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This paper is devoted to studying a second-order nonlinear equation with mixed delays. Some sufficient conditions for the
existence and exponential stability of the almost periodic solutions are established. The results of this paper extend the
existing ones.

1. Introduction

Consider the following nonlinear second-order equation
with mixed delays

x″ tð Þ + f x′ tð Þ
� �

+ f x tð Þð Þx′ tð Þ + g0 x tð Þð Þ

+ 〠
m

j=1
gj x t − τj tð Þ

� �� �
+
ð∞
0
K sð Þh x t − sð Þð Þds = e tð Þ,

ð1Þ

where f , h and gjðj = 0, 1,⋯,mÞ are continuous functions on
ℝ, KðsÞ is a continuous and integrable function on ½0,∞Þ,
and eðtÞ and τ jðtÞ > 0 are almost periodic functions on ℝ,
j = 1,⋯,m. When f ðx′ðtÞÞ = 0 and ∑m

j=1gjðxðt − τjðtÞÞÞ = 0,
Equation (1) is changed into the following Liénard equation
with distributed delays

x″ tð Þ + f x tð Þð Þx′ tð Þ + g0 x tð Þð Þ +
ð∞
0
K sð Þh x t − sð Þð Þds = e tð Þ:

ð2Þ

In 2007, Gao and Liu [1] studied the existence and
exponential stability of the almost periodic solution of Equa-
tion (2). When f ðx′ðtÞÞ = 0 and

Ð∞
0 KðsÞhðxðt − sÞÞds = 0,

Equation (1) is changed into the following Liénard equation
with multiple time-varying delays

x″ tð Þ + f x tð Þð Þx′ tð Þ + g0 x tð Þð Þ + 〠
m

j=1
gj x t − τj tð Þ

� �� �
= e tð Þ:

ð3Þ

In 2010, Gao and Liu [1] studied the existence and expo-
nential stability of the almost periodic solution of Equation
(3). It is easy to see that Equation (1) is a generalization of
Equations (2) and (3).

The concept of almost periodicity is with deep historical
roots. Some problems in astronomy were to explain some
curious behavior of the moon, sun, and the planets by using
almost periodicity. Bohr [2] firstly introduced the formal
theory of almost periodic functions. Almost periodic func-
tions are functions that are periodic up to a small error.
After that, some remarkable results in the area of almost
periodicity have been obtained by many authors. Almost
periodic solutions of higher order differential equations have
a wide range of applications, and many researchers have
done a lot of research. In 2009, Xiao and Meng [3] studied
the existence and exponential stability of positive almost
periodic solutions of high-order Hopfield neural networks
with time-varying delays. Almost periodic solutions of
quaternion-valued neutral type high-order Hopfield neural
networks with state-dependent delays and leakage delays

Hindawi
Journal of Function Spaces
Volume 2022, Article ID 2043845, 9 pages
https://doi.org/10.1155/2022/2043845

https://orcid.org/0000-0003-1191-9533
https://orcid.org/0000-0002-4484-8789
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2043845


were considered in [4]. Lian et al. [5] studied the stability
and almost periodicity for delayed high-order Hopfield
neural networks with discontinuous activations. Dads and
Lhachimi [6] obtained some necessary and sufficient condi-
tions in order to ensure the existence and uniqueness of
pseudo almost periodic solutions for a second-order differ-
ential equation with piecewise constant argument. For more
results about almost periodic solution of differential equa-
tions and dynamic system, see [7–9]. In [10–12], almost
periodic solutions in Banach spaces have been studied. For
positive almost periodic solutions, see [13–15]; for pseudo
almost periodic solutions and almost periodic solutions,
see [16–19]. We give the following definition for almost
periodic function.

Definition 1 ([20, 21]). Let f ðtÞ ∈ Cðℝ,ℝnÞ. f ðtÞ is said to be
almost periodic on ℝ; if for any ε > 0,

T f , εð Þ = τ ∈ℝ : f t + τð Þ − f tð Þj j < ε for all t ∈ℝf g, ð4Þ

is relatively dense in ℝ. That is, there is a lε > 0 such that any
interval of the length lε contains at least one point of Tð f , εÞ.

