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The intention of this note is to investigate some new important estimates for the Jensen gap while utilizing a 4-convex
function. We use the Jensen inequality and definition of convex function in order to achieve the required estimates for the
Jensen gap. We acquire new improvements of the Hölder and Hermite–Hadamard inequalities with the help of the main
results. We discuss some interesting relations for quasi-arithmetic and power means as consequences of main results. At
last, we give the applications of our main inequalities in the information theory. The approach and techniques used in the
present note may simulate more research in this field.

1. Introduction

The theory of convex functions performs an extremely sig-
nificant and consequential role in several areas of pure and
applied sciences. Due to its numerous and extensive applica-
tions, the concept of convex functions has been extended
and generalized in many directions. The most important
and elegant aspect of the class of convex functions, which
attracted many researchers, is its deep relation with theory
of inequalities [1–3]. In the literature, there are several
well-known inequalities which are the direct consequences
and applications of convexity [4, 5]. In this respect, some
of the noted inequalities associated with the class of convex
functions are majorization, Hermite–Hadamard and Jen-
sen–Mercer inequalities [6]. Among these inequalities, one
of the considerable and vital inequalities which are studied
very widely in the literature is the Jensen inequality. This
celebrated inequality reads as follows:

Theorem 1. Assume that I is an interval of real numbers and
Ψ is a convex function on I. If yj ∈ I and wj > 0 for j = 1, 2,
⋯, n with W =∑n

j=1wj, then

Ψ
1
W

〠
n

j=1
wjyj

 !
≤

1
W

〠
n

j=1
wjΨ yj

� �
: ð1Þ

Inequality (1) will be true in the reverse direction, if the
function Ψ is concave on I.

The Jensen inequality has multitudinous applications in
Mathematics [7–11], Statistics [12], Economics [13] and
Information Theory [14], etc. The most interesting and
attractive applications of this inequality is that it generalized
the classical convexity. Moreover, there are several inequal-
ities which are the direct consequences of this inequality
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such as Ky Fan, Cauchy, Hermite–Hadamard and Hölder
inequalities. Due to the vast applications of the Jensen
inequality, many researchers dedicated their work to this
inequality. This inequality has been extended, improved,
and refined in multidirections by using different techniques
and principals. For some more extensive literature concern-
ing to the Jensen inequality, see [15, 16].

2. Main Results

In the present part, we discuss the main results. Let us begin
this section with the following theorem, in which we acquire
an upper bound for the Jensen gap.

Theorem 2. Assume that I is an interval in ℝ, xi ∈ I and pi >
0 for i = 1, 2,⋯, n with Pn ≔∑n

i=1pi and �x = 1/Pn∑pixi. If Ψ is
a twice differentiable function such thatΨ is 4-convex on I, then

1
Pn

〠
n

i=1
piΨ xið Þ −Ψ �xð Þ ≤ 1

6Pn
〠
n

i=1
pi �x − xið Þ2 2Ψ″ �xð Þ +Ψ″ xið Þ

� �
:

ð2Þ

Inequality (2) will be true in the opposite direction, if the
function Ψ is 4-concave.

Proof. Without misfortune of sweeping statement, assume
that �x ≠ xi for i = 1, 2,⋯, n. Utilizing integration by parts,
we have

1
Pn

〠
n

i=1
pi �x − xið Þ2

ð1
0
tΨ″ t�x + 1 − tð Þxið Þdt

= 1
Pn

〠
n

i=1
pi �x − xið Þ2 t

�x − xi
Ψ′ t�x + 1 − tð Þxið Þ 1

0
���

−
1

�x − xi

ð1
0
Ψ′ t�x + 1 − tð Þxið Þdt

�

= 1
Pn

〠
n

i=1
pi �x − xið Þ2 Ψ′ �xð Þ

�x − xi
−

t

�x − xið Þ2 Ψ t�x + 1 − tð Þxið Þ 1
0
�� !

= 1
Pn

〠
n

i=1
pi �x − xið Þ2 Ψ′ �xð Þ

�x − xi
−

t

�x − xið Þ2 Ψ �xð Þ −Ψ xið Þð Þ
 !

