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In this paper, we prove the existence of two positive solutions for a critical elliptic problem with nonlocal term and Sobolev
exponent in dimension four.

1. Introduction

In this work, we are mainly concerned by the existence and
the multiplicity of solutions for the following critical elliptic
nonlocal problem:

Pð Þa,b
− a

ð
Ω

∇uj j2dx + b
� �

Δu = u3 + f inΩ,

u = 0 on∂Ω,

8><
>: ð1Þ

where Ω is a smooth bounded domain of ℝ4, a and b are
positive constants, and f belongs to H−1

ðH−1 is the dual of H1
0ðΩÞÞ satisfying suitable condition spec-

ified afterward.
In our setting, the Laplacian operator is associated to

Kirchhoff term a
Ð
Ω
j∇uj2dx + b, which contains an integral

over the entire domain Ω, this implies that the equation in
ðP Þa,b is no longer a pointwise identity and so the problem
turns to be nonlocal. This fact brings some mathematical
difficulties in the search of the solution, and the solvability
of this kind of problems has been under various authors’
attention; so, some classical investigations can be seen in
the works [1, 2] and the references therein.

Such nonlinear Kirchhoff’s equations can be used for
describing the dynamic for an axially moving string and
was first formulated by Kirchhoff himself [3] in 1883, he take
into account the changes in length of the strings produced
by transverse vibrations, and his model can be seen as a gen-
eralization of the classical D’Alembert wave equation for free
vibrations of elastic strings.

Problems which involve nonlocal operator have been
widely studied due to their numerous and relevant applica-
tions in various fields of sciences. In particular, Kirchhoff
type problems proved to be valuable tools for modeling sev-
eral physical and biological phenomena, and many works
have been made to ensure the existence of solutions for such
problems; we quote in particular the article of Lions [4].
Since this famous paper, very fruitful development has given
rise to many works on this advantageous axis, and in most of
them, the used approach relies on topological methods.
However, just few improvements were held concerning the
multiplicity of solutions. In [5], Maia obtained a multiplicity
of solutions for a class of pðxÞ-Choquard equations with a
nonlocal and nondegenerate Kirchhoff term by using trun-
cation arguments and Krasnoselskii’s genus. In [6], Vetro
studied the existence of two different notions of solutions
by using Galerkin approximation method, jointly with the
theory of pseudomonotone operators.
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With this regard, variational approach was solicited
instead of topological methods to solve this kind of problems
and also to prove the existence of multiple solutions; we refer
interested readers to the works [7–10].

We begin by giving an overview about the previous
research related to the problem ðP Þa,b which can be written
in the more general form,

~P
� �

a,b

− a
ð
Ω

∇uj j2dx + b
� �

Δu = φ λ, x, uð Þ inΩ,

u = 0 on∂Ω,

8><
>:

ð2Þ

where Ω is a smooth bounded domain of ℝN ,N ≥ 3:
Without nonlocal term ða = 0Þ, much interest has grown

on problems involving critical exponents, and there are
many publications dealing with the existence of solutions,
starting from the celebrated paper by Brézis and Nirenberg
[11] when φðλ, x, uÞ = juj2∗−2u + λu and 2∗ = 2N/N − 2 are
the critical Sobolev exponent. For convenience of the reader,
we give a brief summary of these results: they established
existence results in dimension N = 3 when Ω is a ball
namely, and they ensure the existence of a positive constant
λ0 such that the problem ð ~P Þ0,1 admits a positive solution
for λ ∈ ðλ0/4, λ1Þ, where λ1 is the first eigenvalue of the oper-
ator −Δ: In higher dimensions N ≥ 4, they proved the exis-
tence of a positive solution for λ sufficiently small, i.e.,
λ ≤ λ0 and no positive solution for λ > λ0 and Ω a star-
shaped domain.

When φðλ, x, uÞ = juj2∗−2u + λuq,1 < q < 2∗, Ambrosetti
et al. [12] established a multiplicity result in a bounded
domain of ℝN ,N ≥ 3 indeed, they ensured the existence of
a positive constant λ0 such that the problem ð ~P Þ0,1 admits
two positive solutions for λ ∈ ð0, λ∗Þ, a positive solution for
λ = λ∗ and no positive solution for λ > λ∗:

For the nonhomogeneous case, namely, when φðλ, x, uÞ
= juj2∗−2u + f ðxÞ, Tarantello [13] proved the existence of at
least two solutions when f satisfies

fð Þ1
ð
Ω

f udx < 4
N − 2

N − 2
N + 2

� � N+2ð Þ/4
uk k N+2ð Þ/4, ð3Þ

for all u ∈H1
0ðΩÞ, Ð

Ω
juj2∗dx = 1:

We emphases that the extension of the previous results
to the nonlocal case, namely, for elliptic problems driven
by Kirchhoff type operator are not obvious in high dimen-
sions N ≥ 4: Therefore, no improvement was hold concern-
ing the multiplicity of solutions in this case.

