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In this paper, we introduce the generalized grand Morrey spaces in the framework of probability space setting in the spirit of the
martingale theory and grand Morrey spaces. The Doob maximal inequalities on the generalized grand Morrey spaces are
provided. Moreover, we present the boundedness of fractional integral operators for regular martingales in this new framework.

1. Introduction

A real-valued function f is said to belong to the Morrey
space Lp,λðℝNÞ on the N-dimensional Euclidean space ℝN

provided the following norm is finite:

fk kLp,λ ℝNð Þ = sup
x,rð Þ∈ ℝN×ℝ+ð Þ

rλ−N
ð
B x,rð Þ

f yð Þj jpdy
0
@

1
A

1/p

: ð1Þ

Here 1 ≤ p <∞, 0 ≤ λ ≤N , ℝ+ = ð0,∞Þ, and Bðx, rÞ are a
ball in ℝN centered at x of radius r. This class of functions
was first introduced by Morrey [1] in order to study regular-
ity problem arising in Calculus of Variations, describe local
regularity more precisely than Lebesgue spaces. In the past,
Morrey spaces have been studied heavily, such as the maxi-
mal operators, fractional integral operators, and singular
operators. The results are extensively applied not only in
partial differential equations but also in harmonic analysis.
We refer the readers to [2, 3] and the references therein.

The Morrey spaces on Euclidean spaces have been devel-
oped to the generalization versions, for example, the gener-
alized Morrey spaces [4, 5], the Orlicz-Morrey spaces [6,
7], the Triebel-Lizorkin-Morrey spaces [8], and the variable
exponent Morrey spaces [9]. Especially, Meskhi [10] intro-
duced the grand Morrey spaces and established the bound-
edness of the Hardy-Littlewood maximal, Calderón-

Zygmund, and potential operators in these spaces. The gen-
eralized grand Morrey spaces in a general setting of the
quasi-metric measure spaces are studied by Kokilashvili
et al. [11, 12].

Moreover, in probability theory, Nakai and Sadasue [13]
introduced Morrey spaces of martingales as the following:

Let ðΩ,F ,ℙÞ be a probability space and fFngn≥0 be a
nondecreasing sequence of sub-σ-algebras of F such that
F = σð ∪

n≥0
FnÞ.

We assume that every σ-algebra Fn is generated by
countable atoms, where B ∈Fn is called an atom, if any A
⊂ B with A ∈Fn satisfies ℙðAÞ = 0 or ℙðAÞ =ℙðBÞ. Denote
by AðFnÞ the set of all atoms in Fn. For p ∈ ½1,∞Þ and μ
∈ ð−∞,∞Þ, martingale Morrey space Lp,μðΩÞ consists of
all f ∈ L1ðΩÞ having the finite norm

fk kLp,μ Ωð Þ = sup
n≥0

sup
B∈A Fnð Þ

1
ℙ Bð Þμ

1
ℙ Bð Þ

ð
B
fj jpdℙ

� �1/p
: ð2Þ

They introduced some basic properties of the martingale
Morrey spaces. Furthermore, the Doob maximal inequality
was established, and the mapping properties for the frac-
tional integral operators were investigated on these spaces.
Two generalized versions of them introduced in [14, 15].
Ho [16] presented atomic decompositions of martingale
Hardy-Morrey spaces. Later on, he [17] introduced a version
of martingale Morrey spaces equipping with Banach
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function spaces. Jiao et al. [18] studied the maximal opera-
tor, atom decompositions, and fractional integral operators
on martingale Morrey spaces with variable exponents.

Recently, Deng and Li [19] studied the Doob maximal
operator and fractional integral operator in the framework
of grand Morrey-martingale spaces associated with an
almost decreasing function. Moreover, compared with clas-
sical martingale spaces, the grand martingale spaces have
not of absolutely continuous norm based on [20]. Conse-
quently, we need a further research about grand martingale
spaces. Motivated by the works of this and [11], the paper
is to investigate the generalized grand Morrey space theory
for the martingale setting. More precisely, we first introduce
the generalized grand Morrey-martingale spaces and then
establish the Doob maximal inequality in this new frame-
work. As an application, we discuss the boundedness of frac-
tional integral operators for regular martingales in the
generalized grand Morrey-martingale spaces.

2. Preliminaries

Now we recall some standard notations from martingale
theory. Refer to [21, 22] for more information on martingale
theory. The expectation is denoted by E with respect to ðΩ
,F ,ℙÞ. Recall that the conditional expectation operator rel-
ative to Fn is denoted by En, i.e., Eð f jFnÞ = Enð f Þ. A
sequence of measurable functions f = ð f nÞn≥0 ⊂ L1ðΩÞ is
called a martingale with respect to ðFnÞn≥0 if Enð f n+1Þ = f n
for every n ≥ 0: Let M be the set of all martingale f =
ð f nÞn≥0 relative to ðFnÞn≥0 such that f0 = 0. For f ∈M,
denote its martingale difference by dnf = f n − f n−1 (n ≥ 0,
with convention d0 f = 0).

