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Multilayer diffusion problems have found significant importance that they arise in many medical, environmental, and industrial
applications of heat and mass transfer. In this article, we study the solvability of a one-dimensional nonhomogeneous multilayer
diffusion problem. A new generalized Laplace-type integral transform is used, namely, the M, -transform. First, we reduce the
nonhomogeneous multilayer diffusion problem into a sequence of one-layer diffusion problems including time-varying given
functions, followed by solving a general nonhomogeneous one-layer diffusion problem via the M, -transform. Hence, by
means of general interface conditions, a renewal equations’ system is determined. Finally, the M, ,-transform and its analytic
inverse are used to obtain an explicit solution to the renewal equations” system. Our results are of general attractiveness and

comprise a number of previous works as special cases.

1. Introduction

The multilayer diffusion problems are typical models for a
variety of solute transport phenomena in layered permeable
media, such as advection, dispersion, and reaction diffusions
[1-10]. These problems have had their importance due to
their natural prevalence in a remarkably large number of
applications such as chamber-based gas flux measurements
[11], contamination and decontamination in permeable
media [6, 12], drug-eluting stent [13, 14], drug absorption
[15, 16], moisture propagation in woven fabric composites
[17], permeability of the skin [18], and wool-washing [19].
Further applications have been considered in [20, 21].

As epidemiological models, reaction-diffusion problems
are widely used to model and analyze the spread of diseases
such as the global COVID-19 pandemic caused by SARS-
CoV-2. These models describe the spatiotemporal preva-
lence of the viral pandemic and apprehend the dynamics
depending on human habits and geographical features. The
models estimate a qualitative harmony between the simu-
lated prediction of the local spatiotemporal spread of a pan-

demic and the epidemiological collected datum (see [22,
23]). These data-driven emulations can essentially inform
the respective authorities to purpose efficient pandemic-
arresting measures and foresee the geographical distribution
of vital medical resources. Moreover, such studies explore
alternate scenarios for the repose of lockdown restrictions
based on the local inhabitance densities and the qualitative
dynamics of the infection. For more applications, one can
refer, e.g., to [24, 25].

Although the numerical methods are usually applied to
solve the diffusion problems, especially in the heterogeneous
permeable media, the analytic solutions, when available, are
characterized by their exactness and continuity in space and
time. In the context of obtaining numerical solutions for
such models, we refer to the following references [26-30].
In this work, we focus on analytic solutions of certain non-
homogeneous diffusion problems in multilayer permeable
media. Here, the retardation factors are assumed to be con-
stant, the dispersion coeflicients vary across layers, but being
constants within each layer, and the free terms are (arbi-
trary) time-varying functions.
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Analytic and semianalytic solutions of multilayer diffu-
sion problems are developed by using the integral trans-
forms [6, 25, 31-40]. Applying Laplace transforms, to
solve multilayer diffusion problems, has advantages as an
applicable tool in handling different types of boundary
conditions and averts solving complicated transcendental
equations as demanded by eigenfunction expansion
methods. Further works involving the Laplace transform
have studied the permeable layered reaction diffusion
problem in [41, 42]. Solutions obtained in these works
are restricted to two layers as well as obtaining the inverse
Laplace transform numerically. In the same context, gener-
alized integral transform techniques, for short GITT, are
well-established hybrid approaches for solving diffusion
and convection-diffusion problems, in which hybrid refers
to the combination of classical analytical methods with
modern computational tools aimed at accurate, robust,
and low-cost solutions [43-47]. In the current work, we
aim to extend, generalize, and merge results in [31, 33,
38, 40, 42] to solve certain nonhomogeneous diffusion
problems in one-dimensional #-layered media. We use a
new generalized integral transform recently introduced in
[48]. The obtained solutions are applicable to more gen-
eral linear nonhomogeneous diffusion equations, finite
media consisting of arbitrary many layers, continuity and
dispersive flow at the contact interfaces between sequal
layers, and transitory boundary conditions of the arbitrary
type at the inlet and outlet. To the best knowledge of the
authors, analytical solutions verifying all the above men-
tioned conditions have not been previously reported in
the literature which strongly motivates this current work.

In the remaining part of this introductory section, in
Subsection 1.1, the multilayer diffusion problem is
described, and then, it is reformulated as a sequence of
one-layer diffusion problems having boundary conditions
including given time-depending functions. Basic properties
for theM,,, -transform that will be needed in this work
are stated in Subsection 1.2. The remaining sections are
constructed as follows: in Section 2, we discuss the solv-
ability of a general linear nonhomogeneous one-layer dif-
fusion problem with arbitrary time-varying data, using
the M,,, -transform. Section 3 is devoted to our main
multilayer diffusion problem, where in Subsection 3.1, we
solve a two-layer problem to shed light on the basic idea
by considering this simple case. Further, in Subsection
3.2, we return to benefit from the results obtained in Sec-
tion 2 and Subsection 3.1 to solve the main multilayer dif-
fusion problems (2)-(8) (see Subsection 1.1 below).

1.1. Mathematical Modeling for Nonhomogeneous n-Layer

Diffusion Systems. A one-dimensional diffusion problem in
an n-layered permeable medium is set out as follows. Let

A=xy <Xy < <X, <x,=p (1)

be a finite partition of the interval [«, f3]. In each subinterval
[x;1,x;], with j=1,2, -+, n, the component function goj(x, f)
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satisfies the partial differential equation (PDE)

09, 0%,
%% :d~i +A(LT)r (%, 1), X € (xj_l,x),

5~ 45 J >0, (2)

where d; >0, for all 1<j<n, are the diffusion coefficients
and

m

-p
A(t,r):(T—m+‘rm> , t20,7>0, (3)

with meZ,={1,2,3,--},peC,Re(p) >0. Here, the
function-term A(t,7)r;(x,t) physically means the external

source term that could be applied to the diffusion equation
with 7;(x, t) depends on time and space while the other fac-

tor of the source term, i.e., A, depends only on time. This last
factor could be, for instance, a periodic-time magnetic
source.

The initial conditions (ICs) are assumed as

¢;(x,0) =n;(x), x € [x; 1, x;], 1< j<n. (4)
The boundary conditions (BCs) are posited as

(i) The outer BCs (at the inlet x = & and the outlet x = )
are general Robin boundary conditions as

1, (a, t) + l% (o t) = A(t, T)(1), (5)
e, (B.1) + laa(’;” (B 1) = MET)E(1), (6)

for all £ >0, with 1,4, £, and [ are constants satistying | |
+]¢]>0,12] +]| > 0.