For the case a > 0 and φðλ, x, uÞ = μjuj2∗−2u + λu, Nai-
men in [14] treated the problem ð ~P Þa,b for N = 3 and
obtained homologous results than the ones obtained by Bré-
zis and Niremberg [11] in the nonlocal case under a suitable
condition on a.

In dimension four, Naimen in [15] used variational
methods to explore problem ð ~P Þa,b and showed that

ð ~P Þa,b admits a positive solution when a > 0,b ≥ 0:
In the same order of ideas and still in the nonlocal case

ða > 0Þ, Lei et al. in [16] and Liao et al. in [17] extended
the findings of [12] to a more general setting, namely, with
the Kirchhoff operator; they established a multiplicity result
in dimensions three and four, respectively.

Benmansour and Bouchekif [8] generalized the results
obtained by Tarantello [13] to the nonlocal case in dimen-
sion three. Indeed, they have shown the existence of two
solutions under a sufficient condition on f by introducing
the Nehari manifold.

A natural question is to know whether the multiplicity
result persists in the case of dimension four.

In the current paper, our main purpose inspired by [8] is
to see that the result obtained in [8] can be extended to
dimension four. We emphases that our results are new and
complement the above works.

In order to study ðP Þa,b, we shall work with the space

H =H1
0ðΩÞ endowed with the norm kuk = ðÐ

Ω
j∇uj2dxÞ1/2,

we use also the following notation: kuk− ≔ kukH−1 ,
kukp ≔ ðÐ

Ω
jujpdxÞ1/p for 1 ≤ p <∞, C and Ci denote generic

positive constants whose exact values are not important,
BHð0, rÞ≔ fu ∈H : kuk < rg is the ball of center 0 and
radius r, onð1Þ denotes any quantity which tends to zero as
n tends to infinity, and S is the best Sobolev constant defined
by

S≔ inf
u∈H\ 0f g

uk k2
uk k24

: ð4Þ

To state the main results, we define

γa,b,f = b3/2 inf
u∈H
uk k4=1

2
33/2

uk k6
uk k44 − a uk k4

 !1/2

−
ð
Ω

f

b3/2
udx

( )
,

ð5Þ

where b > 0, a < S−2 a small enough positive number and f
belongs to H−1 \ f0g:

The main results are concluded as the following theo-
rems, which are news for the case when a ≠ 0:

Theorem 1. Assume that γa,b,f > 0. Then, the problem ðP Þa,b
admits a local minimal solution u0 with Iðu0Þ < 0: Further-
more u0 ≥ 0 for f ≥ 0:

Theorem 2. Assume that γa,b,f > 0. Then, the problem ðP Þa,b
admits another solution u1 with Iðu1Þ > 0: Furthermore, u1
≥ 0 for f ≥ 0:
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Notice that γa,b,f ≥ 0 if

ð
Ω

f udx < 2 b
3

� �3/2 uk k6
uk k4 − a uk k4

 !1/2

for all u ∈H: ð6Þ

Moreover, the assumption γa,b,f > 0 certainly holds if f
satisfies certain conditions, for example,

fð Þ2
ð
Ω

f u < 2 b
3

� �3/2
uk k3, ð7Þ

for all u ∈H with kuk4 = 1: Indeed, we have γ0,b,f is
achieved and strictly positive if f satisfies ð f Þ2 (see Lemma
2.2 in [13]). In order as

2 b
3

� �3/2 uk k6
uk k44

 !1/2

≤ 2 b
3

� �3/2 uk k6
uk k44 − a uk k4

 !1/2

for all u ∈H \ 0f g,

ð8Þ

then, γa,b,f ≥ γ0,b,f > 0:
This paper is structured as follows: in Section 2, we give

some basic results useful for what follows. Section 3 is
devoted to the proofs of our main results.

2. Some Preliminary Results

We consider the energy functional associated to problem
ðP Þa,b defined for u ∈H and given by

I uð Þ = a
4 uk k4 + b

2 uk k2 − 1
4 uk k44 −

ð
Ω

f udx, for all u ∈H:

ð9Þ

Observe that I∈C1ðH,ℝÞ, whose derivative at the point
u ∈H is given by

I ′ uð Þ, v
D E

= a uk k2 + b
� �ð

Ω

∇u∇vdx −
ð
Ω

u3vdx −
ð
Ω

f vdx = 0, for all v ∈H:

ð10Þ

Obviously, if u ∈H is a critical point of the functional I;
then, u is a weak solution of problem ðP Þa,b:

In general, I is not bounded from below on H, to over-
come this and achieve a multiplicity result, the key argument
is to use an appropriate manifold called in mathematical lit-
erature the Nehari manifold, it is a suitable manifold who
has a pertinent property to prove the distinction of two solu-
tions. Indeed, a minimizer in this set may give rise to solu-
tion of the corresponding equation. This so called Nehari
manifold is defined by

