The Sharp Upper Bounds of the Hankel Determinant on Logarithmic Coefficients for Certain Analytic Functions Connected with Eight-Shaped Domains

Pongsakorn Sunthrayuth ${ }^{(1},{ }^{1}$ Naveed Iqbal $\mathbb{D}^{2},{ }^{2}$ Muhammad Naeem ${ }^{(1)}{ }^{3}$ Yousef Jawarneh, ${ }^{2}$ and Sallieu K. Samura ${ }^{4}$
${ }^{1}$ Department of Mathematics and Computer Science, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi (RMUTT) Thanyaburi, Pathum Thani, Thailand
${ }^{2}$ Department of Mathematics, College of Science, University of Ha'il, Ha'il 2440, Saudi Arabia
${ }^{3}$ Deanship of Joint First Year Umm Al-Qura University Makkah, P.O. Box 715, Saudi Arabia
${ }^{4}$ Department of Mathematics and Statistics, Fourah Bay College, University of Sierra Leone, Sierra Leone
Correspondence should be addressed to Muhammad Naeem; mfaridoon@uqu.edu.sa and Sallieu K. Samura; sallieu.samura@usl.edu.sl

Received 20 June 2022; Accepted 24 August 2022; Published 9 September 2022
Academic Editor: Mohsan Raza
Copyright © 2022 Pongsakorn Sunthrayuth et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The present study's intention is to produce exact estimations of some problems involving logarithmic coefficients for functions belonging to the considered subcollection $\mathscr{B} \mathscr{T}_{\text {sin }}$ of the bounded turning class. Furthermore, for the class $\mathscr{B} \mathscr{T}_{\text {sin }}$, we look into the accurate bounds of the Zalcman inequality, Fekete-Szegö inequality along with $\mathscr{D}_{2,1}\left(G_{g} / 2\right)$ and $\mathscr{D}_{2,2}\left(G_{g} / 2\right)$. Importantly, all of these bounds are shown to be sharp.

1. Introduction and Definitions

To properly understand the findings provided in the article, certain important literature on Geometric Function Theory must first be discussed. In this regard, the letters \mathcal{S} and \mathscr{A} stand for the normalized univalent functions class and the normalized holomorphic (or analytic) functions class, respectively. These primary notions are defined in the region $\mathbb{E}_{d}=\{z \in \mathbb{C}:|z|<1\}$ by

$$
\begin{equation*}
\mathscr{A}=\left\{g \in \mathscr{H}\left(\mathbb{E}_{d}\right): g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k}\left(z \in \mathbb{E}_{d}\right)\right\} \tag{1}
\end{equation*}
$$

where $\mathscr{H}\left(\mathbb{E}_{d}\right)$ symbolizes the holomorphic functions class, and

$$
\begin{equation*}
\mathcal{S}=\left\{g \in \mathscr{A}: g \text { is univalent in } \mathbb{E}_{d}\right\} \tag{2}
\end{equation*}
$$

The following formula defines the logarithmic coefficients β_{n} of g that belong to \mathcal{S}

$$
\begin{equation*}
G_{g}(z):=\log \left(\frac{g(z)}{z}\right)=2 \sum_{n=1}^{\infty} \beta_{n} z^{n} \text { for } z \in \mathbb{E}_{d} \tag{3}
\end{equation*}
$$

In many estimations, these coefficients provide a significant contribution to the concept of univalent functions. In 1985, De Branges [1] proved that

$$
\begin{equation*}
\sum_{k=1}^{n} k(n-k+1)\left|\beta_{n}\right|^{2} \leq \sum_{k=1}^{n} \frac{n-k+1}{k} \forall n \geq 1 \tag{4}
\end{equation*}
$$

and equality will be achieved if g has the form $z /\left(1-e^{i \theta} z\right)^{2}$ for some $\theta \in \mathbb{R}$. In its most comprehensive version, this inequality offers the famous Bieberbach-Robertson-Milin conjectures regarding Taylor coefficients of $g \in \mathcal{S}$. We refer
to [2-4] for further details on the proof of De Branges' finding. By considering the logarithmic coefficients, Kayumov [5] was able to prove Brennan's conjecture for conformal mappings in 2005. For your reference, we mention a few works that have made major contributions to the research of the logarithmic coefficients. Andreev and Duren [6], Alimohammadi et al. [7], Deng [8], Roth [9], Ye [10], Obradović et al. [11], and finally the work of Girela [12] are the major contributions to the study of logarithmic coefficients for different subclasses of holomorphic univalent functions.

As stated in the definition, it is simple to determine that for $g \in \mathcal{S}$, the logarithmic coefficients are computed by

$$
\begin{gather*}
\beta_{1}=\frac{1}{2} b_{2}, \tag{5}\\
\beta_{2}=\frac{1}{2}\left(b_{3}-\frac{1}{2} b_{2}^{2}\right), \tag{6}\\
\beta_{3}=\frac{1}{2}\left(b_{4}-b_{2} b_{3}+\frac{1}{3} b_{2}^{3}\right), \tag{7}\\
\beta_{4}=\frac{1}{2}\left(b_{5}-b_{2} b_{4}+b_{2}^{2} b_{3}-\frac{1}{2} b_{3}^{2}-\frac{1}{4} b_{2}^{4}\right) . \tag{8}
\end{gather*}
$$

For given $q, n \in \mathbb{N}=\{1,2, \cdots\}, b_{1}=1$, and $g \in \mathcal{S}$ with the series expansion (1), the Hankel determinant $\mathscr{D}_{q, n}(g)$ is represented by

$$
\mathscr{D}_{q, n}(g)=\left|\begin{array}{cccc}
b_{n} & b_{n+1} & \cdots & b_{n+q-1} \tag{9}\\
b_{n+1} & b_{n+2} & \cdots & b_{n+q} \\
\vdots & \vdots & \cdots & \vdots \\
b_{n+q-1} & b_{n+q} & \cdots & b_{n+2 q-2}
\end{array}\right|
$$

It was defined by Pommerenke [13, 14]. This determinant has indeed been investigated for a number of univalent function subclasses. In specific, the sharp estimate of the functional $\left|\mathscr{D}_{2,2}(g)\right|=\left|b_{2} b_{4}-b_{3}^{2}\right|$ for the sets \mathscr{C} (convex functions), \mathcal{S}^{*} (starlike functions), and \mathscr{R} (bounded turning functions) has been effectively established in [15, 16]. Later, numerous scholars published their findings on the upper bounds of $\left|\mathscr{D}_{2,2}(g)\right|$ for various subcollections of holomorphic functions; see [17-23]. However, for the class of close-to-convex functions, the exact estimation of this determinant is yet unknown [24].

Analogous to the determinant $\mathscr{D}_{q, n}(g)$ mentioned above, Kowalczyk and Lecko [25,26] considered to examine the following determinant $\mathscr{D}_{q, n}\left(G_{g} / 2\right)$ with entries from logarithmic coefficients of g

$$
\mathscr{D}_{q, n}\left(\frac{G_{g}}{2}\right)=\left|\begin{array}{cccc}
\beta_{n} & \beta_{n+1} & \cdots & \beta_{n+q-1} \tag{10}\\
\beta_{n+1} & \beta_{n+2} & \cdots & \beta_{n+q} \\
\vdots & \vdots & \cdots & \vdots \\
\beta_{n+q-1} & \beta_{n+q} & \cdots & \beta_{n+2 q-2}
\end{array}\right|
$$

It is observed that

$$
\begin{align*}
& \mathscr{D}_{2,1}\left(\frac{G_{g}}{2}\right)=\beta_{1} \beta_{3}-\beta_{2}^{2} \\
& \mathscr{D}_{2,2}\left(\frac{G_{g}}{2}\right)=\beta_{2} \beta_{4}-\beta_{3}^{2} \tag{11}
\end{align*}
$$

For the given functions $G_{1}, G_{2} \in \mathscr{A}$, the subordination between G_{1} and G_{2} (mathematically written as $G_{1}<G_{2}$), if we get a Schwarz function v with $v(0)=0$ and $|v(z)|<1$ for $z \in \mathbb{E}_{d}$ in a way such that $G_{1}(z)=G_{2}(v(z))$ hold true. Additionally, the following relation applies if G_{2} in \mathbb{E}_{d} is univalent:

$$
\begin{equation*}
G_{1}(z) \prec G_{2}(z),\left(z \in \mathbb{E}_{d}\right), \tag{12}
\end{equation*}
$$

if and only if

$$
\begin{align*}
G_{1}(0) & =G_{2}(0) \tag{13}\\
G_{1}\left(\mathbb{E}_{d}\right) & \subset G_{2}\left(\mathbb{E}_{d}\right)
\end{align*}
$$

