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We developed the operators ideal in this article by extending s-soft reals and a particular space of sequences with soft real
numbers. The criteria necessary for the Nakano sequence space of soft real numbers given with the definite function to be
prequasi Banach and closed are investigated. This space’s (R) and normal structural features are illustrated. Fixed points have
been introduced for Kannan contraction and nonexpansive mapping. Finally, we investigate whether the Kannan contraction
mapping has a fixed point in the prequasi operator ideal with which it is linked. By examining some real-world instances and
their applications, it is demonstrated that there exist solutions to nonlinear difference equations.

1. Introduction

The study of variable exponent Lebesgue spaces received
additional impetus from the mathematical explanation of
non-Newtonian fluids’ hydrodynamics (see [1, 2]). Electro-
rheological fluids have various applications in various fields,
including military science, civil engineering, and orthope-
dics. Since the publication of the Banach fixed point theorem
[3], there have been numerous developments in the field of
mathematics. While contractions have fixed point actions,
Kannan [4] illustrated a noncontinuous mapping. In
Reference [5], a single attempt was made to explain Kannan
operators in modular vector spaces, and this was the only
one that worked. Mitrovic′ et al. [6] defined a cone bvðsÞ-
metric space over Banach algebra as a generalization of
metric spaces, rectangular metric spaces, b-metric spaces,
rectangular b-metric spaces, v-generalized metric spaces,
cone b-metric spaces over Banach algebra, and rectangular
cone b-metric spaces over Banach algebra. They provided
fixed point results for Banach and Kannan in cone bvðsÞ-
metric spaces over Banach algebra. Debnath et al. [7]
showed the existence and uniqueness of common fixed

points for pairs of self-maps of the Kannan, Reich, and
Chatterjea types in a complete metric space. Younis et al.
[8] used concepts from graph theory and fixed point theory
to provide a fixed point result for Kannan-type mappings in
the context of freshly published graphical b-metric spaces.
They provided suitable examples of graphs that corrobo-
rated the existing theory. They demonstrated the anticipated
results by applying them to several nonlinear issues encoun-
tered in engineering and research. Younis and Singh [9]
discovered adequate conditions for the existence of solutions
to certain classes of Hammerstein integral equations and
fractional differential equations. They extended the concept
of Kannan mappings in terms of F-contraction in the con-
text of b-metric-like spaces and provided a series of novel
and nontrivial instances, as well as computer simulations,
to demonstrate the established results, therefore introducing
the concept in a novel way. On the other hand, several
unresolved issues are offered to enthusiastic readers. More
information on Kannan’s fixed point theorems can be found
here (see [10–15]). The mathematics underpinnings of fuzzy
set theory, which were pioneered by Zadeh [16] in 1965 and
have made significant progress, are well understood in fuzzy
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theory. The fuzzy theory has the potential to be applied to
various real-world problems. The possibility theory, for
example, has been developed by several researchers, includ-
ing Dubois and Prade [17] and Nahmias [18]. The contribu-
tion of probability theory, fuzzy set theory, and rough sets to
the study of uncertainty is critical. Yet, these theories have
some limitations as well as advantages. The theory of soft
sets, developed by Molodtsov [19], was introduced as a
new mathematical strategy for dealing with uncertainties to
overcome these characteristics. Soft sets have been widely
used in various disciplines and technologies. In particular,
Maji et al. [20, 21] studied several operations on soft sets
and applied their findings to decision-making problems in
the literature. Several writers, including Chen [22], Pei and
Miao [23], Zou and Xiao [24], and Kong et al. [25], have dis-
covered significant characteristics of soft sets. Soft semirings,
soft ideals, and idealistic soft semirings were all investigated
by Feng et al. [26]. Das and Samanta developed the ideas of a
soft real number and a soft real set in [27] and discussed the
characteristics of each concept. These principles served as
the foundation for their investigation into the concept of
“soft metrics” in “[28].” (See [29, 30] for a more in-depth
examination.) Based on the idea of soft elements of soft met-
ric spaces, Abbas et al. [31] developed the concept of soft
contraction mapping, which they named “soft contraction
mapping.” They focused on fixed points of soft contraction
maps and obtained, among other things, a soft Banach
contraction principle as a result of their efforts. In their
paper, Abbas et al. [32] demonstrated that every complete
soft metric induces an equivalent complete usual metric.
They obtained in a direct way soft metric versions of various
significant fixed point theorems for metric spaces, such as
the Banach contraction principle, Kannan and Meir-Keeler
fixed point theorems, and Caristi theorem, Kirk’s, among
other things. In [33], Chen and Lin presented an extension
of the Meir and Keeler fixed point theorem to soft metric
spaces, which was previously published. Many researchers
working on sequence spaces and summability theory were
involved in introducing fuzzy sequence spaces and studying
their many characteristics. When it comes to fuzzy numbers,
Nuray and Savas [34] defined and explored the Nakano
sequences of fuzzy numbers, ℓFðτÞ equipped with a definite
function. The following theories use operators’ ideals: fixed
point theory, Banach space geometry, normal series theory,
approximation theory, and ideal transformations. For addi-
tional evidence, see [35–37]. According to Faried and Bakery
[38], prequasi operator ideals are broader than quasiopera-
tor ideals. This study is aimed at introducing a certain space
of soft real number sequences, abbreviated (csss), under a
pre-quasi-quasi function (csss). The structure of the ideal
operators has been described using this space and s-num-
bers. The conditions essential to generate prequasi Banach
and closed (csss) ðℓSðτÞÞh supplied with the definite function
h are investigated. This space’s (R) and normal structure
properties are illustrated. Fixed points have been introduced
for Kannan contraction and nonexpansive mapping. Finally,
we investigate whether the Kannan contraction mapping has
a fixed point in the prequasi operator ideal with which it is
linked. A few real-world examples and applications demon-

strate the existence of solutions to nonlinear difference
equations.

2. Definitions and Preliminaries

Assume that R is the set of real numbers and N is the set of
nonnegative integers. We denote the collection of all non-
empty bounded subsets of R by BðRÞ and E is the set of
parameters.

Definition 1 (see [27]). A soft real set denoted by ð~f , AÞ, or
simply by ~f , is a mapping ~f : A⟶BðRÞ. If ~f is a single-
valued mapping on A ⊂ E taking values inR, then ~f is called
a soft element of R or a soft real number. If ~f is a single-
valued mapping on A ⊂ E taking values in the setR+ of non-
negative real numbers, then ~f is called a nonnegative soft
real number. We shall denote the set of nonnegative soft real
numbers (corresponding to A) by RðAÞ∗. A constant soft
real number ~c is a soft real number such that for each
a ∈ A, we have ~cðaÞ = c, where c is some real number.

Definition 2 (see [39]). For two soft real numbers ~f , ~g, we say
that

(a) ~f ~≤~g if ~f ðaÞ~≤~gðaÞ, for all a ∈ A
(b) ~f ~≥~g if ~f ðaÞ~≥~gðaÞ, for all a ∈ A
(c) ~f ~<~g if ~f ðaÞ~<~gðaÞ, for all a ∈ A
(d) ~f ~>~g if ~f ðaÞ~>~gðaÞ, for all a ∈ A

Note that the relation ~≤ is a partial order on RðAÞ. The
additive identity and multiplicative identity in RðAÞ are
denoted by ~0 and ~1, respectively.