= 1
Pn

〠
n

i=1
pi �x − xið ÞΨ′ �xð Þ − 1

Pn
〠
n

i=1
pi Ψ �xð Þ −Ψ xið Þð Þ

= 1
Pn

〠
n

i=1
piΨ xið Þ −Ψ �xð Þ,

ð3Þ

which implies that

1
Pn

〠
n

i=1
piΨ xið Þ −Ψ �xð Þ = 1

Pn
〠
n

i=1
pi xi − �xð Þ2

ð1
0
tΨ″ t�x + 1 − tð Þxið Þdt:

ð4Þ

Since, the function Ψ is 4-convex on I. Therefore, using
the definition of convex function on the right hand side of

(4), we receive

1
Pn

〠
n

i=1
piΨ xið Þ −Ψ �xð Þ

≤
1
Pn

〠
n

i=1
pi xi − �xð Þ2

ð1
0
t2Ψ″ �xð Þ + t 1 − tð ÞΨ″ xið Þ
� �

dt

= 1
Pn

〠
n

i=1
pi �x − xið Þ2 Ψ″ �xð Þ

ð1
0
t2dt +Ψ″ xið Þ

ð1
0
t − t2
� �

dt
� �

= 1
Pn

〠
n

i=1
pi �x − xið Þ2 1

3Ψ
″ �xð Þ + 1

6Ψ
″ xið Þ

� �
,

ð5Þ

which is equivalent to (2).

The integral version of (2) is stated in the following
theorem.

Theorem 3. Assume that I is an interval in ℝ,Ψ : I ⟶ℝ
that is a twice differentiable function such that Ψ is 4-
convex and ϕ, φ : ½a, b�⟶ I are integrable functions with φ
≥ 0 on ½a, b�. Also, assume that Ψ ∘ ϕ : ½a, b�⟶ℝ is an inte-
grable function, �φ≔

Ð b
aφðxÞdx > 0 and ϕ≔ 1

φ

Ð b
aφðxÞϕðxÞdx.

Then

1
φ

ðb
a
φ xð ÞΨ ∘ ϕ xð Þdx −Ψ ϕ

� �

≤
1
6�φ

ðb
a
φ xð Þ ϕ − ϕ xð Þ� �2

2Ψ″ ϕ
� �

+Ψ″ ϕ xð Þð Þ
� �

dx:

ð6Þ

Inequality (6) will be true in the reverse sense, if Ψ is a 4-
concave function.

In the next theorem, we acquire a lower bound for the
Jensen gap while utilizing the Jensen inequality.

Theorem 4. Assume that all the suppositions of Theorem 2
are valid, then

1
Pn

〠
n

i=1
piΨ xið Þ −Ψ �xð Þ ≥ 1

2Pn
〠
n

i=1
pi �x − xið Þ2Ψ″ 2�x + xi

3

� �
:

ð7Þ

Inequality (7) will become true in the reverse direction, if
the function Ψ is 4-concave.

Proof. Since, the function Ψ is 4-convex on I. Therefore,
applying integral Jensen’s inequality on the right of (4), we
get

2 Journal of Function Spaces



1
Pn

〠
n

i=1
piΨ xið ÞΨ �xð Þ

= 1
Pn

〠
n

i=1
pi �x − xið Þ2

Ð 1
0tΨ″ t�x + 1 − tð Þxið ÞdtÐ 1

0tdt

 !

≥
1
2Pn

〠
n

i=1
pi �x − xið Þ2Ψ″

Ð 1
0t t�x + 1 − tð Þxið ÞdtÐ 1

0tdt

 !

= 1
2Pn

〠
n

i=1
pi �x − xið Þ2Ψ″ �x

Ð 1
0t

2dt + xi
Ð 1
0 t − t2
� �

dtÐ 1
0tdt

 !

= 1
2Pn

〠
n

i=1
pi �x − xið Þ2Ψ″ 2�x + xi

3

� �
,

ð8Þ

which is the required inequality.

The analogous inequality of (7) is given in the following
theorem.

Theorem 5. Suppose that all the hypotheses of Theorem 3 are
true. Then

1
�φ

ðb
a
φ xð ÞΨ ∘ ϕ xð Þdx −Ψ ϕ

� �

≥
1
2�φ

ðb
a
φ xð Þ ϕ − ϕ xð Þ� �2

Ψ″ 2ϕ + ϕ xð Þ
3

 !
dx:

ð9Þ

If the function Ψ is 4-concave, then the inequality (9)
holds in the opposite direction.

3. Numerical Experiments

In this section, we are going to provide some simple exam-
ples to show how sharp our estimates for the Jensen gap.

Example 6. Consider the functions ΨðxÞ = x4, ϕðxÞ = x and
φðxÞ = 1 for all x ∈ ½0, 1�. Then, Ψ″ðxÞ = 12x2 ≥ 0 andΨ‴′ðxÞ
= 24 > 0 on½0, 1�. This verifies that the function Ψ is convex
as well as 4-convex. Now, utilizing (6) for ΨðxÞ = x4, ϕðxÞ
= x, φðxÞ = 1, a = 0, and b = 1, we get

0:1375 < 0:15: ð10Þ

Using above functions with the given interval in inequal-
ity (4) in [17], we acquire

0:1375 < 0:25: ð11Þ

From inequalities (10) and (11) it is clear that the bounds
given in (6) provide a good and better estimate for the Jen-
sen gap. Moreover, the inequality (10) shows that the value
of the obtained estimate for the Jensen gap given in (6) is
very close to the value of the Jensen gap.

