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Based on the Riemann–Liouville fractional integral, a new form of generalized Simpson-type inequalities in terms of the first derivative is
discussed. Here, some more inequalities for convexity as well as concavity are established. We expect that present outcomes are the
generalization of already obtained results. Applications to beta, q-digamma, and Bessel functions are also provided.

1. Introduction

Integral inequalities have been widely used in various sci-
ences, including mathematical sciences, applied sciences,
differential equations, and functional analysis. In most
mathematical analysis areas, many types of integral in-
equalities are used. (ey are very important in approxi-
mation theory and numerical analysis, which estimate the
error’s approximation [1–3]. Integral inequalities are useful
tools in the study of different classes of differential equations
and integral equations. Today, they are employed not only in
mathematics but also in physics, computer science, and
biology.

In several zones of mathematics, convex functions show
a vital role. Especially in optimization theory, they are
magical due to the number of expedient properties. (ere is
nice connection between the theory of convex functions and
mathematical inequalities. (ere are several important in-
equalities due to their direct applications in applied sciences
(see [4–8]).

Several integral inequalities, such as Hölder’s inequality,
Simpson’s inequality, Newton’s inequality, the

Hermite–Hadamard inequality, Ostrowski’s inequality,
Cauchy–Schwarz, and Chebyshev, are well known in clas-
sical analysis and have been proven and applied in the setup
of q-calculus using classical convexity [9–12]. Much work is
being done in the domain of q-analysis, beginning with
Euler, in order to achieve proficiency in mathematics that
constructs quantum computing. q-Calculus is viewed as a
link between mathematics, physics, and statistics. It has
numerous applications in various areas of mathematics,
including orthogonal polynomials, number theory, hyper-
geometric functions, and other mechanics, combinatorics,
sciences, stochastic theory, quantum theory, and the theory
of relativity. (is important branch of mathematics appears
to have been invented by Euler. In Newton’s work with
infinite series, he used the q-parameter. Jackson later gave
the q-calculus integral without the limit.

During the period 1710–1761, (omas Simpson devel-
oped critical methods for numerical integration and esti-
mation of definite integrals, which became known as the
Simpson rule. Nonetheless, Kepler used a similar approxi-
mation nearly last decades earlier, so it is also known as the
Kepler rule. Simpson rule includes the three-point
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Newton–Cotes quadrature rule, so a three-step quadratic
kernel estimation is sometimes referred to as a Newton-type
result.

An incredible reliance has been found between in-
equalities and the theory of convex functions. (is rela-
tionship is the primary mental stability behind the vast data
utilizing convex functions. (e Simpson-type inequalities
have been examined broadly in the course of recent decades.
A function Z: J ⊂ R⟶ R is said to be convex on [σ1, σ2],
with σ1 < σ2 where σ1, σ2 ∈ J:

Z ησ1 +(1 − η)σ2( ≤ ηZ σ1(  +(1 − η)Z σ2( , η ∈ [0, 1],

(1)

an inequality which is notable as Simpson’s inequality in
[13].

Theorem 1. Suppose Z: [σ1, σ2]⟶ R is four times con-
tinuously differentiable function on (σ1, σ2) and
‖Z(4)‖∞ � supθ∈(σ1 ,σ2)|Z

(4)(θ)| <∞; then, the following in-
equality holds:
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Many scholars are interested in the Simpson-type in-
equality since it has been examined and studied for nu-
merous classes of functions. Due to their efficacy and
usefulness in pure and applied mathematics, Simpson-type
and Newton-type results have been keenly interpolated for
convex functions. (e first striking result about the Simp-
son-type inequality along with its applications to the
quadrature formula in numerical integration was given by
Dragomir et al. in [14]. Later on, several new Simpson’s type
inequalities with improved bounds were developed for
s-convex functions by Alomari et al. [13] and Sarikaya et al.
[15].

Some researchers have demonstrated Simpson’s type
inequalities and obtained various outcomes. A new gener-
alization and extension of Simpson’s type inequalities were
presented in [16, 17]. Qaisar et al. in [18, 19] gave Simpson’s

type inequalities for twice differentiable convex mappings
with applications. However, some fractional variants can be
observed in [20–22]. (ere is massive literature regarding
improvements and extensions of Simpson’s inequality in
q-calculus. Recently, Ali et al. in [12] gave new quantum
boundaries for quantum Simpson-type and Newton-type
inequalities for preinvex functions. (ey also gave a brief
literature review about the development of results connected
to quantum Simpson’s inequality. (e accompanying on-
going improvements for the fractional integral on Simpson’s
inequality for ω> 0 were demonstrated by Hwang et al. (see
[20]).