The main contributions of our study are as follows:

(1) We introduce a more complicated second-order
nonlinear equation with mixed delays which is
different from the existing second-order nonlinear
equations (see [1, 22])

(2) We use innovative mathematical analysis technology
and Lyapunov functional method for studying the
existence and exponential stability of almost periodic
solutions for the second-order nonlinear equation

(3) In the present paper, use a variable transformation,
and a second-order equation is changed into a
first-order system; thus, we can easily consider the
second-order equation

The following sections are organized as follows: Section
2 gives some preliminary results. In Section 3, we give some
sufficient conditions for the existence and exponential stabil-
ity of almost periodic solutions to Equation (1). In Section 4,
an example is given to show the feasibility of our results.
Finally, Section 5 concludes the paper.

2. Preliminary Results

Let d0 be a positive constant and

r xð Þ =
ðx
0
f xð Þ − d0½ �dx,

y tð Þ = x′ tð Þ + r xð Þ:
ð5Þ

Then, (1) can be rewritten by

x′ tð Þ = y tð Þ − r xð Þ,
y′ tð Þ = −d0y tð Þ + d0r xð Þ − f y tð Þ − r xð Þð Þ,

−g0 x tð Þð Þ − 〠
m

j=1
gj x t − τj tð Þ

� �� �
−
ð∞
0
K sð Þh x t − sð Þð Þds + e tð Þ:

8>>>>><
>>>>>:

ð6Þ

Since τjðtÞðj = 1, 2,⋯,mÞ and eðtÞ are almost periodic
functions, based on Definition 1, for ∀ε > 0, there is a lε > 0
such that any interval of the length lε; there exists a number
δ = δðεÞ such that

τ j t + δð Þ − τj tð Þ
�� �� < ε,

e t + δð Þ − e tð Þj j < ε:
ð7Þ

Let BCðð−∞,0Þ,ℝÞ be the space of bounded continuous
functions ψ with the supremum norm k∙k. From the basic
theory of functional differential equation in [23], system
(6) exists a solution ðxðtÞ, yðtÞÞT with initial conditions

x sð Þ = ψ sð Þ,
y 0ð Þ = y0,

s ∈ −∞,0ð �:
ð8Þ

Now, we give the definition of exponential stability for
system (6).

Definition 2. Let z∗ðtÞ = ðx∗ðtÞ, y∗ðtÞÞT be an almost peri-
odic solution of system (6) with initial value ðψ∗ðsÞ, y∗0 Þ ∈
BC ×ℝ. Assume that there exist constants μ > 0 and M > 1
such that for every solution zðtÞ = ðxðtÞ, yðtÞÞT of system
(6) with initial value ðψðsÞ, y0Þ ∈ BC ×ℝ,

max x tð Þ − x∗ tð Þj j, y tð Þ − y∗ tð Þj jf g ≤M,
max ψ sð Þ − ψ∗ sð Þk k, y0 − y∗0j jf ge−μt ,

∀t > 0,
ð9Þ

where kψðsÞ − ψ∗ðsÞk =maxs∈ð−∞,0�fjψðsÞ − ψ∗ðsÞjg. Then,
z∗ðtÞ is said to be globally exponentially stable.

We need the following assumptions:
H1. There exists a constant d1 > 1 such that

d1 u − vj j ≤ sgn u − vð Þ r uð Þ − r vð Þð Þ for u, v ∈ℝ: ð10Þ
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H2. For j = 0, 1,⋯,m, assume gjð0Þ = 0 and

g0 uð Þ − d0r uð Þð Þ − g0 vð Þ − d0r vð Þð Þj j ≤ L0 u − vj j,

gj uð Þ − gj vð Þ
��� ��� ≤ Lj u − vj j,

for u, v ∈ℝ,

ð11Þ

where d0 is defined by (5) and Lj is positive constant.
H3. Assume f ð0Þ = hð0Þ = 0, and there exist positive con-

stants Lf and Lh such that

f uð Þ − f vð Þj j ≤ Lf u − vj j,

h uð Þ − h vð Þj j ≤ Lh u − vj j,
for u, v ∈ℝ:

ð12Þ

Lemma 3. Suppose that assumptions H1–H3 hold. If
ð~xðtÞ, ~yðtÞÞT is a solution of system (6) with initial conditions