(ii) The inner BCs (the interface conditions) are

(%) t) = Ajsi (x5 1), (7)

09, 09,
vj(pj(xj, t) + yja—xj (xj, t) = Vi P (xj, t) + i a—gl (xj, t),

(8)
for all t >0, with Ivj | +|‘u]. | >0 forall j=1,2,---,n—1.
For appropriate given functions #,, -+, #,,(, and &, we

are going to find an analytic solution of the problems
(2)-(8) using the M, -generalized integral transform,
introduced recently in [48]. Problems (2)-(8) can be
reduced into the following sequence of one-layer diffusion
problems.
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(i) In the inlet layer, i.e., x € [x,, x,],

0p, _, o9,
Fn =d, 52 + AL T)r (%, 1),

1 (%, 0) =1, (x),

0
19 (5 1) + 1L (i 1) = A6 T 1),

X € (%9, %), 5, T>0,
X € [0, 1],

t>0,7>0,

d
Vi@, (50, 1) + 44y % (k1) = ALT)E (1), £20,7>0.

©)

(i) In the interior layers, i, x € [x;,x],2<j<n-1,

2
%% _ 499
ot 1 0x?

@;(x,0)=n;(x),  x€[xi %],

AL D)6 1), X € (xix)), 6T >0,

0.
Vi (X1 t) + ‘“ja_x] (X1 t) =A(LT)G(E), t20,7>0,

o¢
vigy () + 152 (1) = AL (), 120,750,
(10)

(iii) In the outlet layer, ie., x € [x,_,, x,],

09, 4 0*

57 = 83(:)2” +A(LT)r, (% 1), x€(x,_1,%,), 5, T>0,

@, (%, 0) =1,,(x),

X € [xn—l’xn]’
dp
Vi (1) + ty 5 (5 1) =ML (1), 120,750,

09, (6 ) +122 (5, 1) = A(t, ), (1),

t>0,7>0.
ox

(11)

Remark 1. Each of the initial boundary value problems
(9)-(11) is a case of the one-layer nonhomogeneous diffu-
sion problem that will be discussed in Section 2 below.

Now, in view of the inner boundary conditions (7) and

(8), the time-varying functions {; and §; for all 2<j<n are
subject to

Cj(t)zgj—l(t)’ 2<jsmn, (12)

so that

09 . ,
()= <ngoj(xj, t) + ptja—x] (%} t)))u "(t1), 1<j<n-1,

&(t), j=n.
(13)

While the outer boundary data {(¢) ={(t) and &,(¢) =
&(t) are given in (5) and (6), respectively, the functions {;(
2<j<n) can be determined once we specify the functions
Ej(l <j<n-1). Hence, we have to find &, 1 <j<n-1. To
do so, we should use the first matching condition (7).

1.2. Srivastava-Luo-Raina Generalized Integral Transform.
In [48], Srivastava et al. introduced the following generalized
integral transform:

(&) e_St(P(Tt)

ooy Y

M lp(6)(5,7) =j

for a continuous (or piecewise continuous) function ¢ on |
0,00), where pe C;Re (p)>0;meZ,,s>0 is the trans-
form variable and 7 > 0 is a parameter. The basic properties
of the M pm -transform are given in [48]. Next, we recall some
of these properties, which are needed in the present work.
Indeed, as introduced in [48] the M, , -transform is closely
related with the well-known integral transforms, the Laplace,

natural, and Sumudu transforms. The Laplace transform is
defined by

00

Lip(t)](s) = J e *o(t)dt, Re (s) > 0. (15)

0

So, from (14) and (15), we have the following duality
relations:

Lip(t))(5) =Monlp(1](5 1), Re (5)>0,
Manlo0](s 1) =L | I 9, s>,
Monlp()(5:7) = 2L {((t'"/'rgf“()tl Tm)P} G) sT>0
(16)
M| (55 +7) 0] ()= LipGenl 5750
(17)

Setting p =0 in (14), we recover the natural transform
defined as (see [49, 50])

(0]

Nig(o)(s7) = | e p(er)de

0

$>0,7>0. (18)



Thus, we have the following M, ,,-IN-transform duality

Nlp(t)](s, 7) = Mo, [ ()] (s 7), (19)

M, [@(t)] (s T) =N [((ﬂn/r‘ff)tlmy,] (5,7), $>0,7>0,

(20)

(21)
The Sumudu transform is defined by [51-53]
S[e(t)](r) = J?eb(rt)dt, 7>0. (22)
Thus,
Sle(8)](t) =My, [p(1)](0,7), 7>0, (23)
M, o (1)] (5. 7) = ;g [(tm/:i(i?fw] (5). sr>o.

(24)

Based on these dualities of the M, ,
these well-known integral transforms, it seems to be interest-
ing to apply the M, ,, -transform (14) in solving a variety of
boundary and initial-boundary value problems. In this con-
text, we recall the following results [48]:

-transform (14) and

(i) Let ™ (t) be the n™-order t-derivative of the func-
tion ¢(t) and |@(t)| < Ke"? with K >0, y > 0. Then,

[ (5 477) 00| 6 = SN0 )
n-1 Sk

- Z kel (P(n_k_l)(o)’
k=0

(25)

where N[p(t)](s,
in (25), we find

7) is defined by (18). Using the duality (21)

N [<P(")(t)] (s1)= .f._zN[‘P(t)](S, 7)
n—1 k (26)
_szHgan_)( ), n=0,1,--

(ii) Again, using the dualities stated before a convolution
formula for the M o -transform (14) can be obtained
as follows. Here, the convolution for the Laplace
transform will be considered; that is, for the func-
tions ¢ and v, the convolution formula is given as
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(0 ¥)(t) = j}o(x)w(t ~x)dx= J;qo(t —y()ds. (27)
If &(s,7) =M, [p(1)](s,7) and ¥(s,7) =M, [y(0)](s
.
TD(s, T) Tfo etig(tt))/(t7 + ) J“ ety
th)/(t”’+r ) Vdt, = 1[0 [ttty )y ( ,)dt,dt,,
where
PO P 0 R 7) SR 1O NPT

(tm)rm 4+ 7m)P? C (e )P

Setting t, + t, =t in the last equality, one gets

1®(s, 7)¥ (5, 7) = Troroe_“(])(‘r(t - 1,))y(tt,)dtdt,
o Ji, (29)

= TJOOe“dtJt(])(T(t - 1,))¥(rt,)dt,.