In 1992, Ma and Minda [27] developed a consolidated version of the collection $\mathcal{S}^{*}(\pi)$ by using the principle of subordination, and the following is a description of it:

$$
\begin{equation*}
\mathcal{S}^{*}(\pi):=\left\{g \in \mathcal{S}: \frac{z g^{\prime}(z)}{g(z)}<\pi(z),\left(z \in \mathbb{E}_{d}\right)\right\} \tag{14}
\end{equation*}
$$

where the univalent function π satisfies

$$
\begin{align*}
& \pi^{\prime}(0)>0 \tag{15}\\
& \Re e \pi>0 .
\end{align*}
$$

The area $\pi\left(\mathbb{E}_{d}\right)$ is also symmetric about x-axis and has a star-shaped form around the point $\pi(0)=1$. In recent years, a wide variety of the collection \mathcal{S} 's subfamilies have been looked into as particular alternatives for the class $\mathcal{S}^{*}(\pi)$. As an illustration:
(i) $\mathcal{S} \mathcal{S}^{*}(\xi) \equiv \mathcal{S}^{*}(\pi(z))$ with $\pi(z)=((1+z) /(1-z))^{\xi}$ and $0<\xi \leq 1$ (see [28])
(ii) $\mathcal{S}_{\mathscr{L}}^{*} \equiv \mathcal{S}^{*}\left((1+z)^{1 / 2}\right)$ (see [29]), and $\mathcal{S}_{c c r}^{*} \equiv \mathcal{S}^{*}(1+$ $\left.(4 / 3) z+(2 / 3) z^{2}\right)($ see $[30,31])$
(iii) $\mathcal{S}_{\rho}^{*} \equiv \mathcal{S}^{*}\left(1+\sinh ^{-1} z\right) \quad($ see $[32])$, and $\mathcal{S}_{e}^{*} \equiv \mathcal{S}^{*}\left(e^{z}\right)$ (see $[33,34]$)
(iv) $\mathcal{S}_{\cos }^{*} \equiv \mathcal{S}^{*}(\cos z)($ see $[35])$, and $\mathcal{S}_{\text {cosh }}^{*} \equiv \mathcal{S}^{*}(\cosh z)$ (see [36])
(v) $\mathcal{S}_{\text {tanh }}^{*} \equiv \mathcal{S}^{*}(1+\tanh z)($ see $[37,38])$

In [39], Cho et al. developed a novel subfamily of starlike function described by

$$
\begin{equation*}
\mathcal{S}_{\text {sin }}^{*}:=\left\{g \in \mathscr{A}: \frac{z g^{\prime}(z)}{g(z)} \prec 1+\sin z\left(z \in \mathbb{E}_{d}\right)\right\} . \tag{16}
\end{equation*}
$$

From the definition of the family $\mathcal{S}_{\text {sin }}^{*}$, the authors [39] deduced that

$$
\begin{equation*}
g \in \mathcal{S}_{\sin }^{*} \Leftrightarrow g(z)=z \exp \left(\int_{0}^{z} \frac{u(t)-1}{t} d t\right) \tag{17}
\end{equation*}
$$

for some $u(z) \prec u_{0}(z)=1+\sin z$. By substituting

$$
\begin{equation*}
u(z)=u_{0}(z)=1+\sin z \tag{18}
\end{equation*}
$$

in (17), we acquire the function

$$
\begin{equation*}
g_{0}(z)=z \exp \left(\int_{0}^{z} \frac{\sin t}{t} d t\right)=z+z^{2}+\frac{1}{2} z^{3}+\frac{1}{9} z^{4} \cdots \tag{19}
\end{equation*}
$$

which acts as the extremal function in a variety of $\mathcal{S}_{\text {sin }}^{*}$ -family problems. In [40], the authors defined the following subfamily $\mathscr{B} \mathscr{T}_{\text {sin }}$ of holomorphic functions by using (18):

$$
\begin{equation*}
\mathscr{B} \mathscr{T}_{\sin }=\left\{g \in \mathcal{S}: g^{\prime}(z)<1+\sin z\left(z \in \mathbb{E}_{d}\right)\right\} \tag{20}
\end{equation*}
$$

Our primary objective in the current paper is to compute the problems involving the sharp logarithmic coefficients for the class $\mathscr{B} \mathscr{T}_{\text {sin }}$ of bounded turning functions connected to an eight-shaped domain. The sharp bounds of the Zalcman inequality, the Fekete-Szegö type inequality, along with the determinants $\mathscr{D}_{2,1}\left(G_{g} / 2\right)$ and $\mathscr{D}_{2,2}\left(G_{g} / 2\right)$ for the family \mathscr{B} $\mathscr{T}_{\text {sin }}$ are found using logarithmic coefficient entries.

2. Preliminary Lemmas

We must first create the class \mathscr{P} in the below set-builder form in order to declare the Lemmas that are employed in our primary findings:

$$
\begin{equation*}
\mathscr{P}=\left\{p \in \mathscr{H}\left(\mathbb{E}_{d}\right): p(0)=1 \& \Re \mathfrak{e} p>0,\left(z \in \mathbb{E}_{d}\right)\right\} . \tag{21}
\end{equation*}
$$

That is, if $p \in \mathscr{P}$, then it has the series representation

$$
\begin{equation*}
p(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n}\left(z \in \mathbb{E}_{d}\right) . \tag{22}
\end{equation*}
$$

Lemma 1 (see [41]). Let $p \in \mathscr{P}$ and has the series form (22). Then for $x, \delta, \rho \in \overline{\mathbb{E}}_{d}=\mathbb{E}_{d} \cup 1\{1\}$

$$
\begin{gather*}
2 p_{2}=p_{1}^{2}+x\left(4-p_{1}^{2}\right) \tag{23}\\
4 p_{3}=p_{1}^{3}+2\left(4-p_{1}^{2}\right) p_{1} x-p_{1}\left(4-p_{1}^{2}\right) x^{2} \\
+2\left(4-p_{1}^{2}\right)\left(1-|x|^{2}\right) \delta \tag{24}\\
8 p_{4}=p_{1}^{4}+\left(4-p_{1}^{2}\right) x\left[p_{1}^{2}\left(x^{2}-3 x+3\right)+4 x\right] \tag{25}\\
-4\left(4-p_{1}^{2}\right)\left(1-|x|^{2}\right) \\
{\left[p(x-1) \delta+\bar{x} \delta^{2}-\left(1-|\delta|^{2}\right) \rho\right] .} \tag{26}
\end{gather*}
$$

Lemma 2. If $p \in \mathscr{P}$ and has the expansion (22), then

$$
\begin{equation*}
\left|p_{n}\right| \leq 2(n \geq 1) \tag{27}
\end{equation*}
$$

and if $Q \in[0,1]$ and $Q(2 Q-1) \leq R \leq Q$, then

$$
\begin{equation*}
\left|p_{3}-2 Q p_{1} p_{2}+R p_{1}^{3}\right| \leq 2 \tag{28}
\end{equation*}
$$

Also,

$$
\begin{align*}
\left|p_{n+k}-\mu p_{n} p_{k}\right| & \leq 2 \max \{1,|2 \mu-1|\} \\
& =2 \begin{cases}1, & \text { for } 0 \leq \mu \leq 1 \\
|2 \mu-1|, & \text { otherwise }\end{cases} \tag{29}
\end{align*}
$$

The inequalities (27), (28) and (29) are taken from [42, 43], and [44], respectively.

Lemma 3 (see [45]). Let τ, ψ, ρ, and ς satify the inequalities $0<\tau<1,0<\varsigma<1$ and

$$
\begin{align*}
& 8 \varsigma(1-\varsigma)\left((\tau \psi-2 \rho)^{2}+(\tau(\varsigma+\tau)-\psi)^{2}\right) \\
& \quad+\tau(1-\tau)(\psi-2 \varsigma \tau)^{2} \leq 4 \varsigma \tau^{2}(1-\tau)^{2}(1-\varsigma) \tag{30}
\end{align*}
$$

If $p \in \mathscr{P}$ has the form (22), then

$$
\begin{equation*}
\left|\rho p_{1}^{4}+c p_{2}^{2}+2 \tau p_{1} p_{3}-\frac{3}{2} \psi p_{1}^{2} p_{2}-p_{4}\right| \leq 2 \tag{31}
\end{equation*}
$$

3. Coefficient Inequalities for the Class $\mathscr{B} \mathscr{T}_{\text {sin }}$

Theorem 4. If $g \in \mathscr{B T}$ sin and has the series representation (1), then

$$
\begin{align*}
& \left|\beta_{1}\right| \leq \frac{1}{4} \\
& \left|\beta_{2}\right| \leq \frac{1}{6} \\
& \left|\beta_{3}\right| \leq \frac{1}{8} \tag{32}\\
& \left|\beta_{4}\right| \leq \frac{1}{10}
\end{align*}
$$

These bounds are sharp and can be obtained from the following extremal functions

$$
\begin{align*}
& g_{0}(z)=\int_{0}^{z}(1+\sin (t)) d t=z+\frac{1}{2} z^{2}+\cdots \\
& g_{1}(z)=\int_{0}^{z}\left(1+\sin \left(t^{2}\right)\right) d t=z+\frac{1}{3} z^{3}+\cdots \\
& g_{2}(z)=\int_{0}^{z}\left(1+\sin \left(t^{3}\right)\right) d t=z+\frac{1}{4} z^{4}+\cdots \tag{33}\\
& g_{3}(z)=\int_{0}^{z}\left(1+\sin \left(t^{4}\right)\right) d t=z+\frac{1}{5} z^{5}+\cdots
\end{align*}
$$

Proof. Let $g \in \mathscr{B} \mathscr{T}_{\text {sin }}$. Consequently, (20) may be expressed using the Schwarz function as

$$
\begin{equation*}
g^{\prime}(z)=1+\sin (w(z)),\left(z \in \mathbb{E}_{d}\right) \tag{34}
\end{equation*}
$$