~x sð Þ = ~ψ sð Þ,
~y 0ð Þ = ~y0,

max ~ψ sð Þj j, ~y0j jf g ≤ Γs ∈ −∞,0ð �,
ð13Þ

where Γ > 0 satisfies

d0 − 〠
m

j=0
Lj − Lh

ð∞
0

K sð Þj jds − Lf 1 + 1
2
Γ + d0

� � !
Γ

> sup
t∈ℝ

e tð Þj j,
ð14Þ

then

max ~x tð Þj j, ~y tð Þj jf g ≤ Γ for all t ≥ 0: ð15Þ

Proof. Assume that (15) does not holds. Then, one of the fol-
lowing cases must occur:

Case 1. There exists t1 > 0 such that

max ~x t1ð Þj j, ~y t1ð Þj jf g = ~x t1ð Þj j = Γ,

max ~x tð Þj j, ~y tð Þj jf g < Γ,

for all t ∈ −∞,t1ð Þ:
ð16Þ

Case 2. There exists t2 > 0 such that

max ~x t2ð Þj j, ~y t2ð Þj jf g = ~y t2ð Þj j = Γ,

max ~x tð Þj j, ~y tð Þj jf g < Γ,

for all t ∈ −∞,t2ð Þ:
ð17Þ

If Case 1 holds, calculating the upper right derivative of
D+ðj~xðtÞjÞ, together with assumption H1, (6) and (16) imply
that

0 ≤D+ ~x t1ð Þj jð Þ ≤ −d1 ~x t1ð Þj j + ~y t1ð Þj j ≤ − d1 − 1ð ÞΓ < 0,
ð18Þ

which is a contradiction and implies that (15) holds.
If Case 2 holds, calculating the upper right derivative of

D+ðj~yðtÞjÞ, together with H1 and H3, (6), (14), and (17)
imply that

0 ≤D+ ~y t2ð Þj jð Þ
≤ −d0 y t2ð Þj j + g0 x t2ð Þð Þ − d0r x t2ð Þð Þj j

+ Lh

ð∞
0

K sð Þj j x t2 − sð Þð Þj jds + Lf y t2ð Þj j + r x t2ð Þð Þj jð Þ

+ 〠
m

j=1
Lj x t2 − τj t2ð Þ� ��� �� + e t2ð Þj j

≤ −d0Γ + 〠
m

j=0
LjΓ + e t2ð Þj j++LhΓ

ð∞
0

K sð Þj jds

+ Lf Γ + 1
2Γ

2 + d0Γ
� �

= − d0 − 〠
m

j=0
Lj − Lh

ð∞
0

K sð Þj jds − Lf 1 + 1
2Γ + d0

� � !
Γ

+ e t2ð Þj j < 0,
ð19Þ

which is a contradiction and implies that (15) holds.

Lemma 4. Suppose that assumptions H1–H3 hold and there
exists a constant μ0 > 0 such that

ð∞
0

K uð Þj jeμ0udu <∞: ð20Þ

If ðxðtÞ, yðtÞÞT is a solution of system (6) with initial
conditions

x sð Þ = ψ sð Þ,
y 0ð Þ = y0,

max ψ sð Þj j, y0j jf g ≤ Γs ∈ −∞,0ð �,
ð21Þ

then for any ε > 0 and α ∈ℝ, there exists lðεÞ > 0 such that
every interval ½α, α + l� contains at least one number δ for
which there exists N > 0 such that

max x t + δð Þ − x tð Þj j, y t + δð Þ − y tð Þj jf g ≤ ε for all t >N:

ð22Þ
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Proof. Let

ϑ δ, tð Þ = 〠
m

j=1
gj x t − τj t + δð Þ + δ

� �� �
− gj x t − τj tð Þ + δ

� �� �h i
+ e t + δð Þ − e tð Þ:

ð23Þ

In view of Lemma 3, the solution ðxðtÞ, yðtÞÞT is
bounded and

max x tð Þj j, y tð Þj jf g ≤ Γ for all t ≥ 0: ð24Þ

Thus, xðtÞ and yðtÞ are uniformly continuous on ℝ. In
view of (7), for any ε > 0, there exists lðεÞ > 0 such that every
interval ½α, α + l�, α ∈ℝ contains at least one number δ for
which there exists N0 > 0 such that