N ≪ u ∈H : I ′ uð Þ, u
D E

= 0
n o

: ð11Þ

Lemma 3. Assume that b > 0,a ≥ 0, and f ∈H−1 \ f0g. Then,
the functional I is coercive and bounded from below on N :

Proof. For u ∈N , we have

a uk k4 − uk k44 =
ð
Ω

f udx − b uk k2: ð12Þ

Therefore

I uð Þ = a
4 uk k4 + b

2 uk k2 − 1
4 uk k44 −

ð
Ω

f udx

= b
4 uk k2 − 3

4

ð
Ω

f udx ≥
b
4 uk k2 − 3

4 fk k uk k:
ð13Þ

Thus, I is coercive and bounded from below on N .
Let huðtÞ = IðtuÞ for t ∈ℝ∗ and u ∈H: These maps are

known as fibering maps and were first introduced by Drábek
and Pohozaev [18]: The set N is closely linked to the behav-
ior of huðtÞ, for more details, see for example [19] or [20].

It is natural to split N into three subsets:

N + ≔ u ∈N : hu′′ 1ð Þ > 0
n o

,N 0 ≔ u ∈N : hu′′ 1ð Þ = 0
n o

,

ð14Þ

N − ≔ u ∈N : hu′′ 1ð Þ < 0
n o

, ð15Þ

where hu′′ðtÞ = 3t2akuk4 + bkuk2 − 3t2kuk44: These sub-
sets correspond to local minima, points of inflexion, and
local maxima of I, respectively.

Definition 4. A sequence fung ⊂H is said to be a Palais
Smale sequence at level c (ðPSÞc sequence in short) for I if

I unð Þ = c + on 1ð Þ and I ′ unð Þ = on 1ð Þ inH−1: ð16Þ

I verifies Palais Smale condition at level c (ðPSÞc condi-
tion in short) if any ðPSÞc sequence has a convergent subse-
quence in H:

Next, for u ≠ 0,b > 0, and a, a small enough positive
number set

Φu tð Þ = b uk k2t − uk k44 − a uk k4� �
t3, ð17Þ

then hu′ðtÞ =ΦuðtÞ −
Ð
Ω
f udx: Easy computations show that

Φu is concave and achieves its maximum at the point tumax
where

tumax =
b uk k2

3 uk k44 − 3a uk k4
 !1/2

: ð18Þ

That is,

max
t≥0

Φu tð Þð Þ =Φu tumaxð Þ = 2 b
3

� �3/2 uk k6
uk k44 − a uk k4

 !1/2

,

ð19Þ
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hu′ tumaxð Þ = 2 b
3

� �3/2 uk k6
uk k44 − a uk k4

 !1/2

−
ð
Ω

f udx: ð20Þ

Now, for u ∈H \ f0g set ΨðuÞ = hu′ðtumaxÞ, that is

γa,b,f = inf
uk k4=1

Ψ uð Þ: ð21Þ

Fix t1 > 0, then, for t ≥ t1, we have ΨðtuÞ = tΨðuÞ,

t1 γa,b,f ≤ t γa,b,f = t inf
uk k4=1

Ψ uð Þ = inf
tuk k4=t

Ψ tuð Þ = inf
vk k4=t

Ψ vð Þ,

ð22Þ

so

t1 γa,b,f ≤ inf
vk k4≥t1

Ψ vð Þ: ð23Þ

This is crucial for the following.

Lemma 5. Assume that γa,b,f > 0, then, N 0 = f0g:

Proof. Arguing by contradiction we assume that there exists
u ∈N 0 \ f0g, i.e., u ≠ 0 verifies

a uk k4 + b uk k2 − uk k44 −
ð
Ω

f udx = 0, ð24Þ

3a uk k4 + b uk k2 − 3 uk k44 = 0: ð25Þ

From (24) and (25), we derive that

2
3 b uk k2 −

ð
Ω

f udx = 0, ð26Þ

As 0 ≤ a < S−2, we get from (24), (26), and the definition
of S

3 a − S−2
� �

uk k4 + b uk k2 ≤ 0, ð27Þ

that is

uk k2 3 a − S−2
� �

uk k2 + b
� �

≤ 0: ð28Þ

Thus, as u ≠ 0 and a < S−2, we derive that

uk k2 ≥ b

3 S−2 − a
� � > 0, ð29Þ

therefore, from (25), we obtain kuk4 ≥ t1, with

t1 =
ab2

9 S−2 − a
� �2 + b2

9 S−2 − a
� �

" #1/4
: ð30Þ

Then, from (23), (25), and (26), we get

0 < t1 γa,b,f ≤ inf
uk k4≥t1

Ψ uð Þ ≤Ψ uð Þ

= 2 b
3

� �3/2 uk k6
uk k44 − a uk k4

 !1/2

−
ð
Ω

f udx

= 2 b
3

� �3/2 uk k6
b/3ð Þ uk k2

 !1/2

−
ð
Ω

f udx = 2 b3 uk k2 −
ð
Ω

f udx = 0,

ð31Þ

which yields to a contradiction.