The arithmetic operations on RðAÞ are defined as
follows:

~f ⊕ ~g
� �

λð Þ = ~f λð Þ + ~g λð Þ: λ ∈ A
n o

,

~f !~g
� �

λð Þ = ~f λð Þ − ~g λð Þ: λ ∈ A
n o

,

~f ⊗ ~g
� �

λð Þ = ~f λð Þ~g λð Þ: λ ∈ A
n o

,

f
g

� �
λð Þ =

~f λð Þ
~g λð Þ : λ ∈ A and 0 ∉ ~g λð Þ

( )
:

ð1Þ

The absolute value j~f j of ~f ∈RðAÞ is defined by

~f
��� ��� λð Þ = ~f λð Þ

��� ���: λ ∈ An o
: ð2Þ

Let d : RðAÞ ×RðAÞ⟶RðAÞ∗, where dð~f , ~gÞ = j~f −
~gj for all ~f , ~g ∈RðAÞ. Assume md : RðAÞ ×RðAÞ⟶R+

is defined by mdð~f , ~gÞ =maxλ∈Adð~f , ~gÞðλÞ:
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Note that

(1) ðRðAÞ,mdÞ is a complete metric space

(2) mdð~f + ~k, ~g + ~kÞ =mdð~f , ~gÞ for all ~f , ~g, ~k ∈RðAÞ

md
~f + ~k, ~g +~l
� �

≤md
~f , ~g
� �

+md
~k,~l
� �

: ð3Þ

(3) mdðξ~f , ξ~gÞ = jξjmdð f , gÞ, for all ξ ∈R

Definition 3. A sequence ~f = ð ef j Þ of soft real numbers is said
to be

(a) bounded if the set f ef j : j ∈N g of soft real numbers

is bounded; i.e., if a sequence ð ef j Þ is bounded, then
there are two soft real numbers ~g,~l such that
~g~≤ef j ~≤~l

(b) convergent to a soft real number ef0 if, for every ε > 0,
there exists n0 ∈N such that mdð ef j , ef0Þ < ε, for all
j ≥ j0

By ℓ∞ and ℓr , we indicate the spaces of bounded and
r-absolutely summable sequences of reals. Assume ωðSÞ is
the classes of all sequence spaces of soft reals. If τ = ðτaÞ ∈
R+N , where R+N is the space of positive real sequences, we
introduce Nakano sequences of soft reals such as [34] and
marked it by ℓSðτÞ = f~v = ðevaÞ ∈ ωðSÞ: hðμ~vÞ<∞, forsome
μ > 0g, where hð~vÞ =∑∞

a=0½mdðeva, ~0Þ�τa : The space ðℓSðτÞ,
k:kÞ, where k~vk = inf fκ > 0 : hð~v/κÞ ≤ 1g and τa ≥ 1, for
all a ∈N , is a Banach space. Suppose ðτaÞ ∈ ℓ∞, one has

ℓS τð Þ = ~v = evað Þ ∈ ω Sð Þ: h μ~vð Þ<∞,for some μ > 0f g

= ~v = evað Þ ∈ ω Sð Þ: inf
a

μj jτa 〠
∞

a=0
md eva, ~0� �	 
τa(

≤ 〠
∞

a=0
md μeva, ~0� �	 
τa<∞,for some μ > 0

)

= ~v = evað Þ ∈ ω Sð Þ: 〠
∞

a=0
md eva, ~0� �	 
τa<∞( )

= ~v = evað Þ ∈ ω Sð Þ: h μ~vð Þ<∞,for any μ > 0f g:

ð4Þ

Lemma 4 (see [40]). If τa > 0 and va, ta ∈R, for all a ∈N ,
one gets jva + tajτa ≤ 2K−1ðjvajτa + jtajτaÞ, where K =max f1,
supaτag.

3. Some Properties of ℓSðτÞ
We have investigated in this section the certain space of
sequences of soft real numbers under definite function to
form prequasi (csss). We present sufficient conditions of

ℓSðτÞ under definite function h to construct prequasi Banach
and closed (csss). The Fatou property of different prequasi
norms h on ℓSðτÞ has been explained. We have explored the
uniform convexity (UUC2), the property (R), and this space’s
h-normal structure property.

Definition 5. The linear space U is called a certain space of
sequences of soft reals (csss), when

(1) f~bqgq∈N ⊆U, where ~bq = f~0, ~0,⋯, ~1, ~0, ~0,⋯g, for ~1
marks at the qth place

(2) U is solid, i.e., if ~Y = ðfYqÞ ∈ ωðSÞ, ~Z = ðfZqÞ ∈U, and
jfYqj~≤jfZqj, for all q ∈N , one has ~Y ∈U

(3) ðgY ½q/2�Þ
∞

q=0 ∈U, where ½q/2� indicates the integral part
of q/2, assume ðfYqÞ

∞

q=0 ∈U

Definition 6. A subclass Uh of U is said to be a premodular
(csss), if one has h ∈ ½0,∞ÞU holds the following conditions:

(i) Suppose ~Y ∈U, ~Y = ~ϑ⇔ hð~YÞ = 0 with hð~YÞ ≥ 0,
where ~ϑ = ð~0, ~0, ~0,Þ

(ii) We have Q ≥ 1, the inequality hðα~YÞ ≤Qjαjhð~YÞ
holds, for all ~Y ∈U and α ∈R

(iii) One has P ≥ 1, the inequality hð~Y + ~ZÞ ≤ Pðhð~YÞ +
hð~ZÞÞ satisfies, for all ~Y , ~Z ∈U

(iv) When jfYqj~≤jfZqj, for all q ∈N , we have hððfYqÞÞ ≤
hððfZqÞÞ

(v) The inequality hððfYqÞÞ ≤ hððgY ½q/2�ÞÞ ≤ P0hððfYqÞÞ
verifies, for some P0 ≥ 1

(vi) Assume E is the space of finite sequences of soft
real numbers, one has the closure of E =Uh

(vii) We have σ > 0 with hð~α, ~0, ~0, ~0,⋯Þ ≥ σjαjhð~1, ~0, ~0,
~0,⋯Þ, where ~αðaÞ = α, for every a ∈ A

Definition 7. If U is a (csss). The function h ∈ ½0,∞ÞU is said
to be a prequasi norm on U , if it satisfies the following
settings:

(i) Suppose ~Y ∈U, ~Y = ~ϑ⇔ hð~YÞ = 0 with hð~YÞ ≥ 0,
where ~ϑ = ð~0, ~0, ~0,Þ

(ii) One has Q ≥ 1, the inequality hðα~YÞ ≤Qjαjhð~YÞ
verifies, for all ~Y ∈U and α ∈R

(iii) We have P ≥ 1, the inequality hð~Y + ~ZÞ ≤ Pðhð~YÞ +
hð~ZÞÞ satisfies, for all ~Y , ~Z ∈U
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Evidently, by the last two definitions, one has the follow-
ing two theorems.

Theorem 8. Assume U is a premodular (csss), then it is
prequasi normed (csss).

Theorem 9. U is a prequasi normed (csss), when it is quasi-
normed (csss).

Definition 10.

(a) The function h on ℓSðτÞ is called h-convex, when

h α~Y + 1 − αð Þ~Z
� �

≤ αh ~Y
� �

+ 1 − αð Þh ~Z
� �

, ð5Þ

for all α ∈ ½0, 1� and ~Y , ~Z ∈ ℓSðτÞ
(b) ffYqgq∈N ⊆ ðℓSðτÞÞh is h-convergent to ~Y ∈ ðℓSðτÞÞh,

if and only if, limq⟶∞hðfYq − ~YÞ = 0: If the h-limit
exists, then it is unique

(c) ffYqgq∈N ⊆ ðℓSðτÞÞh is h-Cauchy, if limq,r⟶∞hðfYq

−fYr Þ = 0

(d) Γ ⊂ ðℓSðτÞÞh is h-closed, if for every h-converges
ffYqga∈N ⊂ Γ to ~Y , one has ~Y ∈ Γ

(e) Γ ⊂ ðℓSðτÞÞh is h-bounded, assume δhðΓÞ = sup
fhð~Y − ~ZÞ: ~Y , ~Z ∈ Γg <∞

(f) The h-ball of radius ε ≥ 0 and center ~Y , for all ~Y ∈
ðℓSðτÞÞh, is denoted by

Bh
~Y , ε
� �

= ~Z ∈ ℓS τð Þ� �
h
: h ~Y − ~Z
� �

≤ ε
n o

: ð6Þ

(g) A prequasi norm h on ℓSðτÞ verifies the Fatou

property, if for all sequence fgZðqÞg ⊆ ðℓSðτÞÞh with

limq⟶∞hðgZðqÞ − ~ZÞ = 0 and every ~Y ∈ ðℓSðτÞÞh, we
have hð~Y − ~ZÞ ≤ supr inf q≥rhð~Y −gZðqÞÞ

Recall that the Fatou property gives the h-closedness of
the h-balls. We will indicate the space of all increasing
sequences of reals by I.