Theorem 2. Suppose Z: [σ1, σ2]⟶ R is a differentiable
function whose derivative is continuous on (σ1, σ2) and
Z′ ∈L[σ1, σ2]; then, the following inequality holds:

Γ(ω + 1)
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ω J
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 .

(3)

(roughout the text, the class of integrable functions on
[σ1, σ2] is denoted by L[σ1, σ2]. Another form utilizing
Riemann–Liouville fractional integrals mentioned above for
differentiable convex functions was presented by Iqbal et al.
(see [22]).

Theorem 3. Suppose Z: [σ1, σ2]⟶ R is a differentiable
function and Z′ ∈L[σ1, σ2] is integrable on (σ1, σ2) with
σ1 < σ2 and 0<ω≤ 1. If |Z′| is convex on [σ1, σ2], then we
have
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(4)
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where u � (1/3)(1/ω) and vω � ((2(2ω − 1) + 3)/3). Proposition 1. In above 6eorem 3, if ω � 1, one can obtain
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Proposition 2. In above 6eorem 3 with
Z(σ1) � Z((σ1 + σ2)/2) � Z(σ2), one can obtain
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Theorem 4. Let Z be defined as in 6eorem 3, and if |Z′| is
convex on [σ1, σ2], with q≥ 1, then we have
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For the execution of differentiation and integration of
real or complex number orders, fractional calculus proved as
a helpful device which demonstrates its centrality.(e theme
had pulled in a lot of considerations frommany authors who
center around investigation of PDEs during the most recent
couple of decades. For late outcomes identified with the
current study, one can see [23–27]. Among a lot of fractional
integrals which are grown up, the Riemann–Liouville
fractional integral has been widely considered as a result of
uses in numerous fields of sciences.

Definition 1. Suppose Z ∈L[σ1, σ2]. (e left and right
Riemann–Liouville fractional integral operator for ω> 0 are

J
ω
σ+
1
Z(τ) �

1
Γ(ω)


τ

σ1
(τ − η)

ω− 1
Z(η)dη, σ1 < τ,

J
ω
σ−
2
Z(τ) �

1
Γ(ω)


σ2

τ
(τ − η)

ω− 1
Z(η)dη, τ < σ2.

(8)

Gamma function is defined as Γ(ω) � 
∞
0 e− uuω− 1du.

Note that J0σ+
1
Z(τ) � J0σ−

2
Z(τ) � Z(τ).

Ifω � 1, the above integral becomes the classical integral.

2. Inequalities for Simpson’s Type

In this section, we give Simpson’s inequalities for the Rie-
mann–Liouville integral operator for differentiable func-
tions on (σ1, σ2). For this, we give a new Riemann–Liouville
integral operator auxiliary identity that will serve to produce
subsequent results for improvements.

Lemma 1. Let Z: [σ1, σ2]⟶ R be a differentiable mapping
such that Z′ ∈L[σ1, σ2] is integrable and 0<ω≤ 1 on
(σ1, σ2) with σ1 < σ2; then, the following identity holds:
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where
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Proof. By integration by parts, we obtain
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which ends the proof. □

Theorem 5. Let Z be defined as in Lemma 1, and if |Z′| is
convex on [σ1, σ2], then we have
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Proof. By using the properties of modulus on Lemma 1, we
have
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where β � (1/6)(1/ω) and c � (5/6)(1/ω).
By the convexity of |Z′|, ω ∈ (0, 1], and ∀η ∈ [0, 1], we

have
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Simple calculations yield that
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which completes the proof. □

Remark 1. On letting ω � 1 in (eorem 5, (13) reduces to
inequality (5).

Corollary 1. By choosing Z(σ1) � Z((σ1 + σ2)/2) � Z(σ2) in
6eorem 5, inequality (13) becomes
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Remark 2. By letting ω � 1 in the above corollary, we get the
following inequality, which looks better than the inequality
presented by S. Kirmaci:
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 . (18)

(e corresponding version for powers of the absolute
value of the derivative is incorporated as follows.

