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We developed the operators ideal in this article by extending s-soft reals and a particular space of sequences with soft real
numbers. The criteria necessary for the Nakano sequence space of soft real numbers given with the definite function to be
prequasi Banach and closed are investigated. This space’s (R) and normal structural features are illustrated. Fixed points have
been introduced for Kannan contraction and nonexpansive mapping. Finally, we investigate whether the Kannan contraction
mapping has a fixed point in the prequasi operator ideal with which it is linked. By examining some real-world instances and
their applications, it is demonstrated that there exist solutions to nonlinear difference equations.

1. Introduction

The study of variable exponent Lebesgue spaces received
additional impetus from the mathematical explanation of
non-Newtonian fluids’ hydrodynamics (see [1, 2]). Electro-
rheological fluids have various applications in various fields,
including military science, civil engineering, and orthope-
dics. Since the publication of the Banach fixed point theorem
[3], there have been numerous developments in the field of
mathematics. While contractions have fixed point actions,
Kannan [4] illustrated a noncontinuous mapping. In
Reference [5], a single attempt was made to explain Kannan
operators in modular vector spaces, and this was the only
one that worked. Mitrovic' et al. [6] defined a cone b, (s)-
metric space over Banach algebra as a generalization of
metric spaces, rectangular metric spaces, b-metric spaces,
rectangular b-metric spaces, v-generalized metric spaces,
cone b-metric spaces over Banach algebra, and rectangular
cone b-metric spaces over Banach algebra. They provided
fixed point results for Banach and Kannan in cone b,(s)-
metric spaces over Banach algebra. Debnath et al. [7]
showed the existence and uniqueness of common fixed

points for pairs of self-maps of the Kannan, Reich, and
Chatterjea types in a complete metric space. Younis et al.
[8] used concepts from graph theory and fixed point theory
to provide a fixed point result for Kannan-type mappings in
the context of freshly published graphical b-metric spaces.
They provided suitable examples of graphs that corrobo-
rated the existing theory. They demonstrated the anticipated
results by applying them to several nonlinear issues encoun-
tered in engineering and research. Younis and Singh [9]
discovered adequate conditions for the existence of solutions
to certain classes of Hammerstein integral equations and
fractional differential equations. They extended the concept
of Kannan mappings in terms of F-contraction in the con-
text of b-metric-like spaces and provided a series of novel
and nontrivial instances, as well as computer simulations,
to demonstrate the established results, therefore introducing
the concept in a novel way. On the other hand, several
unresolved issues are offered to enthusiastic readers. More
information on Kannan’s fixed point theorems can be found
here (see [10-15]). The mathematics underpinnings of fuzzy
set theory, which were pioneered by Zadeh [16] in 1965 and
have made significant progress, are well understood in fuzzy
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theory. The fuzzy theory has the potential to be applied to
various real-world problems. The possibility theory, for
example, has been developed by several researchers, includ-
ing Dubois and Prade [17] and Nahmias [18]. The contribu-
tion of probability theory, fuzzy set theory, and rough sets to
the study of uncertainty is critical. Yet, these theories have
some limitations as well as advantages. The theory of soft
sets, developed by Molodtsov [19], was introduced as a
new mathematical strategy for dealing with uncertainties to
overcome these characteristics. Soft sets have been widely
used in various disciplines and technologies. In particular,
Maji et al. [20, 21] studied several operations on soft sets
and applied their findings to decision-making problems in
the literature. Several writers, including Chen [22], Pei and
Miao [23], Zou and Xiao [24], and Kong et al. [25], have dis-
covered significant characteristics of soft sets. Soft semirings,
soft ideals, and idealistic soft semirings were all investigated
by Feng et al. [26]. Das and Samanta developed the ideas of a
soft real number and a soft real set in [27] and discussed the
characteristics of each concept. These principles served as
the foundation for their investigation into the concept of
“soft metrics” in “[28].” (See [29, 30] for a more in-depth
examination.) Based on the idea of soft elements of soft met-
ric spaces, Abbas et al. [31] developed the concept of soft
contraction mapping, which they named “soft contraction
mapping.” They focused on fixed points of soft contraction
maps and obtained, among other things, a soft Banach
contraction principle as a result of their efforts. In their
paper, Abbas et al. [32] demonstrated that every complete
soft metric induces an equivalent complete usual metric.
They obtained in a direct way soft metric versions of various
significant fixed point theorems for metric spaces, such as
the Banach contraction principle, Kannan and Meir-Keeler
fixed point theorems, and Caristi theorem, Kirk’s, among
other things. In [33], Chen and Lin presented an extension
of the Meir and Keeler fixed point theorem to soft metric
spaces, which was previously published. Many researchers
working on sequence spaces and summability theory were
involved in introducing fuzzy sequence spaces and studying
their many characteristics. When it comes to fuzzy numbers,
Nuray and Savas [34] defined and explored the Nakano
sequences of fuzzy numbers, (1) equipped with a definite
function. The following theories use operators’ ideals: fixed
point theory, Banach space geometry, normal series theory,
approximation theory, and ideal transformations. For addi-
tional evidence, see [35-37]. According to Faried and Bakery
[38], prequasi operator ideals are broader than quasiopera-
tor ideals. This study is aimed at introducing a certain space
of soft real number sequences, abbreviated (csss), under a
pre-quasi-quasi function (csss). The structure of the ideal
operators has been described using this space and s-num-
bers. The conditions essential to generate prequasi Banach
and closed (csss) (£5(7)), supplied with the definite function
h are investigated. This space’s (R) and normal structure
properties are illustrated. Fixed points have been introduced
for Kannan contraction and nonexpansive mapping. Finally,
we investigate whether the Kannan contraction mapping has
a fixed point in the prequasi operator ideal with which it is
linked. A few real-world examples and applications demon-
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strate the existence of solutions to nonlinear difference
equations.

2. Definitions and Preliminaries

Assume that R is the set of real numbers and /' is the set of
nonnegative integers. We denote the collection of all non-
empty bounded subsets of R by B(R) and E is the set of
parameters.

Definition 1 (see [27]). A soft real set denoted by (f, A), or
simply by £, is a mapping f : A — B(R). If f is a single-
valued mapping on A ¢ E taking values in RR, then f is called
a soft element of R or a soft real number. If f is a single-
valued mapping on A C E taking values in the set R* of non-
negative real numbers, then f is called a nonnegative soft
real number. We shall denote the set of nonnegative soft real
numbers (corresponding to A) by R(A)". A constant soft
real number ¢ is a soft real number such that for each
a €A, we have ¢(a) =c, where ¢ is some real number.

Definition 2 (see [39]). For two soft real numbers f, g» we say
that

Note that the relation < is a partial order on R(A). The
additive identity and multiplicative identity in R(A) are
denoted by 0 and 1, respectively.

The arithmetic operations on R(A) are defined as
follows:

o3 ) e dandog s
(g)()t)— {é(/\) tAeA d0¢g()t)}.