Theorem 11. ðℓSðτÞÞh, where hðYÞ = ½∑∞
q=0½mdðfYq, ~0Þ�

τq �1/K ,
for every ~Y ∈ ℓSðτÞ, is a premodular (csss), if ðτqÞq∈N ∈ ℓ∞ ∩
I with τ0 > 0.

Proof. (i) Clearly, hð~YÞ ≥ 0 and hð~YÞ = 0⇔ ~Y = ~ϑ.

(1-i) Assume ~Y , ~Z ∈ ℓSðτÞ. Then,

h ~Y + ~Z
� �

= 〠
∞

q=0
md

fYq +fZq, ~0
� �h iτq" #1/K

≤ 〠
∞

q=0
md

fYq, ~0
� �h iτq" #1/K

+ 〠
∞

q=0
md

fZq, ~0
� �h iτq" #1/K

= h ~Y
� �

+ h ~Z
� �

<∞:

ð7Þ

Hence, ~Y + ~Z ∈ ℓSðτÞ.
(ii) We have P ≥ 1 with hð~Y + ~ZÞ ≤ Pðhð~YÞ + hð~ZÞÞ, for

every ~Y , ~Z ∈ ℓSðτÞ.
(1-ii) Suppose α ∈R and ~Y ∈ ℓSðτÞ, one has

h α~Y
� �

= 〠
∞

q=0
md αfYq, ~0
� �h iτq" #1/K

≤ sup
q

αj jτq/K 〠
∞

q=0
md

fYq, ~0
� �h iτq" #1/K

≤Q αj jh ~Y
� �

<∞:

ð8Þ

Since α~Y ∈ ℓSðτÞ. By parts (1-i) and (1-ii), we have ℓSðτÞ
is linear. And ~bp ∈ ℓSðτÞ, for every p ∈N , as hð~bpÞ =
½∑∞

q=0½mdð~bp, ~0Þ�
τq �1/K = 1:

(iii) One has Q =max f1, supqjαjðτq/KÞ−1g ≥ 1 with

hðα~YÞ ≤Qjαjhð~YÞ, for every ~Y ∈ ℓSðτÞ and α ∈R.
(2) If jfYqj ≤ jfZqj, for every q ∈N and ~Z ∈ ℓSðτÞ. Then

h ~Y
� �

= 〠
∞

q=0
md

fYq, ~0
� �h iτq" #1/K

≤ 〠
∞

q=0
md

fZq, ~0
� �h iτq" #1/K

= h ~Z
� �

<∞,
ð9Þ

then ~Y ∈ ℓSðτÞ.
(iv) Evidently, from (24).
(3) Assume ðYqÞ ∈ ℓSðτÞ, one has

h gY q/2½ �
� �� �

= 〠
∞

q=0
md

gY q/2½ �, ~0
� �h iτq" #1/K

= 〠
∞

q=0
md

fYq, ~0
� �h iτ2q + 〠

∞

q=0
md

fYq, ~0
� �h iτ2q+1" #1/K

≤ 21/K 〠
∞

q=0
md

fYq, ~0
� �h iτq" #1/K

= 21/Kh fYq

� �� �
,

ð10Þ

so ðgY ½q/2�Þ ∈ ℓSðτÞ. (v) From (25), there are P0 = 21/K ≥ 1.
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(vi) Clearly the closure of E = ℓSðτÞ.
(vii) One gets 0 < σ ≤ jαjðτ0/KÞ−1, for α ≠ 0 or σ > 0, for

α = 0 with

~α, ~0, ~0, ~0,⋯
� �

≥ σ αj jh ~1, ~0, ~0, ~0,⋯
� �

: ð11Þ

Theorem 12. Assume ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 0, one has

ðℓSðτÞÞh which is a prequasi Banach (csss), where hð~YÞ =
½∑∞

q=0½mdðfYq, ~0Þ�
τq �1/K , for all ~Y ∈ ℓSðτÞ.

Proof. From Theorems 11 and 8, the space ðℓSðτÞÞh is a pre-
quasi normed (csss). If eYl = ðfYl

qÞ
∞

q=0 is a Cauchy sequence in

ðℓSðτÞÞh, then for all ε ∈ ð0, 1Þ, we have l0 ∈N such that for
every l,m ≥ l0, we obtain

h eYl − fYm
� �

= 〠
∞

q=0
md

fYl
q − fYm

q , ~0
� �h iτq" #1/K

< ε: ð12Þ

Therefore, mdðfYl
q − fYm

q , ~0Þ < ε: Since ðRðAÞ,mdÞ is a

complete metric space, so ðfYm
q Þ is a Cauchy sequence in

RðAÞ, for constant q ∈N . Then, limm⟶∞
fYm
q =fY0

q, for fixed

q ∈N . So hð eYl −fY0Þ < ε, for all l ≥ l0. As hðfY0Þ = hðfY0 −eYl + eYlÞ ≤ hð eYl −fY0Þ + hð eYlÞ <∞: Then, fY0 ∈ ℓSðτÞ.

Theorem 13. If ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 0, we have

ðℓSðτÞÞh a prequasi closed (csss), where hð~YÞ =
½∑∞

q=0½mdðfYq, ~0Þ�
τq �1/K , for all ~Y ∈ ℓSðτÞ.

Proof. By Theorems 11 and 8, the space ðℓSðτÞÞh is a prequasi
normed (csss). When eYl = ðfYl

qÞ
∞

q=0 ∈ ðℓ
SðτÞÞh and liml⟶∞h

ð eYl −fY0Þ = 0, one has for every ε ∈ ð0, 1Þ, there is l0 ∈N
such that for every l ≥ l0, one gets

ε > h eYl −fY0
� �

= 〠
∞

q=0
md

fYl
q −
fY0
q, ~0

� �h iτq" #1/K
: ð13Þ

Therefore, mdðfYl
q −
fY0
q, ~0Þ < ε: Since ðRðAÞ,mdÞ is a

complete metric space, so ðfYl
qÞ is a convergent sequence in

RðAÞ, for constant q ∈N . Then, liml⟶∞
fYl
q =fY0

q, for fixed

q ∈N . As hðfY0Þ = hðfY0 − eYl + eYlÞ ≤ hð eYl −fY0Þ + hð eYlÞ <
∞: We have fY0 ∈ ℓSðτÞ.

Theorem 14. The function hð~YÞ = ½∑∞
q=0½mdðfYq, ~0Þ�

τq �1/K ver-
ifies the Fatou property, when ðτqÞq∈N ∈ ℓ∞ ∩ I so that τ0 > 0,

for every ~Y ∈ ℓSðτÞ.

Proof. Assume f eZrg ⊆ ðℓSðτÞÞh with limr⟶∞hð eZr − ~ZÞ = 0:
As ðℓSðτÞÞh is a prequasi closed space, we have ~Z ∈ ðℓSðτÞÞh.
For every ~Y ∈ ðℓSðτÞÞh, then

h ~Y − ~Z
� �

= 〠
∞

q=0
md

fYq −fZq, ~0
� �h iτq" #1/K

≤ 〠
∞

q=0
md

fYq −fZr
q, ~0

� �h iτq" #1/K

+ 〠
∞

q=0
md

fZr
q −fZq, ~0

� �h iτq" #1/K
≤ sup

m
inf
r≥m

h ~Y − eZr
� �

:

ð14Þ

Theorem 15. The function hð~YÞ =∑∞
q=0½mdðfYq, ~0Þ�

τq does

not satisfy the Fatou property, for every ~Y ∈ ℓSðτÞ, if ðτqÞ ∈
ℓ∞ and τq > 1, for every q ∈N .