ϑ δ, tð Þj j ≤ 1
2 γε for t ≥N0, ð25Þ

where γ > 0 satisfies

γ ≤min d1 − 1 − μ, d0 − Lf − Lr

(

− 〠
m

j=0
Lje

μτ − Lh

ð∞
0

K sð Þj jeμsds − μ

)
,

ð26Þ

μ > 0 is a constant, τ =maxt∈ℝτjðtÞ, j = 1, 2,⋯,m. Let
uðtÞ = xðt + δÞ − xðtÞ and vðtÞ = yðt + δÞ − yðtÞ. Let N1 >
max fN0,−δg. For t ≥ K1, we obtain

u′ tð Þ = − r x t + δð Þð Þ − r x tð Þð Þ½ � + y t + δð Þ − y tð Þ, ð27Þ

v′ tð Þ = −d0 y t + δð Þ − y tð Þ½ � − g0 x t + δð Þð Þ − d0r x t + δð Þð Þ½ �
+ g0 x tð Þð Þ − d0r x tð Þð Þ½ �

+ 〠
m

j=1
gj x t − τj tð Þ + δ

� �� �
− gj x t − τj tð Þ

� �� �h i
+ ϑ δ, tð Þ − f y t + δð Þ − r x t + δð Þð Þð Þ − f y tð Þ − r tð Þð Þ½ �
−
ð∞
0
K sð Þ h x t − s + δð Þð Þ − h x t − sð Þð Þ½ �ds:

ð28Þ
Calculating the upper right derivative of eμsjuðsÞj and

eμsjvðsÞj, due to (27), (28), and assumptions H1–H3, for
t ≥N1, we have

D+ eμs u sð Þj jð Þjs=t
= μeμtu tð Þ + eμt sign u tð Þð Þ − r x t + δð Þð Þ − r x tð Þð Þ½ �ð

+ y t + δð Þ − y tð ÞÞ
< eμt μ − d1ð Þu tð Þ + v tð Þð Þ + 1

2 γe
μt ,

ð29Þ

D+ eμs v sð Þj jð Þjs=t
= μeμtv tð Þ + eμt sign v tð Þð Þ −d0 y t + δð Þ − y tð Þ½ �

�
− g0 x t + δð Þð Þ − d0r x t + δð Þð Þ½ � + g0 x tð Þð Þ − d0r x tð Þð Þ½ �

+ 〠
m

j=1
gj x t − τj tð Þ + δ

� �� �
− gj x t − τj tð Þ

� �� �h i
+ ϑ δ, tð Þ − f y t + δð Þ − r x t + δð Þð Þð Þ − f y tð Þ − r tð Þð Þ½ �
−
ð∞
0
K sð Þ h x t − s + δð Þð Þ − h x t − sð Þð Þ½ �ds

�

≤ eμt μ − d0 + Lf

� �
v tð Þj j + L0 + Lrð Þ u tð Þj j

 

+ 〠
m

j=1
Lju t − τj tð Þ
� �

+ Lh

ð∞
0
K sð Þu t − sð Þds

!
+ 1
2 γe

μt:

ð30Þ
Let

M tð Þ =max
s≤t

eμs max u sð Þj j, v sð Þj jf gf g: ð31Þ

Obviously,MðtÞ ≥ eμt max fjuðtÞj, jvðtÞjg. Now, we con-
sider two cases.

Case 1

M tð Þ > eμt max u tð Þj j, v tð Þj jf g for t ≥N1: ð32Þ

In this case, we claim that

M tð Þ =M N1ð Þ for t ≥N1: ð33Þ

If (32) does not holds, then there exists t3 >N1 such that
Mðt3Þ >MðN1Þ. Since eμt max fjuðtÞj, jvðtÞjg ≤MðN1Þ for
all t ≤N1, there must exist α ∈ ðN1, t3Þ such that

eμα max u αð Þj j, v αð Þj jf g =M t3ð Þ ≥M αð Þ, ð34Þ

which contradicts (32) and implies that (33) holds. It follows
that there exists t4 ≥N1 such that

max u tð Þj j, v tð Þj jf g ≤ e−μtM tð Þ = e−μtM N1ð Þ < ε for t ≥ t4:

ð35Þ
Case 2. There is a point t5 ≥N1 such that Mðt5Þ = eμt5

max fjuðt5Þj, jvðt5Þjg. IfMðt5Þ = eμt5 juðt5Þj, by (29), we have

D+ eμs u sð Þj jð Þjs=t5 = μeμt5u t5ð Þ + eμt5 sign u tð Þð Þ − r x t5 + δð Þð Þ½ð
− r x t5ð Þð Þ� + y t5 + δð Þ − y t5ð ÞÞ

< eμt5 μ − d1ð Þ u tð Þj j + eμt5 v t5ð Þj j + 1
2 γe

μt5

≤ μ − d1 − 1ð Þ½ �M t5ð Þ + 1
2 γεe

μt5

≤ −γM t5ð Þ + γεeμt5 :

ð36Þ
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On the other hand, if Mðt5Þ = eμt5 jvðt5Þj, by (30), we
have

D+ eμs v sð Þj jð Þjs=t5
≤ eμt5 μ − d0 + Lf

� �
v t5ð Þj j + L0 + Lrð Þ u t5ð Þj j

 

+ 〠
m

j=1
Lju t5 − τj t5ð Þ� �

+ Lh

ð∞
0

K sð Þu t5 − sð Þj jds
!
+ 1
2 γe

μt5

≤ μ − d0 − Lf − Lr − 〠
m

j=0
Lje

μτ − Lh

ð∞
0

K sð Þj jeμsds
 !" #

�M t5ð Þ + 1
2 γεe

μt5

≤ −γM t5ð Þ + γεeμt5 :

ð37Þ

If Mðt5Þ ≥ εeμt5 , in view of (35) and (36), MðtÞ is
strictly decreasing in a small neighborhood of t5 which
contradicts that MðtÞ is nondecreasing. Hence,

eμt5 max u t5ð Þj j, v t5ð Þj jf g =M t5ð Þ < εeμt5 , ð38Þ

max u t5ð Þj j, v t5ð Þj jf g < ε: ð39Þ
For ∀t > t5, by the same approach as was used in the

proof of (38), we have

max u tð Þj j, v tð Þj jf g < ε if M tð Þ = eμt max u tð Þj j, v tð Þj jf g:
ð40Þ

On the other hand, if MðtÞ > eμt max fjuðtÞj, jvðtÞjg for
t > t5. We can choose t5 ≤ t6 < t such that

M t6ð Þ = eμt6 max u t6ð Þj j, v t6ð Þj jf g < eμt6ε,

M sð Þ > eμs max u sð Þj j, v sð Þj jf g,
for s ∈ t6, tð �:

ð41Þ

Using an argument similar to that in the proof of Case
1, we can show that

M sð Þ =M t6ð Þ for s ∈ t6, tð �, ð42Þ

which implies that

max u tð Þj j, v tð Þj jf g < e−μtM tð Þ = e−μtM t6ð Þ
=max u t6ð Þj j, v t6ð Þj jf ge− t−t6ð Þ < ε:

ð43Þ

Thus, there exists N > 0 such that

max u tð Þj j, v tð Þj jf g ≤ ε for all t >N: ð44Þ

We complete the proof of Lemma 4.

3. Almost Periodic Solution of Equation (1)

Theorem 5. Suppose that H1–H3 hold. Then, system (6) has
exactly one almost periodic solution z∗ðtÞ = ðx∗ðtÞ, y∗ðtÞÞT
which is globally exponentially stable.

Proof. Let zðtÞ = ðxðtÞ, yðtÞÞT be a solution of system (6) with
initial conditions

x sð Þ = ψ sð Þ,
y 0ð Þ = y0,

max ψ sð Þj j, y0j jf g ≤ Γs ∈ −∞,0ð �:
ð45Þ

Let

ϑk tð Þ = 〠
m

j=1
gj x t − τj t + tkð Þ + tk

� �� �
− gj x t − τj tð Þ + tk

� �� �h i
+ e t + tkð Þ − e tð Þ,

ð46Þ

where tk is any sequence of real numbers. In view of
Lemmas 3 and 4, the solution zðtÞ = ðxðtÞ, yðtÞÞT is
bounded and (15) holds. Using (7) and (45), we can select
a sequence tk ⟶ +∞ such that