Example 7. Consider the functions ΨðxÞ = ð1 − xÞ5, φðxÞ = 1,
and ϕðxÞ = 1 for all x ∈ ½0, 1�. Then, Ψ″ðxÞ = 20ð1 − xÞ3and
Ψ″″ðxÞ = 120ð1 − xÞ. Clearly, both Ψ″ andΨ″″ are nonneg-
ative on [0,1]. This shows that the function ΨðxÞ = ð1 − xÞ5
is convex as well as 4-convex. Utilizing ΨðxÞ = ð1 − xÞ5,Ψ″
ðxÞ = 20ð1 − xÞ3, φðxÞ = 1 and ϕðxÞ = 1 in (6), we obtain

0:1345 < 0:1666: ð12Þ

Now, using the chosen functions in the inequality (4) in
[17], we acquire

0:1345 < 0:4166: ð13Þ

From (12) and (13) it is clear that the inequality (6) pro-
vides an efficient and superior estimate as compared to the
inequality (4) in [17].

Example 8. Assume that the functions ΨðxÞ = exp x, φðxÞ = 1
, and ϕðxÞ = x are defined on [0,1]. Then, Ψ′′ðxÞ = exp x
and Ψ′′′′ðxÞ = exp x. Obviously, both the functions Ψ′′
and Ψ′′′′ are nonnegative on ∈½0, 1�. This confirms the con-
vexity and 4-convexity of the function ΨðxÞ = exp x. Choos-
ing ΨðxÞ = exp x,Ψ′′ ðxÞ = exp x, φðxÞ = 1 and ϕðxÞ = x in
(6), we obtain

0:0695 < 0:0704: ð14Þ

Now, using the given functions in the inequality (4) in
[17], we acquire

0:0695 < 0:0996: ð15Þ

Again, from (14) and (15), it is obvious that the estimate
provided by inequality (6) for the Jensen gap is better than
the estimate provided by inequality (4) in [17]. Moreover,
the value of the estimate for the Jensen gap in (6) is very
close to the value of the Jensen gap.

Remark 9. The authors in [17] compared the value of esti-
mate for the Jensen gap in the inequality (4) with the value
of the estimates for the Jensen gap in inequalities (5) and
(8) in [18]. From the comparison, the authors declared that
the estimate for the Jensen gap in inequality (4) in [17] is
better than the estimates for the Jensen gap in inequalities
(5) and (8) in [18]. Hence from this, we can also conclude
that our estimate for the Jensen gap may be better than the
estimates for the Jensen gap in (5) and (8) in [18].

4. Applications for Classical Inequalities

This section is devoted to the consequences of main results.
In this section, we obtain some improvements for the Hölder
and Hermite–Hadamard inequalities with the help of our
main results. Furthermore, we acquire different relations
for the power and quasi-arithmetic means with the utiliza-
tion of our obtained results.
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In the following proposition, we give an improvement
for the Hölder inequality with the help of Theorem 2.

Proposition 10. Let m1 = ðζ1, ζ2,⋯,ζnÞ and m2 = ðγ1, γ2,⋯,
γnÞ be two positive n-tuples and p, q > 1, such that p ∉ ð2, 3Þ
. If 1/p + 1/q = 1, then

〠
n

i=1
ζpi

 !1/p

〠
n

i=1
γqi

 !1/q

− 〠
n

i=1
γiζi

≤
p p − 1ð Þ

6
〠
n

i=1
γqi

∑n
i=1γiζi
∑n

i=1γ
q
i

− ζiγi
−q/p

� �2
"

× ∑n
i=1γiζi
∑n

i=1γ
q
i

− ζiγi
−q/p

� �	1/p
〠
n

i=1
γqi

 !1
q

:

ð16Þ

Proof. Since the function Ψ = xp is convex as well as 4-
convex on (0,∞) for all p > 1, p ∉ ð2, 3Þ. Therefore, utilizing
(2) by choosing ΨðxÞ = xp and pi = γqi , xi = ζiγi

−q/p for all i
∈ f1, 2,⋯,ng and then taking power 1/p, we get

〠
n

i=1
ζpi

 !
〠
n

i=1
γqi

 !p−1

− 〠
n

i=1
γiζi

 !p !1/p

≤
p p − 1ð Þ

6 〠
n

i=1
γqi

∑n
i=1γiζi
∑n

i=1γ
q
i

− ζiγi
− q/pð Þ

� �2"

× ∑n
i=1γiζi
∑n

i=1γ
q
i

− ζiγi
− q/pð Þ

� �	1/p
〠
n

i=1
γqi

 !1/q

:

ð17Þ

As the inequality

al − bl ≤ a − bð Þl ð18Þ

holds, for all a, b ≥ 0 and l ∈ ½0, 1�, thus using (18) for a = ð
∑n

i=1ζ
p
i Þð∑n

i=1γ
q
i Þp−1, b = ð∑n

i=1γiζiÞpand l = 1/p, we obtain

〠
n

i=1
ζpi

 !1/l

〠
n

i=1
γqi

 !1/q

− 〠
n

i=1
γiζi

≤ 〠
n

i=1
ζpi

 !
〠
n

i=1
γqi

 !p−1

− 〠
n

i=1
γiζi

 ! !1/p

:

ð19Þ

Now, comparing (17) and (19), we acquire (16).