The maximal function of f ∈M is defined by

Mmf = sup
n≤m

f nj j,Mf = sup
n≥0

f nj j: ð3Þ

For p > 1 and f ∈ LpðMÞ, we have

Mfk kLp ≤
p

p − 1 fk kLp , ð4Þ

which is well known in the literature as the Doob maximal
inequality (see [22]).

Hence, it follows from the above inequality that if p ∈ ð
1,∞Þ, then Lp-bounded martingale converges in Lp. More-
over, if p ∈ ½1,∞Þ, then, for any f ∈ Lp, its corresponding
martingale ð f nÞn≥0 with f n = Enf is an Lp-bounded martin-
gale and converges to f in Lp (see [21]). For this reason, a
function f ∈ L1 and the corresponding martingale ð f nÞn≥0
will be denoted by the same symbol f .

It is convenient for us to state the generalized grand
Morrey-martingale spaces, we first need to recall the defini-
tion of martingale Morrey spaces Lp,λ =Lp,λðΩÞ as follows.

Definition 1. For p ∈ ½1,∞Þ and λ ∈ ð−∞,∞Þ, let

Lp,λ = f ∈M : fk kLp,λ
<∞

n o
, ð5Þ

where

fk kLp,λ
= sup

n≥0
sup

B∈A Fnð Þ

1
ℙ Bð Þλ

ð
B
fj jpdℙ

 !1/p

: ð6Þ

Remark 2. If λ = pu + 1, the above definition of k·kLp,λ
is

equivalent to k·kLp,μ (see (2)), which introduced by Nakai

and Sadasue [13].
If λ = 0 and F0 = f∅,Ωg, then the Morrey-martingale

space Lp,λ is Lp by the above definition.

Now we introduce a new type Morrey-martingale spaces
as follows.

Definition 3. Let 1 < p <∞, 0 ≤ λ < 1, φ be a nondecreasing
real-valued nonnegative function defined on ð0, p − 1� with
lim

x⟶0+
φðxÞ = 0, and δ be a positive number. The generalized

grand Morrey-martingale space L
δ,φ
pÞ,λÞðΩÞ consists of f ∈

M such that

fk k
L

δ,φ
pÞ,λÞ

= sup
0<ε≤s

s=min p−1,αf g

εδ/ p−εð Þ sup
n≥0

sup
B∈A Fnð Þ

� 1
ℙ Bð Þλ−φ εð Þ

ð
B
fj jp−εdℙ

 !1/ p−εð Þ
ð7Þ

is finite, where α = sup fx > 0 : φðxÞ ≤ λg.

Notice that, in the above condition, k·k
L

δ,φ
pÞλÞ

is a norm

and can be expressed as

fk k
L

δ,φ
pÞ,λÞ

= sup
0<ε≤s

s=min p−1,αf g

εδ/ p−εð Þ fk kLp−ε,λ−φ εð Þ
:

ð8Þ

Remark 4. If λ > 0 and φ ≡ 0, then L
δ,φ
pÞ,λÞðΩÞ is called grand

Morrey-martingale space, which was introduced in [19]. If
λ = 0, δ = 1, and φ ≡ 0, we recover the grand Lebesgue spaces
for martingales introduced in [23]. In this case, if consider
Ω = ½0, 1Þ, we have grand Lebesgue spaces introduced in
[24]. We mention that there exists a martingale f = ð f nÞn≥0
such that it does not converge in LpÞð½0, 1ÞÞ. Indeed, LpÞð½0
, 1ÞÞ is a rearrangement-invariant Banach function space,
LpÞð½0, 1ÞÞ ≠ L1ð½0, 1ÞÞ, but is not of absolutely continuous
norm from [20]. According to Theorem 3.3 in [25], there
exists a martingale f = ð f nÞn≥0 such that it does not converge
in LpÞð½0, 1ÞÞ.
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The stochastic basis fFngn≥0 is said to be regular, if there
exists a constant R ≥ 2 such that

f n ≤ Rf n−1 ð9Þ

holds for all nonnegative martingale ð f nÞn≥0 adapted to
fFngn≥0.

For regular stochastic basis, there has the following
property, proved in [13].

Lemma 5. Let fFngn≥0 be regular. Then, for every sequence

Bn ⊂ Bn−1 ⊂⋯ ⊂ Bk ⊂⋯ ⊂ B0, Bk ∈ A Fkð Þ, ð10Þ

we have

Bk = Bk−1 or 1 + 1
R

� �
ℙ Bkð Þ ≤ℙ Bk−1ð Þ ≤ Rℙ Bkð Þ 1 ≤ k ≤ nð Þ,

ð11Þ

where R is the positive constant in (9).