Lemma 6. Assume that γa,b,f > 0, then, for all u ∈H \ f0g,
there exists unique positive value t+u = t+ðuÞ such that

t+u > tmax
u , t+uu ∈N −andI t+uuð Þ = max

t≥tumax
I tuð Þ: ð32Þ

Moreover, if
Ð
Ω
f udx > 0, then, there exists unique posi-

tive value t−u = t−ðuÞ such that

0 < t−u < tumax, t−uu ∈N +andI t−uuð Þ = inf
0≤t≤tumax

I tuð Þ: ð33Þ

Proof. We have huðtÞ = IðtuÞ,hu′ðtÞ =ΦuðtÞ −
Ð
Ω
f udx, and

Φu is concave and achieves its maximum at the point tumax:

If γa,b,f > 0; then, there exists a unique t+u > 0, such that hu′ð
t+uÞ =Φuðt+uÞ −

Ð
Ω
f udx and hu′′ðt+uÞ < 0, which implies that

t+uu ∈N
− and Iðt+uuÞ ≥ IðtuÞ for all t ≥ tumax: Moreover, ifÐ

Ω
f udx > 0, then, there exists a unique t−u > 0, such that hu

′ðt−uÞ =Φuðt−uÞ −
Ð
Ω
f udx and hu′′ðt+uÞ > 0, which implies that

t−uu ∈N
+ and Iðt+uuÞ ≤ IðtuÞ for all t ≤ tumax:

Set

E1 = u ∈H : u = 0 or uk k < t+
u
uk k

� �� 	
, ð34Þ

E2 = u ∈H \ 0f g: uk k > t+
u
uk k

� �� 	
: ð35Þ

In the following lemma, we prove that N − is closed and
disconnects H in exactly two connected components E1 and
E2.

Lemma 7. Assume that γa,b,f > 0. Then

(i) N − is closed

(ii) H \N − = E1 ∪ E2

(iii) N + ⊂ E1

Proof. Let fung ⊂N − and ~u = limn⟶∞un, then, ~u ∈N .
Assume by contradiction that ~u ∉N −, then

3a unk k4 + b unk k2 − 3 unk k44 < 0, ð36Þ
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3a ~uk k4 + b ~uk k2 − 3 ~uk k44 = 0: ð37Þ

So, ~u ∈N 0, this implies that ~u = 0:
From (36) and the definition of S, we get kunk2 ≥ bS2/3,

so k~uk2 ≥ bS2/3, which yields to a contradiction.
Let u ∈N − and v = u/kuk, then, t+ðuÞ = 1, and there

exists unique t+ðvÞ such that t+ðvÞv ∈N −: As

t+ vð Þv = t+
u
uk k

� � 1
uk k u ∈N

−, ð38Þ

then

t+
u
uk k

� � 1
uk k = t+ uð Þ = 1: ð39Þ

Thus if u ∈H \ f0g and,

t+
u
uk k

� � 1
uk k ≠ 1, ð40Þ

then, u ∉N − and

H \N − = E1 ∪ E2: ð41Þ

Let u ∈N + then

t− uð Þ = t−
u
uk k

� � 1
uk k = 1: ð42Þ

Since t+ðuÞ > t−ðuÞ, it follows that

t+ uð Þ = t+
u
uk k

� � 1
uk k > 1: ð43Þ

So, kuk < t+ðu/kukÞ, and we conclude that N + ⊂ E1:

By Lemma 6, we know that N and N − are not empty, so
we can define θ0 ≤ θ1 with

θ0 ≔ inf
u∈N

I uð Þ and θ1 ≔ inf
u∈N −

I uð Þ: ð44Þ

Lemma 8. Assume that γa,b,f > 0, then, there exists t∗ > 0 such
that

−9
16b

fk k2 ≤ θ0 ≤ −
b
4
t2∗ fk k2: ð45Þ

Proof. Let u ∈N , then

I uð Þ = b
4 uk k2 − 3

4

ð
Ω

f udx ≥
b
4 uk k2 − 3

4 fk k uk k ≥ −9
16b fk k2:

ð46Þ

Thus θ0 ≥ −9/16bk f k2 .

Set u∗ ∈H the unique solution of the equation −Δu = f ,
it follows

ð
Ω

f u∗dx = u∗k k2 = fk k2: ð47Þ

By Lemma 6, there exists a unique positive value t∗ = t−u∗
such that t∗u∗ ∈N

+. So

I t∗u∗ð Þ = −
3a
4 t4∗ u∗k k4 − b

2 t
2
∗ u∗k k2 + 3

4 t
4
∗ u∗k k44 ≤

b
4 t

2
∗ u∗k k2

−
b
2 t

2
∗ u∗k k2 = −

b
4 t

2
∗ fk k2,

ð48Þ

consequently

−9
16b fk k2 ≤ θ0 ≤ −

b
4 t

2
∗ fk k2: ð49Þ

The following lemma is needed for prove the existence of
Palais Smale sequences.