Another consequence of Theorem 2 is given in the fol-
lowing corollary, in which we provide a relation for the
Hölder inequality.

Corollary 11. Let m1 = ðζ1, ζ2,⋯,ζnÞ and m2 = ðγ1, γ2,⋯,γnÞ
be two positive n-tuples, 0 < p < 1 and q = p/ðp − 1Þ such that
1/p ∉ ð2, 3Þ. If 1/p + 1/q = 1, then

〠
n

i=1
γiζi − 〠

n

i=1
ζpi

 !1/p

〠
n

i=1
γqi

 !1/q

≤
1 − p
6p2

〠
n

i=1
γqi

∑n
i=1ζ

p
i

∑n
i=1γ

q
i

− ζpi γ
−q
i

 !2

× ∑n
i=1ζ

p
i

∑n
i=1γ

q
i

− ζpi γ
−q
i

 !
:

ð20Þ

Proof. For p ∈ ð0, 1Þ such that 1/p ∉ ð2, 3Þ, the function Ψðx
Þ = x1/p is convex as well as 4-convex on [0,∞]. Therefore,
utilizing (2) by choosing ΨðxÞ = x1/p, pi = γi

q, and xi = γi
−q

ζi
p, we get (20).

As a consequence of Theorem 4, we acquire another
improvement for the Hölder inequality which is stated in
the following corollary.

Corollary 12. Assume that m1 = ðγ1, γ2,⋯,γnÞ and m2 = ðζ1
, ζ2,⋯,ζnÞ are two n-tuples such that γi, ζi > 0 for all i ∈ f1,
2,⋯,ng. If p ∈ ð0, 1Þ and q = p/ðp − 1Þ such that 1/p ∉ ð2, 3Þ,
then

〠
n

i=1
γiζi − 〠

n

i=1
ζpi

 !1/p

〠
n

i=1
γqi

 !1/q

≥
1 − p
2p2

〠
n

i=1
γqi

∑n
i=1ζ

p
i

∑n
i=1γ

q
i

− ζpi γ
−q
i

 !2

× 2∑n
i=1ζ

p
i + ζpi γ

−q
i ∑n

i=1γ
q
i

3∑n
i=1γ

q
i

 !
:

ð21Þ

Proof. The function ΨðxÞ = x1/p is both convex and 4-convex
for x ≥ 0 with p ∈ ð0, 1Þ such that 1/p ∉ ð2, 3Þ. Therefore,
inequality (21) can easily be acquired by putting ΨðxÞ =
x1/p, pi = γi

q, and xi = γi
−qζpi in (7).

Now, we recall the definition of power mean.

Definition 13. Let m1 = ðγ1, γ2,⋯,γnÞ and m2 = ðζ1, ζ2,⋯,ζnÞ
be two n-tuples such that γi, ζi ∈ ð0,∞Þ for all i ∈ f1, 2,⋯,ng
with �γ =∑n

i=1γi. Then, the power mean of order p ∈ℝ is
defined by

Mp m1,m2ð Þ =
1
γ

〠
n

i=1
γiζ

p
i

 !1/p

, p ≠ 0

Yn
i=1

ζ
γi
i

 !1
γ , p = 0:

8>>>>>><
>>>>>>:

ð22Þ

As a consequence of Theorem 2, in the following corol-
lary, we give bound for the power mean.

Corollary 14. Let m1 = ðγ1, γ2,⋯,γnÞ and m2 = ðζ1, ζ2,⋯,ζnÞ
be two positive n-tuples such that �γ =∑n

i=1γi and r and t be
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nonzero real numbers. Then the following statements are
true:

(i) If r > 0 with t ≥ 3r or 2r ≥ t ≥ r or 0 > t, then

Mr
r m1,m2ð Þ −Mt

r m1,m2ð Þ ≤ t t − rð Þ
6r2�γ

〠
n

i=1
γi M

r
r m1,m2ð Þ − ζri

� �2
× Mt−2r

r m1,m2ð Þ + ζt−2i

� �
:

ð23Þ

(ii) If r < 0 with t ≤ 3r or 2r ≤ t ≤ r or 0 < t, then (23)
holds.