3. The Doob Maximal Operator

In this section, we present the boundedness of Doob’s max-
imal operator on generalized grand Morrey-martingale
spaces.

Theorem 6. Let 1 < p <∞, δ > 0, and 0 ≤ λ < 1. Then,

Mfk k
L

δ,φ
pÞ,λÞ

≤ C fk k
L

δ,φ
pÞ,λÞ

, ð12Þ

where the constant C satisfies

C = inf
0<θ<s

sδ/ p−εð Þθ−δ/ p−θð Þ p − θ

p − θ − 1
+ 1

� �
, ð13Þ

which only depends on the parameters p, λ, δ, φ for s =min
fp − 1, αg and α = sup fx > 0 : φðxÞ ≤ λg.

In order to prove Theorem 6, we need the following use-
ful lemma:

Lemma 7. Let f = ð f nÞn≥0 ∈ L1, 1 < p <∞, 0 ≤ λ < 1. Then,

Mfk kLp,λ
≤

p
p − 1

+ 1
� �

fk kLp,λ
: ð14Þ

Proof. For any B ∈ AðFmÞ and m ≥ 0, suppose that f = g + h
and g = fχB.

Then, according to the well-known Doob’s maximal
inequality, that is,

Mfk kLp ≤
p

p − 1 fk kLp , ð15Þ

we have

ð
B
Mgj jpdℙ ≤

ð
Ω

Mgj jpdℙ ≤
p

p − 1

� �pð
Ω

gj jpdℙ

= p
p − 1

� �pð
B
fj jpdℙ:

ð16Þ

Hence,

1
ℙ Bð Þλ

ð
B
Mgj jpdℙ

 !1/p

≤
p

p − 1 fk kLp,λ
: ð17Þ

Next, take Bn ∈ AðFnÞ, n = 0, 1,⋯,m, such that B = Bm
⊂ Bm−1 ⊂⋯ ⊂ B0. Then, for a.e. ω ∈ B,

Enh ωð Þ =
0, if n ≥m,
1

ℙ Bnð Þ
ð
Bn

hdℙ, if n <m:

8><
>: ð18Þ

If n <m, according to Jensen’s inequality, then

Enh ωð Þj j ≤ 1
ℙ Bnð Þ

ð
Bn

hj jpdℙ
 !1/p

≤ ℙ Bnð Þ λ−1ð Þ/p fk kLp,λ

≤ ℙ Bð Þ λ−1ð Þ/p fk kLp,λ
,

ð19Þ

where the last inequality dues to 0 ≤ λ < 1 and ℙðBÞ ≤
ℙðBnÞ. This means

Mhð Þ ωð Þ ≤ ℙ Bð Þ λ−1ð Þ/p fk kLp,λ
for any ω ∈ B: ð20Þ

Then, we obtain

1
ℙ Bð Þλ

ð
B
Mhj jpdℙ

 !1/p

≤ fk kLp,λ
: ð21Þ

Combining inequalities (17) and (21) and Mf ≤Mg +
Mh, we can get

1
ℙ Bð Þλ

ð
B
Mfð Þpdℙ

 !1/p

≤
p

p − 1 + 1
� �

fk kLp,λ
: ð22Þ

The proof is complete.

Note that Nakai and Sadasue [13] proved that, for 1 < p
<∞ and −1/p ≤ μ < 0,

Mfk kLp,μ ≤ Cp fk kLp,μ : ð23Þ

The proof of Lemma 7 is devoted to determination of the
constant Cp. Now we prove Theorem 6:

3Journal of Function Spaces



Proof. Let 0 < θ < s, and we have

Mfk k
L

δ,φ
pÞ,λÞ

= sup
0<ε≤s

s=min p−1,αf g

εδ/ p−εð Þ Mfk kLp−ε,λ−φ εð Þ

=max sup
0<ε<θ

εδ/ p−εð Þ Mfk kLp−ε,λ−φ εð Þ
, sup

θ≤ε<s
s=min p−1,αf g

εδ/ p−εð Þ Mfk kLp−ε,λ−φ εð Þ

8>>>><
>>>>:

9>>>>=
>>>>;
,

ð24Þ

where α = sup fx > 0 : φðxÞ ≤ λg. Let

I = sup
θ≤ε<s

s=min p−1,αf g

εδ/ p−εð Þ Mfk kLp−ε,λ−φ εð Þ
:

ð25Þ

Note that the function hðεÞ≔ εδ/ðp−εÞ is increasing in 0
< ε < p, which means

I ≤ sδ/ p−sð Þ sup
θ≤ε<s

s=min p−1,αf g

sup
n≥0

sup
B∈A Fnð Þ

� 1
ℙ Bð Þλ−φ εð Þ

ð
B
Mfj jp−εdℙ

 !1/ p−εð Þ

≤sδ/ p−sð Þ sup
θ≤ε<s

s=min p−1,αf g

sup
n≥0

sup
B∈A Fnð Þ

� 1
ℙ Bð Þ λ−φ εð Þ−1ð Þ/ p−εð Þ

1
ℙ Bð Þ

ð
B
Mfj jp−εdℙ

� �1/ p−εð Þ

≤sδ/ p−sð Þ sup
θ≤ε<s

s=min p−1,αf g

sup
n≥0

sup
B∈A Fnð Þ

� θ
δ/ p−θð Þθ−δ/ p−θð Þ

ℙ Bð ÞΔ ε,θð Þ
1

ℙ Bð Þλ−φ θð Þ

ð
B
Mfj jp−θdℙ

 !1/ p−θð Þ
,

ð26Þ

where

Δ ε, θð Þ≔ λ − φ εð Þ − 1
p − ε

−
λ − φ θð Þ − 1

p − θ
: ð27Þ

Note that for θ ≤ ε,

Δ ε, θð Þ = ε − θð Þ λ − 1ð Þ + φ θð Þ p − εð Þ − φ εð Þ p − θð Þ
p − εð Þ p − θð Þ

≤
ε − θð Þ λ − 1ð Þ + φ εð Þ p − εð Þ − φ εð Þ p − θð Þ

p − εð Þ p − θð Þ
≤

ε − θð Þ λ − 1ð Þ + φ εð Þ θ − εð Þ
p − εð Þ p − θð Þ ≤ 0:

ð28Þ

Then, 0 < 1/ℙðBÞΔðε,θÞ ≤ 1, and we obtain I ≤ sδ/ðp−sÞ

θ−δ/ðp−θÞðθδ/ðp−θÞkMf kLp−θ,λ−φðθÞ
Þ. Obviously, sδ/ðp−sÞθ−δ/ðp−θÞ >

1 as 0 < θ < s. Thus, according to Lemma 7, we deduce that

Mfk k
L

δ,φ
pÞ,λÞ

≤ sδ/ p−sð Þθ−δ/ p−θð Þ sup
0<ε≤θ

εδ/ p−εð Þ Mfk kLp−ε,λ−φ εð Þ

≤ sδ/ p−sð Þθ−δ/ p−θð Þ sup
0<ε≤θ

εδ/ p−εð Þ p − ε

p − ε − 1 + 1
� �

fk kLp−ε,λ−φ εð Þ

≤ sδ/ p−sð Þθ−δ/ p−θð Þ p − θ

p − θ − 1 + 1
� �

fk k
L

δ,φ
pÞ,λÞ

:

ð29Þ

Taking the infimum over all θ, we obtain that

Mfk k
L

δ,φ
pÞ,λÞ

≤ C fk k
L

δ,φ
pÞ,λÞ

, ð30Þ

where

C = inf
0<θ<s

s=min p−1,αf g
α=sup x>0 : φ xð Þ≤λf g

sδ/ p−sð Þθ−δ/ p−θð Þ p − θ

p − θ − 1 + 1
� �

∈ 1,∞ð Þ:

ð31Þ

4. The Fractional Integral Operator

In this section, we present the boundedness of the fractional
integral operator in the new type grand Morrey-martingale
spaces. In martingale theory, Chao and Ombe [26] intro-
duced the fractional integrals for dyadic martingales. The
fractional integrals in this section are defined for more gen-
eral martingale setting as in [13, 14] (see also [15, 27–32]).

Definition 8. Let f = ð f nÞn≥0 ∈M and ι > 0, and the fractional
integral Iι f = ððI ι f ÞnÞn≥0 of martingale f is defined by

I ι fð Þn = 〠
n

k=0
bιk−1dkf , ð32Þ

where bk is an Fk-measurable function such that

bk ωð Þ = 〠
B∈A Fkð Þ

ℙ Bð ÞχB ωð Þ, ω ∈Ω: ð33Þ

Remark 9. Obviously, bk is bounded in above definition;
there I ι f = ððI ι f ÞnÞn≥0 is a martingale transform of f .

The following lemma was shown in [13]. Here we focus
on more accurate upper boundedness.

Lemma 10. Suppose that fFngn≥0 is regular. Let 1 < p <∞,
1 ≤ q ≤ ðv/uÞp, −1/p ≤ v < 0, and u = v + ι < 0. Then, for f ∈
L1,

M I ι fð Þk kLq,u ≤ Cq,u,p,v fk kLp,v , ð34Þ
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where Cq,u,p,v = ½ð1 + ð1/RÞvÞ/ð1 − ð1 + 1/RÞuÞ + 2�
ðp/ðp − 1Þ + 1Þp/q and R is the constant in formula (9).