The Schwarz function w may be used to express it if p $\in \mathscr{P}$ as follows

$$
\begin{equation*}
p(z)=\frac{1+w(z)}{1-w(z)}=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+p_{4} z^{4}+\cdots \tag{35}
\end{equation*}
$$

equivalently,

$$
\begin{equation*}
w(z)=\frac{p(z)-1}{p(z)+1}=\frac{p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots}{2+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots} \tag{36}
\end{equation*}
$$

From (1), we obtain

$$
\begin{equation*}
g^{\prime}(z)=1+2 a_{2} z+3 a_{3} z^{2}+4 a_{4} z^{3}+\cdots \tag{37}
\end{equation*}
$$

By simplification and using the series expansion of (36), we get

$$
\begin{align*}
1+\sin (w(z))= & 1+\frac{1}{2} p_{1} z+\left(-\frac{1}{4} p_{1}^{2}+\frac{1}{2} p_{2}\right) z^{2} \\
& +\left(-\frac{1}{2} p_{1} p_{2}+\frac{5}{48} p_{1}^{3}+\frac{1}{2} p_{3}\right) z^{3} \\
& +\left(\frac{1}{2} p_{4}-\frac{1}{32} p_{1}^{4}+\frac{5}{16} p_{1}^{2} p_{2}-\frac{1}{2} p_{1} p_{3}-\frac{1}{4} p_{2}^{2}\right) z^{4}+\cdots \tag{38}
\end{align*}
$$

Comparing (37) and (38), we obtain
$a_{2}=\frac{1}{4} p_{1}$,
$a_{3}=-\frac{1}{12} p_{1}^{2}+\frac{1}{6} p_{2}$,
$a_{4}=-\frac{1}{8} p_{1} p_{2}+\frac{5}{192} p_{1}^{3}+\frac{1}{8} p_{3}$,
$a_{5}=\frac{1}{10} p_{4}-\frac{1}{160} p_{1}^{4}+\frac{5}{80} p_{1}^{2} p_{2}-\frac{1}{10} p_{1} p_{3}-\frac{1}{20} p_{2}^{2}$.
Putting (42) in (5), (6), (7), and (8), we obtain
$\beta_{1}=\frac{1}{8} p_{1}$,
$\beta_{2}=-\frac{11}{192} p_{1}^{2}+\frac{1}{12} p_{2}$,
$\beta_{3}=-\frac{1}{12} p_{1} p_{2}+\frac{5}{192} p_{1}^{3}+\frac{1}{16} p_{3}$,
$\beta_{4}=\frac{1}{20} p_{4}-\frac{1033}{92160} p_{1}^{4}+\frac{17}{288} p_{1}^{2} p_{2}-\frac{23}{720} p_{2}^{2}-\frac{21}{320} p_{1} p_{3}$.

For β_{1}, using (27), in (43), we obtain

$$
\begin{equation*}
\left|\beta_{1}\right| \leq \frac{1}{4} \tag{47}
\end{equation*}
$$

For β_{2}, putting (29) in (44), we obtain

$$
\begin{equation*}
\left|\beta_{2}\right| \leq \frac{1}{6} \tag{48}
\end{equation*}
$$

For β_{3}, we can rewrite (45) as

$$
\begin{equation*}
\left|\beta_{3}\right|=\frac{1}{16}\left|\left(p_{3}-\frac{4}{3} p_{1} p_{2}+\frac{5}{12} p_{1}^{3}\right)\right| . \tag{49}
\end{equation*}
$$

Using (28) we get

$$
\begin{equation*}
\left|\beta_{3}\right| \leq \frac{1}{8} \tag{50}
\end{equation*}
$$

For β_{4}, we can rewrite (46) as

$$
\begin{equation*}
\beta_{4}=-\frac{1}{20}\left(\frac{1033}{4608} p_{1}^{4}+\frac{23}{36} p_{2}^{2}+2\left(\frac{21}{32}\right) p_{1} p_{3}-\frac{3}{2}\left(\frac{85}{108}\right) p_{1}^{2} p_{2}-p_{4}\right) . \tag{51}
\end{equation*}
$$

Comparing the right side of (51) with

$$
\begin{equation*}
\left|\varrho p_{1}^{4}+\varsigma p_{2}^{2}+2 \tau p_{1} p_{3}-\frac{3}{2} \psi p_{1}^{2} p_{2}-p_{4}\right| \tag{52}
\end{equation*}
$$

where

$$
\begin{align*}
\mathrm{Q} & =\frac{1033}{4608} \\
\varsigma & =\frac{23}{36} \tag{53}\\
\tau & =\frac{21}{32} \\
\psi & =\frac{85}{108}
\end{align*}
$$

It follows that

$$
\begin{gather*}
8 \varsigma(1-\varsigma)\left((\tau \psi-2 \rho)^{2}+(\tau(\varsigma+\tau)-\psi)^{2}\right) \\
+\tau(1-\tau)(\psi-2 \varsigma \tau)^{2}=0.01647 \\
4 \varsigma \tau^{2}(1-\tau)^{2}(1-\varsigma)=0.04696 \tag{54}
\end{gather*}
$$

Using (30) we deduce that

$$
\begin{equation*}
\left|\beta_{4}\right| \leq \frac{1}{10} . \tag{55}
\end{equation*}
$$

Theorem 5. If g has the series form (1) and belongs to \mathscr{B} $\mathscr{T}_{\sin }$, then

$$
\begin{equation*}
\left|\beta_{2}-\eta \beta_{1}^{2}\right| \leq \max \left\{\frac{1}{6},\left|\frac{1}{48}(3+3|\eta|)\right|\right\} . \tag{56}
\end{equation*}
$$

Equality will be attained by using (5), (6), and

$$
\begin{equation*}
g_{1}(z)=\int_{0}^{z}\left(1+\sin \left(t^{2}\right)\right) d t=z+\frac{1}{3} z^{3}+\cdots \tag{57}
\end{equation*}
$$

Proof. From (43) to (44), we get

$$
\begin{equation*}
\left|\beta_{2}-\eta \beta_{1}^{2}\right|=\left|-\frac{11}{192} p_{1}^{2}+\frac{1}{12} p_{2}-\frac{\eta}{64} p_{1}^{2}\right| . \tag{58}
\end{equation*}
$$

Using (29), we have

$$
\begin{equation*}
\left|\beta_{2}-\eta \beta_{1}^{2}\right| \leq \frac{1}{12} \max \left\{2,2\left|2\left(\frac{11+3 \eta}{16}\right)-1\right|\right\} \tag{59}
\end{equation*}
$$

After the simplification, we get

$$
\begin{equation*}
\left|\beta_{2}-\eta \beta_{1}^{2}\right| \leq \max \left\{\frac{1}{6},\left|\frac{1}{48}(3+3|\eta|)\right|\right\} \tag{60}
\end{equation*}
$$

Theorem 6. If g has the series expansion (1) and belongs to $\mathscr{B} \mathscr{T}_{\text {sin }}$, then

$$
\begin{equation*}
\left|\beta_{1} \beta_{2}-\beta_{3}\right| \leq \frac{1}{8} \tag{61}
\end{equation*}
$$

Equality can be attained by applying (5), (6), (7), and

$$
\begin{equation*}
g_{2}(z)=\int_{0}^{z}\left(1+\sin \left(t^{3}\right)\right) d t=z+\frac{1}{4} z^{4}+\cdots \tag{62}
\end{equation*}
$$

Proof. From (43), (44), and (45), we obtain

$$
\begin{equation*}
\left|\beta_{1} \beta_{2}-\beta_{3}\right|=\left|-\frac{17}{512} p_{1}^{3}+\frac{3}{32} p_{1} p_{2}-\frac{1}{16} p_{3}\right| . \tag{63}
\end{equation*}
$$

After the simplification, we obtain

$$
\begin{equation*}
\left|\beta_{1} \beta_{2}-\beta_{3}\right|=\frac{1}{16}\left|p_{3}-\frac{3}{2} p_{1} p_{2}+\frac{17}{32} p_{1}^{3}\right| . \tag{64}
\end{equation*}
$$

Using (28), we have

$$
\begin{equation*}
\left|\beta_{1} \beta_{2}-\beta_{3}\right| \leq \frac{1}{8} \tag{65}
\end{equation*}
$$

Theorem 7. If $g \in \mathscr{B} \mathscr{T}_{\text {sin }}$ has given by (1), then

$$
\begin{equation*}
\left|\beta_{4}-\beta_{2}^{2}\right| \leq \frac{1}{10} \tag{66}
\end{equation*}
$$

This result is sharp and equality can be achieved by applying (6), (8), and

$$
\begin{equation*}
g_{3}(z)=\int_{0}^{z}\left(1+\sin \left(t^{4}\right)\right) d t=z+\frac{1}{5} z^{5}+\cdots \tag{67}
\end{equation*}
$$

Proof. From (44) to (46), we obtain

$$
\begin{equation*}
\left|\beta_{4}-\beta_{2}^{2}\right|=\left|-\frac{7}{180} p_{2}^{2}+\frac{1}{20} p_{4}+\frac{79}{1152} p_{1}^{2} p_{2}-\frac{2671}{184320} p_{1}^{4}-\frac{21}{320} p_{1} p_{3}\right| . \tag{68}
\end{equation*}
$$

After the simplification, we obtain
$\left|\beta_{4}-\beta_{2}^{2}\right|=-\frac{1}{20}\left|\frac{2671}{9216} p_{1}^{4}+\frac{7}{9} p_{2}^{2}+2\left(\frac{21}{32}\right) p_{1} p_{3}-\frac{3}{2}\left(\frac{395}{432}\right) p_{1}^{2} p_{2}-p_{4}\right|$.