The absolute value |f| of f € R(A) is defined by
Fl={[Fo]:xeal. (2)
Let d:R(A)xR(A) — R(A)", where d(

j-,
g| for all f,geR(A). Assume m, : R(A) x R(A
is defined by m,(f, g) = max;,d(f, g)(A).

f-
— R

9)=
)
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Note that

(1) (R(A), my) is a complete metric space

=my(f, g) for all f, g,k € R(A)

(3) my(Ef,£g) = [Elmy(f, ), for all E € R

Definition 3. A sequence f = 0?;) of soft real numbers is said
to be

(a) bounded if the set { f : j € '} of soft real numbers
is bounded; i.e., if a sequence ( f ) is bounded, then
there are two soft real numbers g1 such that
g<f <l

(b) convergent to a soft real number f0 if, for every € > 0,
there exists n, € 4 such that m,( f ) fo) <¢, for all

JZJo

By €., and ¢,, we indicate the spaces of bounded and
r-absolutely summable sequences of reals. Assume w(S) is
the classes of all sequence spaces of soft reals. If 7= (7,) €
R where R*” is the space of positive real sequences, we
introduce Nakano sequences of soft reals such as [34] and
marked it by €(z)={v=(v,) € w(S): h(uv)<co, forsome
u>0}, where h(v) =Y [my(v,,0)]™. The space (¢5(t),
Il), where ||7|| =inf {x>0: h(v/K)<1} and 7,>1, for
all ae .V, is a Banach space. Suppose (1 )6800, one has

88(7) = {v = (v,) € w(S): h(uv)<oo,for some y > 0}

Z

< Z [my(uv,,0)]™<oco,for some y > 0} (4)

Loy eos: S im,

< (0]
a=0

w(S): h(uv)<co,forany > 0}.

Lemma 4 (see [40]). Ifr,>0and v, t, € R, forallae W,
one gets |v, +t,|" < 257 1(|v,|" + |t,|™), where K = max {1,
SUp,7,

3. Some Properties of ¢5(7)

We have investigated in this section the certain space of
sequences of soft real numbers under definite function to
form prequasi (csss). We present sufficient conditions of

5(t) under definite function / to construct prequasi Banach
and closed (csss). The Fatou property of different prequasi
norms h on €5(7) has been explained. We have explored the
uniform convexity (UUC2), the property (R), and this space’s
h-normal structure property.

Definition 5. The linear space U is called a certain space of
sequences of soft reals (csss), when

(1) {l;q}qem c U, where l;q ={0,0, -,
marks at the g™ place

1,0,0, - -1 for 1

(2) U is solid, ie., if Y = ( )Ew(S) Z:(Zq) €U, and
|Yq|S|Zq|, for all g € 4, one has Y € U

(3) (17[;72]):20 € U, where [g/2] indicates the integral part

of g/2, assume (iqu)’:o €U

Definition 6. A subclass U, of U is said to be a premodular
(csss), if one has h € [O,OO)U holds the following conditions:

(i) Suppose Y eU, Y=9& h(Y)=
(6> 6; 6))

0 with h(Y)>0,
where 9=

(ii) We have Q= 1, the inequality h(aY) < Q|a|h(Y)
holds, for all Y € U and a € R

(iii) One has P> 1, the inequality h(Y +Z) < P(h(Y) +

h(Z)) satisfies, for all Y, Z € U

(iv) When |i/vq|§|/qu|, for all g € 4, we have h((?;)) <
h((Z,))

(v) The inequality h((Y,))<h((Y,y)) <Peh((Y,))
verifies, for some P> 1

(vi) Assume E is the space of finite sequences of soft
real numbers, one has the closure of E=U,

(vii) We have ¢ >0 with h(&,0,0,0, --
0, --+), where &(a) =

3 = olalh(i, 8,0,
a, for every ae A

Definition 7. If U is a (csss). The function h € [O,OO)U is said
to be a prequasi norm on U, if it satisfies the following
settings:

(i) Suppose YeU, Y=9&
(0,0,0,)

¢ h(Y)=0 with h(Y)=>0
where 9 =

(i) One has Q>1, the inequality h(aY) < Q|ah(Y)
verifies, for all Y € U and a € R

(iii) We have P> 1, the inequality h(Y + Z) < P(h(Y) +

h(Z)) satisfies, for all Y, Z € U



Evidently, by the last two definitions, one has the follow-
ing two theorems.

Theorem 8. Assume U is a premodular (csss), then it is
prequasi normed (csss).

Theorem 9. U is a prequasi normed (csss), when it is quasi-
normed (csss).

Definition 10.

(a) The function h on €5(7) is called h-convex, when

h(ocf’+ (1- oc)Z) <ah(Y)+(1- oc)h(Z), (5)

for all a € [0,1] and Y, Z € £5(7)
{Y } gen & ¢ (€5(1)), is h-convergent to Y € (¢5(1)),,,

if and only if, lim h(?; —Y) =0. If the h-limit

g—00
exists, then it is unique

(©) {?;}Mg(eS(T))h is h-Cauchy, if lim h(Y,

~Y,)=0

q,r—00

(d) I' < (¢%(7)), is h-closed, if for every h-converges
{i/\;}aem cIl'toY,onehas Yel

(e) I'c(€(r)), is h-bounded,
{W(Y-Z):Y,Zel'} <0

assume O, (') =sup

(f) The h-ball of radius € >0 and center Y, for all Y €
(€5(t)),,, is denoted by

B,(¥.e) = {Z e (6(r)), :h(Y-2) e} (o)

(g) A prequasi norm h on €5(t) verifies the Fatou
property, if for all sequence {Z?} ¢ (¢5(r)), with
limqéooh(Z(q) ~Z)=0 and every/\lze (€5(1)),, we
have h(Y - Z) < sup, inqurh(f’ - 7))

Recall that the Fatou property gives the h-closedness of
the h-balls. We will indicate the space of all increasing
sequences of reals by I.

Theorem 11. (¢5(r)),, where h(Y) = (Y2 [my (Y, 0",

S S . .
for every Y € 8(7), is a premodular (csss), if (Tq)qe./V €L N
I with T, > 0.

Proof. (i) Clearly, h(Y) >0 and h(Y)=0& Y = 9.

Journal of Function Spaces

(1-i) Assume Y, Z € £5(7). Then,

L] o]
=h(Y) +h(2) ‘oo
(7)

Hence, Y + Z € 85(1).

(i) We have P> 1 with h(Y + Z)
every Y, Z € ¢5(7).

(1-ii) Suppose a € R and Y € ¢5(7), one has

<P(h(Y) + h(Z)), for

(e

o) = [Z (o7, a)ﬂ

q=0

sl 5 [m(7,9)

q q=0

< Qlafh(Y) < co

~| 1/K (8)

Since aY € €5(7). By parts (1-i) and (1-ii), we have €5(r)
is linear. And E € 5(1), for every peJ, as h(?)p) =
3l S 1.

(i) One has Q=max {l,supq|oc| W > 1 with
h(aY) < Qlalh(Y), for every Y € €5(7) and a € R.