Lemma 9. Assume that γa,b,f > 0. Then, for any u ∈N \ f0g,
there exist ε > 0 and a differentiable function ζ : BHð0, εÞ
⟶ℝ+ \ f0g such that

ζ 0ð Þ = 1, ζ vð Þ u − vð Þ ∈N ,∀v ∈ BH 0, εð Þ, ð50Þ

ζ′ 0ð Þ, v
� �

= 4a uk k2 + 2b
� �Ð

Ω
∇u∇vdx − 4

Ð
Ω
u3vdx −

Ð
Ω
f vdx

3a uk k4 + b uk k2 − 3 uk k44
:

ð51Þ
Proof. Let u ∈N \ f0g and define: ℝ ×H⟶ℝ as follows

ζ, vð Þ = aζ3 u − vk k4 + bζ u − vk k2 − ζ3 u − vk k44 −
ð
Ω

f u − vð Þdx:

ð52Þ

Clearly, ð1, 0Þ = 0: Moreover, from Lemma 5, we derive
that

∂
∂ζ

1, 0ð Þ = 3a uk k4 + b uk k2 − 3 uk k44 ≠ 0: ð53Þ

Thus, we get our result by a straightforward application
of the implicit function theorem to the function at the point
ð1, 0Þ.

Lemma 10. Let θ ∈ fθ0, θ1g: There exist a Palais Smale
sequences fung ⊂N such that

I unð Þ⟶ θ, I ′ unð Þ⟶ 0: ð54Þ

Proof. Assume θ = θ0, by Lemma 3, I is bounded from below
in N , then by applying the Ekeland Variational Principle, we

5Journal of Function Spaces



can obtain a minimizing sequence fung ⊂N satisfying

θ0 ≤ I unð Þ < θ0 +
1
n
, ð55Þ

I wð Þ ≥ I unð Þ − 1
n

w − unk k, ð56Þ

for all w ∈N : Thus, IðunÞ⟶ θ0:
By using Lemma 8, we get for n large enough

−
b
4 t

2
∗ fk k2 ≥ θ0 +

1
n
> I unð Þ = b

4 unk k2 − 3
4

ð
Ω

f undx, ð57Þ

this implies that

ð
Ω

f undx ≥
b
3 unk k2 + b

3 t
2
∗ fk k2, ð58Þ

then

ð
Ω

f undx ≥
b
3 t

2
∗ fk k2 and

ð
Ω

f undx ≥
b
3 unk k2, ð59Þ

and by Holder inequality, we get

fk k unk k ≥ b
3 t

2
∗ fk k2 > 0and fk k unk k ≥ b

3 unk k2: ð60Þ

Consequently, un ≠ 0 and

b
3 t

2
∗ fk k ≤ unk k ≤ 3

b
fk k : ð61Þ

Now, we show that kI ′ðunÞk tend to 0 as n goes to +∞.
Arguing by contradiction and fix n with kI ′ðunÞk ≠ 0.

Then, by Lemma 9, there exist ε > 0 and a function ζn
: BHð0, εÞ⟶ℝ such that wn = ζnðvnÞðun − vnÞ ∈N with
vn = δI ′ðunÞ/kI ′ðunÞk and 0 < δ < ε. By (56) and the Taylor
expansion of I, we have

−
1
n

wn − unk k ≤ I wnð Þ − I unð Þ ≤ I ′ unð Þ,wn − un
D E

+∘ wn − unk kð Þ

= ζn vnð Þ − 1ð Þ I ′ unð Þ, un
D E

− δζn vnð Þ I ′ unð Þ, I ′ unð Þ
I ′ unð Þ

 



−

* +

+∘ wn − unk kð Þ:
ð62Þ

Then

ζn vnð Þ I ′ unð Þ

 


− ≤

ζn vnð Þ − 1
δ

I ′ unð Þ, un
D E

+ wn − unk k
nδ

+ ∘ wn − unk kð Þ
δ

:

ð63Þ

We have

lim
δ⟶0

ζn vnð Þ = 1, lim
δ⟶0

ζn vnð Þ − 1j j
δ

= lim
δ⟶0

ζn vnð Þ − ζn 0ð Þj j
δ

≤ ζn′ 0ð Þ

 


−,

ð64Þ

lim
δ⟶0

wn − unk k
nδ

= lim
δ⟶0

1
nδ

ζn vnð Þ − 1ð Þun − ζn vnð Þvnk k ≤ lim
δ⟶0

1
n

ζn vnð Þ − 1
δ

un












�

+ ζn vnð Þ vn
δ




 


i ≤ 1
n

ζn′ 0ð Þ

 


− unk k + 1

� �
:

ð65Þ
This, together with (61) implies

I ′ unð Þ

 


− ≤

C3
n

ζn′ 0ð Þ

 


− + 1

� �
, ð66Þ

for a suitable constant C3 > 0: Now, we must show that
kζn′ð0Þk− is uniformly bounded in n : indeed, since fung is
a bounded sequence, we have from Lemma 8