Proof. Assume f eZrg ⊆ ðℓSðτÞÞh with limr⟶∞hð eZr − ~ZÞ = 0:
As ðℓSðτÞÞh is a prequasi closed space, we have ~Z ∈ ðℓSðτÞÞh.
For all ~Z ∈ ðℓSðτÞÞh, one can see

h ~Y − ~Z
� �

= 〠
∞

q=0
md

fYq −fZq, ~0
� �h iτq

≤ 2
sup
q

τq−1
〠
∞

q=0
md

fYq −fZr
q, ~0

� �h iτq 

+ 〠
∞

q=0
md

fZr
q −fZq, ~0

� �h iτq!

≤ 2
sup
q

τq−1
sup
m

inf
r≥m

h ~Y − eZr
� �

:

ð15Þ

Example 16. For ðτqÞ ∈ ½1,∞ÞN , the function hð~YÞ = inf
fα > 0 : ∑q∈N ½mdðfYq/α, ~0Þ�

τq ≤ 1g is a norm on ℓSðτÞ.

Example 17. The function hð~YÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑q∈N ½mdðfYq, ~0Þ�

ð3q+2Þ/ðq+1Þ3
q

is a prequasi norm (not a norm) on ℓSððð3q + 2Þ/ðq + 1ÞÞ∞q=0Þ.

Example 18. The function hð~YÞ =∑q∈N ½mdðfYq, ~0Þ�
ð3q+2Þ/ðq+1Þ

is a prequasi norm (not a quasinorm) on ℓSððð3q + 2Þ/
ðq + 1ÞÞ∞q=0Þ.
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Example 19. The function hð~YÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑q∈N ½mdðfYq, ~0Þ�

dd
q

is a

prequasi norm, quasi norm, and not a norm on ℓSd , for
0 < d < 1.

Definition 20.

(1) [41] If p > 0 and q > 0. Mark

K2 p, qð Þ = ~Y , ~Z
� �

: ~Y , ~Z ∈Uh, h ~Y
� �

≤ p, h ~Z
� �(

≤ p, h
~Y − ~Z
2

 !
≥ pq

)
:

ð16Þ

For K2ðp, qÞ ≠∅, let

K2 p, qð Þ = inf 1 − 1
p
h

~Y + ~Z
2

 !
: ~Y , ~Z
� �

∈K2 p, qð Þ
( )

:

ð17Þ

Suppose K2ðp, qÞ =∅, we take K2ðp, qÞ = 1:

(2) [41] The function h holds (UUC2) when for all r ≥ 0
and q > 0, one has β2ðr, qÞ such that

K2 p, qð Þ > β2 r, qð Þ > 0, for p > r: ð18Þ

(3) [42] The function h is strictly convex, (SC), when for
every ~Y , ~Z ∈Uh with hð~YÞ = hð~ZÞ and hðð~Y + ~ZÞ/2Þ
= ðhð~YÞ + hð~ZÞÞ/2, one gets ~Y = ~Z

Lemma 21.

(i) [43] If t ≥ 2 and for every f , g ∈R, one has

f + g
2

���� ����t + f − g
2

���� ����t ≤ 1
2

fj jt + gj jt� �
: ð19Þ

(ii) [44] Assume 1 < t ≤ 2 and for all f , g ∈R with j f j +
jgj ≠ 0, one obtains

f + g
2

���� ����t + t t − 1ð Þ
2

f − g
fj j + gj j
���� ����2−t f − g

2

���� ����t ≤ 1
2

fj jt + gj jt� �
:

ð20Þ

In the next part of this section, we will use the function h

as hð~gÞ = ½∑∞
p=0ðmdð egp, ~0ÞÞ

τp �1/K , for all ~g ∈ ℓSðτÞ.

Theorem 22. If ðτqÞq∈N ∈ ℓ∞ ∩ I so that τ0 > 1, one has h is

(UUC2).

Proof. Suppose b > 0 and a > r ≥ 0. If ~f , ~g ∈ ℓSðτÞh with

h ~f
� �

≤ a, h ~gð Þ ≤ a and h
~f − ~g
2

 !
≥ ab: ð21Þ

By using the definition of h, one can see

ab ≤ h
~f − ~g
2

 !
= 〠

∞

m=0
md

ff m −fgm

2 , ~0
 ! !τm

" #1/K

≤ 2−τ0/K 〠
∞

m=0
md

ff m, ~0� �� �τm" #1/K 

+ 〠
∞

m=0
md fgm, ~0� �� �τm" #1/K!

= 2−τ0/K h ~f
� �

+ h ~gð Þ
� �

≤ 2a,

ð22Þ

then b ≤ 2: Assume Q = fx ∈N : 1 < τx < 2g and P = fx ∈
N : τx ≥ 2g =N \Q. For all ~w ∈ ℓSðτÞh, one has hKð~wÞ = hKP
ð~wÞ + hKQð~wÞ: Therefore, hPðð~f − ~gÞ/2Þ ≥ ab/2 or hQðð~f − ~gÞ
/2Þ ≥ ab/2: Let first hPðð~f − ~gÞ/2Þ ≥ ab/2: In view of Lemma
21, part (i), one gets

hKP
~f + ~g
2

 !
+ hKP

~f − ~g
2

 !
≤
hKP ~f
� �

+ hKP ~gð Þ
2 , ð23Þ

then

hKP
~f + ~g
2

 !
≤
hKP ~f
� �

+ hKP ~gð Þ
2 −

ab
2

� �K

: ð24Þ

Since

hKQ
~f + ~g
2

 !
≤
hKQ ~f
� �

+ hKQ ~gð Þ
2 , ð25Þ

by summing inequalities 2 and 3, and from inequality 1, one
can see

hK
~f + ~g
2

 !
≤
hK ~f
� �

+ hK ~gð Þ
2 −

ab
2

� �K

≤ aK 1 − b
2

� �K
 !

:

ð26Þ
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This implies

h
~f + ~g
2

 !
≤ a 1 − b

2

� �K
 !1/K

: ð27Þ

After, assume hQðð~f − ~gÞ/2Þ ≥ ab/2: Put B = ðb/4ÞK ,

Q1 = m ∈Q : md
ff m −fgm, ~0� �n

≤ B md
ff m, ~0� �

+md fgm, ~0� �� �o
andQ2 =Q \Q1:

ð28Þ

Since B ≤ 1 and the power function is convex. Hence,

hKQ1

~f − ~g
2

 !
≤ 〠

m∈Q1

Bτm md

ff m +fgm

2 , ~0
 ! !τm

≤
B
2

� �τ0

hKQ1
~f
� �

+ hKQ1
~gð Þ

� �
≤
B
2 hKQ ~f

� �
+ hKQ ~gð Þ

� �
≤
B
2 hK ~f

� �
+ hK ~gð Þ

� �
≤ BaK :

ð29Þ

As hQðð~f − ~gÞ/2Þ ≥ ab/2, one has

hKQ2

~f − ~g
2

 !
= hKQ

~f − ~g
2

 !
− hKQ1

~f − ~g
2

 !

≥ aK
b
2

� �K

−
b
4

� �K
 !