Theorem 6. Let Z be defined as in Lemma 1, and if |Z′|q is
convex on [σ1, σ2], with q≥ 1, then we have
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Proof. Using Lemma 1 and convexity, we obtain
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(20)
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which completes the proof. □ Theorem 7. Let Z be defined as in Lemma 1, and if |Z′|q is
convex on [σ1, σ2], with q≥ 1, then we have

1
6

Z σ1(  +
2
3

Z
σ1 + σ2

2
  +

1
6

Z σ2(   −
Γ(ω + 1)

2 σ2 − σ1( 
ω J

ω
σ+
1
Z σ2(  + J

ω
σ−
2
Z σ1(  




≤

σ2 − σ1( 

2

× S
1− 1/q
1 S3 Z′ σ2( 



q

+ S1 − S3(  Z′ σ1( 



q

 
1/q

+ S3 Z′ σ1( 



q
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q
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q

 
1/q
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q
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q

 
1/q

  .

(21)

Proof. By the use of the power-mean integral inequality for
q> 1, we obtain
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2
3

Z
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(22)

By using the convexity of |Z′|q,
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(23)
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By using the calculus tool, we get equation (21), which
completes the proof. □

Remark 3. If ω � 1 in (eorem 7, then it reduces to Cor-
ollary 2.7 in [19].

In the following theorem, we obtained the estimate of
Simpson’s inequality (2) for concave functions.

Theorem 8. Suppose Z: [σ1, σ2]⟶ R is a differentiable
function on (σ1, σ2) such that Z′ ∈L[σ1, σ2]. If |Z′|q is
concave on [σ1, σ2], for some fixed p> 1 with q � (p/p − 1),
then we have

1
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Z σ1(  +
2
3

Z
σ1 + σ2

2
  +

1
6

Z σ2(   −
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≤
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2
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  + S2 Z′
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S4σ1 + S2 − S4( σ2
S2

 




 .

(24)

Proof. Utilizing concavity of |Z′|q and the power-mean
inequality, we obtain

Z′ ησ1 +(1 − η)σ2( 



q ≥ η Z′ σ1( 



q

+(1 − η) Z′ σ2( 



q

≥ η Z′ σ1( 


 +(1 − η) Z′ σ2( 


 
q
,

Z′ ησ1 +(1 − η)σ2( 


≥ η Z′ σ1( 


 +(1 − η) Z′ σ2( 


.

(25)

(erefore, |Z′| is also concave. Jensen’s integral in-
equality follows that
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(26)

which completes the proof. □ Corollary 2. By putting ω � 1 in 6eorem 8, then the fol-
lowing inequality becomes
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1
6

Z σ1(  +
2
3

Z
σ1 + σ2

2
  +

1
6

Z σ2(   −
1

σ2 − σ1

σ2

σ1
Z(θ)dθ





≤
5 σ2 − σ1( 

72
Z′

29σ1 + 61σ2
90

 




+ Z′

61σ1 + 29σ2
90

 



 .

(27)

Remark 4. Inequality (27) is a generalization of the obtained
inequality as in (eorem 8 of [13].

3. Applications

3.1. Beta Function. In this section, let ω> 0, c≥ 3, σ1 � 0,
σ2 � 1, Γ(ω) be the gamma function, and
Z(θ) � θc− 1(θ ∈ [0, 1]). (en, |Z′| is convex on [0, 1].

Let us recall that the beta function

B(p, q) � 
1

0
θp− 1

(1 − θ)
q− 1dθ (p, q> 0). (28)

Remark 5. From Section 2, we have

Γ(ω + 1)

2 σ2 − σ1( 
ωJ

ω
σ+
1
Z σ2(  �

ω
2


1

0
θc− 1

(1 − θ)
ω− 1dθ �

ω
2

B(c,ω),

Γ(ω + 1)

2 σ2 − σ1( 
ωJ

ω
σ−
2
Z σ1(  �

ω
2


1

0
θω+c− 2dθ �

ω
2(c + ω − 1)

.

(29)

Proposition 3. In 6eorem 5, the following inequality holds:

2
3.2c− 1 +

1
6

  −
ω
2

B(c,ω) +
ω

2(c + ω − 1)
 





≤
(c − 1)

2
β + 5c − 4

3
+
1 + 2ω 1 − 2βω+1

− 2c
ω+1

 

2ω(ω + 1)
⎡⎣ ⎤⎦.

(30)

3.2. q-Digamma Function. Suppose 0< q< 1; the
q-digamma function φq is the q-analogue of the digamma
function φ (see [28, 29]) given as

φq � − ln(1 − q) + ln q 
∞

k�0

qk+ζ

1 − qk+ζ � − ln(1 − q) + ln q 
∞

k�0

qkζ

1 − qkζ .