Here, changing of the integral order is used. Thus, using the
duality of the M, ,, and N transforms (see (20)), we find

1D (s, T)¥ (s, T) = N[ * Y] (s, T). (30)

Remark 2. If we put p =0 in (30), the case being interesting
later in our work, then we get

TN[p(1)](s )N[y ()](s 7) =N[(¢ * ¥)(D)] (7). (31)

(iii) Once again, ...again, using the dualities stated before
an inversion formula of the M P)m—transform (14) is

given (see Theorem 4.1 of [48]) as

" _ t
o) = (5 +7") L lp(e)ie ) ()
(B o ST t)(s,7)]d
g (7] [ Ml
as long as the integral converges absolutely. In case, when

p =0 one obtains the following inversion formula of the nat-
ural transform (see Theorem 5.3 of [49])

¢T>0,

(32)

o(t) = L_Jﬁiooes”fll\l[(p(t)](s, 7)ds, ¢ 1>0. (33)

2 c—i00

The residue theorem (see, e.g., [54]) is usually used to
calculate the contour integrals in (32) and (33).
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2. One-Layer Nonhomogeneous
Diffusion System

Now, we investigate the solvability for the following one-
layer nonhomogeneous initial boundary value problem:

d¢ )
=) 34
ot da 2 +A(LT)r(xt), x€(af), tT>0, (34)

¢(x,0)=n(x), x€la fl, (35)

1p(et, t) + lg% (at)=A(t, T)((t), t=0,7>0, (36)

(B, t)+lg—(£([3, H=AMtT1)E(t), t=0,7>0, (37)
where d, 1,1,¢, and [ are constants such that |1 + |¢| > 0, |¢]
+1]|>0, and A, 7,7,{, and & are given functions with A as
in (3).

Applying the M,
yields

-transform defined by (14), to (34),

M, {ﬁ 9,(%, t)} =dM,,, [ﬁ P, t)} M, [r(x. 1))
(38)

Using the duality of the M, , -transform and the natural

transform given by (21) and (25), Equation (38) can be
reduced to

= N[ 0](x55. ) - Nig (o )](x357) = —0(5.0)
= %N[A(t, T)r(x, t)](x55, T),
(39)
where N[¢(t)](s, 7) is defined by (18). Setting
¢(x557) = Np(x, 1)] (x35,7), (40)
then, (39) can be expressed as
P (x58T) = :—dng(x;s, 7)=F(x35s,7), (41)
where
F(x;s,7) = —%]N[/\(t, T)r(x,t)](x;8, 1) - %n(x). (42)

Applying the variation of the parameter method to the
nonhomogeneous equation (41) gives the general solution as

@(x;s,7)=A cosh \/;x + B sinh \/;x
+ \/:LF()/ s,7) sinh \/:l(x y)dy,

(43)

where A and B are arbitrary invariants which can depend on
s and 7. Differentiating (43) with respect to x, gives

(x5sT \/:smh \/_‘x+B\/_‘cosh\/‘
44
L (735, 7) cosh \/:d(x y)dy.

Transforming the boundary conditions (36) and (37),
implies

19(a;s7)+19 (a58,7) =

Mp)m
9@(/3» »S t) + l¢x<ﬁ;5’ t) =M

(45)
For simplicity, we set the following vector notations:

a=(11),b=(41), (46)

Lyss1)= (cosh \/%y \/Ti; sinh \/gy>
Clyss )= (sinh \/gy \/g cosh \/gy> (48)

Obviously, we have
08 /s o¢ ['s
a_y(y)S)T)_ EGU)S)T))E()/,S)T)— ag(y,s,‘r).
(49)

Substituting (43) and (44) into (45) and using the vector
notation, we give the algebraic linear system

((a,ﬂ(tx;s,r)) (a,(S(oc;s,T)>> (A) _ < G(s, 1) )
(6, 8(B;s 1)) (b,C(B;s,7)) ) \ B H'(x55,7)
(50)

where () is the usual dot product in R?, and

G(s,7) = N[A(L T){(0) (51)

rd (B
H*(x;s,7)=H(s, 7) - \/?J Fly;s1)(b,C(B-y;s,1))dy,
(52)

with H(s,7) =IN[A(t,7)&(¢)] and {(t) and &(t) are the
boundary data given in (36) and (37), respectively. The



solution (A, B) of system (50) is

AA(s) =G(s,7)(b,C(B55,7)) —H (x55,7){a, C(ass, 7)),
BA(s) = —[G(s, 7)(b, (B s, 7)) - H*(x 38, T){(a, &(ass, 1)),
(53)

where

A(s) = (B, €(Bs s, 7)) (0, £(a;5,7)) — (0, € (055, 7)) (B, £(B53 5, 7)),
(54)

is the determinant of the coefficient matrix of system (50).
Substituting the constants A and B into (43) gives

f(ris )= LD 6 )0, 6 B35)
- H"(x;s1)(a,C(a;s,1)))

+ W(_G(S’ 7)(b, &(B;s, 7))
+H" (x;55,7)(a, &(a;5,7)))
+ ?r sinh \/%(x—y)F(y;S, 7)dy,

24
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which can be rewritten as

Slx:sT)= G(s, T)y(x, B35, 7,b)
P(x55T) AG) »
_H(s, T)V/iﬁz,s;us, T, a) Bess 1)
where
1l’(X,y;s,‘r,L):<L,($(y;s,‘r)>c:osh\/gx -
57

— (L, &(y;s, 7)) sinh \/Ti;x,

~ X, 0055, T, B
0(x;s,7) = W\/@J (6,C(B-y;s1))F(y;s 1)dy

o

Td (* . s
+ ”TL sinh /a(x -y)F(y;s, 7)dy.

S o

(58)
(55) For further computation, we rewrite é(x 35, T) as
/6\(x i5,7) Td(J y(x,a;57,a)(b,C(f-y; s,AT()S)) + A(s) sinh \/(s/Td)(x - y) Flyss T)dy)
(59)

S Jx

As)

Lemma 3. Let 7,5, x,y € R and L € R?. Then,

Yoyssnl)=(LE(y-x;s7),  (60)

A(s) sinh \/;i;(x -y)=-v(xa;s1,a)(b,C(f-y;s 1))
+{a,C(a—y;s1))y(x, B;s1,b).
(61)

Consequently, for each zero s of the function A(s) sinh

\/(s/td)(x — y), one has

Yo 35 7,0) (0, 6(B - ys5,7))

(62)
=(a,C(a—y;s1)y(x B;s 7, b),

where v is given by (57).

TdJﬁw(x,oc;s, 7,a)(b,C(f-y;s,T))

F(y;s 1)dy.

Proof. The first two conclusions of the lemma follow directly
from the uniqueness theorem of the initial value problem for
the second-order ordinary differential equations having con-
stant coefficients.

For fixed 7,5,y € R and L € R?, in view of (46) and (57),
the functions (L, €(y —x;s,7)) and y(x, y;s,7,L) are solu-
tions to the following initial value problem:

Z(O) = <L, @:(y 3 S, T)>, Z/(O) = —\/ga,, 8()};5, ‘[)>
(63)

Thus, with the uniqueness of the solution to problem
(63), we conclude (60).
It is easy to see that as functions in x, both sides of (61)

are linear combinations of the functions cosh +/(s/7d)x,



Journal of Function Spaces

and sinh /(s/td)x which are linearly independent solu-
tions to the differential equation in (63). Thus, both sides
of (61) solve this differential equation.