(2) 1f \i/vq| < |2vq|, for every q € # and Z € €5(t). Then

W) =

then Y € &5(1).
(iv) Evidently, from (24).
(3) Assume (Y,) € ¢5(1), one has

[i i[md@a)rﬂ”’(
: i[md@é)ﬂ (7).

q=0
(10)

UK > 1,

IN
N
1

O (}7[:,2]) € ¢5(1). (v) From (25), there are P, =
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(vi) Clearly the closure of E = £5(z).

(vii) One gets 0 <o < |a|™™ !, for a#0 or o>0, for
a =0 with

(80,0,0, ) = olaf(1,0,0,0, ). (11)

O

Theorem 12. Assume (Tq)qe./V €. NI with 7,> 0, one has

(€5(t)),, which is a prequasi Banach (csss), where h(Y)=
0 o =T /K ~
[Dgoolma(Ye, 0)] 7], forall Y € e5(1).

Proof. From Theorems 11 and 8, the space (£5(7)), is a pre-
quasi normed (csss). If Y= (Yl )q=0 is a Cauchy sequence in

(€5(t)),,» then for all & € (0, 1), we have I, € ./ such that for
every I, m > [, we obtain

. 1/K

(71 77) - lz [md(’y“;_fg«,a)ﬂ . (1)

4=0
Therefore, md(;’g—ﬁ”,())w< e. Since (R(A),my) is a
complete metric space, so (Y;”) is a Cauchy sequence in
R(A), for constant q € A Then, lim,, Y;” = Y° for fixed
qgeN. So h(Yl YO) <¢g, for all 1>1],. As h(YO) h(YO

Y+ Yl) sh(Yl %) +h(Yl) <co. Then, Y0 ¢5(z). O

€l NI with 7,>0, we have

n(¥) =

Theorem 13. If (Tq)qe/lf
(1)), a

(352l (Y, 011

closed (csss), where

for all Y € €5(x).

prequasi

Proof. By Theorems 11 and 8, the ¢ space (€5(t)),, is a prequasi
normed (csss). When Y= (Yl) € (¢5(1)),, and lim__, .k

(?I - i/vo) =0, one has for every € (0,1), there is I, €/
such that for every [ > [, one gets

(o) —

> h(71- 1) - [Z (7,

Y0, 6)]”1 . (13)

Therefore, md(Yg—i/Vg,Q <e. Since (R(A),my) is a
complete metric space, so (Y;) is a convergent sequence in
R(A), for constant g € 4. Then, lim;_, qu = }72, for fixed
geN. As h(YO)=h(Y'-Y'+Y') <h(Y' - YO) + h(Y!) <

00. We have Y° € ¢5(7). O

(32 mg (Ve 0] ver-

Theorem 14. The function h(Y) =
(T) €., NIso thatt,>0,

ifies the Fatou property, when
for every Y € £5(1).

Proof. Assume {Z'} < (¢5(r)), with lim, _h(Z -Z)=0.
As (€5(7)),, is a prequasi closed space, we have Z € (¢5(1)),.
For every Y € (€5(7)),,, then

q=0 (14)
o . UK
S m@E-70)]]
<sup rlznﬂfh(l? - Z’) .
O

Theorem 15. The function h(Y)= ;’Zo[md(i’vq, 0)]"" does
not satisfy the Fatou property, for every Y € 85(t), if (t,) €
8, and T, > 1, for every g € N

Proof. Assume {Z} ¢ (€5(7)),, with lim hZ -Z)=0.
As (€5(1)),, is a prequasi closed space, we have Z € (¢5(1)),.
For all Z € (£5(1)),,, one can see

(F-2)= 3 [m(Fa-2,0)]"

9=0

Supr,-1 / oo .
<2 1 Y [md(Yq—Z;,O)} '
-0 (15)
* 2 |m(Z-Z,0)]"
q=0
supr,-1
<24

r—>00

sup 1nfh<Y Zr)

m r=m
O

Example 16. For (1,) € [1,00)", the function h(Y)=inf

{@>0: Y 0 plmy(Y /e, 0] <1} is a norm on ().

Example 17. The function h(Y \/quf [my( Y 0)}(3q+2)/(q+1)
is a prequasi norm (not a norm) on £5(((3q + 2) (q+ 1))220).

Example 18. The function h( )= qum[md(Y 0)](3q+2) (g+1)

is a prequasi norm (not a quasinorm) on €5(((3gq+2)/

(9+1))g20)-



Example 19. The function h(Y) = y/ qu/,,[md(i/vq, 6)}d is a

prequasi norm, quasi norm, and not a norm on ¢5, for
0<d<l1.

Definition 20.

(1) [41] If p> 0 and g > 0. Mark

K (5 q) = {(m): 7,2 U, n(7) <p.h(2)

(16)

For K, (p, q) + D, let

Kz(p,q)zinf{l—;h<y;rz>: (

Suppose K, (p, q) = &, we take K, (p, q) = 1.

(2) [41] The function h holds (UUC2) when for all r >0
and g > 0, one has f5,(r, q) such that

K, (p»q) > B,(r.q) >0, forp>r. (18)

(3) [42] The function A is strictly convex, (SC), when for
every Y, Z € U, with h(Y)=h(Z) and h((Y + Z)/2)

= (h(Y) +h(Z))/2, one gets Y = Z

Lemma 21.

(i) [43] If t = 2 and for every f, g € R, one has
frg|" |f-g| _1
— | T3 | = E(LfV-+|gV)~ (19)

(ii) [44] Assume 1<t <2 and for all f, g e R with |f| +
|g| # 0, one obtains

2-t

FLHt-1)| f-g
2 [Iff+1gl

f-9
2

f+g
2

o
< _

< S (1 +gl').
(20)

In the next part of this section, we will use the function h

as h(g) = [220(my(g,,0))"]", for all g e €5(z).
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Theorem 22. If <T‘1)qe./l/ €8, NI sothat 7,> 1, one has h is
(UuC2).

Proof. Suppose b >0 and a>r>0. If f, g € €5(7), with

By using the definition of A, one can see

abgh(ft%) _ Li (’”d(@,ﬁ))rm] 1K

=2k (h (f) + h(g)) <2a,

then b<2. Assume Q={xe/f :1<71,<2} and P={x¢
N 1,22} =\ Q. For all w € ¢5(1),, one has h* (@) = hjy
() + by (). Therefore, hy((f — §)/2) = ab/2 or hy((f - )

12) > ab/2. Let first hp((f — §)/2) > ab/2. In view of Lemma
21, part (i), one gets

~ ~ ~ B I’lK T hK ~
i(12) g (152) B9y

2 2
then
h§<j+g> _ h’zf(f);hﬁf(g) ) (azb)K (24)
Since

2 2 ’

e <f+§7> . s (F) + @) (25)

by summing inequalities 2 and 3, and from inequality 1, one
can see

p (m) H(F) @)
2 2

IN
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This implies

(G)=(-0)) @

After, assume hQ((]Nf — §)/12) = ab/2. Put B= (b/4)~,

le{meQ:md(fm—%,f))