Comparing the right side of (69)with

$$
\begin{equation*}
\left|\varrho p_{1}^{4}+\varsigma p_{2}^{2}+2 \tau p_{1} p_{3}-\frac{3}{2} \psi p_{1}^{2} p_{2}-p_{4}\right| \tag{70}
\end{equation*}
$$

where

$$
\begin{gather*}
\mathrm{Q}=\frac{2671}{9216}, \\
\varsigma=\frac{7}{9} \tag{71}\\
\tau=\frac{21}{32} \\
\psi=\frac{395}{432}
\end{gather*}
$$

It follows that

$$
\begin{gather*}
8 \varsigma(1-\varsigma)\left((\tau \psi-2 \rho)^{2}+(\tau(\varsigma+\tau)-\psi)^{2}\right) \\
+\tau(1-\tau)(\psi-2 \varsigma \tau)^{2}=0.004121 \\
4 \varsigma \tau^{2}(1-\tau)^{2}(1-\varsigma)=0.03518 \tag{72}
\end{gather*}
$$

Using (30) we deduce that

$$
\begin{equation*}
\left|\beta_{4}-\beta_{2}^{2}\right| \leq \frac{1}{10} \tag{73}
\end{equation*}
$$

4. Hankel Determinant with
 Logarithmic Coefficients

Theorem 8. Let $g \in \mathscr{B} \mathscr{T}_{\text {sin }}$ and be of the form (1). Then

$$
\begin{equation*}
\left|\mathscr{D}_{2,1}\left(\frac{G_{g}}{2}\right)\right|=\left|\beta_{1} \beta_{3}-\beta_{2}^{2}\right| \leq \frac{1}{36} . \tag{74}
\end{equation*}
$$

The above stated result is sharp. Equality can be attained with the use of (5), (6), (7), and

$$
\begin{equation*}
g_{1}(z)=\int_{0}^{z}\left(1+\sin \left(t^{2}\right)\right) d t=z+\frac{1}{3} z^{3}+\cdots \tag{75}
\end{equation*}
$$

Proof. Employing (43), (44), and (45), we obtain

$$
\begin{equation*}
\mathscr{D}_{2,1}\left(\frac{G_{g}}{2}\right)=\frac{1}{128} p_{1} p_{3}-\frac{1}{36864} p_{1}^{4}-\frac{1}{144} p_{2}^{2}-\frac{1}{1152} p_{1}^{2} p_{2} . \tag{76}
\end{equation*}
$$

Using (23) and (24) along with the assumption that $p_{1}=p, p \in[0,2]$, we get

$$
\begin{align*}
\left|\mathscr{D}_{2,1}\left(\frac{G_{g}}{2}\right)\right|= & \left\lvert\,-\frac{1}{576}\left(4-p^{2}\right)^{2} x^{2}-\frac{1}{4096} p^{4}\right. \\
& -\frac{1}{512} p^{2}\left(4-p^{2}\right) x^{2} \tag{77}\\
& \left.+\frac{1}{256}\left(4-p^{2}\right)\left(1-|x|^{2}\right) p \delta \right\rvert\, .
\end{align*}
$$

Applying triangle inequality and assuming $|\delta| \leq 1$, $|x|=J, J \leq 1$ and also setting $p \in[0,2]$, we have

$$
\begin{align*}
\left|\mathscr{D}_{2,1}\left(\frac{G_{g}}{2}\right)\right| \leq & \frac{1}{576}\left(4-p^{2}\right)^{2} J^{2}+\frac{1}{4096} p^{4} \\
& +\frac{1}{512} p^{2}\left(4-p^{2}\right) J^{2} \tag{78}\\
& +\frac{1}{256}\left(4-p^{2}\right)\left(1-J^{2}\right) p:=\phi(p, J)
\end{align*}
$$

A little exercise can verify that $\phi^{\prime}(p, J) \geq 0$ in $[0,1]$, and this implies $\phi(p, J) \leq \phi(p, 1)$. Thus, by choosing $J=1$, we achieve

$$
\begin{align*}
\left|\mathscr{D}_{2,1}\left(\frac{G_{g}}{2}\right)\right| & \leq \frac{1}{576}\left(4-p^{2}\right)^{2}+\frac{1}{4096} p^{4}+\frac{1}{512} p^{2}\left(4-p^{2}\right) \\
& :=\phi(p, 1) \tag{79}
\end{align*}
$$

Now, since $\phi^{\prime}(p, 1)<0$, we see that $\phi(p, 1)$ is a decreasing function, and so its maximum value appears at the lowest point $p=0$, which is

$$
\begin{equation*}
\left|\mathscr{D}_{2,1}\left(\frac{G_{g}}{2}\right)\right| \leq \frac{1}{36} . \tag{80}
\end{equation*}
$$

Theorem 9. If $g \in \mathscr{B} \mathscr{T}_{\text {sin }}$ and has the form (1), then

$$
\begin{equation*}
\left|\mathscr{D}_{2,2}\left(\frac{G_{g}}{2}\right)\right| \leq \frac{1}{64} . \tag{81}
\end{equation*}
$$

The inequality is sharp and can be obtained by using (6), (7), (8), and

$$
\begin{equation*}
g_{2}(z)=\int_{0}^{z}\left(1+\sin \left(t^{3}\right)\right) d t=z+\frac{1}{4} z^{4}+\cdots \tag{82}
\end{equation*}
$$

Proof. The determinant $\mathscr{D}_{2,2}\left(G_{g} / 2\right)$ can be written as

$$
\begin{equation*}
\mathscr{D}_{2,2}\left(\frac{G_{g}}{2}\right)=\beta_{2} \beta_{4}-\beta_{3}^{2} \tag{83}
\end{equation*}
$$

Putting (44), (45), and (46), with $p_{1}=p$, we obtain

$$
\begin{align*}
\mathscr{D}_{2,2}\left(\frac{G_{g}}{2}\right)= & \frac{1}{17694720}\left(432 p^{4} p_{2}-3456 p^{2} p_{2}^{2}-637 p^{6}\right. \\
& -50688 p^{2} p_{4}+8928 p^{3} p_{3}-69120 p_{3}^{2} \tag{84}\\
& \left.-47104 p_{2}^{3}+73728 p_{2} p_{4}+87552 p p_{2} p_{3}\right)
\end{align*}
$$

Let $v=4-p^{2}$ in (23), (24), and (25). Now, applying the simplest version of the given lemma, we get

$$
\begin{gathered}
432 p^{4} p_{2}=216\left(p^{6}+p^{4} v x\right) \\
3456 p^{2} p_{2}^{2}=1728 p^{4} v x+864 p^{2} v^{2} x^{2}+864 p^{6} \\
50688 p^{2} p_{4}= \\
6336 p^{6}-25344 p^{3} v\left(1-|x|^{2}\right) \delta x \\
\\
-25344 p^{2} v\left(1-|x|^{2}\right) \bar{x} \delta^{2}+25344 v p^{2} x^{2} \\
+ \\
+25344 p^{3} v\left(1-|x|^{2}\right) \delta+19008 p^{4} x v \\
+19008 p^{4} x v+25344 p^{2} v\left(1-|x|^{2}\right)\left(1-|\delta|^{2}\right) \rho \\
\\
+6336 p^{4} v x^{3},
\end{gathered}
$$

$$
\begin{aligned}
8928 p^{3} p_{3}= & 4464 p^{4} x v-2232 p^{4} v x^{2}+2232 p^{6} \\
& +4464 p^{3} v\left(1-|x|^{2}\right) \delta
\end{aligned}
$$

$$
\begin{aligned}
69120 p_{3}^{2}= & -17280 x^{2} v^{2}\left(1-|x|^{2}\right) p \delta-8640 p^{4} v x^{2} \\
& +4320 p^{6}+4320 x^{4} v^{2} p^{2}+17280 p^{3} v\left(1-|x|^{2}\right) \delta \\
& +17280 v^{2}\left(1-|x|^{2}\right)^{2} \delta^{2}+17280 p^{2} x^{2} v^{2} \\
& +17280 p^{4} x v+34560 p x v^{2}\left(1-|x|^{2}\right) \delta \\
& -17280 x^{3} v^{2} p^{2},
\end{aligned}
$$

$$
47104 p_{2}^{3}=5888\left(v^{3} x^{3}+p^{6}\right)+17664\left(p^{4} v x+p^{2} v^{2} x^{2}\right)
$$