Proof. Since k f kLq1,λ ≤ k f kLq2,λ for q1 ≤ q2 by Hölder’s

inequality, it is enough to prove it in the case where q = ðv/
uÞp. Without loss of generality, we let k f kLp,v ≠ 0.

First, we prove the following inequality holds for any n
≥ 1, and any Bn ∈ AðFnÞ,

I ι fð Þn ωð Þ�� �� ≤ 1 + 1/Rð Þv
1 − 1 + 1/Rð Þu + 2
� �

Mf ωð Þð Þu/v fk k−ι/vLp,v
, ω ∈ Bn:

ð35Þ

Choose Bk ∈ AðFkÞ and 0 ≤ k < n, such that Bn ⊂ Bn−1 ⊂
⋯⊂ B0, and let

K = k : 0 < k ≤ n, Bk ≠ Bk−1f g = k1, k2,⋯,khf g, ð36Þ

where 0 = k0 < k1 < k2 <⋯ < kh.
Since fFngn≥0 is regular, according to Lemma 5, we have

1 + 1
R

� �
bkj ≤ bkj−1 ≤ R bkj onBn: ð37Þ

So, for k ∉ K , we have bk = bk−1 and dkf = 0. Hence, we
obtain

I ι fð Þn = 〠
0<kj≤n

bιkj−1dkj f = 〠
h

j=1
bιkj−1dkj f onBn: ð38Þ

For ω ∈ Bn,

dkj f ωð Þ
��� ��� = f kj ωð Þ − f kj−1 ωð Þ

��� ��� ≤ f kj ωð Þ
��� ��� + f kj−1 ωð Þ

��� ���
= 1

ℙ Bkj

� � ð
Bkj

f dℙ

������
������ +

1
ℙ Bkj−1

� � ð
Bkj−1

f dℙ

������
������

≤
1

ℙ Bkj

� � ð
Bkj

fj jpdℙ
0
@

1
A

1/p

+ 1
ℙ Bkj−1

� � ð
Bkj−1

fj jpdℙ
0
@

1
A

1/p

≤ ℙ Bkj

� �v
+ℙ Bkj−1

� �v� �
fk kLp,v

≤ 1 + 1
R

� �v� �
bkj−1 ωð Þv fk kLp,v :

ð39Þ

Then, for ω ∈ Bn and when 0 < k ≤m where m ≤ n,

〠
m

k=0
bk−1 ωð Þιdkf ωð Þ

�����
����� ≤ 1 + 1

R

� �v� �
〠

0<kj≤m
bkj−1 ωð Þv+ι fk kLp,v

= 1 + 1
R

� �v� �
〠

0<kj≤m
bkj−1 ωð Þu fk kLp,v

≤
1 + 1/Rð Þv

1 − 1 + 1/Rð Þu bm ωð Þu fk kLp,v :

ð40Þ

For ω ∈ Bn and when m + 1 ≤ k < n, let jðkÞ =min fj : k
< kjg, and we have

〠
n

k=m+1
bk−1 ωð Þιdk f ωð Þ

�����
�����

= 〠
h

j=j kð Þ
bkj−1 ωð Þιdkj f ωð Þ

�����
�����

= 〠
h

j=j kð Þ
bkj−1 ωð Þι f kj ωð Þ − 〠

h

j=j kð Þ
bkj−1 ωð Þι f kj−1 ωð Þ

�����
�����

= bkh−1 ωð Þι f kh ωð Þ + 〠
h−1

j=j kð Þ
bkj−1 ωð Þι − bkj ωð Þι
� �

f kj ωð Þ − bkj kð Þ−1
ωð Þι f kj kð Þ−1

ωð Þ
�����

�����
≤ bkh−1 ωð ÞιMf ωð Þ + 〠

h−1

j=j kð Þ
bkj−1 ωð Þι − bkj ωð Þι
��� ���Mf ωð Þ + bkj kð Þ−1

ωð ÞιMf ωð Þ

≤ 2bkj kð Þ−1
ωð ÞιMf ωð Þ = 2bm ωð ÞιMf ωð Þ:

ð41Þ

Now let

Λ1 = ω ∈Ω :
Mf ωð Þ
fk kLp,v

 !1/v

≤ b0 ωð Þ
( )

andΛ2 =Ω \Λ1:

ð42Þ

Next we estimate ðI ι f Þn from the following cases. For the
first case, if ω ∈Λ1 ∩ Bn and

Mf ωð Þ
fk kLp,v

 !1/v

≤ bn ωð Þ, ð43Þ

then, by formula (40) and u = v + ι < 0, we have

Iι fð Þn ωð Þ�� �� ≤ 1 + 1/Rð Þv
1 − 1 + 1/Rð Þu bn ωð Þu fk kLp,v

≤
1 + 1/Rð Þv

1 − 1 + 1/Rð Þu
Mf ωð Þ
fk kLp,v

 !u/v

fk kLp,v

= 1 + 1/Rð Þv
1 − 1 + 1/Rð Þu Mf ωð Þð Þu/v fk k−ι/vLp,v

:

ð44Þ
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For the second case, if ω ∈Λ1 ∩ Bn and

bn ωð Þ < Mf ωð Þ
fk kLp,v

 !1/v

, ð45Þ

then there exists m such that

1
R
bm ωð Þ < Mf ωð Þ

fk kLp,v

 !1/v

≤ bm ωð Þ: ð46Þ

Combining (46) with formulas (40) and (41), we have

Iι fð Þn ωð Þ�� �� ≤ 1 + 1/Rð Þv
1 − 1 + 1/Rð Þu bm ωð Þu fk kLp,v + 2bm ωð ÞιMf ωð Þ

≤
1 + 1/Rð Þv

1 − 1 + 1/Rð Þu
Mf ωð Þ
fk kLp,v

 !u/v

fk kLp,v + 2 Mf ωð Þ
fk kLp,v

 !ι/v

Mf ωð Þ

≤
1 + 1/Rð Þv

1 − 1 + 1/Rð Þu + 2
� �

Mf ωð Þð Þu/v fk k−ι/vLp,v
:

ð47Þ

For the third case, if ω ∈Λ2 ∩ Bn, then by (41), we have

Iι fð Þn ωð Þ�� �� ≤ 2b0 ωð ÞιMf ωð Þ

≤ 2 Mf ωð Þ
fk kLp,v

 !ι/v

Mf ωð Þ = 2 Mf ωð Þð Þu/v fk k−ι/vLp,v
:

ð48Þ

Formulas (44), (47), and (48) give that

Iι fð Þn ωð Þ�� �� ≤ 1 + 1/Rð Þv
1 − 1 + 1/Rð Þu + 2
� �

Mf ωð Þð Þu/v fk k−ι/vLp,v
, ω ∈ Bn,

ð49Þ

which implies that

1
ℙ Bð Þ

ð
B
M Iι f ωð Þð Þj jqdℙ

� �1/q

≤
1 + 1/Rð Þv

1 − 1 + 1/Rð Þu + 2
� � 1

ℙ Bð Þ
ð
B
Mf ωð Þð Þqu/vdℙ

� �1/q
fk k−ι/vLp,v

= 1 + 1/Rð Þv
1 − 1 + 1/Rð Þu + 2
� � 1

ℙ Bð Þ
ð
B
Mf ωð Þð Þpdℙ

� � 1/pð Þ p/qð Þ
fk k1−p/qLp,v

:

ð50Þ

Moreover, by Lemma 7, we have

1
ℙ Bð Þ

ð
B
Mf ωð Þð Þpdℙ

� � 1/pð Þ p/qð Þ

≤ ℙ Bð Þv Mfk kLp,v
� �p/q

≤
p

p − 1 + 1
� �p/q

ℙ Bð Þu fk kp/qLp,v
:

ð51Þ

It follows from the above inequality and (50) that

1
ℙ Bð Þ

ð
B
M Iι f ωð Þð Þj jqdℙ

� �1/q

≤
1 + 1/Rð Þv

1 − 1 + 1/Rð Þu + 2
� �

p
p − 1 + 1
� �p/q

ℙ Bð Þu fk kLp,v ,

ð52Þ

that is to say,

M I ι fð Þk kLq,u ≤
1 + 1/Rð Þv

1 − 1 + 1/Rð Þu + 2
� �

p
p − 1 + 1
� �p/q

fk kLp,v :

ð53Þ

The proof is complete.

Theorem 11. Let 1 < q <∞, 0 ≤ λ < 1, 0 < ι < ð1 − λÞ/q, 1/q
− 1/p = ι/ð1 − λÞ, δ2 > 0, and δ1 ≥ δ2ð1 + ιp/ð1 − λÞÞ. Suppose
that φ1 and φ2 are continuous nonnegative and nondecreas-
ing real-valued functions on ð0, p − 1� and ð0, q − 1�, respec-
tively, satisfying

(i) φ1 ∈ C
1ð0, κ� for some positive κ > 0

(ii) lim
x⟶0+

φ1ðxÞ = 0

(iii) 0 ≤ lim
x⟶0+

dφ1ðxÞ/dx < ð1 − λÞ2/ðιp2Þ

(iv) φ2ðηÞ = φ1ðϕ−1ðηÞÞ, where ϕ−1 is the inverse of ϕ on
ð0, κ� for κ > 0, and ϕðxÞ = q − ðp − xÞð1 − λ + φ1ðxÞ
Þ/½1 − λ + φ1ðxÞ + ιðp − xÞ�. Then, for f ∈Lδ2 ,φ2

qÞ,λÞ ,

M I ι fð Þk k
L

δ1 ,φ1
pÞ,λÞ

≤ C p, δ1, δ2, φ1, λð Þ fk k
L

δ2 ,φ2
qÞ,λÞ

, ð54Þ

where Cðp, δ1, δ2, φ1, λÞ only depends on p, δ1, δ2, φ1, and λ.