Moreover, in view of (57), both sides of (61) satisfy

SRR U O A

Hence, by the uniqueness theorem, (61) holds true.
For each s, being a zero of the function A(s) sinh
(s/td)(x — y), taking the limit in both sides of (61) as s
— s, gives (62).
Applying Lemma 3, (56) and (59) respectively can be
reduced to

G(s, 7)(b,C(B—x;5,71))

Next, in order to obtain the solution to the initial value
problem (34)-(37), we apply the inversion formula (33) to
(65) and (66). In doing so, we suppose that there are nonzero
simple roots {s; };-, of A(s). That is,

=0,A"(s,)#0, k=1,2,3,-. (67)

A(sy)

Lemma 4. Suppose that (67) holds true. For each x,y € R and
t, T >0, we get

. {<a,¢<x;s, )b, 6(y3s, T>>} —OM T, (68)

P(x;587)= A0 (s/d)A(s)
H(s,7)(a,Cla—x;3s51)) &,
- A(s) +0(xss7), where
(65)
. N e (0, (x5 )><5 Clyssp 1))
Ta B axX—X3585T V6T (69)
+\/E[ (a6 ,,2\>(<Sf)»,<s</3 39D b oy,
(66)  with
(a,C(x;5,1))(b,C(y;s, 1))
0 f =0(1),
1 VSITAA(s) M
So®7)= (a,C(x55,1))(b,C(y55s,1)) (a,C(x;5,1))(b,C(y;s, 1)) 1 (70)
li d——"" A f-—" 2 L =0~ ).
sino\/; A(s) ' VsITdA(s) <s)

Proof. Let

oy (065 1)(B,6(y357)
e VSITdA(s) NG

Applying the inversion formula (33), we find

C+i00
e‘”TER(s, 7)ds,

c—ic0

¢, T>0.

Ox,y,t)=N{R(s,7)} = %J
(72)

The last integral can be usually calculated by the residue
theorem [54]. Hence,

O(x, y,t) = Z

poles s, of R(s,7)

Res[e"™R(s, T) 5 5] (73)

Recalling (67), each s;(k=1,2,-
e""R (s, 7). Therefore,

-) is a simple pole of

e (a, € (x5 50 7)) (0, G (¥ 55, 7))

Res[e"™R(s,7) 55, =
[ } (se/7a)A" (s¢)

At s =0, we have

Res [e“”?{(s, ) ;O} = lirnose“”iR(s, )
s €(a,C(x;57))(b,C(y;s 1))

= lim —
0 A(s) sitd
: .
i Varg (2 (58 D) (B, C(yss, 7))
s_'o As)

(75)



We see that either

(a,C(x55,7))(b,C(y;5,7)) _
(s/Td)A(s)

{0,635 1)) (6, 6(y35,7))
(s/td)A(s)

(76)

as s tends to 0. Then, s=0 is either a removable singular
point or a simple pole of e/"R (s, 7).

Hence, substituting (74) and (75) in (73) gives the main
conclusion of the Lemma, i.e., (69) and (70).0 O

In view of (68) and (42), we have

(@ C(x=y B))(B, 6(B-x.5))

N[©(a~y, f~x1)]= (s/Td)A(s)

(77)
where © is defined by (69) and (70), and

Fyss )= yN| 2l ssn = o). 09

Hence, (66) can be rewritten as

xs5 )= [ M@=y, x| )

—dj NO(a -3 f % On()dy

1 r0.)
" q) Mo by ”]N[W] y

idJ N[O(a—x, B—y.t)|n(y)dy.

(79)

By the convolution formula (31), the inverse natural
transform of (79) is

0(x,t,7) = —%J' .OG)(oc—y,ﬁ—x,t—C)(Cm/:(::ﬂm)pd(dy

L r@(a- 7 B=x,0)n(y)dy
1 Bt r(y,()

“wal | St x ot 0g py
1 (B

. ﬁj O(a—x, By, t)n(y)dy
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That is,

I < ey
_ Jﬁ L (- ()’Tr((y( f}ﬁ: fif)}y;sk’m dldy

OOeskt/T X — X385, T X
-2y b8P xs9, »J (0,6 (a—y;5,7))m(y)dy

d5 s/TdA (s0) «
- S [ 5y gy
(81)
From Lemma 3, one has
(0, 6(a~x357)) (b, 6(B~y357)) )

=(a,C(a—-y;s51))(b,C(B-x;5,1)),

at s=0 and s=s,(k=1,2,---) the zeros of A(s) sinh v/s/7d(
x —y). That results in

Op(a =y, f~x)=0(a~xp~y)

B
<a,@<a—x;sk,r>>J (6,6 (B -y 50 7))9(y)dy

X

B
= (5,6 (B x50 1) j (0 6 (e y3 50 7))90)dy.

X

(83)

The first conclusion is obvious when ®,=0 in (70).
Thus, (81) can be simplified as

1 (B
0 1) = | Outa= B=pnr)dy

1 (P (3, 0)
TdJJQO(“ xB- y)mdédy

N (B C(B-x557))
Td s/TdA (s,)
J J esm (. ) (e, 6(a =755 7))

2Jo (& + )P
1L e (B, C(B-x;5,7)) [P

a,Cla—y;s, T d
g s/tdA’ (sy) L< (@=yss07)n(y)dy

d¢dy

(84)
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Next, we return to (65). Using (26) (for n=1) and (51),
(65) can be rewritten as

¢ (x35,1) =sN[A(t, T){(1)] W

sA(s)
(T]N{d Mt T)E(t ))} + (0, T)((o)> %@’;;“»

- ([ e | +20.020))

. <C‘7’ G((SXA_(:C)’ $7)) + §(x 38, 7),

+§(x;s,'r)

— sIN[A(t, T)&(t)]

(85)

where 0(x;s,T) is given in (66). Now, we can obtain the
solution ¢(x, t) of Problem (34)-(37) by operating the inver-
sion formula (33) in (85). In doing so, we need the following
lemma.

Lemma 5. Assume that (67) holds true. Then, for each y €
R,t, 7> 0 and L€ R?, we get

N*FEEQﬁiD}:thJL (86)

sA(s)
where
[SO RPN t/T g
Dy, t51) = Dy(y; L)+ Y LEYssem) g7y
k=1 kA (se)
CLEpsT) L (LEsT) (]
A A 7 o)
Dy(y;L) = 3
S(L,C(y;s,1)) L, (LC(yss, 1)) -0 1
s 5 ()=o)
(88)
Proof. The proof is similar to Lemma 4.
From Lemma 5, we see
that-

N{(b, C(B—x55,7))/sA(s)} =@(B - x, 13 b),
—x38T))sA(s)} =@(a—x, t5 a).

Hence, in view of the convolution formula (31) and the
inversion of natural transform (33), inverting (85) yields

N (a, 6(a

ol07) = [ @B 0-658) ({0 + L0180 e
_Jﬂma—xJ—q;@(?@)+&m5dq)m

0
+0(x, t, 1),

(89)

where {=A(t,7){(t),E=A(t, 1)&(t), 8, is the well-known
Dirac delta function, and 6(x, t,7) is given by (84). Then,
using the basic property of the Dirac delta function, that is,
8,(¢)D(g) = @(0), results in

Q(x,t,T) = J;@(ﬁ —-x,t—¢; ) (¢)dg + Z(O)d)(ﬁ -x,t;b)

- JICD(oc—x,t—c;a)g(c)dc—é(o)q)((x—x,t;a)

0
+0(x, t, 7).