$73728 p_{2} p_{4}=18432 x^{3} v^{2}+4608 p^{6}+18432 v p^{2} x^{2}+4608 p^{4} v x^{3}$ $+4608 x^{4} v^{2} p^{2}+18432 p^{4} x v$
$+18432 p x v^{2}\left(1-|x|^{2}\right) \delta-13824 p^{4} v x^{2}$
$-13824 x^{3} v^{2} p^{2}-18432 x v^{2} \bar{x}\left(1-|x|^{2}\right) \bar{x} \delta^{2}$
$-18432 p^{2} v\left(1-|x|^{2}\right) \bar{x} \delta^{2}+13824 p^{2} x^{2} v^{2}$
$-18432 p^{3} v\left(1-|x|^{2}\right) \delta x+18432 p^{3} v\left(1-|x|^{2}\right) \delta$
$+18432 x v^{2}\left(1-|x|^{2}\right)$,

$$
\left(1-|\delta|^{2}\right) \rho+18432 p^{2} v\left(1-|x|^{2}\right)\left(1-|\delta|^{2}\right) \rho
$$

$$
-18432 x^{2} v^{2}\left(1-|x|^{2}\right) p \delta
$$

$87552 p p_{2} p_{3}=21888 p x v^{2}\left(1-|x|^{2}\right) \delta-10944 x^{3} v^{2} p^{2}$
$+32832 p^{4} x v-10944 p^{4} v x^{2}$
$+21888 p^{3} v\left(1-|x|^{2}\right) \delta+10944 p^{6}$

$$
\begin{equation*}
+21888 p^{2} x^{2} v^{2} \tag{85}
\end{equation*}
$$

Putting the above expressions in (84), we get,

$$
\begin{align*}
\mathscr{D}_{2,2}\left(\frac{G_{g}}{2}\right)= & \frac{1}{17694720}\left\{-6912 v p^{2} x^{2}-5888 x^{3} v^{3}-45 p^{6}\right. \\
& +2160 p^{3} v\left(1-|x|^{2}\right) \delta+264 p^{4} x v-1728 p^{4} v x^{3} \\
& +288 x^{4} v^{2} p^{2}-96 p^{2} x^{2} v^{2}+18432 x^{3} v^{2} \\
& -7488 x^{3} v^{2} p^{2}+6912 p^{3} v\left(1-|x|^{2}\right) \delta x \\
& +6912 p^{2} v\left(1-|x|^{2}\right) \bar{x} \delta^{2}+5760 p x v^{2}\left(1-|x|^{2}\right) \delta \\
& +648 p^{4} v x^{2}+18432 x v^{2}\left(1-|x|^{2}\right)\left(1-|\delta|^{2}\right) \rho \\
& -1152 x^{2} v^{2}\left(1-|x|^{2}\right) p \delta-18432 x v^{2} \\
& \cdot\left(1-|x|^{2}\right) \bar{x} \delta^{2}-17280 v^{2}\left(1-|x|^{2}\right)^{2} \delta^{2} \\
& \left.-6912 p^{2} v\left(1-|x|^{2}\right)\left(1-|\delta|^{2}\right) \rho\right\} . \tag{86}
\end{align*}
$$

Since $v=4-p^{2}$,

$$
\begin{equation*}
\mathscr{D}_{2,2}\left(\frac{G_{g}}{2}\right)=\frac{1}{17694720}\left(q_{1}(p, x)+q_{2}(p, x) \delta+q_{3}(p, x) \delta^{2}+q_{4}(p, x, \delta) \rho\right), \tag{87}
\end{equation*}
$$

where $\rho, x, \delta \in \bar{U}_{d}$, and

$$
\begin{align*}
q_{1}(p, x)= & \left(4-p^{2}\right)\left[(4 - p ^ { 2 }) \left(288 x^{4} p^{2}-1600 x^{3} p^{2}-5120 x^{3}\right.\right. \\
& \left.-96 x^{2} p^{2}\right)-1728 x^{3} p^{4}+264 x p^{4}-6912 x^{2} p^{2} \\
& \left.+648 x^{2} p^{4}\right]-45 p^{6}, \\
q_{2}(p, x)= & \left(4-p^{2}\right)\left(1-|x|^{2}\right)\left[\left(4-p^{2}\right)\left(5760 x p-1152 x^{2} p\right)\right. \\
& \left.+2160 p^{3}+6912 x p^{3}\right], \\
q_{3}(p, x)= & \left(4-p^{2}\right)\left(1-|x|^{2}\right)\left[\left(4-p^{2}\right)\left(-17280-1152|x|^{2}\right)\right. \\
& \left.+6912 \bar{x} p^{2}\right], \\
q_{4}(p, x, \delta)= & \left(4-p^{2}\right)\left(1-|x|^{2}\right)\left(1-|\delta|^{2}\right) \\
& \cdot\left[18432 x\left(4-p^{2}\right)-6912 p^{2}\right] . \tag{88}
\end{align*}
$$

Now, by the virtue of $|\delta|=y,|x|=x$, and $|\rho| \leq 1$, we get

$$
\begin{align*}
\left|\mathscr{D}_{2,2}\left(\frac{G_{g}}{2}\right)\right| \leq & \frac{1}{17694720}\left(\left|q_{1}(p, x)\right|+\left|q_{2}(p, x)\right| y\right. \\
& \left.+\left|q_{3}(p, x)\right| y^{2}+\left|q_{4}(p, x, \delta)\right|\right) \leq \frac{T(p, x, y)}{17694720} \tag{89}
\end{align*}
$$

where

$$
\begin{align*}
T(p, x, y)= & m_{1}(p, x)+m_{2}(p, x) y+m_{3}(p, x) y^{2} \tag{90}\\
& +m_{4}(p, x)\left(1-y^{2}\right)
\end{align*}
$$

with

$$
\begin{align*}
m_{1}(p, x)= & \left(4-p^{2}\right)\left[(4 - p ^ { 2 }) \left(288 x^{4} p^{2}+1600 x^{3} p^{2}+5120 x^{3}\right.\right. \\
& \left.+96 x^{2} p^{2}\right)+1728 x^{3} p^{4}+264 x p^{4}+6912 x^{2} p^{2} \\
& \left.+648 x^{2} p^{4}\right]+45 p^{6} \\
m_{2}(p, x)= & \left(4-p^{2}\right)\left(1-x^{2}\right)\left[\left(4-p^{2}\right)\left(5760 x p+1152 x^{2} p\right)\right. \\
& \left.+2160 p^{3}+6912 x p^{3}\right] \\
m_{3}(p, x)= & \left(4-p^{2}\right)\left(1-x^{2}\right)\left[\left(4-p^{2}\right)\left(17280+1152 x^{2}\right)\right. \\
& \left.+6912 x p^{2}\right] \\
m_{4}(p, x)= & \left(4-p^{2}\right)\left(1-x^{2}\right)\left[18432 x\left(4-p^{2}\right)+6912 p^{2}\right] . \tag{91}
\end{align*}
$$

To illustrate the sharp bounds of the given problem, we must maximize $T(p, x, y)$ in the closed cuboid $Y:[0,2] \times$ $[0,1] \times[0,1]$.
(1) Interior points of cuboid Y

Let us choose $(p, x, y) \in(0,2) \times(0,1) \times(0,1)$. Then simple calculation yields

$$
\begin{align*}
\frac{\partial T}{\partial y}= & 144\left(4-p^{2}\right)\left(1-x^{2}\right)\left[16 y(x-1)\left(6 p^{2}+(x-15)\left(4-p^{2}\right)\right)\right. \\
& \left.+8 p\left(x(x+5)\left(4-p^{2}\right)+p^{2}\left(6 x+\frac{15}{8}\right)\right)\right] \tag{92}
\end{align*}
$$

Putting $\partial T / \partial y=0$, we obtain

$$
\begin{equation*}
y=\frac{8 p\left(x(x+5)\left(4-p^{2}\right)+p^{2}(6 x+15 / 8)\right)}{16(x-1)\left(-6 p^{2}+(15-x)\left(4-p^{2}\right)\right)}=y_{0} \tag{93}
\end{equation*}
$$

If $y_{0} \in Y$ is a critical point, then $y_{0} \in(0,1)$, and it is applicable only if

$$
\begin{gather*}
8 p x(x+5)\left(4-p^{2}\right)+p^{3}(48 x+15)+16(1-x)(15-x) \\
\cdot\left(4-p^{2}\right)<96 p^{2}(1-x) \tag{94}
\end{gather*}
$$

$$
\begin{equation*}
p^{2}>\frac{4(15-x)}{21-x} \tag{95}
\end{equation*}
$$

To check critical points existence, we must find solutions that fulfill both constraints (94) and (95).

Let $k(x)=(4(15-x)) /(21-x)$. As $k^{\prime}(x)<0$ for all x $\in(0,1)$, it is evident that $k(x)$ is decreasing in $(0,1)$. Hence $p^{2}>14 / 5$. It is easy to showcase that the inequality (94) does not hold in this scenario for all $x \in[2 / 5,1)$. As a result, $T(p, x, y)$ does not have a critical point in $(0,2) \times$ $[2 / 5,1) \times(0,1)$. Assume a critical point $(\tilde{p}, \tilde{x}, \tilde{y})$ of T exists inside the interior of the cuboid Y, it must unquestionably fulfil that $\tilde{x}<2 / 5$.