ϑk tð Þj j ≤ 1
k
for t ≥ 0: ð47Þ

Since fðxðt + tkÞ, yðt + tkÞÞTg
∞
k=1 is uniformly bounded

and equiuniformly continuous, using Arzela-Ascoli lemma
and diagonal selection principle, we can choose a subse-
quence ftkjg of ftkg such that ðxðt + tkjÞ, yðt + tkjÞÞ

T (for

convenience, we still denote ðxðt + tkÞ, yðt + tkÞÞT) uniformly
converges to a continuous function z∗ðtÞ = ðx∗ðtÞ, y∗ðtÞÞT on
any compact set of ℝ, and

max x∗ tð Þj j, y∗ tð Þj jf g ≤ Γ for t ∈ℝ: ð48Þ

Now, we show that z∗ðtÞ is a solution of (6). In fact, for
t > 0 and Δt ∈ℝ, by (46), we have

x∗ t + Δtð Þ − x∗ tð Þ = lim
k⟶+∞

x t + Δt + tkð Þ − x∗ t + tkð Þ½ �

= lim
k⟶+∞

ðt+Δt
t

−r x s + tkð Þð Þ + y s + tkð Þð Þds

=
ðt+Δt
t

−r x∗ sð Þð Þ + y∗ sð Þð Þds,

ð49Þ
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y∗ t + Δtð Þ − y∗ tð Þ
= lim

k⟶+∞
y t + Δt + tkð Þ − y∗ t + tkð Þ½ �

= lim
k⟶+∞

ðt+Δt
t

−d0y s + tkð Þ + d0r x s + tkð Þð Þ
	

− f y s + tkð Þ − r x s + tkð Þð Þð Þ − g0 x s + tkð Þð Þ

− 〠
m

j=1
gj x s + tk − τj s + tkð Þ� �� �

−
ð∞
0
K μð Þh x s + tk − μð Þð Þdμ + e s + tkð Þ



ds

=
ðt+Δt
t

−d0y
∗ sð Þ + d0r x∗ sð Þð Þ − f y∗ sð Þ − r x∗ sð Þð Þð Þ

	

− g0 x∗ sð Þð Þ − 〠
m

j=1
gj x

∗ s − τj sð Þ
� �� �

−
ð∞
0
K μð Þh x∗ s − μð Þð Þdμ + e sð Þ



ds

+ lim
k⟶+∞

ðt+Δt
t

ϑk sð Þds

=
ðt+Δt
t

−d0y
∗ sð Þ + d0r x∗ sð Þð Þ − f y∗ sð Þ − r x∗ sð Þð Þð Þ

	

− g0 x∗ sð Þð Þ − 〠
m

j=1
gj x

∗ s − τj sð Þ
� �� �

−
ð∞
0
K μð Þh x∗ s − μð Þð Þdμ + e sð Þ



ds:

ð50Þ

From (47) and (48), we have

x∗′ tð Þ = y∗ tð Þ − r x∗ð Þ,
y∗′ tð Þ = −d0y

∗ tð Þ + d0r x∗ð Þ − f y∗ tð Þ − r x∗ð Þð Þ,

−g0 x∗ tð Þð Þ − 〠
m

j=1
gj x

∗ t − τj tð Þ
� �� �

−
ð∞
0
K sð Þh x∗ t − sð Þð Þds + e tð Þ:

8>>>>>><
>>>>>>:

ð51Þ
Thus, z∗ðtÞ is a solution of (6).
Now, we show that z∗ðtÞ is an almost periodic solution

of (6). From Lemma 4, for any ε > 0, there exists lðεÞ > 0
such that every interval ½α, α + l� contains at least one num-
ber δ for which there exists N > 0 such that

max x t + δð Þ − x tð Þj j, y t + δð Þ − y tð Þj jf g ≤ ε for all t >N:

ð52Þ

For any s ∈ℝ, there exists a sufficient large positive
integer N0 >N such that for any k >N0,

s + tk >N0,

max x s + tk + δð Þ − x s + tkð Þj j, y s + tk + δð Þ − y s + tkð Þj jf g ≤ ε:

ð53Þ

Let k⟶ +∞ in (51), then

x∗ s + δð Þ − x∗ sð Þj j ≤ ε,
y∗ s + δð Þ − y∗ sð Þj j ≤ ε,

ð54Þ

which imply that z∗ðtÞ is an almost periodic solution of (6).
Finally, we show that z∗ðtÞ is globally exponentially sta-

ble. Let z∗ðtÞ = ðx∗ðtÞ, y∗ðtÞÞT be an almost periodic solution
of (6) with initial value ðψ∗ðsÞ, y∗0 Þ ∈ Cðð−∞,0Þ,ℝÞ ×ℝ. Let
zðtÞ = ðxðtÞ, yðtÞÞT be an arbitrary solution of (6) with initial
value ðψðsÞ, y0Þ ∈ Cðð−∞,0Þ,ℝÞ ×ℝ. Let ~uðtÞ = xðtÞ − x∗ðtÞ
and ~vðtÞ = yðtÞ − y∗ðtÞ, and then,

Construct the following Lyapunov functionals:

V1 tð Þ = ~u tð Þj jeμt ,
V2 tð Þ = ~v tð Þj jeμt :

ð56Þ

Calculate the upper right derivative of V1ðtÞ and V2ðtÞ
along the solution of (53) with the initial conditions ðψðsÞ
− ψ∗ðsÞ, y0 − y∗0 Þ, and then,

D+ V1 tð Þð Þ = μeμt~u tð Þ + eμt sign ~u tð Þð Þ − r x tð Þð Þ − r x∗ tð Þð Þ½ � + ~v tð Þð Þ
< eμt μ − d1ð Þ ~u tð Þj j + eμt ~v tð Þj j,

ð57Þ

~u′ tð Þ = ~v tð Þ − r x tð Þð Þ − r x∗ tð Þð Þ½ �,
~v′ tð Þ = −d0~v tð Þ + d0 r x tð Þð Þ − r x∗ tð Þð Þ½ � − f y tð Þ − r xð Þð Þ − f y∗ tð Þ − r x∗ð Þð Þ½ �,

− g0 x tð Þð Þ − g0 x∗ tð Þð Þ½ � − 〠
m

j=1
gj x t − τj tð Þ

� �� �
− gj x

∗ t − τj tð Þ
� �� �h i

−
ð∞
0
K sð Þ h x t − sð Þð Þ − h x∗ t − sð Þð Þ½ �ds:

8>>>>><
>>>>>:

ð55Þ
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D+ V2 tð Þð Þ ≤ eμt μ − d0 + Lf

� �
~v tð Þj j + L0 + Lrð Þ ~u tð Þj j

 

+ 〠
m

j=1
Lj ~u t − τj tð Þ

� ��� �� + Lh

ð∞
0

K sð Þ~u t − sð Þj jds
!
:

ð58Þ

Let M > 1 be an arbitrary real number and

Ξ =max ψ − ψ∗k k, y0 − y∗0j jf g > 0: ð59Þ

It is easy to see that

V1 tð Þ = ~u tð Þj jeμt <MΞ,

V2 tð Þ = ~v tð Þj jeμt <MΞ,

for t ∈ −∞,0ð �:
ð60Þ

We claim that

V1 tð Þ = ~u tð Þj jeμt <MΞ,

V2 tð Þ = ~v tð Þj jeμt <MΞ,

for t > 0:

ð61Þ

If not, one of the following two cases must occur.
Case 1. There exists T1 > 0 such that

V1 T1ð Þ =MΞ,

Vi tð Þ <MΞ,

for all t ∈ −∞,T1ð Þ, i = 1, 2:

ð62Þ

Case 2. There exists T2 > 0 such that

V2 T2ð Þ =MΞ,

Vi tð Þ <MΞ,

for all t ∈ −∞,T2ð Þ, i = 1, 2:

ð63Þ

If Case 1 holds, by (55) and (60), we have

0 ≤D+ V1 T1ð Þð Þ < eμT1 μ − d1ð Þ ~u T1ð Þj j + eμT1 ~v T1ð Þj j
≤ μ − d1 − 1ð Þ½ �MΞ,

ð64Þ

which contradicts μ − ðd1 − 1Þ < 0. Hence, (60) holds.