:

ð30Þ

For all m ∈Q2, one obtains

τ0 − 1 < τ0 τ0 − 1ð Þ ≤ ≤τm−1 τm−1 − 1ð Þ ≤ τm τm − 1ð Þ,

B < B2−τm <
md

ff m −fgm, ~0
� �

md
ff m, ~0� �

+md fgm, ~0� �
������

������
2−τm

:

ð31Þ

In view of Lemma 21, part (ii), one gets

md

ff m +fgm
2 , ~0

 ! !τm

+ τ0 − 1ð ÞB
2 md

ff m −fgm

2 , ~0
 ! !τm

≤
1
2 md

ff m, ~0� �� �τm + md fgm, ~0� �� �τm� �
:

ð32Þ

So

hKQ2

~f + ~g
2

 !
+ τ0 − 1ð ÞB

2 hKQ2

~f − ~g
2

 !
≤
hKQ2

~f
� �

+ hKQ2
~gð Þ

2 ,

ð33Þ

then

hKQ2

~f + ~g
2

 !
≤
hKQ2

~f
� �

+ hKQ2
~gð Þ

2

−
τ0 − 1ð ÞB

2 aK
b
2

� �K

−
b
4

� �K
 !

:

ð34Þ

As

hKQ1

~f + ~g
2

 !
≤
hKQ1

~f
� �

+ hKQ1
~gð Þ

2 , ð35Þ

by summing inequalities 5 and 6, we have

hKQ
~f + ~g
2

 !
≤
hKQ ~f
� �

+ hKQ ~gð Þ
2

−
τ0 − 1ð ÞB

2 aK
b
2

� �K

−
b
4

� �K
 !

≤
hKQ ~f
� �

+ hKQ ~gð Þ
2 −

τ0 − 1ð Þ
2

b
4

� �2K
aK 2K − 1
� �

≤
hKQ ~f
� �

+ hKQ ~gð Þ
2 −

τ0 − 1ð Þ
2K − 1

b
4

� �2K
aK :

ð36Þ

As

hKP
~f + ~g
2

 !
≤
hKP ~f
� �

+ hKP ~gð Þ
2 , ð37Þ

by summing inequalities 7 and 8, and from inequality 1, then

hK
~f + ~g
2

 !
≤
hK ~f
� �

+ hK ~gð Þ
2 −

τ0 − 1ð Þ
2K − 1

b
4

� �2K
aK

≤ aK 1 − τ0 − 1ð Þ
2K − 1

b
4

� �2K
" #

:

ð38Þ

So

h
~f + ~g
2

 !
≤ a 1 − τ0 − 1ð Þ

2K − 1
b
4

� �2K
" #1/K

: ð39Þ

Evidently,

1 < τ0 ≤ K < 2K ⇒ 0 < τ0 − 1
2K − 1 < 1: ð40Þ
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From inequalities 4 and 9, and Definition 20, when we
take

β2 r, bð Þ =min 1 − 1 − b
2

� �K
 !1/K

, 1 − 1 − τ0 − 1ð Þ
2K − 1

b
4

� �2K
" #1/K !

:

ð41Þ

Therefore, we have K2ða, bÞ > β2ðr, bÞ > 0, so h is
(UUC2).

Definition 23. The space Uh verifies the property (R), if and
only if, for every decreasing sequence fΓjgj∈N of h-closed

and h-convex nonempty subsets of Uh so that supj∈N

Khð~Y , ΓjÞ <∞, for some ~Y ∈Uh, then
T

j∈N Γj ≠∅:

By denoting Γ a nonempty h-closed and h-convex subset
of ðℓSðτÞÞh.

Theorem 24. Suppose ðτqÞq∈N ∈ ℓ∞ ∩ I so that τ0 > 1, we

have

(i) if ~Y ∈ ðℓSðτÞÞh such that

Kh
~Y , Γ
� �

= inf h ~Y − ~Z
� �

: ~Z ∈ Γ
n o

<∞: ð42Þ

One has a unique ~α ∈ Γ with Khð~Y , ΓÞ = hð~Y − ~αÞ:

(ii) ðℓSðτÞÞh satisfies the property (R).

Proof. To prove (i), if ~Y ∉ Γ as Γ is h-closed, we have C ≔
Khð~Y , ΓÞ > 0. Then, for every r ∈N , we have fZr ∈ Γ so that

hð~Y −fZr Þ < Cð1 + ð1/rÞÞ. Assume ffZr /2g is not h-Cauchy.
There is a subsequence fgZgðrÞ/2g and l0 > 0 so that

hððgZgðr Þ − gZgðj ÞÞ/2Þ ≥ l0, for all r > j ≥ 0: Also, we obtain
K2ðCð1 + ð1/rÞÞ, l0/2CÞ > α≔ β2ðCð1 + ð1/rÞÞ, l0/2CÞ > 0, for
every r ∈N : As

max h ~Y − gZg rð Þ
� �

, h ~Y − gZg jð Þ
� �� �

≤ C 1 + 1
g jð Þ

� �
,

h
gZg rð Þ − gZg jð Þ

2

 !
≥ l0 ≥ C 1 + 1

g jð Þ
� �

l0
2C ,

ð43Þ

for all r > j ≥ 0, one has

h ~Y −
gZg rð Þ + gZg jð Þ

2

 !
≤ C 1 + 1

g jð Þ
� �

1 − αð Þ: ð44Þ

So

C =Kh
~Y , Γ
� �

≤ C 1 + 1
g jð Þ

� �
1 − αð Þ, ð45Þ

for every j ∈N . By choosing j⟶∞, we have

0 < C ≤ C 1 + 1
g jð Þ

� �
1 − αð Þ < C: ð46Þ

This is a contradiction. Hence, ffZr /2g is h-Cauchy. Since
ðℓSðτÞÞh is h-complete, one has ffZr /2gh-converges to some
~Z. For every j ∈N , we have fðfZr +fZj Þ/2gh-converges to
~Z + ðfZj /2Þ. As Γ is h-closed and h-convex, we have ~Z +
ðfZj /2Þ ∈ Γ: As ~Z + ðfZj /2Þh-converges to 2~Z, one gets 2~Z ∈
Γ: Suppose ~λ = 2~z and from Theorem 14, as h verifies the
Fatou property, we get

Kh
~Y , Γ
� �

≤ h ~Y − ~λ
� �

≤ sup
i

inf
j≥i

h ~Y − ~Z +
fZj

2

 ! !

≤ sup
i

inf
j≥i

sup
i

inf
r≥i

h ~Y −
fZr +fZj

2

 !

≤
1
2 sup

i
inf
r≥i

sup
i

inf
r≥i

h ~Y −fZr

� �
+ h ~Y −fZj

� �h i
=Kh

~Y , Γ
� �

:

ð47Þ

So hð~Y − ~λÞ =Khð~Y , ΓÞ: As h is (UUC2), then it is (SC),
which explains the uniqueness of ~λ. To prove (ii), if ~Y ∉ Γr0

,

for some r0 ∈N : As ðKhð~Y , ΓrÞÞr∈N ∈ ℓ∞ is increasing, take
limr⟶∞Khð~Y , ΓrÞ = C. If C > 0, otherwise, ~Y ∈ Γr , for every

r ∈N . From (i), one has one point fZr ∈ Γr so that Khð~Y ,
ΓrÞ = hð~Y −fZr Þ, for all r ∈N . A similar proof will show that

ffZr /2gh-converges to some ~Z ∈ ðℓSðτÞÞh. Since fΓrg are h-
convex, decreasing, and h-closed, we have 2~Z ∈ ∩ r∈N Γr:

Definition 25. Uh verifies the h-normal structure property, if
and only if, for every nonempty h-bounded, h-convex, and
h-closed subset Γ of Uh not decreased to one point, then
~Y ∈ Γ so that

sup
~Z∈Γ

h ~Y − ~Z
� �

< δh Γð Þ≔ sup h ~Y − ~Z
� �

: ~Y , ~Z ∈ Γ
n o

<∞:

ð48Þ

Theorem 26. Suppose ðτqÞq∈N ∈ ℓ∞ ∩ I so that τ0 > 1, then

ðℓSðτÞÞh satisfies the h-normal structure property.