From the arguments above, it is undeniable that $\tilde{p}^{2} \geq$ $292 / 103$ and $\tilde{y} \in(0,1)$. Now let us establish that $T(\tilde{p}, \tilde{x}, \tilde{y})$ <276480. For $(p, x, y) \in\left((292 / 103)^{1 / 2}, 2\right) \times(0,2 / 5) \times(0,1)$, by invoking $x<2 / 5$ and $1-x^{2}<1$, it is not hard to observe that

$$
\begin{align*}
m_{1}(p, x) \leq & \left(4-p^{2}\right)\left[(4 - p ^ { 2 }) \left(288\left(\frac{2}{5}\right)^{4} p^{2}+1600\left(\frac{2}{5}\right)^{3} p^{2}\right.\right. \\
& +5120\left(\frac{2}{5}\right)^{3}+96\left(\frac{2}{5}\right)^{2} p^{2}+1728\left(\frac{2}{5}\right)^{3} p^{4} \\
& \left.\left.+264\left(\frac{2}{5}\right) p^{4}+6912\left(\frac{2}{5}\right)^{2} p^{2}+648\left(\frac{2}{5}\right)^{2} p^{4}\right)\right] \\
& +45 p^{6}=\left(4-p^{2}\right)\left(\frac{799232}{625} p^{2}+\frac{121712}{625} p^{4}\right. \\
& \left.+\frac{819200}{625}\right)+45 p^{6}:=\Theta_{1}(p), \\
m_{2}(p, x) \leq & \left(4-p^{2}\right)\left[\left(4-p^{2}\right)\left(5760\left(\frac{2}{5}\right) p+1152\left(\frac{2}{5}\right)^{2} p\right)\right. \\
& \left.+2160 p^{3}+6912\left(\frac{2}{5}\right) p^{3}\right] \\
= & \left(4-p^{2}\right)\left(\frac{248832}{25} p+\frac{60912}{25} p^{3}\right):=\Theta_{2}(p), \\
m_{3}(p, x) \leq & \left(4-p^{2}\right)\left[\left(4-p^{2}\right)\left(17280+1152\left(\frac{2}{5}\right)^{2}\right)\right. \\
& \left.+6912\left(\frac{2}{5}\right) p^{2}\right] \\
= & \left(4-p^{2}\right)\left(\frac{1746432}{25}-\frac{367488}{25} p^{2}\right):=\Theta_{3}(p), \\
m_{4}(p, x) \leq & \left(4-p^{2}\right)\left[18432\left(\frac{2}{5}\right)\left(4-p^{2}\right)+\frac{147456}{5}-\frac{2304}{5} p^{2}\right):=\Theta_{4}(p) . \tag{96}\\
& \left(96 p^{2}\right]
\end{align*}
$$

Therefore, we have

$$
\begin{align*}
T(p, x, y) \leq & \Theta_{1}(p)+\Theta_{4}(p)+\Theta_{2}(p) y \\
& +\left[\Theta_{3}(p)-\Theta_{4}(p)\right] y^{2}:=\Gamma(p, y) \tag{97}
\end{align*}
$$

Obviously, it can be seen that

$$
\begin{gather*}
\frac{\partial \Gamma}{\partial y}=\Theta_{2}(p)+2 y\left[\Theta_{3}(p)-\Theta_{4}(p)\right] \\
\frac{\partial^{2} \Gamma}{\partial y^{2}}=2\left[\Theta_{3}(p)-\Theta_{4}(p)\right]=2\left(4-p^{2}\right)\left(\frac{1009152}{25}-\frac{355968}{25} p^{2}\right) \tag{98}
\end{gather*}
$$

Since $\Theta_{3}(p)-\Theta_{4}(p) \leq 0$ for $p \in\left((292 / 103)^{1 / 2}, 2\right)$, we obtain that $\partial^{2} \Gamma / \partial y^{2} \leq 0$ for $y \in(0,1)$, and thus, it follows that

$$
\begin{align*}
\frac{\partial \Gamma}{\partial y} \geq\left.\frac{\partial \Gamma}{\partial y}\right|_{y=1}= & \left(4-p^{2}\right)\left(-\frac{711936}{25} p^{2}+\frac{60912}{25} p^{3}\right. \\
& \left.+\frac{2018304}{25}+\frac{248832}{25} p\right) \geq 0 \tag{99}
\end{align*}
$$

Therefore, we have

$$
\begin{equation*}
\Gamma(p, y) \leq \Gamma(p, 1)=\Theta_{1}(p)+\Theta_{2}(p)+\Theta_{3}(p):=\iota(p) \tag{100}
\end{equation*}
$$

It is easy to be calculated that $\iota(p)$ attains its maximum value 74510.30 at $p \approx 1.68373$. Thus, we have
$T(p, x, y)<276480,(p, x, y) \in\left(\sqrt{\frac{292}{103}}, 2\right) \times\left(0, \frac{2}{5}\right) \times(0,1)$.

Hence, $T(\tilde{p}, \tilde{x}, \tilde{y})<276480$. This implies that T is less than 276480 at all the critical points in the interior of Y. Therefore, T has no optimal solution in the interior of Y.
(2) Interior of all the six faces of cuboid Y :
(i) On the face $p=0, T(p, x, y)$ yields

$$
\begin{align*}
b_{1}(x, y)= & T(0, x, y)=2048\left(9\left(1-x^{2}\right)\right. \\
& \left.\cdot\left(16 x+(x-15)(x-1) y^{2}\right)+40 x^{3}\right), x, y \in(0,1) . \tag{102}
\end{align*}
$$

Differentiating $b_{1}(x, y)$ with respect to y, we have

$$
\begin{equation*}
\frac{\partial b_{1}}{\partial y}=36864 y\left(1-x^{2}\right)(x-15)(x-1), x, y \in(0,1) \tag{103}
\end{equation*}
$$

Thus, $b_{1}(x, y)$ has no critical point in the interval $(0,1)$ $\times(0,1)$.
(ii) On the face $p=2, T(p, x, y)$ becomes

$$
\begin{equation*}
T(2, x, y)=2880 \tag{104}
\end{equation*}
$$

(iii) On the face $x=0, T(p, x, y)$ reduces to

$$
\begin{align*}
b_{2}(p, y)= & T(p, 0, y)=\left(4-p^{2}\right)\left(6912 p^{2}+2160 p^{3} y\right. \\
& \left.-24192 y^{2} p^{2}+69120 y^{2}\right)+45 p^{6} \tag{105}
\end{align*}
$$

Differentiating $b_{2}(p, y)$ partially with respect to y, we have

$$
\begin{equation*}
\frac{\partial b_{2}}{\partial y}=\left(4-p^{2}\right)\left(2160 p^{3}-48384 y p^{2}+138240 y\right) \tag{106}
\end{equation*}
$$

Solving $\partial b_{2} / \partial y=0$, we obtain

$$
\begin{equation*}
y=\frac{5 p^{3}}{16\left(7 p^{2}-20\right)}=y_{1} \tag{107}
\end{equation*}
$$

For the given range of y, y_{1} should belong to $(0,1)$, which is possible only if $p>p_{0}, p_{0} \approx 1.7609$. Also derivative of $b_{2}(p, y)$ partially with respect to p is

$$
\begin{align*}
\frac{\partial b_{2}}{\partial p}= & -4320 p^{4} y-13824 p^{3}+\left(4-p^{2}\right) \\
& \cdot\left(-48384 y^{2} p+6480 y p^{2}+13824 p\right)+48384 y^{2} p^{3} \\
& -138240 y^{2} p+270 p^{5} . \tag{108}
\end{align*}
$$

Putting the value of y in (108), with $\partial b_{2} / \partial p=0$ and simplifying, we obtain

$$
\begin{equation*}
\frac{\partial b_{2}}{\partial p}=-27\left(49576 p^{7}+35 p^{9}-385072 p^{5}-819200 p+983040 p^{3}\right)=0 . \tag{109}
\end{equation*}
$$

A calculation gives the solution of (109) in the interval $(0,1)$, that is, $p \approx 1.3851$. Thus, $b_{2}(p, y)$ has no optimal point in the interval $(0,2) \times(0,1)$.
(iv) On the face $x=1, T(p, x, y)$ becomes

$$
\begin{align*}
b_{3}(p, y)= & T(p, 1, y)=45 p^{6}+\left(4-p^{2}\right) \\
& \cdot\left(\left(4-p^{2}\right)\left(1984 p^{2}+5120\right)+6912 p^{2}+2640 p^{4}\right) \tag{110}
\end{align*}
$$

Then

$$
\begin{equation*}
\frac{\partial b_{3}}{\partial p}=-3666 p^{5}-28416 p^{3}+36864 p \tag{111}
\end{equation*}
$$

By setting $\partial b_{3} / \partial p=0$, we get the critical point $p \approx 1.0639$ at which $b_{3}(p, y)$ attains its maximum value, which is given below

$$
\begin{equation*}
T(p, 1, y) \leq 92795.48842 \tag{112}
\end{equation*}
$$

(v) On the face $y=0, T(p, x, y)$ yields

$$
\begin{align*}
b_{4}(p, x)= & T(p, x, 0)=-128 p^{6} x^{3}+288 p^{6} x^{4}-552 p^{6} x^{2} \\
& +19488 p^{4} x-264 p^{6} x-147456 p^{2} x+45 p^{6} \\
& +4608 p^{2} x^{4}+294912 x-19200 p^{4} x^{3}+1536 p^{2} x^{2} \\
& +132096 p^{2} x^{3}+1824 p^{4} x^{2}-6912 p^{4}+27648 p^{2} \\
& -2304 p^{4} x^{4}-212992 x^{3} . \tag{113}
\end{align*}
$$