ζn′ 0ð Þ�� �� ≤ C4
3a unk k4 + b unk k2 − 3 unk k44
�� �� , ð67Þ

for a suitable constant C4 > 0: Assume by contradiction that
for a subsequence still called fung, we have

b unk k2 − 3 unk k44 − a unk k4� �
= on 1ð Þ: ð68Þ

Then, as a is a small enough positive number, we get

b
3 unk k2
� 
3/2

= unk k44 − a unk k4� �3/2 + on 1ð Þ: ð69Þ

So from (61), we derive that

unk k ≥ b
3 t

2
∗ fk k : ð70Þ

Also, as un ∈N , we get from (68)ð
Ω

f undx = 2 unk k44 − a unk k4� �
+ on 1ð Þ, ð71Þ

then

0 < t2∗ fk k b
3

� �3/2
γ

a,b, f
≤

b
3 unk k2
� 
1/2

Ψ unð Þ

≤ unk k44 − a unk k4� �1/2
Ψ unð Þ

≤ 2 b
3

� �3/2
unk k3 − 2 unk k44 − a unk k4� �3/2 = on 1ð Þ,

ð72Þ

which is absurd. At this point, we conclude that I ′ðunÞ⟶ 0
in H−1:

For θ = θ1, adopting exactly the same way as in the case
where θ = θ0.

In the following, we will prove our results.
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3. Proofs of the Main Results

The proof of our main results is divided in two parts.

3.1. Existence of a Solution in N +. In this subsection, we
prove that I has a solution in N +:

Proposition 11. Assume that γa,b,f > 0. Then, the minimiza-
tion problem

θ0 = inf
u∈N

I uð Þ, ð73Þ

attaints its infimum at a point u0 ∈N
+. Moreover, u0 is a

local minimizer for I in H:

Proof. By using Lemma 10, there exists a bounded minimiz-
ing sequence fung ⊂N + such that IðunÞ⟶ θ0 and I ′ðunÞ
⟶ 0 in H−1: So, we deduce that fung is bounded in H:

Passing to a subsequence if necessary, we have un ⇀ u0
weakly in H, then, hI ′ðu0Þ,wi = 0, for all w ∈H: In addition,
from (60), we get

Ð
Ω
f u0dx > 0. So, u0 is a weak solution for

ðP Þa,b and u0 ∈N :

Thus

θ0 ≤ I u0ð Þ = b
4 u0k k2 − 3

4

ð
Ω

f u0dx ≤ lim
n⟶∞

I unð Þ = θ0, ð74Þ

then Iðu0Þ = θ0 = inf
u∈N

IðuÞ: It follows that fung converges

strongly to u0 in H, then, u0 ∈N
+ and necessarily

t− u0ð Þ = 1 < tu0max: ð75Þ

To conclude that u0 is a local minimum of I, let us recall
that we have from Lemma 6

I suð Þ ≥ I u0ð Þ for every 0 < s < tu0max: ð76Þ

Choose ε > 0 sufficiently small to have

1 < tu0−wmax for wk k < ε, ð77Þ

and tðwÞ satisfying tðwÞðu0 −wÞ ∈N for every kwk < ε:
Since tðwÞ⟶ 1 as kwk⟶ 0, we can always assume that

t wð Þ < tu0−wmax for everyw such that wk k < ε, ð78Þ

so tðwÞðu0 −wÞ ∈N + and for 0 < s < tu0−wmax , we have

I s u0 −wð Þð Þ ≥ I t wð Þ u0 −wð Þð Þ ≥ I u0ð Þ, ð79Þ

from (75), we can take s = 1 and conclude that Iðu0 −wÞ ≥
Iðu0Þ, for all w ∈H such that kwk < ε: Thus, u0 is a local
minimum of I:

If f ≥ 0, we have
Ð
Ω
f u0dx ≤

Ð
Ω
f ju0jdx and clearly Iðj

u0jÞ ≤ Iðu0Þ, and from (75) necessarily t−ðju0jÞ ≥ 1. There-

fore, as Iðu0Þ = inf
u∈N +

IðuÞ, we get

I t− u0j jð Þ u0j jð Þ ≤ I u0j jð Þ ≤ I u0ð Þ ≤ I t− u0j jð Þ u0j jð Þ, ð80Þ

so, we can always take u0 ≥ 0:

3.2. Existence of a Solution in N −. The following part is
devoted to prove the existence of a second solution u1 such
that Iðu1Þ = θ1 = inf

v∈N −
IðvÞ: First, we determine the good level

for covering the Palais Smale condition.
We have the following important result.

Lemma 12. Assume that γa,b,f > 0. Then, I satisfies the ðPSÞc
condition for c < c∗a,b with

c∗a,b = θ0 +
b2

4 S−2 − a
� � : ð81Þ

Proof. Let fung be a ðPSÞc sequence with c < c∗a,b, then

c + on 1ð Þ = I unð Þ − 1
4 I ′ unð Þ, un
D E

= b
4 unk k2

−
3
4

ð
Ω

f undx ≥
b
4 unk k2 − 3

4 fk k unk k:
ð82Þ

Hence, fung is a bounded sequence inH: Thus for a sub-
sequence still denoted fung and we can find u1 ∈H such that
un ⇀ u1 in H,Ð

Ω
f undx⟶

Ð
Ω
f u1dx and un ⟶ u1 a.e in Ω.