(iii) If r > 0 with 3r > t > 2r or r < 0 with 3r < t < 2r, then
(23) holds in the reverse direction.

Proof.

(i) For x > 0, the function ΨðxÞ = xt/r is 4-convex with
the given conditions.

Therefore, using (2) by taking ΨðxÞ = xt/r , pi = γi, and xi
= ζri , we obtain (23)

(ii) If the given conditions are hold, then the function
ΨðxÞ = xt/r will be 4-convex on (0,∞). Thus, (23)
can easily be obtained by adopting the procedure
of (i)

(iii) The function ΨðxÞ = xt/r is 4-concave on (0,∞) for
the given values of r and t. Therefore, we can get
the reverse inequality in (23) by adopting the proce-
dure of (i).

In the following result, we present an application of The-
orem 4.

Corollary 15. Let m1, m2, and �γ be the same as that of Cor-
ollary 14 and r, t ∈ℝ − f0g. Then

(A) If the conditions given in (i) and (ii) are satisfied,
then

Mt
t m1,m2ð Þ −Mt

r m1,m2ð Þ

≥
t t − rð Þ
2�γr2

〠
n

i=1
γi M

r
r m1,m2ð Þ − ζri

� �2

· 2Mr
r m1,m2ð Þ + ζt−2i

3

 !t/r−2

:

ð24Þ

(B) If the conditions in (iii) are fulfilled, then (24) holds
in the reverse direction.

Proof.

(A) Since, the function ΨðxÞ = xt/r is 4-convex on (0,∞)
for the conditions given in (i) and (ii) of Corollary
14. Therefore, using (7) for ΨðxÞ = xt/r , pi = γi, and
xi = ζri , we obtain (24)

(B) If the condition on r and t mentioned in (iii) of Cor-
ollary 14 is true, then the function ΨðxÞ = xt/r will be
4-concave for x > 0. Thus, utilizing (7) while choos-
ing ΨðxÞ = xt/r , pi = γi, and xi = ζri , we obtain the
reverse inequality in (24).

In the following corollary, we obtain an interesting rela-
tion for different means as a consequence of Theorem 2.

Corollary 16. Let m1 = ðγ1, γ2,⋯,γnÞ and m2 = ðζ1, ζ2,⋯,ζnÞ
be positive n-tuples with �γ =∑n

i=1γi. Then

M1 m1,m2ð Þ
M0 m1,m2ð Þ ≤ exp 1

6�γ
〠
n

i=1
γi M1 m1,m2ð Þ − ζið Þ2 M1

−2 m1,m2ð Þ + ζ−2i

� �" #
:

ð25Þ

Proof. Let ΨðxÞ = −ln x, x > 0. Then, Ψ″ðxÞ = 1/x2 andΨ″ð
xÞ = 6/x4. Clearly, both Ψ″ðxÞandΨ″″ðxÞ are positive for
all x > 0. This confirms that the function ΨðxÞ is convex as
well as 4-convex on (0,∞). Therefore, putting ΨðxÞ = −ln
x, pi = γi, and xi = ζi in (2), we acquire (25).

In the following corollary, a relation for distinct means is
obtain with the help of Theorem 2.

Corollary 17. Let hypotheses of Corollary 16 hold. Then

Mt
t m1,m2ð Þ −M0 m1,m2ð Þ

≤
1
6�γ

〠
n

i=1
γi M1 m1,m2ð Þ − Inζið Þ2 2M0 m1,m2ð Þ + ζið Þ:

ð26Þ

Proof. Consider function ΨðxÞ = exp x, x ∈ℝ. Then clearly,
Ψ″ðxÞ = exp x > 0 andΨ″″ðxÞ = exp x > 0. This shows that
the given function is convex as well as 4-convex. Thus,
applying (2) by choosing pi = γi, xi = ln ζi, and ΨðxÞ = exp
x, we get (26).

An application of Theorem 4 is acquired in the below
corollary.

Corollary 18. Suppose that all the assumptions of Corollary
16 are true, then

M1 m1,m2ð Þ
M0 m1,m2ð Þ ≥ exp 1

2�γ
〠
n

i=1
γi M1 m1,m2ð Þ − ζið Þ2 3

2M1 m1,m2ð Þ + ζi

� �2
" #

:

ð27Þ
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Proof. Put ΨðxÞ = −ln x, pi = γi, and xi = ζi in (7), we get
(27).

The following is another relation for distinct means
which is the consequence of Theorem 4.

Corollary 19. Let the hypotheses of Corollary 16 be fulfilled.
Then

M1 m1,m2ð Þ −M0 m1,m2ð Þ

≥
1
2�γ

〠
n

i=1
γi M0 m1,m2ð Þ − Inζið Þ2 exp

· 2M0 m1,m2ð Þ + Inζi
3

� �
:

ð28Þ

Proof. Utilizing (7) for pi = γi, xi = ln ζi, and ΨðxÞ = exp x,
we get (28).