<5 (70) +mi(3) ands= v

Since B <1 and the power function is convex. Hence,

()£ 0)

< (?) ! (k5 (F) +1,(@) (29)
<2 (WS(7) +15(@)
<3 0() o) s

As ho((f - §)/2) > ab/2, one has

i (552) (57 (57)

WK K (30)
(6)-())
2 4
For all m € Q,, one obtains
Ty = 1<7(7) = 1) S <7y (T = 1) 7, (T, = 1),
-~ - 2-7,
9 my (fm _gm’())
B<B < — <
mg (fm’ 0) +my (gm’ O)
(31)

In view of Lemma 21, part (ii), one gets

(md<fm—;gm,6>> +(T0;1)B<md<fm;gm)6>>

<3 (7)) + 0G0

(32)

7
then
e (f : g) s () 2+ o, (9) .
()0
As
i« <f; g) G (]‘);h’él @ 55)

by summing inequalities 5 and 6, we have

s(33) 50, %0

2 <

< 5 _ (702_ 1) (Z) aK(ZK _ 1)
He(f) +18@) _ (x,-1) (5"
s B ZK 1 Z a
(36)
As
i« <j+ g) i () +h§<a>’ )
2 2

by summing inequalities 7 and 8, and from inequality 1, then

hK <f+§7> 0@ -y (5"

2 2 2K_1 \4
ZK (38)
<afl1- (19— 1) E
B 2K_1 \4 '
So
~, ~ _ 2K 1/K
AT AP N GDN L . (39)
2 2K_1 \4
Evidently,
K To— 1
1<1,<K<2 :»0<2K <1. (40)



From inequalities 4 and 9, and Definition 20, when we

take
poomn (=) ) =[50 )
(4)

Therefore, we have K,(a,b)>p,(r,b)>0, so h is
(uuce2). O

Definition 23. The space U,, verifies the property (R), if and
only if, for every decreasing sequence {I' j}je - of h-closed

and h-convex nonempty subsets of U, so that sup,

Rh(?,Fj) < 0o, for some Y € U,, then Njew T # 2.

By denoting I a nonempty h-closed and h-convex subset

of (¢5(7)),.

Theorem 24. Suppose (Tq)qu €l NI so that T,>1, we

have

(i) if Y € (¢5(1)), such that

&, (¥, T) = inf {h(i/—Z).- Zer} <co.  (42)

One has a unique & € T with &,(Y,T) =h(Y - &).

(ii) (¢5(t)),, satisfies the property (R).

Proof. To prove (i), if Y ¢ I' as I is h-closed, we have C:=
K,(Y, F) > 0. Then, for every r € ./, we have Z, € I' so that
h(Y —Z,) < C(1+ (1/r)). Assume {Z,/2} is not h-Cauchy.

There is a subsequence {Z )2} and ;>0 so that

g(r)

h((ng(Vr) —Zf;))/Z) >1,, for all r>j>0. Also, we obtain
K, (C(1 + (1/r)),1,/2C) > a:= B,(C(1 + (1/r)), [,/2C) > 0, for
every r€ . As

max (0(¥ =2, ), h(7-25))) s¢(1+ ),
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So

C:ﬁh(f/,l")sc<l+ﬁ>(l—oc), (45)

for every je . By choosing j — 00, we have

0<C§C(l+ﬁ)(l—a)<c (46)

This is a contradiction. Hence, {Z/Z} is h-Cauchy. Since
(€5(t)),, is h-complete, one has {Z,/2}h-converges to some
?. F(ievery jeN, we have {(Z, +Zj)/2}h—converges~ to
Z+(Z;/2). As I is h-closed and h-convex, we have Z +
(Z/Z) el As Z+ (ZNj/Z)h—converges to 2Z, one gets 27 €

I'. Suppose A =2z and from Theorem 14, as h verifies the
Fatou property, we get

ﬁhW’F)S’“(?—i)SS‘%P}E,th_(Z@))
. Z,+Z,
< sup inf sup 1nfh (Y— ! J)
i J2 2
2)(r3)

(47)

—

< — sup inf sup inf [h(

>, : >
11’1 i r>i

=8 (Y. 1)

\S}

So h(Y = 1) = &,(Y, ). As h is (UUC2), then it is (SC),
which explains the uniqueness of A. To prove (ii), if Y ¢ I o>
for some ry € /. As (K;,(Y,I,)),, € b, is increasing, take
lim,  &,(Y,T,)=C.If C >0, otherwise, Y € I',, for every
r e /. From (i), one has one point Z €T, so that &,(Y,
r)=hy- Z), for all r € . A similar proof will show that
{Z, 12} h-converges to some Z € (¢5(1)),. Since {I',} are h-
convex, decreasing, and h-closed, we have 2Z € n,_,I',. [

Definition 25. U,, verifies the h-normal structure property, if
and only if, for every nonempty h-bounded, /-convex, and
h-closed subset I of U, not decreased to one point, then
Y eI so that

s;};h(?—Z) <8, (I") =sup {h(f’—Z): ?,Zef} < 00.
(48)

Theorem 26. Suppose (‘rq)qeﬂ €., NI so that T,> 1, then

(€5(t)),, satisfies the h-normal structure property.
Proof. Theorem 22 implies that h is (UUC2). Suppose I is a

h-bounded, h-convex, and h-closed subset of (£5(7)), not
decreased to one point. Then, 8,(I') >0. Put C=46,(I). If



Journal of Function Spaces

Y,Z el with Y #Z, thenh(( -Z)[2)=1>0.Forall aeT,
we have h(Y — &) < C and h(Z - &) < C. Since I is h-convex,
we have (Y + Z)/2 € I'. Since

suph<Y+Z —5c> SC(I—KZ(C, l)) <C=4,I).
ael’ 2 c

4. Kannan Contraction Mapping on £5(7)

In this section, we have constructed (¢5(7)), with distinct h
so that one has a unique fixed point of Kannan contraction

mapping.

Definition 27. A mapping V : U, — U, is called a Kannan
h-contraction, when we have a € [0,1/2) so that h(VY —
VZ)<a(h(VY = Y) +h(VZ - Z)), for every Y, Z € U, The
mapping V is said to be Kannan h-nonexpansive, if a = 1/2.

A vector Y €U, is said to be a fixed point of V, if
V(Y)=7.

Theorem 28. Suppose (Tq)qe/V € NIsothatty>0andV :

(eS(T))h -

- 0 = 7 K
where h(Y) = [X2[ma(Yg, 0)] ']
V has a unique fixed point.