Proof. The equation 1/q − 1/p = ι/ð1 − λÞ and lim
x⟶0+

φ1ðxÞ = 0
give that lim

x⟶0+
ϕðxÞ = 0. The condition (iii) ensures that

lim
x⟶0+

dϕðxÞ/dx > 0. Then, there exists small positive number

ϵ <min f1, κg such that ϕ is increasing in ð0, ϵ� and ϕðϵÞ
< ðq − 1Þ/2. Now fix

θ ∈ 0, min s, ϵf gð Þ, ð55Þ

where s =min fp − 1, αg and α = sup fx > 0 : φ1ðxÞ ≤ λg.
Firstly, we consider the case of ε ∈ ðθ, sÞ. In this situation,

let

I εð Þ≔ εδ1/ p−εð Þ 1
ℙ Bð Þλ−φ1 εð Þ

ð
B
M I ι fð Þj jp−εdℙ

 !1/ p−εð Þ
: ð56Þ
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Since p − ε < p − θ, then it follows from Jensen’s inequal-
ity that

I εð Þ = εδ1/ p−εð Þℙ Bð Þ φ1 εð Þ+1−λð Þ/ p−εð Þ 1
ℙ Bð Þ

ð
B
M I ι fð Þj jp−εdℙ

� �1/ p−εð Þ

≤ εδ1/ p−εð Þℙ Bð Þ φ1 εð Þ+1−λð Þ/ p−εð Þ 1
ℙ Bð Þ

ð
B
M I ι fð Þj jp−θdℙ

� �1/ p−θð Þ
:

ð57Þ

Note that ½φ1ðxÞ + 1 − λ�/ðp − xÞ is a nonnegative and
nondecreasing function on ðθ, s�; hence,

I εð Þ ≤ εδ1/ p−εð Þℙ Bð Þ φ1 θð Þ+1−λð Þ/ p−θð Þ 1
ℙ Bð Þ

ð
B
M I ι fð Þj jp−θdℙ

� �1/ p−θð Þ

≤ sδ1/ p−sð Þθ−δ1/ p−θð Þ sup
0<t≤θ

tδ1/ p−tð Þ sup
n≥0

sup
B∈A Fnð Þ

� 1
ℙ Bð Þλ−φ1 tð Þ

ð
B
M I ι fð Þj jp−tdℙ

 !1/ p−tð Þ
:

ð58Þ

Since sδ1/ðp−sÞθ−δ1/ðp−θÞ > 1 for θ < s, then the following
inequality holds

M I ι fð Þk k
L

δ1,φ1
pÞ,λÞ

≤ sδ1/ p−sð Þθ−δ1/ p−θð Þ sup
0<t≤θ

tδ1/ p−tð Þ sup
n≥0

sup
B∈A Fnð Þ

� 1
ℙ Bð Þλ−φ1 tð Þ

ð
B
M I ι fð Þj jp−tdℙ

 !1/ p−tð Þ
:

ð59Þ

Next, we consider t ∈ ð0, θ� in the following discussion.
Since 1/q − 1/p = ι/ð1 − λÞ, we can choose η and t satisfying

1
q − η

−
1

p − t
= ι

1 − λ + φ1 tð Þ : ð60Þ

Obviously we know that t⟶ 0 if and only if η⟶ 0,
and we obtain η with respect to t as follows:

η = q −
p − tð Þ 1 − λ + φ1 tð Þð Þ

1 − λ + φ1 tð Þ + ι p − tð Þ = ϕ tð Þ: ð61Þ

Let

~p = q − η, ~q = p − t, ~v = λ − φ1 tð Þ − 1
q − η

,

~u = λ − φ1 tð Þ − 1
p − t

:

ð62Þ

It is not hard to see that 1 ≤ ~q = ð~v/~uÞ~p, −1/~p ≤ ~v < 0, ~v
+ ι = ~u ≤ −ð1 − λÞ/ðp − tÞ < 0, and

q − η = q − ϕ tð Þ ≥ q − ϕ ϵð Þ ≥ q + 1
2 > 1: ð63Þ

Moreover,

C~q,~u,~p,~v =
1 + 1/Rð Þ~v

1 − 1 + 1/Rð Þ~u
+ 2

 !
~p

~p − 1 + 1
� �~p/~q

≤
1 + R1+φ1 θð Þ

1 − R/ R + 1ð Þð Þ 1−λð Þ/p + 2
 !

q − ϕ εð Þ
q − ϕ εð Þ − 1 + 1
� �q

≤
1 + R1+φ1 θð Þ

1 − R/ R + 1ð Þð Þ 1−λð Þ/p + 2
 !

q − ϕ θð Þ
q − ϕ θð Þ − 1 + 1
� �q

≕ C θð Þ:
ð64Þ

Notice that φ1ðθÞ ≤ φ1ðsÞ and q − ϕðθÞ − 1 ≥ q − ϕðϵÞ −
1 ≥ ðq − 1Þ/2. This implies that CðθÞ <∞.