A numerical computation shows that the solution for the system of equations

$$
\begin{align*}
& \frac{\partial b_{4}}{\partial p}=0 \tag{114}\\
& \frac{\partial b_{4}}{\partial x}=0
\end{align*}
$$

does not exists in the interval $(0,2) \times(0,1)$. Hence, $b_{4}(p, x)$ has no optimal solution in the interval $(0,2) \times(0,1)$.
(vi) On the face $y=1, T(p, x, y)$ reduces to

$$
\begin{align*}
b_{5}(p, x)= & T(p, x, 1)=45 p^{6}+288 p^{6} x^{4}+9216 p^{3} x^{4} \\
& +1152 p^{5} x^{3}-2160 p^{5}-264 p^{6} x-1152 p^{5} x^{4} \\
& +18432 p^{3} x^{3}+3312 p^{5} x^{2}+6144 p^{4} x^{3}-128 p^{6} x^{3} \\
& -43008 p^{2} x^{3}-3456 p^{4} x^{4}-552 p^{6} x^{2}-1152 p^{5} x \\
& -138240 p^{2}-21216 p^{4} x^{2}+276480+13824 p^{2} x^{4} \\
& +81920 x^{3}-5856 p^{4} x-92160 p x^{3}-17856 p^{3} x^{2} \\
& -18432 p x^{4}-258048 x^{2}+92160 p x-18432 x^{4} \\
& -18432 p^{3} x+8640 p^{3}+18432 p x^{2}+17280 p^{4} \\
& +27648 p^{2} x+158208 p^{2} x^{2} . \tag{115}
\end{align*}
$$

As in the above case, we conclude the same result for the face $y=0$, that is, system of equations

$$
\begin{align*}
& \frac{\partial b_{5}}{\partial p}=0 \\
& \frac{\partial b_{5}}{\partial x}=0 \tag{116}
\end{align*}
$$

has no solution in the interval $(0,2) \times(0,1)$.
(3) On the edges of cuboid Y :
(i) On the edge $x=0$ and $y=0, T(p, x, y)$ reduces to

$$
\begin{equation*}
T(p, 0,0)=-6912 p^{4}+45 p^{6}+27648 p^{2}=b_{6}(p) \tag{117}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
b_{6}^{\prime}(p)=-27648 p^{3}+270 p^{5}+55296 p \tag{118}
\end{equation*}
$$

We see that $b_{6}^{\prime}(p)=0$ for the critical point $p_{0} \approx 1.4285$ at which $b_{6}(p)$ obtain its maximum value, which is given by

$$
\begin{equation*}
T(p, 0,0) \leq 28018.97 \tag{119}
\end{equation*}
$$

(ii) On the edge $x=0$ and $y=1, T(p, x, y)$ becomes

$$
\begin{align*}
T(p, 0,1)= & -2160 p^{5}-138240 p^{2}+17280 p^{4}+45 p^{6} \\
& +8640 p^{3}+276480=b_{7}(p) \tag{120}
\end{align*}
$$

Differentiating $b_{7}(p)$ with respect to p, we have

$$
\begin{equation*}
b_{7}^{\prime}(p)=-10800 p^{4}-276480 p+69120 p^{3}+270 p^{5}+25920 p^{2} \tag{121}
\end{equation*}
$$

We know that $b_{7}^{\prime}(p)<0$ in $[0,2]$ follows that $b_{7}(p)$ is decreasing over $[0,2]$. Therefore, $b_{7}(p)$ gets its maxima at $p=0$. Hence

$$
\begin{equation*}
T(p, 0,1) \leq 276480 \tag{122}
\end{equation*}
$$

(iii) On the edge $p=0$ and $x=0, T(p, x, y)$ reduces to

$$
\begin{equation*}
T(0,0, y)=276480 y^{2}=b_{8}(y) \tag{123}
\end{equation*}
$$

Noting that $b_{8}^{\prime}(y)>0$ in $[0,1]$ shows that $b_{8}(y)$ is increasing over $[0,1]$. Thus, $b_{8}(y)$ gets its maxima at $y=1$. Thus, we have

$$
\begin{equation*}
T(0,0, y) \leq 276480 \tag{124}
\end{equation*}
$$

(iv) On the edges $T(p, 1,1)$ and $T(p, 1,0)$

Since $T(p, 1, y)$ is free of y, therefore

$$
\begin{align*}
T(p, 1,1)= & T(p, 1,0)=-7104 p^{4}-611 p^{6}+81920 \tag{125}\\
& +18432 p^{2}=b_{9}(p)
\end{align*}
$$

Then

$$
\begin{equation*}
b_{9}^{\prime}(p)=-28416 p^{3}-3666 p^{5}+36864 p \tag{126}
\end{equation*}
$$

By putting $b_{9}^{\prime}(p)=0$, we obtain the critical point $p_{0} \approx$ 1.0639 at which $b_{9}(p)$ attains its maximum value, which is given by

$$
\begin{equation*}
T(p, 1,1)=T(p, 1,0) \leq 92795.48 \tag{127}
\end{equation*}
$$

(v) On the edge $p=0$ and $x=1, T(p, x, y)$ becomes

$$
\begin{equation*}
T(0,1, y)=81920 \tag{128}
\end{equation*}
$$

(vi) On the edge $p=2, T(p, x, y)$ reduces to

$$
\begin{equation*}
T(2, x, y)=2880 \tag{129}
\end{equation*}
$$

$T(2, x, y)$ is independent of x and y; therefore

$$
\begin{equation*}
T(2, x, 0)=T(2, x, 1)=T(2,0, y)=T(2,1, y)=2880 \tag{130}
\end{equation*}
$$

(vii) On the edge $p=0$ and $y=1, T(p, x, y)$ takes the form
$T(0, x, 1)=81920 x^{3}-18432 x^{4}+276480-258048 x^{2}=b_{10}(x)$.

It is clear that

$$
\begin{equation*}
b_{10}^{\prime}(x)=245760 x^{2}-73728 x^{3}-516096 x \tag{132}
\end{equation*}
$$

We see that $b_{10}^{\prime}(x)<0$ in $[0,1]$ shows that $b_{10}(x)$ is decreasing over $[0,1]$. Thus, $b_{10}(x)$ gets its maxima at $x=0$. Hence, we have

$$
\begin{equation*}
T(0, x, 1) \leq 276480 \tag{133}
\end{equation*}
$$

(viii) On the edge $p=0$ and $y=0, T(p, x, y)$ yields

$$
\begin{equation*}
T(0, x, 0)=294912 x-212992 x^{3}=b_{11}(x) \tag{134}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
b_{11}^{\prime}(x)=294912-638976 x^{2} \tag{135}
\end{equation*}
$$

By taking $b_{11}^{\prime}(x)=0$, we obtain the critical point $x_{0} \approx$ 0.6793 at which $b_{11}(x)$ attains its maximum value, which is given by

$$
\begin{equation*}
T(0, x, 0) \leq 133568.833 \tag{136}
\end{equation*}
$$

Hence, from the above cases we deduce that

$$
\begin{equation*}
T(p, x, y) \leq 276480 \text { on }[0,2] \times[0,1] \times[0,1] \tag{137}
\end{equation*}
$$

From (89)we have

$$
\begin{equation*}
\left|\mathscr{D}_{2,2}\left(\frac{G_{g}}{2}\right)\right| \leq \frac{T(p, x, y)}{17694720} \leq \frac{1}{64} \tag{138}
\end{equation*}
$$

If $g \in \mathscr{B} \mathscr{T}_{\text {sin }}$, then sharp bound for this Hankel determinant is determined by

$$
\begin{equation*}
\left|\mathscr{D}_{2,2}\left(\frac{G_{g}}{2}\right)\right|=\frac{1}{64} \approx 0.0156 \tag{139}
\end{equation*}
$$

Thus, we have completed the proof.

5. Conclusion

In our current investigation, we have considered a class \mathscr{B} $\mathscr{T}_{\text {sin }}$ of bounded turning functions associated with an eight-shaped domain. For such a class, we studied some interesting problems involving logarithmic coefficients. The Zalcman inequality, the Fekete-Szegö inequality, and the determinants $\mathscr{D}_{2,2}\left(G_{g} / 2\right)$ and $\mathscr{D}_{2,1}\left(G_{g} / 2\right)$ for the family \mathscr{B} $\mathscr{T}_{\text {sin }}$ have been studied here in this article. All the obtained results are proven to be the best possible.

Data Availability

The numerical data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this article.

Acknowledgments

The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work under Grant Code number: 22UQU4310396DSR23.