(90)
Integrating by parts gives

o(x.1,7) = A(t, T)()D( - x, 03 b)
—ﬂMgﬂQ@%—&hmﬁK@ﬁ
M T)®(a - x, 05 a)E(F)
+£A@Jﬂ%®@—&t—muﬁ@ﬂc+ﬂ&hr}
o)

where D, = (0/0t)®(x, t ; b). Substituting from (87) gives

9 t7) = ABT)(H) (qw ~x3b) + fo&wm)

_Jf)\(c, 7)¢(<) io:esk(t—c)/r b, Q:(ﬁ—x;sk, 7)) dc
0 k=1 A(sy)

— At T)8(1) (q)o(“ -x;a)+ OZO:M)

+ J;A(C’ DE() (i’: eSk(t_<>/T<a’AG/((:<)_ X5 Sk T))) de

k=1

+0(x, t,7),
(92)

with 6(x, t, 7) is given by (84). This result can be rewritten as

P t,7)=

(93)
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where I'; is the operator defined as

t

Lig(t) = At 7)(t) - skJOA(c, )Ty (6)ds.  (94)
O

The integral in (94) is the Laplacian convolution formula
for A(t, T)$(t) with e%'/T. As a result, (93), together with (84)
and (94), expresses the solution of Problem (34)-(37).

Remark 6. When p=0 and r;=v;=0, for all j=1,---,n,
Problem (34)-(37) and its solution

T4t
1 SkA’ (S)
(

Mg

P t,T=1) ={(1)Py(B - x3B) + (6, 6(8 - x5,)

Ié(t)
kA (s1)

=
I

() Dy(x—x50a) -

(a,€(a-x5.))

i gk

+0(x 1),
(95)

with @y(a—x;a),C(y,s,) =C(y;s,7=1) defined as (88),
(46), respectively,

t

Tep(t) = 9(t) - J 09 ()de,
0

1 (B
0(x,t) = ‘HJ O (o= x, = y)n(y)dy

_ ma@j"%s C(B-x5501)) (F
1; VsiA' (sy) J

(@, Cla-y;se 1))n(y)dy,

(96)

o

are reduced to that in Section 3 of [38].

2.1. Illustrative Examples. Here, we discuss two illustrative
test cases to show the accuracy and effectiveness of our
technique.

Example 1. Heat equation with zero temperatures at finite
ends.

The following initial boundary value problem with
homogeneous Dirichlet boundary conditions

a(p_ 82<p
e _dW’ x€(0,L),t>0,
P(60)=f(x), x€[0,1] 7)

9(0,t)=0,¢9(L,t)=0, t=0,

is a special case of the one-layer diffusion system (34)-(37)
when a=0,8=L,1=1,1=0,€=1,1=0 and r(x,t) ={(t) =
&(t) =0, n(x) = f(x). For simplicity, we will take T = 1. Thus,
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from (93), we have @(x,t) =0(x, t). From (46), we have a
=b=(1,0),

s s s
L(x;s) = (cosh \/;x, \/;smh \/;x>, C(x;s)
, s s s
= (smh \/;x, \/; cosh \/;x>

Hence, (54) yields

. s roo L Jd s
A(s) = sinh \/;L, A(s)= 4 \/; cosh \/;L. (99)

So, we have

(98)

Als) =0, A'(s,) #0, k=1,2,3,-, (100)

at

(101)

Moreover,

(a,€(x;5))(b,C(y;s))  sinh v/s/dx sinh v/s/dy 0

1 >
VsIdA(s) V/s/d sinh v/s/dL M)
(102)
as s — 0. Therefore, (70) gives ®,(x, y) = 0. Further,
.k
(. 6(~y350) =-isin 3, (6,6(L-x35,))
= (—l)k“i sin kfﬂx, k=1,2,3,--,
Sk ' k L
A (s) = (1) =, k=1,2,3,---.
d (Sk) ( ) 2d
(103)

Finally, from (80), we get

¢ (x,1) =0(x, 1) ==1/dY; 2, e (6, €(L — x5 5))/\/s,/dA
() [ (@, € (=5 5))f (7)dy = D202/ [of (¥) sin (kmy/L)dy
e~ (BT I sin (krr/L)x,

which recovers the solution to problem (97) obtained via
the separation of variables method in [55].
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Example 2. Heat flow with sources and homogeneous
boundary conditions.
The following initial boundary value problem

g—(f =dg%) +(t"+1)Pe ' sin3x, x€ (0,7m), t>0,
¢(x,0) = f(x), x € [0, 7,
9(0,t)=0. o@(m,t)=0, t=0,
(104)

is a special case of the one-layer diffusion system
(34)-(37) when a=0,f=m,d=71=1,1=1,1=0,£=1,1=0
and r(x, t) =e" sin 3x,7(x) = f(x),{(t) =&(t) =0. Thus,
from (93), we have ¢(x,t)=6(x,t). From (46), we have
a=b=(1,0),

L(x55) = (cosh /sx, /s sinh \/sx), €(x55)

(105)
= (sinh /sx, /s cosh \/sx).
Hence, (54) yields
A(s) = sinh /ST, A’(s) = g \/g cosh /s (106)

So, A(s) has simple zeros at s, =-k* k=1,2,3, .
Further,

(a,C(—y;s;)) =—isin ky, (b, C(m —x;5;))

=(-)"isinkx, k=123, (197
\/s_kA/(sk):(—l)kg, k=1,2,3, .
On the other hand,
(a,C(x;5))(b,E(y;s)) sinh y/sxsinh /sy o
= : =0(1)
V/SA(s) /s sinh /s
(108)

as s — 0. Therefore, (70) gives ®,(x,y) =0.

11

Finally, from (80), we get

dzdy | ™" sin kx

ol 1) =6(x 1) = i[z [ JM

k=1 oJo (Zm + 1)p
+ Z EJ f(y) sin kydy e ®t sin kx
k=0T Jo ]
3 t e&z o
= UO W} e ' sin 3x
+ Z EJ f(y) sin kydy e ®t sin kx
k=0l Jo ]
= Z a(t) sin kx,
k=0
(109)
where
2
a, (0)e®t, k+3,
ak(t) = k( ) (110)
[a5(0) +a(t)]e”™, k=3,
with

a,(0) = ij;f(y) sin kydy, a(t)= ZJt eizdz.

(111)

When p = 0, formula (109) recovers the solution to prob-
lem (104) (when p=0) obtained via the eigenfunction
expansion method in [55].

