1
τ

fj jds⟶ 0,∀f ∈ Σ,

iið Þ
ðτ+r+θ2
τ+r+θ1

ν + c1 u sð Þk kð Þ Agu sð Þ

 

 + Lg usk kCHg

h i
ds

≤
ðτ+r+θ2
τ+r+θ1

ν + c1 u sð Þk kð Þ Agu sð Þ

 

ds + ρHg
Lg θ1 − θ2j j

≤
ðτ+r+θ2
τ+r+θ1

ν + c1ρVg

� �
Agu sð Þ

 

ds + ρHg

Lg θ1 − θ2j j

≤ ν + c1ρVg

� �
θ1 − θ2j j1/2

ðτ+r+θ2
τ+r+θ1

Agu sð Þ

 

2ds !1/2

+ ρHg
Lg θ1 − θ2j j:

ð85Þ

Since

d
dt

uk k2 + ν 1 − 2 ∇gj j∞
m0λ

1/2
1

� �
Agu


 

2 ≤ 4

ν
fj j2 + L2g usk k2LHg

� �
+ 2c1′

ν3
uj j2 uk k4 − 2α uk k2,

ð86Þ

we let α1 = 4/vðj f j2 + L2gkusk2LHg
Þ,α2 = 2c1′/ν3, α3 = 1 − ð2

j∇gj∞/m0λ
1/2
1 Þ, α4 = 2α:
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When s ≥ ~T ~D + 1 + h, θ1, θ2 ∈ ½−h, 0�, and θ2 > θ1, then

Agu


 

2 ≤ α1

α3
+ α2
α3

uj j2 uk k4 − 1
α3

d
dt

uk k2 − α4
α3

uk k2,ðt+θ2
t+θ1

Agu


 

2ds ≤ α1

α3
θ2 − θ1j j + α2

α3

ðt+θ2
t+θ1

u sð Þj j2 u sð Þk k4ds

−
1
α3

u t + θ2ð Þk k2 + 1
α3

u t + θ1ð Þk k2 − α4
α3

ðt+θ2
t+θ1

u sð Þk k2

� ds ≤ α1
α3

+ α2
α3

ρ2Hg
ρ4Vg

−
α4
α3

ρ2Vg

� �
θ2 − θ1j j

+ 1
α3

u t + θ1ð Þk k2:

ð87Þ

Let

β1 =
α1
α3

+ α2
α3

ρ2Hg
ρ4Vg

−
α4
α3

ρ2Vg
, β2 =

1
α3

ρ2Vg
: ð88Þ

Then, ðt+θ2
t+θ1

Agu


 

2ds < β1 θ2 − θ1j j + β2: ð89Þ

So,

ðt+r+θ2
t+r+θ1

ν + c1 u sð Þk kð Þ Agu sð Þ

 

 + Lg usk kCHg

h i
ds

≤ ν + c1ρVg

� �
θ1 − θ2j j1/2 β1 θ1 − θ2j j + β2ð Þ1/2 + ρVg

Lg θ1 − θ2j j:
ð90Þ

And α4/α3
Ð t+r+θ2
t+r+θ1

αkuðsÞkds ≤ αρVg
jθ2 − θ1j: When θ1

⟶ θ2, ∀ϕ ∈ B2, f ∈ Σ, we have

u t + r + θ1ð Þ − u t + r + θ2ð Þj j

≤
ðt+r+θ2
t+r+θ1

fj jds +
ðt+r+θ2
t+r+θ1

ν ∇gj j∞
m0

uk kds

+
ðt+r+θ2
t+r+θ1

ν + c1 u sð Þk kð Þ Agu sð Þ

 

 + Lg usk kCHg

h i
ds

+
ðt+r+θ2
t+r+θ1

α u sð Þk kds ≤ sup
t∈R

ðt+θ2−θ1
t

f sð Þj jds + ν ∇gj j∞
m0

ρVg
θ2 − θ1j j

+ αρVg
θ2 − θ1j j + ν + c1ρVg

� �
θ1 − θ2j j1/2 β1 θ1 − θ2j jð

+ β2Þ1/2 + ρVg
Lg θ1 − θ2j j⟶ 0:

ð91Þ

Then, B3 is equicontinuous, and B3 is relatively compact in
CHg

, so �B3 is compacted uniformly absorbing set of fUf ð·, · Þ
∣ f ∈ Σg in CHg

, Let ~B3 = jð�B3Þ, since Hg × CHg
=M2

Hg
, Vg ⊂

Hg and the embedding mapping is continuous, so ~B3 is com-

pact in M2
Hg
; ~B3 is also compacted uniformly absorbing set of

fUf ð·, · Þ ∣ f ∈ Σg in M2
Hg
. Then, process family fUf ð·, · Þ ∣ f

∈ Σg exists uniform attractor AΣ ⊂Hg × CHg
:
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