Therefore, u1 ≠ 0,u1 ∈N , and Iðu1Þ ≥ θ1:
Let wn = un − u1: From Brézis-Lieb Lemma [21], one has

unk k2 = wnk k2 + u1k k2 + on 1ð Þ, unk k4 = wnk k4
+ 2 wnk k2 u1k k2 + u1k k4 + on 1ð Þ,

ð83Þ

unk k44 = wnk k44 + u1k k44 + on 1ð Þ, ð84Þ
this implies that

on 1ð Þ = I ′ unð Þ, un
D E

= a wnk k4 + b wnk k2 − wnk k44
−
ð
Ω

f wndx + 2a wnk k2 u1k k2:
ð85Þ

Assume that kwnk⟶ l with l > 0, then, by (85) and the
Sobolev inequality, we obtain

S−2 − a
� �

l4 ≥ bl2 + 2al2 u1k k2: ð86Þ

this implies that

S−2 − a
� �

l4 − bl2 ≥ 0: ð87Þ

Hence

l2 ≥
b

S−2 − a
: ð88Þ
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On the other hand, we have

c + on 1ð Þ = I unð Þ − 1
4 I ′ unð Þ, un
D E

= b
4 unk k2 − 3

4

ð
Ω

f undx

= b
4 wnk k2 + b

4 u1k k2 − 3
4

ð
Ω

f u1dx =
b
4 wnk k2

+ I u1ð Þ − 1
4 I ′ u1ð Þ, u1
D E

= b
4 wnk k2 + I u1ð Þ,

ð89Þ

consequently, we obtain

c ≥ θ0 +
b2

4 S−2 − a
� � , ð90Þ

which is a contradiction. Therefore, l = 0 and un ⟶ u1
strongly in H:

Now, it is natural to show that θ1 < c∗a,b: As it is well
know, ðseeHLÞ, the best Sobolev constant S defined above
is attained in ℝ4 by

Uε xð Þ = ε ε2 + xj j2� �−1, ε > 0 and x ∈ℝ4: ð91Þ

For x0 ∈Ω let VεðxÞ =Uεðx − x0Þϕ ∈ C∞
0 ðΩÞ such that

ϕðxÞ = 1 for x ∈ Br
x0
, ϕðxÞ = 0 for x ∈ℝ4 \ B2r

x0
, and 0 ≤ ϕ ≤ 1,

j∇ϕj ≤ C: Now, we shall give some useful estimates of the

extremal functions U ε: Let VεðxÞ = ϕðxÞðε + jx − x0j2Þ
−2

and uε =VεðxÞkuεk4: The following estimates are obtained
in [22] as ε tends to 0

uεk k24 = 1,
uεk k2 = S +O εð Þ,

C1ε
4−q ≤

ð
Ω

uqεdx ≤ C2ε
4−q for q > 2:

8>>>><
>>>>:

ð92Þ

Let Ω′ ⊂Ω a set of positive measure such that u0 > 0 on
Ω′ (if not replace u0 and f by −u0 and −f , respectively).

Lemma 13. Let b > 0,0 ≤ a < S−2 a small enough positive
number. Assume that f ∈H−1 \ f0g satisfies γa,b,f > 0; then,

for every t > 0 and a.e. x0 ∈Ω′ ⊂Ω, there exists ε0 such that
Iðu0 + tuεÞ < c∗a,b for every 0 < ε < ε0:

Proof. For ε small enough, let us consider the functional g
defined by

g tð Þ = bt2

2 uεk k2 − t4

4 uεk k44: ð93Þ

We have by (92)

sup
t≥0

g tð Þ = b2

4S−2
+O εð Þ: ð94Þ

On the other hand, since u0 ∈N
+ is a solution of prob-

lem ðP Þa,b, we have ku0k ≤ C, Iðu0Þ = θ0 and hI ′ðu0Þ, tuεi
= 0:

Then we obtain by (92)