Proof. Theorem 22 implies that h is (UUC2). Suppose Γ is a
h-bounded, h-convex, and h-closed subset of ðℓSðτÞÞh not
decreased to one point. Then, δhðΓÞ > 0: Put C = δhðΓÞ: If
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~Y , ~Z ∈ Γ with ~Y ≠ ~Z, then hðð~Y − ~ZÞ/2Þ = l > 0: For all ~α ∈ Γ,
we have hð~Y − ~αÞ ≤ C and hð~Z − ~αÞ ≤ C: Since Γ is h-convex,
we have ð~Y + ~ZÞ/2 ∈ Γ. Since

h
~Y + ~Z
2 − ~α

 !
= h

~Y − ~α
� �

+ ~Z − ~α
� �

2

0@ 1A
≤ C 1 −K2 C, l

C

� �� �
,

ð49Þ

for every ~α ∈ Γ: We get

sup
~α∈Γ

h
~Y + ~Z
2 − ~α

 !
≤ C 1 −K2 C, l

C

� �� �
< C = δh Γð Þ:

ð50Þ

4. Kannan Contraction Mapping on ℓSðτÞ
In this section, we have constructed ðℓSðτÞÞh with distinct h
so that one has a unique fixed point of Kannan contraction
mapping.

Definition 27. A mapping V : Uh ⟶Uh is called a Kannan
h-contraction, when we have α ∈ ½0, 1/2Þ so that hðV ~Y −
V~ZÞ ≤ αðhðV ~Y − ~YÞ + hðV~Z − ~ZÞÞ, for every ~Y , ~Z ∈Uh. The
mapping V is said to be Kannan h-nonexpansive, if α = 1/2.

A vector ~Y ∈Uh is said to be a fixed point of V , if
Vð~YÞ = ~Y :

Theorem 28. Suppose ðτqÞq∈N ∈ ℓ∞ ∩ I so that τ0 > 0 and V :

ðℓSðτÞÞh ⟶ ðℓSðτÞÞh is Kannan h-contraction mapping,

where hð~YÞ = ½∑∞
q=0½mdðfYq, ~0Þ�

τq �1/K , for every ~Y ∈ ℓSðτÞ, then
V has a unique fixed point.

Proof. Let ~Y ∈ ℓSðτÞ, we have Vp~Y ∈ ℓSðτÞ. Since V is a
Kannan h-contraction mapping, then

h Vl+1~Y − Vl ~Y
� �

≤ α h Vl+1~Y −Vl ~Y
� �

+ h Vl ~Y −Vl−1~Y
� �� �

⟹

h Vl+1~Y − Vl ~Y
� �

≤
α

1 − α
h Vl ~Y − Vl−1~Y
� �

≤
α

1 − α

� �2
h Vl−1~Y −Vl−2~Y
� �

≤⋯≤
α

1 − α

� �l
h V ~Y − ~Y
� �

:

ð51Þ

Hence, for every l,m ∈N so that m > l, then

h Vl ~Y −Vm~Y
� �

≤ α h Vl ~Y −Vl−1~Y
� �

+ h Vm~Y −Vm−1~Y
� �� �

≤ α
α

1 − α

� �l−1
+ α

1 − α

� �m−1� �
h V ~Y − ~Y
� �

:

ð52Þ

Therefore, fVl ~Yg is a Cauchy sequence in ðℓSðτÞÞh. Since
the space ðℓSðτÞÞh is prequasi Banach space, we have ~Z ∈
ðℓSðτÞÞh so that liml⟶∞Vl ~Y = ~Z. To show that V~Z = ~Z, as
h holds the Fatou property, we get

h V~Z − ~Z
� �

≤ sup
i

inf
l≥i

h Vl+1~Y − Vl ~Y
� �

≤ sup
i

inf
l≥i

α

1 − α

� �l
h V ~Y − ~Y
� �

= 0,
ð53Þ

so V~Z = ~Z. Hence, ~Z is a fixed point of V . To prove the
uniqueness, assume ~Y , ~Z ∈ ðℓSðτÞÞh are two not equal fixed
points of V . Then,

h ~Y − ~Z
� �

≤ h V ~Y − V~Z
� �

≤ α h V ~Y − ~Y
� �

+ h V~Z − ~Z
� �� �

= 0:
ð54Þ

Hence, ~Y = ~Z:

Corollary 29. Assume ðτqÞq∈N ∈ ℓ∞ ∩ I so that τ0 > 1, and

V : ðℓSðτÞÞh ⟶ ðℓSðτÞÞh is Kannan h-contraction mapping,

where hð~YÞ = ½∑∞
q=0½mdðfYq, ~0Þ�

τq �1/K , for every ~Y ∈ ℓSðτÞ, then
V has unique fixed point ~Z with hðVl ~Y − ~ZÞ ≤ α

ðα/ð1 − αÞÞl−1hðV ~Y − ~YÞ:

Proof. By Theorem 28, we have a unique fixed point ~Z of V .
Then,

h Vl ~Y − ~Z
� �

= h Vl ~Y − V~Z
� �

≤ α h Vl ~Y −Vl−1~Y
� �

+ h V~Z − ~Z
� �� �

= α
α

1 − α

� �l−1
h V ~Y − ~Y
� �

:

ð55Þ

Example 30. If V : ðℓSððð2q + 3Þ/ðq + 2ÞÞ∞q=0ÞÞh ⟶ ðℓSððð2q + 3Þ/
ðq + 2ÞÞ∞q=0ÞÞh, where hð~gÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑∞

q=0ðmdð egq, ~0ÞÞð2q+3Þ/ðq+2Þq
, for

all ~g ∈ ℓSððð2q + 3Þ/ðq + 2ÞÞ∞q=0Þ and

V ~gð Þ =
~g
4 , h ~gð Þ ∈ 0, 1½ Þ,
~g
5 , h ~gð Þ ∈ 1,∞½ Þ:

8>><>>: ð56Þ
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Since for all eg1, eg2 ∈ ðℓSððð2q + 3Þ/ðq + 2ÞÞ∞q=0ÞÞh so that

hð eg1Þ, hð eg2Þ ∈ ½0, 1Þ, we have
h V eg1 −V eg2ð Þ = h

eg1
4 −

eg2
4

� �
≤

1ffiffiffiffiffi
274

p h
3 eg1
4

� �
+ h

3 eg2
4

� �� �
= 1ffiffiffiffiffi

274
p h V eg1 − eg1ð Þ + h V eg2 − eg2ð Þð Þ:

ð57Þ

For every eg1, eg2 ∈ ðℓSððð2q + 3Þ/ðq + 2ÞÞ∞q=0ÞÞh with

hð eg1Þ, hð eg2Þ ∈ ½1,∞Þ, we get

h V eg1 −V eg2ð Þ = h
eg1
5 −

eg2
5

� �
≤

1ffiffiffiffiffi
644

p h
4 eg1
5

� �
+ h

4 eg2
5

� �� �
= 1ffiffiffiffiffi

644
p h V eg1 − eg1ð Þ + h V eg2 − eg2ð Þð Þ:

ð58Þ

For each eg1, eg2 ∈ ðℓSððð2q + 3Þ/ðq + 2ÞÞ∞q=0ÞÞh with h
ð eg1Þ ∈ ½0, 1Þ and hð eg2Þ ∈ ½1,∞Þ, one has

h V eg1 −V eg2ð Þ = h
eg1
4 −

eg2
5

� �
≤

1ffiffiffiffiffi
274

p h
3 eg1
4

� �
+ 1ffiffiffiffiffi

644
p h

4 eg2
5

� �
≤

1ffiffiffiffiffi
274

p h
3 eg1
4

� �
+ h

4 eg2
5

� �� �
= 1ffiffiffiffiffi

274
p h V eg1 − eg1ð Þ + h V eg2 − eg2ð Þð Þ:

ð59Þ

Therefore, V is Kannan h-contraction. Since h holds the
Fatou property, by Theorem 28, we have V that holds unique
fixed point ~ϑ ∈ ðℓSððð2q + 3Þ/ðq + 2ÞÞ∞q=0ÞÞh:

Definition 31. If Uh is a prequasi normed (csss), V : Uh

⟶Uh and ~Z ∈Uh: The mapping V is said to be h-sequen-
tially continuous at ~Z, if and only if, assume limq⟶∞hðfYq

− ~ZÞ = 0, one has limq⟶∞hðVfYq − V~ZÞ = 0.