Now, we give the definition of quasiarithmetic mean.

Definition 20. Let m1 = ðγ1, γ2,⋯,γnÞ and m2 = ðζ1, ζ2,⋯,ζnÞ
be positive n-tuples with �γ =∑n

i=1γi andφ be strictly mono-
tonic continuous function. Then the quasi-arithmetic mean
is defined as

Mφ m1,m2ð Þ = φ−1 1
γ

〠
n

i=1
γiφ ζið Þ

 !
: ð29Þ

In the following corollary, we obtain a relation for the
quasi-arithmetic mean with the help of Theorem 2.

Corollary 21. Let m1 = ðγ1, γ2,⋯,γnÞ and m2 = ðζ1, ζ2,⋯,ζnÞ
be positive n-tuples with �γ =∑n

i=1γi. Also, let φ be strictly
monotonic continuous function and Ψ°φ−1 be 4-convex on
(0,∞). Then

1
γ

〠
n

i=1
γiΨ ζið Þ −Ψ Mφ m1,m2ð Þ� �

≤
1
6�γ

〠
n

i=1
γi φ Mφ m1,m2ð Þ� �

− φ ζið Þ� �2
× 2 Ψ ∘ φ−1� �″ φ Mφ m1,m2ð Þ� �� �

+ Ψ ∘ φ−1� �″φ ζið Þ
� �

:

ð30Þ

Proof. Since, the function Ψ ∘ φ−1 is 4-convex on (0,∞).
Therefore, choosing Ψ =Ψ ∘ φ−1, pi = γi, and xi = ϕðζiÞ in
(2), we obtain (30).

As an application of Theorem 4, in the following corol-
lary, we present a relation for the quasi-arithmetic mean.

Corollary 22. Let the hypotheses of Corollary 21 hold. Then

1
γ

〠
n

i=1
γiΨ ζið Þ −Ψ Mφ m1,m2ð Þ� �

≥
1
2�γ

〠
n

i=1
γi φ Mφ m1,m2ð Þ� �

− φ ζið Þ� �2

× Ψ ∘ φ−1� �′′ 2φ Mφ m1,m2ð Þ� �
+ φ ζið Þ

3

 ! !
:

ð31Þ

Proof. Using (7) for Ψ =Ψ ∘ φ−1, pi = γi, and xi = φðζiÞ, we
obtain (31).

In the following corollaries, we present some improve-
ments for the Hermite–Hadamard inequalities with the sup-
port of our main results.

Corollary 23. Let Ψ : ½a, b�⟶ℝ be a 4-convex function.
Then

1
b − a

ðb
a
Ψ xð Þdx −Ψ

a + b
2

� �

≤
1

6 b − að Þ
ðb
a

a + b
2

− x
� �2

2Ψ″ a + b
2

� �
+Ψ″ xð Þ

� �
dx:

ð32Þ

If the function Ψ is 4-concave, then the inequality (32)
holds in the reverse direction.

Proof. Since, the function Ψ is 4-convex on ½a, b�. Therefore,
using (6) for φðxÞ = 1 and ϕðxÞ = x, we get (32).

Corollary 24. Assume that the function Ψ : ½a, b�⟶ R is 4-
convex, then

1
b − a

ðb
a
Ψ xð Þdx −Ψ

a + b
2

� �

≥
1

2 b − að Þ
ðb
a

a + b
2

− x
� �2

Ψ″ a + b + x
3

� �
dx:

ð33Þ

Inequality (33) will be true in the opposite sense, if the
function Ψ is 4-concave.

Proof. Inequality (33) can easily be deduced by choosing ϕð
xÞ = x and φðxÞ = 1 in (9).

Remark 25. The integral version of the above discrete
improvements of Hölder and Hermite–Hadamard inequal-
ities and relations for different means can easily be achieved
by using Theorems 3 and 5.

5. Applications in Information Theory

In this part of the note, we are going to discuss some appli-
cations of the main inequalities in information theory. These
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applications involve some bounds for different divergences,
the Bhattacharyya coefficient and the Shannon entropy.