(€5(t)), is Kannan h-contraction mapping,
for every Y € €5(t), then

Proof. Let Y €€5(t), we have VPY €¢5(7). Since V is a
Kannan h-contraction mapping, then

Hence, for every I, m € A so that m >, then

(VY -v"Y) <a(h(VIT VY )+ h(VT - v T))

<o (15) 4 (15) " nvi-1)

(52)

Therefore, { V!Y} is a Cauchy sequence in (£5(7)),. Since
the space (£5()),, is prequasi Banach space, we have Ze
(€(1)), so that lim;,__ V'Y =Z. To show that VZ=Z, a
h holds the Fatou property, we get

h(VZ —Z) <sup ilgfh(Vl“l?— Vlf/>
P o (53)
< sup 1l£11f (m) h(VY-Y)=0,

so VZ=Z. Hence, Z is a fixed point of V. To prove the
uniqueness, assume Y, Z € (¢5()),, are two not equal fixed
points of V. Then,

h(Y-Z)<n(vy-vz) "
<a(h(VY-T)+h(VZ-Z))=0.

Hence, Y = Z. |

Corollary 29. Assume (Tq)qe/v €t NI so that T,> 1, and
Vi (85(1)), — (¢5(1)), is Kannan h-contraction mapping,
where h(Y) = [Zgzo[md(iqu, (~))]Tq]mi, for every Y € PLS(T): then
V  has unique fixed point Z with h(V'Y-Z)<a
(a/(1-a) " h(VY - 7).

Proof. By Theorem 28, we have a unique fixed point Z of V.
Then,

h(Vlif—Z)zh(Vl?—VZ)
(x(h(VlY vy )+h(v2—2)) (55)
=a<1%““)l_lh(vy—¥).

IN

O

Example 30. If V- (€(((2q+3)/(q+2))3%)), — (€(((2q +3)/

(9+2))3%))» where h(g \/zq ° (ma( 3, )) ardlla+d) ¢
all gees(((2q+ 3)/(q+2))q: ) and
9 m@epy
V(g) =1 _ (56)
I, h@)eioo).
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Since for all g, g, €
h(g,),h(g,) €10,

(€(((2q+3)1(q+2))2

1), we have
o (2) )

91) +h(Vg, - g,)).

)), so that

h(Vg,-Vg,) =h<gz - &> <
1

7 (h(Vg, -

~N

(57)

For every gy, 4, € (€5(((29+3)/(q+2))3,
h(gl),h(gz)e[l,oo), we get

))h with

N AR 43, 43,
v =5 - 5) = g (1(5) (%))
- =V, = 3) +h(VE, - 5)
(58)
For each gNI,[fZG(ES(((2q+3)/(q+2));i’0))h with h

(9,) €[0,1) and h(g,) € [1,00), one has

- v 9 _9;
WVg, - Vg,) =h(41 - 52)

)l

IN
~N

0P )
= = VG, 3) +h(V5, - 5))

Therefore, V is Kannan h-contraction. Since / holds the
Fatou property, by Theorem 28, we have V that holds unique

fixed point 9 € (£5(((2q +3)/(q +2))5%)), -

Definition 31. If U, is a prequasi normed (csss), V : U,
— U, and Z € U,,. The mapping V is said to be h- sequen-
tially continuous at Z, if and only if, assume lim h(Y,

-7)= h(VY,-VZ)=0

q—0

q

0, one has lim,__,,

Example 32. If V:(&(((g+1)/(2q+4 );’ZO))h —

(©(((q+1)/(2q+4))),, where h(Z) =¥ (my(Z,
0)) @R for all ZetS(((q+1)/(29+4))%,) and
1 /~ - —
173(19(J+z), Zo(a) € [0, 17),
V(Z)= 1_17EO, Z(a)_l—17, (60)
1- —~ 1
1—8b0, o(a) € (17, 1}
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V is obviously both h-sequentially continuous and
discontinuous at 1/17b06(ES(((q+1)/(2q+4));ZO))h.

Example 33. Suppose V is defined as in Example 30. If

{2} < (¢%(((2q+3)/ 3)a+2))y2 A
- Z9) =0, where 70) € (e (((2q+3)/(q+2));’20))h so that

o)), with lim

h(Zz©) =1.
Since the prequasi norm h is continuous, one obtains

— 70 70
<">—VZ<°>) = lim h( —-=
n—~ao
(61)

lim h(vz
n—a~oo

Hence, V is not h-sequentially continuous at Z(®),

€l NI so that t,>1, and

J(Y,, 0",

Theorem 34. Assume (t,)
qeN

' (P‘S(T)N)h — (85(1)),, where h(Y)= Zgzo[m
for every Y € &5(z). If

(1) V is Kannan h-contraction mapping

(2) V is h-sequentially continuous at Z € (¢5(1)),

(3) One has Y € (¢5(1)),, so that {V'Y} has {ViY} con-

verging to V4
Then, Z € (€5(1)),, is the only fixed point of V.

Proof. Suppose Z is not a fixed point of V, we have VZ # Z.
By using conditions (24) and (25), one has

lim h(v’f?—Z) —0,
lj—>oo

(62)
lim h(V’f”? - VZ) -

lj—>oo
Since V is Kannan h-contraction, then

0<h(VZ—Z)
=h((v2— Vlf‘“17) + (VlfY—Z) + (V’J“f’— v’f?))

2 supr;-2
<2 i

N _ 2 supr,.—z N _
h(V’f“Y— VZ) +2 i h(VlfY—Z)
supTi_l o lj—l . -
v20 a(c) h(vY-Y),
l-«
(63)
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Since [; — oo, this gives a contradiction. So Z is a fixed Then, V' is Kannan h-contraction and
point of V. To prove the uniqueness, assume Z, Y € (¢5(1)), R
; . v )
is two not equal fixed points of V. We have L (F) €[0,1),
o o vir)={* (68)
h(Z—Y)sh(VZ—VY) vy
(64) = h(Y) €[1,00)

<a(h(VZ-Z)+h(v¥-T))=o0.
o Clearly, V is h-sequentially continuous at 9e
Therefore, Z =Y. U (©5(((2a+3)/(q+ 2));20))h and {V'Y} verifies {V'Y}

Example 35. If V is defined as in Example 30. Suppose  converges to 9. From Theorem 34, the element d¢

n(¥) = qum(md(Y 0))(24+3) q+2) , for every ¥ ¢5(((2q + (©S(((2a+3)/(q+ 2));20))h is the only fixed point of V.
3)I(q+2))g). As for every Y, Y, € (€(((2a+3)/(q+

PO 5. Kannan Nonexpansive Mapping on (¢5(7)),
2))q20))h so that h(Y,),h(Y,)€[0,1), we have

The enough setups of (€5(z)),, where h(g)= (250
Y, i?;) (my(g, 0))71"%, for all § € €5(t), so that the Kannan non-
4

expansive mapping on it has a fixed point are presented.
By letting I' a nonempty h-bounded, h-convex, and

L2 (h (3_3’7) . h<3—,Yv2>> h-closed subset of (£5(7)),.
27 4 4

) o T Lemma 36. Suppose (£5(7)), verifies the (R) property and the
= — (h(VY1 - Y1> + h(VY2 - Yz)). h-quasinormal property. If V.: I — I’ is a Kannan h-non-
expansive mapping, for t >0, put G,={Y €' : h(Y - V(Y))