Example 32. If V : ðℓSðððq + 1Þ/ð2q + 4ÞÞ∞q=0ÞÞh ⟶
ðℓSðððq + 1Þ/ð2q + 4ÞÞ∞q=0ÞÞh, where hð~ZÞ =∑∞

q=0ðmdðfZq,
~0ÞÞðq+1Þ/ð2q+4Þ, for all ~Z ∈ ℓSðððq + 1Þ/ð2q + 4ÞÞ∞q=0Þ and

V ~Z
� �

=

1
18

~b0 + ~Z
� �

, fZ0 að Þ ∈ 0, 1
17

� �
,

1
17

~b0, fZ0 að Þ = 1
17 ,

1
18

~b0, fZ0 að Þ ∈ 1
17 , 1
� 

:

8>>>>>>>><>>>>>>>>:
ð60Þ

V is obviously both h-sequentially continuous and
discontinuous at 1/17~b0 ∈ ðℓSðððq + 1Þ/ð2q + 4ÞÞ∞q=0ÞÞh.

Example 33. Suppose V is defined as in Example 30. If

fgZðnÞg ⊆ ðℓSððð2q + 3Þ/ðq + 2ÞÞ∞q=0ÞÞh with limn⟶∞hðgZðnÞ

−gZð0ÞÞ = 0, where gZð0Þ ∈ ðℓSððð2q + 3Þ/ðq + 2ÞÞ∞q=0ÞÞh so that

hðgZð0ÞÞ = 1.
Since the prequasi norm h is continuous, one obtains

lim
n⟶∞

h VgZ nð Þ −VgZ 0ð Þ
� �

= lim
n⟶∞

h
gZ nð Þ

4 −
gZ 0ð Þ

5

0@ 1A
= h

gZ 0ð Þ

20

0@ 1A > 0:

ð61Þ

Hence, V is not h-sequentially continuous at gZð0Þ.

Theorem 34. Assume ðτqÞq∈N ∈ ℓ∞ ∩ I so that τ0 > 1, and

V : ðℓSðτÞÞh ⟶ ðℓSðτÞÞh, where hð~YÞ =∑∞
q=0½mdðfYq, ~0Þ�

τq ,

for every ~Y ∈ ℓSðτÞ. If

(1) V is Kannan h-contraction mapping

(2) V is h-sequentially continuous at ~Z ∈ ðℓSðτÞÞh
(3) One has ~Y ∈ ðℓSðτÞÞh so that fVl ~Yg has fVlj ~Yg con-

verging to ~Z

Then, ~Z ∈ ðℓSðτÞÞh is the only fixed point of V :

Proof. Suppose ~Z is not a fixed point of V , we have V~Z ≠ ~Z.
By using conditions (24) and (25), one has

lim
l j⟶∞

h Vlj ~Y − ~Z
� �

= 0,

lim
l j⟶∞

h Vlj+1~Y −V~Z
� �

= 0:
ð62Þ

Since V is Kannan h-contraction, then

0 < h V~Z − ~Z
� �

= h V~Z −Vlj+1~Y
� �

+ Vlj ~Y − ~Z
� �

+ Vlj+1~Y − Vlj ~Y
� �� �

≤ 2
2 sup

i
τi−2

h Vlj+1~Y −V~Z
� �

+ 2
2 sup

i
τi−2

h Vlj ~Y − ~Z
� �

+ 2
sup
i

τi−1
α

α

1 − α

� �l j−1
h V ~Y − ~Y
� �

:

ð63Þ
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Since l j ⟶∞, this gives a contradiction. So ~Z is a fixed

point of V . To prove the uniqueness, assume ~Z, ~Y ∈ ðℓSðτÞÞh
is two not equal fixed points of V . We have

h ~Z − ~Y
� �

≤ h V~Z −V ~Y
� �

≤ α h V~Z − ~Z
� �

+ h V ~Y − ~Y
� �� �

= 0:
ð64Þ

Therefore, ~Z = ~Y :

Example 35. If V is defined as in Example 30. Suppose

hð~YÞ =∑q∈N ðmdðfYq, ~0ÞÞ
ð2q+3Þ/ðq+2Þ

, for every ~Y ∈ ℓSððð2q +
3Þ/ðq + 2ÞÞ∞q=0Þ. As for every fY1,fY2 ∈ ðℓSððð2a + 3Þ/ðq +
2ÞÞ∞q=0ÞÞh so that hðfY1Þ, hðfY2Þ ∈ ½0, 1Þ, we have

h VfY1 − VfY2
� �

= h
fY1
4 −

fY2
4

 !

≤
2ffiffiffiffiffi
27

p h
3fY1
4

 !
+ h

3fY2
4

 ! !

= 2ffiffiffiffiffi
27

p h VfY1 −fY1
� �

+ h VfY2 −fY2
� �� �

:

ð65Þ

For every fY1,fY2 ∈ ðℓSððð2q + 3Þ/ðq + 2ÞÞ∞q=0ÞÞh such that

hðfY1Þ, hðfY2Þ ∈ ½1,∞Þ, then

h VfY1 − VfY2
� �

= h
fY1
5 −

fY2
5

 !

≤
1
4 h

4fY1
5

 !
+ h

4fY2
5

 ! !

= 1
4 h VfY1 −fY1

� �
+ h VfY2 −fY2
� �� �

:

ð66Þ

For every fY1,fY2 ∈ ðℓSððð2q + 3Þ/ðq + 2ÞÞ∞q=0ÞÞh with

hðfY1Þ ∈ ½0, 1Þ and hðfY2Þ ∈ ½1,∞Þ, we have

h VfY1 − VfY2
� �

= h
fY1
4 −

fY2
5

 !

≤
2ffiffiffiffiffi
27

p h
3fY1
4

 !
+ 1
4 h

4fY2
5

 !

≤
2ffiffiffiffiffi
27

p h
3fY1
4

 !
+ h

4fY2
5

 ! !

= 2ffiffiffiffiffi
27

p h VfY1 −fY1
� �

+ h VfY2 −fY2
� �� �

:

ð67Þ

Then, V is Kannan h-contraction and

Vl ~Y
� �

=

~Y

4l
, h ~Y

� �
∈ 0, 1½ Þ,

~Y

5l
, h ~Y

� �
∈ 1,∞½ Þ:

8>>><>>>: ð68Þ

Clearly, V is h-sequentially continuous at ~ϑ ∈
ðℓSððð2a + 3Þ/ðq + 2ÞÞ∞q=0ÞÞh and fVl ~Yg verifies fVlj ~Yg
converges to ~ϑ. From Theorem 34, the element ~ϑ ∈
ðℓSððð2a + 3Þ/ðq + 2ÞÞ∞q=0ÞÞh is the only fixed point of V .

5. Kannan Nonexpansive Mapping on ðℓSðτÞÞh
The enough setups of ðℓSðτÞÞh, where hð~gÞ = ½∑∞

p=0
ðmdð egp, ~0ÞÞτp �1/K , for all ~g ∈ ℓSðτÞ, so that the Kannan non-
expansive mapping on it has a fixed point are presented.

By letting Γ a nonempty h-bounded, h-convex, and
h-closed subset of ðℓSðτÞÞh.