I u0 + tuεð Þ = a
4 u0 + tuεk k4 + b

2 u0 + tuεk k2 − 1
4 u0 + tuεk k44

−
ð
Ω

f u0 + tuεð Þdx = a
4 u0k k4 + b

2 u0k k2 − 1
4 u0k k44

−
ð
Ω

f u0dx +
at4

4 uεk k4 + bt2

2 uεk k2 − t4

4 uεk k44

+ a u0k k2 + b
� �ð

Ω

∇u0∇ tuεð Þdx −
ð
Ω

u30 tuεð Þdx − t
ð
Ω

f uεdx + t2

· a
ð
Ω

∇u0∇uε

� �2
dx + a

2 u0k k2 uεk k2 − 3
2

ð
Ω

u20u
2
εdx

" #
+ t3

· a uεk k2
ð
Ω

∇u0∇uεdx −
ð
Ω

u3εu0dx
� 


≤ I u0ð Þ + I ′ u0ð Þ, tuε
D E

+ at4

4 uεk k4 + bt2

2 uεk k2 − t4

4 uεk k44 + t2aC1 + t3 aC2 − C3ε½ � ≤ θ0 + h tð Þ,

ð95Þ

where

h tð Þ = at4

4 uεk k4 + bt2

2 uεk k2 − t4

4 uεk k44 + at2C1 + t3 aC2 − C3ε½ �:
ð96Þ

Since a < S−2, we have hðtÞ⟶ −∞ as t goes to ∞ and
hðtÞ⟶ 0 as t goes to 0. This implies that there exist 0 <
T1 < T2 such that

sup
t>0

I u0 + tuεð Þ ≤ sup
T1<t<T2

I u0 + tuεð Þ ≤ θ0 +
bt2

2 uεk k2 − t4

4 uεk k44

+ aT4
2

4 uεk k4 + aT2
2C1 + T3

1 aC2 − C3ε½ � ≤ θ0 +
b2

4S−2
+O εð Þ

+ a T2
2C1 + T3

1C2
� �

− T3
1C3ε:

ð97Þ

Then, for a = εσ with σ > 1, we conclude

I u0 + tuεð Þ < θ0 +
b2

4S−2
= c∗0,b ≤ c∗a,b: ð98Þ

Therefore,

sup
t>0

I u0 + tuεð Þ < c∗a,b, ð99Þ

for a small enough positive number.

Proposition 14. Let b > 0,0 ≤ a < S−2 a small enough positive
number. Assume that f ∈H−1 \ f0g satisfies γa,b,f > 0, then, I
has a local minimizer u1 on N − such that Iðu1Þ = θ1. More-
over u1 is a local minimizer for I on H.

Proof. By Lemma 6, for every u ∈H such that kuk = 1, there
exists unique t+ðuÞ > 0 such that t+ðuÞu ∈N − and Iðt+uÞ ≥
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IðtuÞ, for all t ≥ tumax: Then, for suitable constant T3 > 0, we
deduce that

0 < t+ uð Þ < T3, for all u such that uk k = 1: ð100Þ

Therefore for t0 > 0 carefully chosen, the estimate (97)
holds for ε small enough:

Thus, we derive that

u0 + t0uεk k2 > C2
1 ≥ t+

u0 + t0uε
u0 + t0uεk k

� �� 
2
, for all ε > 0 small enough:

ð101Þ

Then, from Lemma 7, we conclude that u0 + t0uε ∈ E2.
Set

Γ = ξ : 0, 1½ �⟶H continuous, ξ 0ð Þ = u0, ξ 1ð Þ = u0 + t0uεf g:
ð102Þ

It is obvious that ξ : ½0, 1�⟶H given by ξðtÞ = u0 + t
t0uε belongs to Γ: We conclude from Lemma 13 that

c = inf
ξ∈Γ

max
t∈ 0,1½ �

I ξ tð Þð Þ < c∗0,b: ð103Þ

As the range of any ξ ∈ Γ intersects N −, one has

c ≥ θ1 = inf
N −

I, ð104Þ

From Lemma 10, we can obtain a minimizing sequence
fung ⊂N − such that

I unð Þ⟶ θ1 and I ′ unð Þ

 

⟶ 0: ð105Þ

We also deduce that θ1 < c∗0,b:
Consequently, we obtain a subsequence still denoted f

ung, and we can find u1 ∈H such that

un ⟶ u1 strongly inH: ð106Þ

This implies that u1 is a critical point for I,u1 ∈N − and
Iðu1Þ = θ1:

Finally, for f ≥ 0, let t+ðju1jÞ > 0 satisfying t+ðju1jÞju1j
∈N −: From Lemma 6, we have

I t+ u1j jð Þ u1j jð Þ ≥ I u1ð Þ = max
t≥tmax

I tu1ð Þ ≥ I t+ u1j jð Þu1ð Þ ≥ I t+ u1j jð Þ u1j jð Þ:

ð107Þ

So we conclude that u1 ≥ 0:

4. Conclusion

In our work, we have searched the critical points as the min-
imizers of the energy functional associated to the problem
on the constraint defined by the Nehari manifold N , which
is a solution of our problem. Under some sufficient condi-
tions, we split N in two disjoint subsets N + and N −. Thus,

we consider the minimization problems on N + and N −,
respectively. If γa,b,f > 0, then, the problem ðP Þa,b has a local
minimal solution u0 with Iðu0Þ < 0: Furthermore, u0 ≥ 0 for
f ≥ 0 and if γa,b,f > 0. The problem ðP Þa,b has another solu-
tion u1 with Iðu1Þ > 0: Furthermore, u1 ≥ 0 for f ≥ 0:
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