(65) <t} #@. Let

For every Y, Y, € 2q+3)/(q+2)):2)), such that , _
Y VY, @043/ D)), Io=(\{Bu(rj): V(G) CBy(r )} N L. (69)
h(Y,), h(Y,) € [1,00), then
= oo L Y, Y, Hence, I', #+ @, h-convex, h-closed subset of I and V(I',)
h(VY, - VY,) J‘(? - ?) CT,cG,andd,(I,) <t
<! b 4_?: “h 4_/1;; Proof. As V(G,)cTI,, one has I',# Q. Since the h-balls
T4 5 5 are h-convex and h-closed, one gets I', is a h-closed and
1 o h-convex subset of I'. To prove that I', C G, let Ye r,. It
=1 (h(VY -Y ) + h(VY2 - Y2>>~ h(Y - V(Y)) =0, we have Y € G,. Otherwise, when h(Y -
(66) V(Y)) >0, let
For every Y,,Y,e(¢5(((2q+ 3)/(q+2))§20))h with r=sup {h(V(Z) - V(f/)); VA= Gt}, (70)
h(Y,)€[0,1) and h(Y,)€[1,00), we have
n(VY, - VY _h Y, From the definition of r, we have V(G,) ¢ B,(V(Y),r).
( T\ d Hence, I, ¢ B, (V(Y), 7),s0 h(Y - V(~))Sr. By taking /> 0,
. we have Z € G, so that r — 1< h(V(Z) - V(Y)). Then,
2 (37, 1, [4Y,
<——h +-h|—=
V27 \ 4 ] a5 ) } . )
i _ h(Y-V(V))-1<r-1<h(V(Z) - V(V))
i(h@)h(ﬂ)) 1
< 1 z 1o o 5 (5
\/22—7 < 2(h(Y v( ))+h(z V(Z)))
= (h(VY,-Y,) +h(VY,-Y,)). Ly - vi(v
7z (P eV - T <3 (- V() +0)

(67) (71)
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Since [ is an arbitrary positive, we have h(Y — V(Y)) <t,
so Y € G,. As V(G,) cI',, we have V(I',) c V(G,) c I',, then
I, is V-invariant. To prove that §,(I',) < t. As

for every Y,Z € G,. If Y € G,. We get V(G,) c B,(V(Y),1).
The definition of I, implies I',  B,,(V(Y), t). Hence, V(Y)
€ mter,Bh(Z’ t). Then, h(Z-Y)<t, for all Z, Y eT,, this

implies §,,(I',) <. O

Theorem 37. Assume (¢5(1)), verifies the h-quasinormal
property and the (R) property. If V: I — T is a Kannan
h-nonexpansive mapping, so V has a fixed point.

Proof. Put t,=inf {h(Y - V(Y)): Y €I} and t, =ty + (1/r),
for all r>1. By the definition of f,, we have G, = {Yer:
WY -V(Y))<t}#@, for all r>1. If I', is defined as in
Lemma 36, it is obvious that {I" t,} is a decreasing sequence
of nonempty h-bounded, h-closed, and h-convex subsets of
I'. The property (R) holds that I'o, =, I, # . Put Ye
I, then h(Y - V(Y)) <t,, for every r>1. If r — 0o, one
has (Y - V(Y)) < t,, then h(Y - V(Y)) =¢,. Hence, G, #
&. Therefore, t,=0. Otherwise, t, >0 then V fails to have
a fixed point. Put I', as defined in Lemma 36. Since V fails

to have a fixed point and I', is V-invariant, so I', has more
than one point, t}~1en 8,(r,) >0. By the h-quasinormal
property, we have Y € I', so that

h(l?—Z) <8,(T,) <ty (73)

for every Z € I', . Inview of Lemma 36, one has I', ¢ G, . By
definition of I', , then V(Y)e G, cTI, . We have

h(Y-V(Y))<8,(T,) <ty (74)
which contradicts the definition of #,. So t, = 0 which gives

that any point in G, is a fixed point of V. O

In view of Theorems 24, 26, and 28, we have the
following.

Corollary 38. If (Tfi)qenf €t NI so that ty>1 and V: T

—> I' is a Kannan h-nonexpansive mapping. One has V that
holds a fixed point.
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Example 39. Suppose V : I' — I' so that

, h(Y)e€[o,1),

V(Y)= (75)

Rl
SR R

, h(?) € [1,00),

where  I'={Y € (€°(((2q+3)/(q+2))3%)), : Yo=Y, =0}

and  h(¥) = /S (ma (P o) for all T
(©5(((2q+3)/(q + 2));20))]1. From Example 35, V is Kannan
h-contraction. Therefore, it is Kannan h-nonexpansive. From
Corollary 38, then V has a fixed point 9 in I'.

6. Kannan Contraction and Structure of
Operators Ideal

The structure of the operators ideal by (€5(7)), under defi-

nite function h, where h(g) = [¥;2,(m (3, 0))TP]1/K, for all

g € €5(7), and s-soft reals has been offered. Finally, we study
the idea of Kannan contraction mapping in its linked pre-
quasi operator ideal. Also, the existence of a fixed point of
Kannan contraction mapping has been offered. We mark
the space of all bounded, finite rank linear operators from
a Banach space A into a Banach space A by Z(4A, A), and
B(A, A) and if A= A, we indicate Z(A) and F(A).

Definition 40 (see [45]). An s -number function is s : Z(A4,
A) — R+ which gives all V € Z(A, A) a (s,(V)), holds
the next conditions:

@) ||V]=5y(V)=5,(V)=5,(V) =--->0, for every V¢
Z(AA)

() spa (Vi +V,) <5(Vy) +54(V,), for every V|, V,
eZ(AA)andl, de N

(©) su(VYW) < [|[V]sa(M|W]|, for all W e ZL(A,, A),
YeZ(A A) and Ve Z(A, A,), where A, and A,
are arbitrary Banach spaces

(d) Suppose V€ Z(A, A) and y € R, one has s;(yV) =
[Ylsa(V)

(e) If rank (V) <d, then s;(V) =0, for all Ve Z(A, A)

() s,(I,) =0 or s;.,(I,) =1, where I, marks the unit
map on the a-dimensional Hilbert space €5

Definition 41 (see [37]). Suppose & is the class of all
bounded linear operators between any arbitrary Banach
spaces. A subclass % of & is called an operator ideal, when
every (A, A) =% N Z(A, A) holds the next setups:

(i) I; €%, where I' marks Banach space of one
dimension

(ii) The space %(A, A) is linear over R
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(iii) If W e L(Ay,A), XeU(A A) and Y € Z(A, A,),
one has YXW € %(4,, A,)

Notations 42.

Fy = {Fy(4, A)}, where & (A4, A)

= {vezany ((u)” ek 70

sg(V)(x) =s,4(V), for every x € A.
Theorem 43. If U is a (csss), one has &, an operator ideal.
Proof.