3. Multilayer Nonhomogeneous
Diffusion System

Here, we are seeking the solution of our main problem
defined in (2)-(8), which was converted into a sequence of
initial boundary value problems (9)-(11). For the conve-
nience of the reader and in order to draw the full picture
in an easy way, we start with solving the bilayer diffusion
problem in the following subsection; then, we move to the
general case in Section 3.2.

3.1. Solution of a Two-Layer Problem. For the two-layer
problem, we have

09, —-d o9, )

ot 1 9x2

(t,T)r (% 1), x€(xp,%),tT>0,

(112)

¢(x,0) =1,(x), x€[xpx], (113)

19, (X t) + 1% (X 1) =A(LT)(, (2), t=0,7>0, (114)
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vy () + i () = A (0, 120,750,
(115)

99, ¢,

T dZW +A(L D)y (%, 1),  x€(X,%,),5,T>0,
(116)

P2(%0)=m,(x),  x€[x1, %), (117)
09,

2y (X1, 1) + iy 5 = (01, 1) = MBT)E(8), £20,7>0,

(118)
09,

Lo, (xy,t) + IW (x5, 1) = AL, T)E,(F), t20,7>0.

(119)

Similar to what we denote in Section 2, we define the fol-
lowing vector notation a, = (3,1), b, = (v, 4;), a5 = (v, i),
b,=(¢ 1), and

s s s
L(y;s1)= (cosh T—dly, d, sinh T—dly> ,
s s B
B(y;sT)= (cosh T—dzy, <, sinh T—dzy> ,
s s s
58 = i h Ll 7 h 7. >
C(y;s1) (sm ley o, cos Td1y>
. S N S
C,(y;s1)= (smh T—dzy, N cosh T—dzy>
(120)
Also, analogues to (54), define
Ay(s) = (by, € (x5, 7)) (ap, £, (%0, 5, 7))
= (a, € (x> 5, 7)) (By, &, (%1, 5, 7)),
(121)

Ay (s) = (by, 65 (x5, 5, 7)) (a3, By (%155, T))
= (a5, Gy (x1, 5, 7)) (b2, £, (x5, 5, 7))

Further, similar to (67), suppose that there are nonzero
simple roots {s,il)}:zl and {s,(cz)}:z1 of the functions A, (s)

Journal of Function Spaces

and A, (s), respectively. That is,

A, (s,(cl)) =0,4,' (s,(cl)) #0,4, (s,(cz))

(122)
=0,4,’ (s}f)) £0 (k=1,2,-).
Therefore, according to (84), we obtain
utx )= | O o xox im0y
“wg ] o s s

1 OZO:<BI,(SI(x1 —x,s,(cl),‘r)>
d, & \/MAi(SS))

x, [t eslg)(”‘)lrﬁ 2 C)<a1> ¢, (xO - Sl(cn’ T>>
. ded
j J (e + )P i
1 iesil)”’<bl,($1<xl—x,s,(cl),r)>
= sWird A'(s(l)>
V Sk T8 A, Sk

(123)
0,x,t,1)=—— [0 - d
L (%, 1, T) d o (X1 = %,x, = y)n,(y)dy
2 Jx
(2w (2:9)
- X — ded
- LIJOQ’ (X1 —%,%, —y) (/e + 1) cdy

1 i <f)2, (O (xz - X, sl((z), T) >
T_Zkzl \/s(kz)/—rdzA; (51(<2)>

X, [t es(kZ)(‘"‘w?’z(% C)<02, ¢, (xl - 51(3)» T>>
J Jo (e /e + )P

1 i esf)”7<bz, G, (xz -x, sf), T) >
-

dy 5 \/WA; (51(<2))

- J <az, ¢, (x1 ~ps, T) >f72 (v)dys

X1

dgdy

(124)

where @f)l) and @(()z) can be defined as in Lemma 4.

Also, similar to (93), with the respective forms CD(()I) and

CD(()z) from Lemma 5 and the matching condition &, (¢) ={,
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(1), we get

-xs5a;)

(126)

where the operators I’ ,((U andI’ ,(<2> are obtained from (94).
The matching condition ¢, (x;,t) = A, (x;, t) yields

2)

(AV\(t’ T)q)(() (% = x13b,) + A(t, T)(D(()l)(xo —-X 5“1))51@)

1)
© <a1,(51(x0—x1,sk ,r>>
(1)

+ I8 (1)

Z( 55(1)4(51((1)) ko1

2

A1<BZ,GZ<xZ—x1,s£),1)> @
- (2) A1/ (2) Fk El(t)
Sk A2<sk )

At )8 (D)) (056,

b,,C, 0,5,({1),1
Mfﬁ”cm FAMLT)E (P (050,)
Sk Al(sk )

2
00A1<(12,62(0,51(<),T)> )
+ L8 (1) = A0, (x, 1, 7).
k=1 s(z)A’ (s(2)>
= K A2\ Sk

k=1

+0,(x,t,7)

+

Mg

k

I
—

(127)

For the unknown function &;, we can rewrite the linear
integral equation (127) as

Mg

MEDE() + ) (a8 + BIOE (1) =c(t), (128)

>~
Il
—

13

where

<a1,($1 (xo —xl,S,(cl), T)>

%= 1 2 1 >
Sk )Alr (51(< )> (Al(pé )(xz —x13by) +®E) )(xo X Wl))

A1<bz’ G, (xz —Xp 5§<2)’ T)>

- 2 2 2 1 >
5§< )Azl (SIE )> (AI(D(() )(xz —x13by) "’q)(() >(x0 X ;al))

1
A (=313 8) + 0 (1 =3 5y)
(AT (038,) +6, (61, 17)

b,6, (0,5
¥ Mr%(r)+A1A<t,r>£2<t><béz><o;az>

k
1 s,((l)Al'(s,(cl))
A1<a2, (O (0, s,((z)

1 s,(cz)AZ ! (5,((2))

Mg

-~
Il

+

Mg

k

: T) > F;((Z)Ez(t) =00, (x5 1, T)) :
(129)

Inspired by the convolution formula (31), the natural
transform of (128) is

N[E; (B)A(t,7)](s,7)
0 s
+ ) | @ NE (DA (s,7) - 5 N[fl(t)k(f)f)]>
k=1 S_Sk

which can be rewritten as

(1= N[y(1)](s, 7))IN[E, () A5 7)] (5, T) = N[e()](s, 7).
(131)

That is,

IN[E, ()AL, T)](s:7)
1
= W{N[C@](S’ 7)}
= (L+ N[y (®)](s7) + (N[y()](s 7))+ ){N[e(1)](s, 7)}

= N[e()](s,7) + N[e()](5,7) Y (N[w(1)](s:7))",

m=1

(132)
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where
S Ts,(cl) TS](CZ)
N[w(t)](s,r>=—2<ak<l‘ )t ) )
k=1 s—s; 5= 5,
(133)
for which the inverse natural transform is
y(t)=-7 Z(ak +by)d(1)
= (134)
m @
g Z (aksl(cl)e(sk /T)t + bksl(CZ)e(sk /1) t) ,
k=1
where §; is the Dirac delta function. Hence, we have
1 [ee]
§i(t) = o) (C(t) + m; Vi * C(t)>’ (135)

where for m>2,vy,, is the m-times self-convolution of y.
Thus, one can conclude the solution to the bilayer diffusion
problem (112)-(119) by the formulas (125) and (126),
together with (123) and (124), with &, given in (135). Now,
it is time to attack an illustrative example in the following
subsection.