If Case 2 holds, by (56) and (61), we have

0 ≤D+ V2 T2ð Þð Þ
≤ eμT2 μ − d0 + Lf

� �
~v T2ð Þj j + eμT2 L0 + Lrð Þ ~u T2ð Þj j

+ 〠
m

j=1
Lj ~u t − τj tð Þ

� ��� ��eμ T2−τ j T2ð Þð eμτ j T2ð Þ

+ Lh

ð∞
0

K sð Þ~u t − sð Þj jeμ T2−sð Þeμsds:

≤ μ − d0 + Lf + Lr + 〠
m

j=0
Lje

μτ + Lh

ð∞
0

K sð Þj jeμsds − μ

 !
MΞ,

ð65Þ
which contradicts

μ − d0 + Lf + Lr + 〠
m

j=0
Lje

μτ + Lh

ð∞
0

K sð Þj jeμsds < 0: ð66Þ

Hence, (61) holds. Hence, (59) holds, and z∗ðtÞ is glob-
ally exponentially stable.

Remark 6. In general, constructing Lyapunov functional is a
main research method for studying stability problems of
nonlinear systems (see [10–15]). However, constructing a
proper Lyapunov functional is very difficult for a compli-
cated system. Hence, it is necessary to develop new research
methods, such as matrix measure approach, comparison
theorem, and special inequality technique. We hope to use
some new methods to study second-order nonlinear equa-
tion with mixed delays in the follow-up research work.

4. Examples

As applications, consider the following second-order nonlin-
ear equation:

x″ tð Þ + 5x′ tð Þ + 5x tð Þx′ tð Þ − 1
4 x tð Þj j + x3 tð Þ

−
1
8 x t − sin tð Þj j − 1

8 arctan x t − cos tð Þ −
ð∞
0
e−u cos u

����
����

� 15 x t − uð Þj jdu = 5 cos t:

ð67Þ
From (1) and (65), it is easy to see that

f x tð Þð Þ = 5x tð Þ,

g0 xð Þ = −
1
4 x tð Þj j + x3 tð Þ,

g1 x t − τ1 tð Þð Þð Þ = −
1
8 x t − sin tð Þj j,

g2 x t − τ2 tð Þð Þð Þ = −
1
8 arctan x t − cos tð Þ,
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K tð Þ = e−t cos t,

h x tð Þð Þ = 1
5 x tð Þj j,

e tð Þ = 5 cos t:

ð68Þ

Let

r xð Þ =
ðx
0
f xð Þ − d0½ �dx,

y tð Þ = x′ tð Þ + r xð Þ,
ð69Þ

then (65) can be rewritten by

x′ tð Þ = y tð Þ − r xð Þ,
y′ tð Þ = −d0y tð Þ + d0r xð Þ − f y tð Þ − r xð Þð Þ,

−g0 x tð Þð Þ − 〠
2

j=1
gj x t − τj tð Þ

� �� �
−
ð∞
0
K sð Þh x t − sð Þð Þds + e tð Þ:

8>>>>><
>>>>>:

ð70Þ

Choose proper d0; it is easy to see all assumptions of
Theorem 5. Hence, system (68) has exactly one almost peri-
odic solution which is globally exponentially stable. Thus,
system (65) has exactly one almost periodic solution which
is globally exponentially stable.

Remark 7. System (65) is a more general nonlinear system
than the ones of [1, 13–15, 22], and the criterion of system
(65) can be applicable for proving that the corresponding
ones of [1, 13–15, 22]. In this paper, we study a more general
and complicated second-order nonlinear system and obtain
dynamic behaviors of almost periodic solution, and the
results in the present paper are new and have wide applica-
tions for delay differential equations.

5. Conclusions

In this paper, we obtain existence and exponential stability
of almost periodic solution for a second-order nonlinear
equation with mixed delays by using mathematic analysis
technique and Lyapunov functional method. Since there
exist mixed delays in the second-order nonlinear equation
and almost periodic solutions have particular properties,
the existing methods are no longer applicable; we introduce
a variable substitution and change the second-order nonlin-
ear equation into a first-order two-dimensional system for
overcoming the above difficulties. Finally, an example has
been given at the end of this paper to illustrate the effective-
ness and feasibility of the proposed criterion.

It should be pointed out that the research method of this
paper is inspired by literatures [1, 22], but the equations
studied in this paper are more complex, so more mathemat-
ical analysis skills are needed. The methods of this article can
also be used to study other types of high-order nonlinear
equations. However, we cannot obtain dynamic behaviors

of almost periodic solution for high-order nonlinear equa-
tion with p-Laplacian operator in the present paper which
is our future research direction.
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