References

[1] L. De Branges, "A proof of the Bieberbach conjecture," Acta Mathematica, vol. 154, no. 1-2, pp. 137-152, 1985.
[2] F. G. Avkhadiev and K. J. Wirths, Schwarz-Pick Type Inequalities, Springer Science \& Business Media, 2009.
[3] C. H. FitzGerald and C. Pommerenke, "The de Branges theorem on univalent functions," Transactions of the American Mathematical Society, vol. 290, no. 2, pp. 683-690, 1985.
[4] C. H. FitzGerald and C. Pommerenke, "A theorem of de Branges on univalent functions," Serdica, vol. 13, no. 1, pp. 21-25, 1987.
[5] I. P. Kayumov, "On Brennan's conjecture for a special class of functions," Mathematical Notes, vol. 78, no. 3-4, pp. 498-502, 2005.
[6] V. V. Andreev and P. L. Duren, "Inequalities for logarithmic coefficients of univalent functions and their derivatives," Indiana University Mathematics journal, vol. 37, no. 4, pp. 721733, 1988.
[7] D. Alimohammadi, E. Analouei Adegani, T. Bulboacă, and N. E. Cho, "Logarithmic coefficient bounds and coefficient conjectures for classes associated with convex functions," Journal of Function Spaces, vol. 2021, Article ID 6690027, 7 pages, 2021.
[8] Q. Deng, "On the logarithmic coefficients of Bazilevic" functions," Applied Mathematics and Computation, vol. 217, no. 12, pp. 5889-5894, 2011.
[9] O. Roth, "A sharp inequality for the logarithmic coefficients of univalent functions," Proceedings of the American Mathematical Society, vol. 135, no. 7, pp. 2051-2054, 2007.
[10] Z. Ye, "The logarithmic coefficients of close-to-convex functions," Bulletin of the Institute of Mathematics Academia Sinica (New Series), vol. 3, no. 3, pp. 445-452, 2008.
[11] M. Obradović, S. Ponnusamy, and K. J. Wirths, "Logarithmic coefficients and a coefficient conjecture for univalent functions," Monatshefte für Mathematik, vol. 185, no. 3, pp. 489-501, 2018.
[12] D. Girela, "Logarithmic coefficients of univalent functions," in Annales-Academiae Scientiarum Fennicae Series A1 Mathematica, vol. 25, no. 2pp. 337-350, Academia Scientiarum Fennica, 2000.
[13] C. Pommerenke, "On the coefficients and Hankel determinants of univalent functions," Journal of the London Mathematical Society, vol. s1-41, no. 1, pp. 111-122, 1966.
[14] C. Pommerenke, "On the Hankel determinants of univalent functions," Mathematika, vol. 14, no. 1, pp. 108-112, 1967.
[15] A. Janteng, S. A. Halim, and M. Darus, "Coefficient inequality for a function whose derivative has a positive real part," JIPAM - Journal of Inequalities in Pure and Applied Mathematics, vol. 7, no. 2, pp. 1-5, 2006.
[16] A. Janteng, S. A. Halim, and M. Darus, "Hankel determinant for starlike and convex functions," International Journal of Mathematical Analysis, vol. 1, no. 13, pp. 619-625, 2007.
[17] S. Altinkaya and S. Yalcin, "Third Hankel determinant for Bazilevic functions," Advances in Mathematics, vol. 5, pp. 91-96, 2016.
[18] B. Kowalczyk, A. Lecko, and Y. J. Sim, "The sharp bound FOR the Hankel determinant of the third kind for convex functions," Bulletin of the Australian Mathematical Society, vol. 97, no. 3, pp. 435-445, 2018.
[19] A. Lecko, Y. J. Sim, and B. Śmiarowska, "The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1/2," Complex Analysis and Operator Theory, vol. 13, no. 5, pp. 2231-2238, 2019.
[20] O. S. Kwon, A. Lecko, and Y. J. Sim, "The bound of the Hankel determinant of the third kind for starlike functions," Bulletin of the Malaysian Mathematical Sciences Society, vol. 42, no. 2, pp. 767-780, 2019.
[21] P. Zaprawa, "Third Hankel determinants for subclasses of univalent functions," Mediterranean Journal of Mathematics, vol. 14, no. 1, 2017.
[22] O. M. Barukab, M. Arif, M. Abbas, and S. A. Khan, "Sharp bounds of the coefficient results for the family of bounded turning functions associated with a Petal-shaped domain," Journal of Function Spaces, vol. 2021, Article ID 5535629, 9 pages, 2021.
[23] Z.-G. Wang, M. Raza, M. Arif, and K. Ahmad, "On the third and fourth Hankel determinants for a subclass of analytic functions," Bulletin of the Malaysian Mathematical Sciences Society, vol. 45, no. 1, pp. 323-359, 2022.
[24] D. Răducanu and P. Zaprawa, "Deuxieme determinant de Hankel pour les fonctions presque convexes," Comptes Rendus Mathematique, vol. 355, no. 10, pp. 1063-1071, 2017.
[25] B. Kowalczyk and A. Lecko, "Second Hankel determinant of logarithmic coefficients of convex and starlike functions," Bulletin of the Australian Mathematical Society, vol. 105, no. 3, pp. 458-467, 2022.
[26] B. Kowalczyk and A. Lecko, "Second Hankel determinant of logarithmic coefficients of convex and starlike functions of order alpha," Bulletin of the Malaysian Mathematical Sciences Society, vol. 45, no. 2, pp. 727-740, 2022.
[27] W. C. Ma and D. Minda, "A unified treatment of some special classesof univalent functions," Proceedings of the Conference on Complex Analysis, vol. I, 1994, pp. 157-169, Tianjin, China, 1992.
[28] D. A. Brannan and W. E. Kirwan, "On some classes of bounded univalent functions," Journal of the London Mathematical Society, vol. 2, no. 1, pp. 431-443, 1969.
[29] J. Sokół and J. Stankiewicz, "Radius of convexity of some subclasses of strongly starlike functions," Zeszyty naukowe Politechniki Rzeszowskiej. Matematyka, vol. 19, pp. 101-105, 1996.
[30] K. Sharma, N. K. Jain, and V. Ravichandran, "Starlike functions associated with a cardioid," Afrika Matematika, vol. 27, no. 5-6, pp. 923-939, 2016.
[31] L. Shi, I. Ali, M. Arif, N. E. Cho, S. Hussain, and H. Khan, "A study of third Hankel determinant problem for certain subfamilies of analytic functions involving cardioid domain," Mathematics, vol. 7, no. 5, p. 418, 2019.
[32] S. S. Kumar and K. Arora, "Starlike functions associated with a petal shaped domain," 2020, https://arxiv.org/abs/2010.10072.
[33] R. Mendiratta, S. Nagpal, and V. Ravichandran, "On a subclass of strongly starlike functions associated with exponential function," Bulletin of the Malaysian Mathematical Sciences Society, vol. 38, no. 1, pp. 365-386, 2015.
[34] L. Shi, H. M. Srivastava, M. Arif, S. Hussain, and H. Khan, "An investigation of the third Hankel determinant problem for certain subfamilies of univalent functions involving the exponential function," Symmetry, vol. 11, no. 5, p. 598, 2019.
[35] K. Bano and M. Raza, "Starlike functions associated with cosine functions," Bulletin of the Iranian Mathematical Society, vol. 47, no. 5, pp. 1513-1532, 2021.
[36] A. Alotaibi, M. Arif, M. A. Alghamdi, and S. Hussain, "Starlikness associated with cosine hyperbolic function," Mathematics, vol. 8, no. 7, p. 1118, 2020.
[37] K. Ullah, S. Zainab, M. Arif, M. Darus, and M. Shutaywi, "Radius problems for starlike functions associated with the tan hyperbolic function," Journal of Function Spaces, vol. 2021, Article ID 9967640, 15 pages, 2021.
[38] K. Ullah, H. M. Srivastava, A. Rafiq, M. Arif, and S. Arjika, "A study of sharp coefficient bounds for a new subfamily of starlike functions," Journal of Inequalities and Applications, vol. 2021, no. 1, Article ID 194, p. 20, 2021.
[39] N. E. Cho, V. Kumar, S. S. Kumar, and V. Ravichandran, "Radius problems for starlike functions associated with the sine function," Bulletin of the Iranian Mathematical Society, vol. 45, no. 1, pp. 213-232, 2019.
[40] M. Arif, M. Raza, H. Tang, S. Hussain, and H. Khan, "Hankel determinant of order three for familiar subsets of analytic functions related with sine function," Open Mathematics, vol. 17, no. 1, pp. 1615-1630, 2019.
[41] O. S. Kwon, A. Lecko, and Y. J. Sim, "On the fourth coefficient of functions in the Carathéodory class," Computational Methods and Function Theory, vol. 18, no. 2, pp. 307-314, 2018.
[42] C. Carathéodory, "Über den Variabilitätsbereich der Fourier'schen Konstanten von positiven harmonischen Funktionen," Rendiconti del Circolo Matematico di Palermo, vol. 32, no. 1, pp. 193-217, 1911.
[43] R. J. Libera and E. J. Zlotkiewicz, "Coefficient bounds for the inverse of a function with derivative in P," Proceedings of the American Mathematical Society, vol. 87, no. 2, pp. 251-257, 1983.
[44] C. Pommerenke, Univalent Function, Math, Lehrbucher, vandenhoeck and Ruprecht, Gottingen, 1975.
[45] V. Ravichandran and S. Verma, "Borne pour le cinquieme coefficient des fonctions etoilees," Comptes Rendus Mathematique, vol. 353, no. 6, pp. 505-510, 2015.