(31)

For q> 1 and ζ > 0, q-digamma function φq can be given
as

φq � − ln(q − 1) + ln q ζ −
1
2

− 

∞

k�0

q− (k+ζ)

1 − q− (k+ζ)
⎡⎣ ⎤⎦

� − ln(q − 1) + ln q ζ −
1
2

− 
∞

k�0

q− kζ

1 − q− kζ
⎡⎣ ⎤⎦.

(32)

Proposition 4. Assume that σ1, σ2 are the real numbers such
that 0< σ1 < σ2 and 0< q< 1. 6en, the following inequality is
valid:

φq
σ1 + σ2

2
  −

1
σ2 − σ1


σ2

σ1
φq(ε)dε




≤

σ2 − σ1
2

 
5
36

  φ(1)
q σ1( 



 + φ(1)
q σ2( 



 . (33)

Proof. (e assertion can be obtained immediately by using
inequality (33) which follows immediately from equation
(18), when Z(ε) � φq(ε) and ε> 0 since Z′(ε) � φq′(ε) is
convex on (0, +∞). □

3.3. Modified Bessel Function. We recall the first kind of
modified Bessel function Im, which has the series repre-
sentation (see [28], p.77)

Im(ζ) � 
n≥0

(ζ/2)
m+2n

n!Γ(m + n + 1)
, (34)

where ζ ∈ R and m> − 1. Consider the function
Ωm(ζ): R⟶ [1,∞) defined by

Ωm(ζ) � 2mΓ(m + 1)ζ − m
Im(ζ), (35)

where Γ is the gamma function.
(e first-order derivative formula of Ωm(ζ) is given by

[28]

Ωm
′ (ζ) �

ζ
2(m + 1)

Ωm+1(ζ), (36)

and the second derivative can be easily calculated from (36)
to be

Ω′′m(ζ) �
ζ2Ωm+2(ζ)

4(m + 1)(m + 2)
+
Ωm+1(ζ)

2(m + 1)
. (37)

Proposition 5. Suppose that m> − 1 and 0< σ1 < σ2. 6en,
we have
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σ1 + σ2
4(m + 1)

Ωm+1
σ1 + σ2

2
  −

Ωm σ2(  − Ωm σ1( 

σ2 − σ1





≤
σ2 − σ1

2
5
36

 
σ21Ωm+2 σ1( 

4(m + 1)(m + 2)
+
Ωm+1 σ1( 

2(m + 1)
  +

σ22Ωm+2 σ2( 

4(m + 1)(m + 2)
+
Ωm+1 σ2( 

2(m + 1)
  .

(38)

Proof. Apply the inequality in (18) to the mapping
Z(ζ) � Ωm

′(ζ), ζ > 0 (note that all assumptions are satisfied),
and identities (36) and (37). □

4. Conclusion

(e study dealt with investigating a new method to give
fractional Simpson’s estimates for differentiable convex
functions by taking into account the kernel given by Alomari
et al. [13]. Several related estimations by employing Hölder’s
inequality, bounds by using concave functions, and Jensen’s
integral inequalities are presented. Finally, a representation
of Simpson’s inequalities in terms of beta and q-digamma
functions is depicted. Some estimation interims of modified
Bessel functions are represented. Our technique is also
plausible to give extensions for other fractional integral
operators, e.g., k-Riemann–Liouville, Katugampola, con-
formable, and Atangana–Baleanu. Moreover, one can also
extend these results in quantum calculus by exhibiting our
method of arrangements of kernels for differentiable convex
functions. All these results are open to be discussed for
generalized convex functions and, in particular, can be given
by using the method adopted in this article [12].
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Popoviciu type inequalities via fink’s identity,”Mediterranean
Journal of Mathematics, vol. 13, no. 4, pp. 1495–1511, 2016.

[3] R. P. Agarwal and P. J. Y. Wong, Error Inequalities in
Polynomial Interpolation and their Applications, Kluwer
Academic Publishers, Dordrecht, Netherlands, 1993.

[4] S. Khan, M. A. Khan, S. I. Butt, and Y. M. Chu, “A new bound
for the Jensen gap pertaining twice differentiable functions
with applications,” Advances in Difference Equations,
vol. 2020, no. 1, 2020.

[5] S. S. Dragomir and T. M. Rassias, Ostrowski Type Inequalities
and Applications in Numerical Integration, Kluwer Academic,
Dordrecht, Netherlands, 2002.
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