Definition 26. Let Φ be a real valued function defined on ½a
, b� ⊂ R and m1 = ðγ1, γ2,⋯,γnÞ and m2 = ðζ1, ζ2,⋯,ζnÞ be
two n-tuples such that ζi/γi ∈ ½a, b� and γi > 0 for all i ∈ f1,
2,⋯,ng. Then the Csisźar divergence is defined by

Dc m1,m2ð Þ = 〠
n

i=1
γiΦ

ζi
γi

� �
: ð34Þ

Theorem 27. Assume that the function Φ : ½a, b�⟶ R is 4-
convex and m1 = ðγ1, γ2,⋯,γnÞ and m2 = ðζ1, ζ2,⋯,ζnÞ are
two n-tuples such that ∑n

i=1ζi/∑n
i=1γi, ζi/γi ∈ ½a, b� and γi > 0

for all i ∈ f1, 2,⋯,ng, then

Dc m1,m2ð Þ −Φ
∑n

i=1ζi
∑n

i=1γi

� �
〠
n

i=1
γi

≤
1
6
〠
n

i=1
γi

∑n
i=1ζi

∑n
i=1γi

−
ζi
γi

� �2

2Φ″ ∑n
i=1ζi

∑n
i=1γi

� �
+Φ″ ζi

γi

� �� �
:

ð35Þ

Proof. All the hypotheses of this theorem are same as that of
Theorem 2.

Thus, using (2) by taking Ψ =Φ, pi = γi/∑
n
i=1γi, and xi =

ζi/γi, we obtain (35).

Theorem 28. Suppose that all the assumptions of Theorem 27
are satisfied, then

Dc m1 −m2ð Þ −Φ
∑n

i=1ζi
∑n

i=1γi

� �
〠
n

i=1
γi

≥
1
2
〠
n

i=1
γi

∑n
i=1ζi

∑n
i=1γi

−
ζi
γi

� �2

Φ″ 2
∑n

i=1ζi
3∑n

i=1γi
+ ζi
3γi

� �
:

ð36Þ

Proof. Since, the function Φ is 4-convex. Therefore, utilizing
(7) for Ψ =Φ, pi = γi/∑

n
i=1γi, and xi = ζi/γi, we get (36).

Definition 29. For any δ ∈ ½0,∞Þ such that δ ≠ 1 and arbi-
trary positive probability distributions m1 = ðγ1, γ2,⋯,γnÞ
and m2 = ðζ1, ζ2,⋯,ζnÞ, the Rényi divergence is defined by

Dre m1,m2ð Þ = 1
δ − 1 log 〠

n

i=1
γδi ζ

1−δ
i

 !
: ð37Þ

Corollary 30. Assume that m1 = ðγ1, γ2,⋯,γnÞ and m2 = ðζ1
, ζ2,⋯,ζnÞ are two positive probability distributions and δ >
1, then

Dre m1,m2ð Þ − 1
δ − 1

〠
n

i=1
γδi log

γi
ζi

� �δ−1

≤
1
6
〠
n

i=1
γi 〠

n

i=1
γδi ζ

1−δ
i −

γi
ζi

� �δ−1
 !2

× 2
δ − 1

〠
n

i=1
γδi ζ

1−δ
i

 !−2

+ 1
δ − 1

γi
ζi

� �2−2δ
 !

:

ð38Þ

Proof. Let ΦðxÞ = 1/ðδ − 1Þ log x, x > 0. Then, Φ″ðxÞ = 1/ððδ
− 1Þx2Þ andΦ″″ðxÞ = 6/ððδ − 1Þx4Þ. Clearly, Φ″ðxÞ > 0 and
Φ″″ðxÞ > 0 for all x ∈ ð0,∞Þ. Thus, this verifies that the
function ΦðxÞ = 1/ðδ − 1Þ log x is convex as well as 4-
convex on (0,∞). Therefore, using (2) for ΦðxÞ = 1/ðδ − 1Þ
log x, pi = γi, and xi = ðγi/ζiÞδ−1, we get (38).

Corollary 31. Let the hypotheses of Corollary 30 hold. Then

Dre m1,m2ð Þ − 1
δ − 1

〠
n

i=1
γδi log

γi
ζi

� �δ−1

≥
1

2 δ − 1ð Þ〠
n

i=1
γi 〠

n

i=1
γδi ζ

1−δ
i −

γi
ζi

� �δ−1
 !2

× 3

2∑n
i=1γ

δ
i ζ

1−δ
i + γi/ζið Þδ−1

 !2

:

ð39Þ

Proof. Using ΦðxÞ = 1/ðδ − 1Þ log x, pi = γi and xi = ðγi/ζiÞδ−1
in (7), we get (39).

Definition 32. Let m2 = ðζ1, ζ2,⋯,ζnÞ be a probability distri-
bution with positive entries. Then the Shannon entropy is
defined by

Es m2ð Þ = −〠
n

i=1
ζi log ζi: ð40Þ

Corollary 33. Suppose that m2 = ðγ1, γ2,⋯,γnÞ is a probabil-
ity distribution such that γi > 0 for all i ∈ f1, 2,⋯,ng, then

log n − Es m2ð Þ ≤ 1
6
〠
n

i=1
γi n −

1
γi

� �2 2
γ2i

+ γ2i

� �
: ð41Þ

Proof. Since the function ΦðxÞ = −log x is both convex and
4-convex on (0,∞) because ΦðxÞ = 1/x2 and Φ″″ðxÞ = 6/x4
are positive for x > 0, therefore (41) can easily be obtained
by putting ΦðxÞ = −log x and ζi = 1 ði = 1, 2,⋯,nÞ in (35).