(i) Suppose V € F(A, A) and rank (V) =n, for every
ne W, since b; €U, for every ie #, and U is a
linear space, then (s,-,(T/))Z)O = (50/(\\7), 51/(\\7), e
sn_/l(vV), 0,0,0,---) = Zgolsﬁ)?)i € U; for that Ve
¥y (4, A) then §(A, A) € Fy (4, A)

(ii) If V,V, € Ey(A, A) and B, B, € R so by Defini-
tion 5 condition (25) one has (s; ,;]\(/Vl)):) eU
and (s ,;(/Vl)):) € U, as i > 2[i/2], by the definition
of s-numbers and s;(V) is decreasing, we have
s (B V:\‘T'/gz Vy) < S2li 2] (ﬁﬁ;l/‘* BaV2) <sjiny (mJ +

Slif) (B, V)= |ﬁ1|5[z‘/2](V1) + |ﬁ2|5[i/z](vz) forallie
. By Definition 5 part (2) and U is a linear space,
we get (s; (ﬁlVfl\;[}ZVz))z)O € U; hence, B,V + 5,
V, edy(4, A)

(ili) Assume Pe Z(Ay,A), Teky(A A), and Re &
(A, Ay), then (s,r(\f)):fo €U and since s; (EfP) <

IR|ls; (T)||P||, from Definition 5 parts (1) and

(2), then (s;(RTP)), € U, then RTP € diy(Ag> Ay)
O

In view of Theorems 11 and 43, we have the following
theorem.

Theorem 44. If (Tq)qE/V €., NI so that T,> 0, then '%(@S(T))h

is an operator ideal.

Definition 45 [38]. A function H € [0,00) is said to be a pre-
quasi norm on the ideal %, when the next setups are verified.

(1) fVe%(A A), HV)>=0,and H(V) =0, if and only
if, V=0

(2) One has Q=1 so as to H(aV) < D|a|H(V), for all
Ve%(A A)and a e R

(3) Onehas P> 1with H(V, + V,) < P[H(V,) + H(V,)],
forall V|, V, e (A, A)
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(4) One has 0>1 for to if VeZ(A)A), X%,
A), and Y € Z(A, A,), one has H(YXV) <o Y]
HX)|[V]]

Theorem 46 (see [38]). H is a prequasi norm on the ideal %,
whenever H is a quasinorm on the ideal .

Theorem 47. Suppose (Tq)qeﬂ/ € L., NI so that T,> 0; hence,
the function H is a prequasi norm on ¥sy) ,» with H(Z) =

h(Sq(Z))q:O, fOr every yAS ’%(ZS(T));, (A, A)
Proof.

(1) If Xe %(ES(T»}‘(A’ A), H(X) =h(5q(X))q:0 >0 and

H(X):h(sﬁ)):zo=o, if and only if, s,(X)=0,
for all ge //, if and only if, X=0

(2) One has Q>1 with H(ocX)zh(sq(ocX))ZzosQ|oc|
H(X), for every X € ¥s()) (A, A) and a € R

(3) There are PPy>1 with for X, X, € ¥y, (4, 4),
we have

H(X, +X,) = h(5,(X,+ X))

<p h(s[q,;&m)f +h(5[q/;]&z))oo )

9=0

(4) There are p>1, assume X € Z(A, 4), Y € Fs(r),
(A,A) and Ze F(A, Ay), one has H(ZYX)=h

(s,(2YX)) " < h(IX[11Z]15,(V)),, < pIXIE(Y)]12]

=0 =0

O

In the next theorems, we will use the notation (% s (), »

H), where H(V) =h((s,(V))__,) for every V' € &r),.

Theorem 48. If (‘rq)qu € ,NI so that 7,>0, then

(% (e5(x)),» H) is a prequasi Banach operator ideal.

Proof. Assume (V,),, is a Cauchy sequence in sy
(4,A). Since ZL(A, A) 2851, (A, A), we have

H(V,-V,)= h((sq(vf,f Vu))::)
'~ V,),0,0,0, ) > ||V, =V, ||oK.
(78)
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Then, (V,),., is a Cauchy sequence in Z(A, A). Since
Z(A,A) is a Banach space, one has VEQ(A A) with

lim |V,-V|=0 and as (sq(Vu)) € (¢5(r)),, for
every a€.// and (€5(1)), is a premodular (csss). Then,

H(V) = h((sﬁ));)
< h((s[q/Z] (T/v— Va))::()) + h(( q/z]( )20))
(v vID) + @ (7)) <o

(79)

ﬂ—)OO |

one gets (Sq(V>>:Zo € (¢5(1));, then Ve Fsry, (A A). O

Theorem 49. Assume (Tq)qw €t NI so that t,> 0, then

(%(e5(x)),» H) is a prequasi closed operator ideal.

Proof. If V, € ¥s(r)), (4, A), for every a€ ./ and lim,
H(V,-V)=0.Since Z(A, A) 2 Sgs()), (4, A), we have

H(Va—V)=h<( (V,- V))q )

> h(sO(Va ~v),0,0,0, ) > ||V, - V|vK,

(80)
Hence, (V,),, is convergent in Z(A, A); ie,
lim, . |V,-V|=0 and as (sq(Va)):zoe(‘Zs(T))h, for

every q €/ and (€(7)), is a premodular (csss). Then,

H(V) :h<(s:(\7)):io>
Sh(( [q/Z](V v ))q o) +h(( a2y (V );20»
< h((”Va - V||I);X:’0) + (2)1/Kh((sq(AV/a)):i0> <e.
(81)

We obtain (sﬁ));’o € (¢5(7))5 hence, V € &y (A, A).

O

Definition 50. A prequasi norm H on the ideal %;, holds the
Fatou property if for all {Tq}qE Sy, (AA) with
lim H(T,-T)=0and M €%y (A, A), then

q—00
H(M-T)<sup me(M T. ) (82)
q 2
Theorem 51. If(Tq)qg/V €8, NIsothatty> 0, then (¥(gs(r),»

H) does not satisfy the Fatou property.
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Proof. Let {Tq}qe./lf S F(es(r)), (45 A) so that lim H(T,
-T)=0. As H(ps (e 1), i a prequasi closed ideal one has
T € Fgs(r)), (4, A). So for all M € Fps ), ( , then

q—>00

h

i md(qu T), 6 ]
)

W

HM-T)=

Definition 52. An operator V' : &y (4, A) — ¥y, (4, A) is
called a Kannan H-contraction, if there is « € [0, 1/2) so that
H(VT-VM)<a(H(VI-T)+H(VM -M)), for every
T, M€ &y, (A, A).