3.1.1. Illustrative Example. Here, we discuss the solvability of
the following two-layer diffusion system.

Example 3. Temperature distribution in the two-layer slab
with mixed boundary condition.

Consider the following initial boundary value system.
The diffusion equations are

0 0’
% :dka—"’zk, X <X<Xpx,=0,t>0,k=1,2, (136)
X

the initial conditions are

0.(%,0)=1,(x), x_,<x<x,k=1,2, (137)
the outer boundary conditions are
0 ,t
9, (0, t):o,% =0, t>0, (138)
x
and the interface conditions at x = x; are
0, (x,t 0, (x;,t
91(x1 1) = 93y )., 1LY g, 92000 g
(139)
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Comparing this problem with the general one that is
defined by (112)-(119) reveals

a;=(1,0),b,=(0,d,),a,=(0,d,), b, = (0, 1),

(140)
r(x 1) =1y (% 1) =Gy (1) = &5(8) = 0,&, (1) = {5 (1).

Here, we will consider p=0and 7 =1.
Then, the solution of the problem (136)-(139) can be
obtained from (125) and (126) as

9, (% 1) =& () (x — x5 a,)

% <a1, ¢, (xo % 51<<1>’ T>>
k:IS](( >A;(s,(< )>

(141)

© e (1) @)
8 et
+0,(x, 1),
(142)
with
0,(x,t) = —dilj 0 (x ~ 3, = ), (7)dy
g nd)
d, k=1 \/MA{(SI(:))
: J 1<a1, ¢, (xo - 51(<1)> >’71()’)d}’>
% (143)

1 (™
0,(x, 1) = - J 0 (x) - x,%, = ), (y)dy

1 io:esiz>’<b2,(52(x2—x,s,(f))>
BE ()

: sz <a2, G, (xl e 51(<2)> >’72()’)d)’~

The operators I 5(1) and I’ ,((2> are obtained from (94).
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Next, we are going to simplify these formulas. Direct
computations give

1/—coshﬂ—xl, —d —smh1/ ( -Xx)
d
s
Al(s) =d, h h ,
1(s) {Zd sin / a 2\/_ cos xl}

Ay(s) =~d, [i sinh \/E(xz x2 _xl \/7 cosh \/7 —-x) }
d, d,

(144)
It is clear that A, (s,((l)) =0and A, (s,(f)) =0 when
2k-1)’m*d K*nd
o_ @RV mdy o) Km0
4xy (%2 = %)
(145)
respectively. Moreover,
(0,6, (x55))(by, €, (yss)) _ sinh \/s/d,x cosh /s/d,y _ o)

\/sld A (s) \/sld, cosh \/s/d x,

(a5, €, (x55)) (b5, €y (y5s)) _ cosh /sidyx cosh /s/dyy O(l)
V/$ldy A, (s) \/sld, sinh \/s/d,(x, — x)) s)’

(146)
as s — 0. Therefore, (70) gives @f)l)(x, y)=0and @(()2) (x,y)
=(dy/(x, = x1)).
Further,
s (. (D i (Zk—l)ﬂf
<a1,C1( Y5 S, )> isin “om JA
2k-NVnd, . . 2k-1)m
<bl,($1(x1—x;s}{l))>:(—l)k“( le) 1zsm( 2x1) X,
QA'(S(I)) G YL
d, ’
@) kmd,i km B
() = 2 e,
b, 6, (x,— x50 ) ) = foni cos ko Xy — X
<2’ 2(2 ’k>>_x2—x1 x xl(2 )
2 2
S (2) k k™
LA =(-1
d, Z(Sk) ( )2(x2 xp)

(147)
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Thus,
01(0)= 2|2 [0 sin X2 gy (e
k=1L71J0 1
sin (2k-1) .
2x,
Ol )= | Oy Y (-1
2 1Jx k=1
1 2 km
' ch . L,”Z(y) cos —y)dy}
- (Pm2) 7 (x,x,)t km
e cos T s (%) —x7)

(148)

Similarly, we have

(a, € (xg—x,5))  sinh \/s/d\(xy—x) O(l)

sA,(s) sd;+/sld; cosh \/s/d x, s)’
(b, €y (x, —x,5)) _ y/sld;y cosh \/s/dy(x, —x) O(i)
s4,(s) sd,(s/d,) sinh /s/d,(x, — x,) 2]

(149)

So, (88) gives

1 X 2

(D(() )(xo —x;a;) =_d_’(D(() )(xz —x;b,)
1
= 3 — — 2 .
X)) { (x Xy~ Xy) }

(150)

Hence, loading the quantities in (141) and (142) gives
the solution to problem (136)-(139) as

8x, & (- (1) . (2k-1)m
+ 7, kZ{ (k- 1) sin 2 x+0,(x1),
__3(xz x)z (% x1)2
Py(x1) = 6d, (%, - x7) &i(t)
2(x, - %) Q (-1)FTPE (¢ kn
+ (anx) kZI( ) k’; 1(t) cos P (x, —x) +0,(x, ).
(151)
Applying the matching condition ¢,(x,t) =¢,(x;,t)
gives
&0+ ) [l 60+ bV ®)] e, (152)
k=1
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where

B 24d,x,
(2k = 1)*72[(3d, — dy )x, +dyx,] ’
6d -
bk=— — 1(x2 xl) , (153)
k' [(3dy — dy)x; + dyx,)]
3d,d,
t) =
) (3d, —dy)x, +d;x,

[0 (x1, 1) = 65 (xy, 1)].

To solve this integral equation, we use (134), to obtain

6d,d, a
(3d, —d,)x, +d,x, paurt

. <ie—((2k—1)2n2dl/4x$)t+ 1

(1) =8(t) -

>

e—(k2n2d2/(x2—x1)2)t>

X1 X%
(154)
where &, is the Dirac delta function. Here, we used
< 1 a1l A
Yo Tt 19
k=1 (2k— 1) 8 k=1 k 6
Hence, from (135), we have
§1(1) =c(t) + (y * )(0) + (y * yx ) (1) = c(t)
(156)

- 3w

,_.