Thus, according to the inequalities (59) and (64) and
Lemma 10, we have

M I ι fð Þk k
L

δ1,φ1
pÞ,λÞ

≤ sδ1/ p−sð Þθ−δ1/ p−θð Þ sup
0<t≤θ

tδ1/ p−tð Þ sup
n≥0

sup
B∈A Fnð Þ

� 1
ℙ Bð Þ λ−φ1 tð Þ−1ð Þ/ p−tð Þ

1
ℙ Bð Þ

ð
B
M Iι fð Þj jp−tdℙ

� �1/ p−tð Þ

= sδ1/ p−sð Þθ−δ1/ p−θð Þ sup
0<t≤θ

tδ1/ p−tð Þ M I ι fð Þk kL~q,~u
≤ C θð Þsδ1/ p−sð Þθ−δ1/ p−θð Þ sup

0<t≤θ
tδ1/ p−tð Þ fk kL~p,~v

= C θð Þsδ1/ p−sð Þθ−δ1/ p−θð Þ sup
0<t≤θ

tδ1/ p−tð Þ sup
n≥0

sup
B∈A Fnð Þ

� 1
ℙ Bð Þλ−φ1 tð Þ−1/q−η

1
ℙ Bð Þ

ð
B
fj jq−ηdℙ

� �1/ q−ηð Þ

= C θð Þsδ1/ p−sð Þθ−δ1/ p−θð Þ sup
0<t≤θ

tδ1/ p−tð Þ sup
n≥0

sup
B∈A Fnð Þ

� 1
ℙ Bð Þλ−φ1 tð Þ

ð
B
fj jq−ηdℙ

 !1/q−η

≤ C θð Þsδ1/ p−sð Þθ−δ1/ p−θð Þ sup
0<t≤θ

tδ1/ p−tð Þη−δ2/ q−ηð Þ fk k
L

δ2,φ2
qÞ,λÞ

,

ð65Þ

where the last inequality holds because of φ2ðηÞ = φ1ðϕ−1ðη
ÞÞ = φ1ðtÞ.

Finally, we shall show that sup
0<t≤θ

tδ1/ðp−tÞη−δ2/ðq−ηÞ is

bounded. Since lim
x⟶0+

ϕðxÞ = 0, by l’Hospital’s rule, we have

lim
x⟶0+

ϕ xð Þ
x

= lim
x⟶0+

ϕ′ xð Þ
x′

= lim
x⟶0+

1 − λð Þ2 − ιp2φ1′ xð Þ
1 − λ + ιpð Þ2

: ð66Þ

Combining with the condition (iii), we have ϕðxÞ ~ x as
x⟶ 0+. This implies

η−δ2/ q−ηð Þ ~ t−δ2/ q−ηð Þ, as t⟶ 0+: ð67Þ

7Journal of Function Spaces



Moreover, using δ1 ≥ δ2ð1 + ιp/ð1 − λÞÞ, 0 < t ≤ θ < 1,
and formula (60), we obtain

tδ1/ p−tð Þη−δ2/ q−ηð Þ ≤ Ctδ2 1+ιp/ 1−λð Þð Þ/ p−tð Þt−δ2 1/ p−tð Þ+ι/ 1−λ+φ1 tð Þð Þð Þ

= Ctιδ2 p/ 1−λð Þ p−tð Þð Þ−1/ 1−λ+φ1 tð Þð Þ½ �:

ð68Þ

Obviously, p/½ð1 − λÞðp − tÞ� − 1/½1 − λ + φ1ðtÞ� > 0,
which implies that sup

0<t≤θ
tδ1/ðp−tÞη−δ2/ðq−ηÞ ≤ C is bounded.

To sum up, we have

M I ι fð Þk k
L

δ1,φ1
pÞ,λÞ

≤ C p, δ1, δ2, φ1, λð Þ fk k
L

δ2,φ2
qÞ,λÞ

, ð69Þ

where

C p, δ1, δ2, φ1, λð Þ = Csδ1/ p−sð Þ inf
θ∈ 0,min s,ϵf gð Þ

C θð Þθ−δ1/ p−θð Þ:

ð70Þ

Remark 12. Recently, new results concerning the grand var-
iable exponent Lebesgue spaces for martingales have
emerged (see [33]).
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