Corollary 34. Assume that the conditions of Corollary 33 are
fulfilled, then

log n − Es m2ð Þ ≥ 1
2
〠
n

i=1
γi n −

1
γi

� �2 3γi
2nγi + 1

� �2

: ð42Þ
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Proof. Utilizing the function ΦðxÞ = −log x and ζi = 1 ð1, 2,
⋯,nÞ in (36), we obtain (42).

Definition 35. Let m1 = ðγ1, γ2,⋯,γnÞ and m2 = ðζ1, ζ2,⋯,ζnÞ
be arbitrary probability distributions such that γi, ζi > 0 for
all i ∈ f1, 2,⋯,ng. Then, the Kullback–Liebler divergence is
defined by

Dkl m1,m2ð Þ = 〠
n

i=1
ζi log

ζi
γi

� �
: ð43Þ

Corollary 36. Assume that m1 = ðγ1, γ2,⋯,γnÞ and m2 = ðζ1
, ζ2,⋯,ζnÞ are positive probability distributions, then

Dkl m1,m2ð Þ ≤ 1
6
〠
n

i=1
γi 1 −

ζi
γi

� �2

2 + γi
ζi

� �
: ð44Þ

Proof. The function ΦðxÞ = x log x is convex and 4-convex
on (0,∞) because Φ″ðxÞ = 1/x > 0 and Φ″″ðxÞ = 2/x3 > 0
for all x ∈ ð0,∞Þ. Thus, using (35) by taking ΦðxÞ = x log x,
we get (44).

Corollary 37. Let the postulates of Corollary 36 be true. Then

Dkl m1,m2ð Þ ≥ 3
2
〠
n

i=1

γi − ζið Þ2
2γi − ζi

: ð45Þ

Proof. Substituting ΦðxÞ = x log x, x > 0 in (36), we acquire
(45).

Definition 38. For any positive probability distributions m1
= ðγ1, γ2,⋯,γnÞ and m2 = ðζ1, ζ2,⋯,ζnÞ, the Bhattacharyya
coefficient is defined as

Cb m1,m2ð Þ = 〠
n

i=1

ffiffiffiffiffiffiffi
γiζi

q
: ð46Þ

Corollary 39. Assume that m1 = ðγ1, γ2,⋯,γnÞ and m2 = ðζ1
, ζ2,⋯,ζnÞ are positive probability distributions; then

1 − Cb m1 −m2ð Þ ≤ 1
24

〠
n

i=1
γi 1 −

ζi
γi

� �2

2 + γi
ζi

� �3/2
 !

: ð47Þ

Proof. If ΦðxÞ = −
ffiffiffi
x

p , x > 0, then Φ″ðxÞ = ð1/4Þx−3/2 and
Φ″″ðxÞ = ð15/16Þx−7/2. Thus, this shows that both Φ″ and
Φ″″ are positive on (0,∞). Hence, this confirms the convex-
ity as well as 4-convexity of the function ΦðxÞ = −

ffiffiffi
x

p
. There-

fore, using (35) by choosing ΦðxÞ = −x, we obtain (47).

Corollary 40. Suppose that the assumptions of Corollary 39
hold, then

1 − Cb m1,m2ð Þ ≥ 1
2
〠
n

i=1

γi − ζið Þ2
γi

3γi
2γi + ζi

� �3/2
: ð48Þ

Proof. Using ΦðxÞ = −
ffiffiffi
x

p , x > 0, in (36), we obtain (48).

Remark 41. The analogous form of above discrete forms for
different divergences, Shannon entropy and Bhattacharyya
coefficient, can easily be obtained by utilizing Theorems 3
and 5.

6. Conclusion

There are extensive literature devoted to the Jensen inequal-
ity concerning different refinements, extensions, and
improvements. Also, there are many bounds obtained for
the Jensen gap which provides many interesting and valu-
able estimates for the Jensen gap. In this note, we proposed
a novel technique of obtaining of some significant estimates
for Jensen’s gap while utilizing a 4-convex function. We
obtained the required estimates for the Jensen gap by utiliz-
ing the definition of convex function and the famous Jensen
inequality. For the support of our main results, we provided
some examples for taking some particular convex functions.
We presented some consequences of the main results in
which some new important improvements for the Hölder
and Hermite–Hadamard inequalities are acquired. Further-
more, for some more consequences of the main results, we
obtain several relations for power and quasiarithmetic
means. Applications of the main results are discussed in
the information theory. These applications give many inter-
esting estimates for several divergences, Bhattacharyya coef-
ficient and Shannon entropy.
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