3.2. Solution of a Multilayer Problem. Here, we investigate
the solvability of the main problem (2)-(8), through solving
the initial boundary value problems (9)-(11). Similar to
what we have denoted in Section 2, we consider the follow-
ing notations:

b, j=1,
a =
! (vj, ptj), 2<j<n,
(157)
©n,  j=n
and, forall 1 <j<n,
s s s
» 9 = h > h 7. >
(58 7) (cos dey =) sin dey>
GJ()/ 35, T) = (sinh Tijy, Tij cosh Tid]y> .
(158)
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Moreover, we define

Ai(s) = (b, € (x5, 7) ) (), &; (x5 7))
= (0, €(x;155,7) ) (bj, (x5, 7)),

(159)

and let {s,((j)};zl be the sequence of zeros of the function 4;
(s)foralll<j<m,ie,

a(s)=0.4)(s”) #0 (k=1,2,-).

Analogue to the computations of (84) and (93), we have
for the current case, for all j=1,---,n,

(160)

O i
ej(x’tﬂ):—jj Oy (x4 —x.x

T j Xj1

=) (n)dy

L9 (o0 r(n9)

S e —xx—y) oY) g
deL],Jo 0 (=% 2) (" m)” cdy
1 X <Bj,(Sj(xj—x,s]((j),T)>

siﬁ /rdeJ{(s,({j))

()

5 e 00 a6 (5 - nslr)
J J \ ; dcdy
0 (( /Tm+Tm)

1 020:6k “T<b G ( x,sl(cj),'r)>
T Jk=1 \/sk /deAJ.(sk])
' 170 51(<j)’7> >’7j()’)dy’

(161)

where @éj> can be defined in a similar way as in Lemma 4,
and

9,(x.1,7) = At 1) (D (x;
- J;/\(c, - 638,)(6)de
=AMt 1)§(H)D; (% —x,050))
+ J;A(c, %t =650))E,(c)ds

+0,(x,1,7),

—x,O;[)j)

7)D,®; (xj - X,

7)D,D;(x;y —

(162)

with the respective forms ; defined by (87) in Lemma 5.
This last equation (162) can be rewritten as

@00t 1) =T (x =%, t38;) = T)&(x —x. t50;) +0;(x, 1, 7),

(163)

in which Zj:/\(t,T)(j(t),Ej:A(t,‘r)fj(t) and the linear
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operator T is defined by

t
Tip(y;t; L) =D;(y, 05 L)g(t) - J D,®;(y,t - ¢; L)g(c)ds,
0
(164)
forall j=1,---,n,LeR>

The matching conditions ¢ ; (xj, tT)=
=1,---,n—1,lead to

A (xj, £7),j
TiG;(0,£50;) = Tj&;(x;y
=4, (Tjﬂ(jﬂ (¥jer =% £5Bj01)

T (0 1505) +61 (x,1,7) ).

—xpt; a]-) + Gj (xj, t, T)

(165)

Using the matching conditions (12), we have ¢ f ()=
éj( ) forall 1<j<n—1. Thus, for j=1,

—T0& (%o = x5 t501) = Ay To8, (%, = %1, 15 By)
+ Al T2€2(0> t 5 az) = Alez(xl’ t’ T)
=0, (%, £,7) = T, §, (0,5 by).
(166)
For2<j<n-2,
T&i 1 (0850) = T (%, — X t50))

‘ j+lg'( j+1 x t; b)+1)
+ AT ]H(O,t;am) = A0, (%, 1, 7)

-0, (xj, t, T).
(167)
For j=n-1,
Ty18na (0550, ) = Ty, (Xp — X, t5 0, )
A —lTnEn—l( n 1’t b ) An—len(xn—l’t’ T)

=0, (%t 7) = ,1Tnfn(0, t;a,).

(168)
System (166), (167), and (168), of (n — 1) integral equa-

tions of the unknowns &;;1<j<n—1, can be adjusted as a
matrix equation

A (0)h(t) + (ﬂ’ x h) (£) =b(t), (169)

with o/(¢f) is a tridiagonal matrix of order n—1 whose
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entries are as follows:

—<Dj(xj,l—x- t‘a) A, ( 1 Xp s ['1*1) 1 <j<n-1(main diagonal),

A (0,5 a5,),

@;(0,£35)),

1< j<n -2 (super diagonal)
2<j<n—1(subdiagonal),
(170)

and the vectors h(¢) and b(t) are defined as

£i(1)
hiy={ =+ |
En—l(t)
A0, (%1, 657) =0, (31, 1, 7) = T1Z1(0>t;51)

2205 (x5, 1,7) = 0, (%2, 1, 7)

An72en71 (xn72’ £, T) - 61/172 (xnfl’ £, T)

An—lgn (xn—l’ t T) - en—l (xn—l > 1 T) - An—l Tngn(o’ t; an)
(171)
In fact, we can rewrite (169) as
h(t) =6(t) + (AB = h)(1), (172)

with €(t) = 2/(0)"'b(t) and B(t) = -L(0) " o/’ (). In view
of the convolution formula (31), the natural transform of
(172) reads

Nh()](s, 7) = N[E(#)](s, 7) + TN[B(1)](s, T)N[h(8)] (s, 7),

(173)
which is equivalent to

Nrh(t)](s, 7) =
= (I+7tIN[#
+ (TN[B(1)] (5, 7))+ ) N[E(1)](s,7),
(174)
where I is the (n— 1) x (n—1) identity matrix. Once again,

throughout the convolution sense (31), the natural trans-
form inversion of (174) is

h(t) =& (t) + (B = E)(t) +
- Y,

(B * B *C)(t)+--=6€(t)

(175)

where 3, is the m -times self-convolution of 3. Finally, the
solution of the nonhomogeneous multilayer diffusion sys-
tems (9)-(11) and hence that of the main problem (2)-(8)
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is concluded as

9% £, 7) = M(t, T);() @ (x; - x5 5,)
~ Mt 1) (DY (x;y —x50))

(176)

with the respective forms CD(()j) and 6; defined as in (88) and
(161), respectively, for all j=1, -, n.

4. Conclusion

Throughout the current contribution, a one-dimensional »
-layer nonhomogeneous diffusion problem with time-
varying data and general interface conditions has been con-
cluded by means of a generalized integral transform.
Although most of the previous works have been focused
on solving the problems of the homogeneous diffusion equa-
tion, the nonhomogeneous diffusion equation problem
arises in many physical applications. We have obtained the
exact solutions for one- and multilayer nonhomogeneous
diffusion problems. The former case has been solved by a
new generalized integral transform; the later one (n-layer
problem) has been recast in a sequence of one-layer prob-
lems. The obtained results generalize and extend those in
[31, 33, 38, 40, 42]. Our results motivate to deal with other
types of diffusion problems, for example, reaction diffusion
problems, advection-reaction diffusion problems, and non-
autonomous reaction diffusion problems.

On the other hand, more general partial differential
equations (PDEs) and systems can be considered, for exam-
ple, system of coupled PDEs, nonlinear diffusion PDEs, and
nonautonomous reaction diffusion PDEs. Those kinds of
PDEs appear widely as epidemiological models to study
and analyze the spread of diseases and pandemics [22-25].
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