Definition 53. An operator V : &y (4, A) — ¥y, (4, A) is
called H-sequentially continuous at M, where M € ¥ (4,
A), if and only if, lim H(T,-M)=0=lim,_  H(V
T,- VM) =

r—00

Example 54. Assume V : '%(L’S(((24+3)/(q+2))q“lo))h (A A) —

(e ((arge)zy), (D A) where H(T) =
—  ~__(29+3)/(q+2
\/Z?O(md(sq(T% 0))( e for all Te
F (((2q+3)1(q+2)32)), (A, A) and
T
o H(T)eo)
V(T)= . (84)
- H(T) € [l,oo)_

Clearly, V is H-sequentially continuous at the zero
operator  © € (g5 (2443)/ @2)2), Suppose  {TV}c
(s (2q43)(g+2))2,)), SO that hmj_mH(T(j) - T(9) =0, where
T € »i«(es(((2[#3),(#2))‘1:0))}' with H(T®)) = 1. As the prequasi

norm H is continuous, we have

T©)  T(0)
lim H(VTU VT >)— hmH( — -

j—oo j—00 7

= — | >0.
42

Hence, V is not H-sequentially continuous at T,
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Theorem 55. If (Tq)qe/v €t NI so that 7,>0 and V:
’f((’,s(‘l’))h (A, A) — ’E(QS(T))h (A, A) Suppose
(i) V is Kannan H-contraction mapping

(ii)) V is H-sequentially continuous at a vector M €
e, (4 4)

(iii) we have G € % ys(,)) (A, A) so that the sequence of

iterates { V'G} has a {V"iG} converging to M

Then, M € ¥(gsr)), (4, A) is the unique fixed point of V.

Proof. Assume M is not a fixed point of V, one has VM # M.
By using conditions (ii) and (iii), one has

lim H(V"G-M)=0and lim H(V"*'G-VM)=0.
r;—00 7;—00

(86)

As V is Kannan H-contraction, we get

0<H(VM - M)
:H((VM_ Vr,+1G) +(ViG- M)+ (Vr"HG— Vr’G))
< (2)1/KH(Vr,+IG _ VM) + (Z)Z/KH(VriG—M)
+(2)2/K“(%)ri_lH(VG_G).
(87)

Since r; — 00, we have a contradiction. Therefore, M is
a fixed point of V. To prove the uniqueness of the fixed
point M, assume there are two not equal fixed points M,

]G%(ZS(T»}‘(A’A) of V. We get H(M—])SH<VM— V])
<a(H(VM M) +H(V] -J))=0. So, M=]. O

Example 56. According to Example 54, as for every T, T,
€ %(ES(((2q+3)/(q+2)) >)h Wlth H(Tl),H(TZ) € [0, 1), then

0
9=0

6 6
<o (1(5) (%)
V2

(HVT,-T)+H(VT,-T,)).

(88)

15

For every Tl’ T2 € %(eS(((2q+3>/<q+2));>~:0))h Wlth H(Tl),

TZ
7

H(T,) € [1,00), then

H(VT,-VT,)=H

\1|_"1

S5 (o) ()
= 4?6 (H(VT, - T,)+H(VT, - T,)).

(89)

For each Tl’ T2 € %(eS(((2q+3)/(q+2));20>)h with H(Tl) € [O, 1)
and H(T,) € [1,00), one gets

T, T
H(VT,-VT,) :H(—l - —2)

6 7
SVEH@5>+“5HGE>
V125 6 V216 7
2
< V2 (HVT,-T,)+H(VT,-T,)).
V125
(90)
Therefore, V is Kannan H-contraction and
T
i H(T)e|0,1),
vir)=4 9 o1)
7 H(T) € [1,00).
Clearly, V is H-sequentially continuous at ©® ¢

(243 (a+2)5)), and {V'T} has a subsequence {V"iT}

that converges to ©. According to Theorem 55, ® is the only
fixed point of G.

7. Applications

In this section, some successful applications to the existence
of solutions of nonlinear difference equations of soft func-
tions are introduced.

Theorem 57. Assume the summable equations
[ee]
Yg=R;+ 2 Dig.r)m(rY,) (92)
r=0

which are considered by many authors [46-48], and let
Vi (e5(1)), — (¢5(7)),, where (Tq)qe/lf el NIwitht,>1

and h(Y) = [Z;’:o(md(i/j, Z)))Tj]I/K, for all Y € 85(1), given by

V(?q>q€/;/= <I§+ OZO:D(Q’ r)v(r, YT))qem. (93)

r=0
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The summable equation (92) has a unique solution in
(~€S(T))h, when D : N> — Ry : N xR(A) — R(A),
R: N —R(A)Z: N — R(A), and for all q € N, suppose

ICGARIES)]
ZIK[R Y+ZDq, (?)

r=0
+ f(vq—/qu+ iD(q, r)v(r,Z) ]

(94)

r=0

Proof. We have

(95)

In view of Theorem 37, there is a unique solution of
equation (92) in (€5(7)),,. O
Example 58. 1f (Es(((2q+3)/(q+2))(q’20))h, where h(Y) =

Ve (ma(¥, 0D for every ¥ e t(((2q+3)1
(4+2))52

). Assume the summable equations

v _n \ q+r ?; t
Y, =R, + ;(—1) Fii) (96)
so that g>2 and t>0. Let I'={Y e (¢5(((2q+3)/(q+
2))520))y: Yo=Y, =0}. Clearly, I' is a nonempty, h
-convex, h-closed, and h-bounded subset of (¢5(((2q+

3)I(q+2))s2))y- Suppose V:I'— I is defined as
0 Y t
Y,) =(R S A [—— . (97
V( q)qzz <q+;0( ) <q2+r2+1>> , (57)
e

Journal of Function Spaces

Evidently,

—~ t
)7 T .
P+ri+1

According to Theorem 57 and Corollary 38, the
summable equations (96) have a solution in I

Example 59. If (¢5(((2q + 3)/(q+2))%)),» where h(Y)=
\/zqeﬂ(md Y, 0))(2q+3) @2 for every Y e €5(((2q+3)/

+2))2)), let the nonlinear difference equations
(4+2))2 q
177
R, + Z B A (99)
Yq L+ i

so that r,g>0, Y ,(x),Y_(x)>0, for every x€A, and
suppose V' : €5(((2q +3)/(q+2)).2) — €(((2q+3)/(q +
2))g20)> explained by

It is clear that

) ?7
> (D —=——((-1)' - (-1
=0 Yi, +P+1 ( )
: __
<= + 1 g+l ‘1 2 (101)
4 Z Yq o+ P+
Zf,v

+ +z ) ) [ — e S

Zq1+lz+1

In view of Theorem 57, the nonlinear difference equations
(99) have a unique solution in €5(((2q + 3)/(q + 2));20)

8. Conclusion

The site we discussed was a “pre-quasinormed” place rather
than a “quasinormed” location. In the prequasi Banach
space, the concept of a fixed point of the Kannan prequasi
norm contraction mapping is introduced (csss). Both (R)
and the pre-quasinormal structure are supported. The
occurrence of a fixed point in the Kannan nonexpansive
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mapping was studied in this study. A fixed point of Kannan
contraction mapping in the prequasi Banach operator ideal
formed by Nakano (csss) and the s-soft real numbers has
also been investigated for a fixed point of Kannan contrac-
tion mapping. Finally, we have demonstrated how the results
can be applied to a problem by presenting a few examples of
how this has happened. Under a wide range of flexible con-
ditions, the presence of a sequence can be established using
the Nakano sequence space. Specifically, when it comes to
the variable exponent in the previously described space,
our key conclusions have helped to strengthen several well-
established ideas.
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