Lemma 36. Suppose ðℓSðτÞÞh verifies the (R) property and the
h-quasinormal property. If V : Γ⟶ Γ is a Kannan h-non-
expansive mapping, for t > 0, put Gt = f~Y ∈ Γ : hð~Y −Vð~YÞÞ
≤ tg ≠∅. Let

Γt =
\

Bh r, jð Þ: V Gtð Þ ⊂ Bh r, jð Þf g ∩ Γ: ð69Þ

Hence, Γt ≠∅, h-convex, h-closed subset of Γ and VðΓtÞ
⊂ Γt ⊂Gt and δhðΓtÞ ≤ t:

Proof. As VðGtÞ ⊂ Γt , one has Γt ≠∅. Since the h-balls
are h-convex and h-closed, one gets Γt is a h-closed and
h-convex subset of Γ. To prove that Γt ⊂Gt , let ~Y ∈ Γt: If
hð~Y −Vð~YÞÞ = 0, we have ~Y ∈ Gt: Otherwise, when hð~Y −
Vð~YÞÞ > 0, let

r = sup h V ~Z
� �

− V ~Y
� �� �

: ~Z ∈Gt

n o
: ð70Þ

From the definition of r, we have VðGtÞ ⊂ BhðVð~YÞ, rÞ:
Hence, Γt ⊂ BhðVð~YÞ, rÞ, so hð~Y − Vð~YÞÞ ≤ r: By taking l > 0,
we have ~Z ∈Gt so that r − l ≤ hðVð~ZÞ − Vð~YÞÞ. Then,

h ~Y −V ~Y
� �� �

− l ≤ r − l ≤ h V ~Z
� �

− V ~Y
� �� �

≤
1
2 h ~Y − V ~Y

� �� �
+ h ~Z −V ~Z

� �� �� �
≤
1
2 h ~Y − V ~Y

� �� �
+ t

� �
:

ð71Þ
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Since l is an arbitrary positive, we have hð~Y − Vð~YÞÞ ≤ t,
so ~Y ∈ Gt . As VðGtÞ ⊂ Γt , we have VðΓtÞ ⊂VðGtÞ ⊂ Γt , then
Γt is V-invariant. To prove that δhðΓtÞ ≤ t: As

h V ~Y
� �

−V ~Z
� �� �

≤
1
2 h ~Y − V ~Y

� �� �� �
+ h ~Z −V ~Z

� �� ��
,

ð72Þ

for every ~Y , ~Z ∈ Gt: If ~Y ∈ Gt: We get VðGtÞ ⊂ BhðVð~YÞ, tÞ:
The definition of Γt implies Γt ⊂ BhðVð~YÞ, tÞ: Hence, Vð~YÞ
∈
T

t∈Γt
Bhð~Z, tÞ: Then, hð~Z − ~YÞ ≤ t, for all ~Z, ~Y ∈ Γt , this

implies δhðΓtÞ ≤ t:

Theorem 37. Assume ðℓSðτÞÞh verifies the h-quasinormal
property and the (R) property. If V : Γ⟶ Γ is a Kannan
h-nonexpansive mapping, so V has a fixed point.

Proof. Put t0 = inf fhð~Y −Vð~YÞÞ: ~Y ∈ Γg and tr = t0 + ð1/rÞ,
for all r ≥ 1: By the definition of t0, we have Gtr

= f~Y ∈ Γ :

hð~Y − Vð~YÞÞ ≤ trg ≠∅, for all r ≥ 1: If Γtr
is defined as in

Lemma 36, it is obvious that fΓtr
g is a decreasing sequence

of nonempty h-bounded, h-closed, and h-convex subsets of
Γ. The property (R) holds that Γ∞ =Tr≥1Γtr

≠∅: Put ~Y ∈
Γ∞, then hð~Y − Vð~YÞÞ ≤ tr , for every r ≥ 1: If r⟶∞, one
has hð~Y −Vð~YÞÞ ≤ t0, then hð~Y − Vð~YÞÞ = t0: Hence, Gt0

≠
∅: Therefore, t0 = 0. Otherwise, t0 > 0 then V fails to have
a fixed point. Put Γt0

as defined in Lemma 36. Since V fails
to have a fixed point and Γt0

is V-invariant, so Γt0
has more

than one point, then δhðΓt0
Þ > 0. By the h-quasinormal

property, we have ~Y ∈ Γt0
so that

h ~Y − ~Z
� �

< δh Γt0

� �
≤ t0, ð73Þ

for every ~Z ∈ Γt0
: In view of Lemma 36, one has Γt0

⊂Gt0
: By

definition of Γt0
, then Vð~YÞ ∈Gt0

⊂ Γt0
: We have

h ~Y −V ~Y
� �� �

< δh Γt0

� �
≤ t0, ð74Þ

which contradicts the definition of t0. So t0 = 0 which gives
that any point in Gt0

is a fixed point of V .

In view of Theorems 24, 26, and 28, we have the
following.

Corollary 38. If ðτqÞq∈N ∈ ℓ∞ ∩ I so that τ0 > 1 and V : Γ

⟶ Γ is a Kannan h-nonexpansive mapping. One has V that
holds a fixed point.

Example 39. Suppose V : Γ⟶ Γ so that

V ~Y
� �

=

~Y
4 , h ~Y

� �
∈ 0, 1½ Þ,

~Y
5 , h ~Y

� �
∈ 1,∞½ Þ,

8>>><>>>: ð75Þ

where Γ = f~Y ∈ ðℓSððð2q + 3Þ/ðq + 2ÞÞ∞q=0ÞÞh : fY0 =fY1 = ~0g
and hð~YÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑q∈N ðmdðfYq, ~0ÞÞ

ð2q+3Þ/ðq+2Þ
q

, for all ~Y ∈
ðℓSððð2q + 3Þ/ðq + 2ÞÞ∞q=0ÞÞh. From Example 35, V is Kannan

h-contraction. Therefore, it is Kannan h-nonexpansive. From
Corollary 38, then V has a fixed point ~ϑ in Γ.

6. Kannan Contraction and Structure of
Operators Ideal

The structure of the operators ideal by ðℓSðτÞÞh under defi-

nite function h, where hð~gÞ = ½∑∞
p=0ðmdð egp, ~0ÞÞτp �1/K , for all

~g ∈ ℓSðτÞ, and s-soft reals has been offered. Finally, we study
the idea of Kannan contraction mapping in its linked pre-
quasi operator ideal. Also, the existence of a fixed point of
Kannan contraction mapping has been offered. We mark
the space of all bounded, finite rank linear operators from
a Banach space Δ into a Banach space Λ by LðΔ,ΛÞ, and
FðΔ,ΛÞ and if Δ =Λ, we indicate LðΔÞ and FðΔÞ.

Definition 40 (see [45]). An s -number function is s : LðΔ,
ΛÞ⟶R+N which gives all V ∈LðΔ,ΛÞ a ðsdðVÞÞ∞d=0 holds
the next conditions:

(a) kVk = s0ðVÞ ≥ s1ðVÞ ≥ s2ðVÞ ≥⋯≥0, for every V ∈
LðΔ,ΛÞ

(b) sl+d−1ðV1 +V2Þ ≤ slðV1Þ + sdðV2Þ, for every V1, V2
∈LðΔ,ΛÞ and l, d ∈N

(c) sdðVYWÞ ≤ kVksdðYÞkWk, for all W ∈LðΔ0, ΔÞ,
Y ∈LðΔ,ΛÞ and V ∈LðΛ,Λ0Þ, where Δ0 and Λ0
are arbitrary Banach spaces

(d) Suppose V ∈LðΔ,ΛÞ and γ ∈R, one has sdðγVÞ =
jγjsdðVÞ

(e) If rank ðVÞ ≤ d, then sdðVÞ = 0, for all V ∈LðΔ,ΛÞ
(f) sl≥aðIaÞ = 0 or sl<aðIaÞ = 1, where Ia marks the unit

map on the a-dimensional Hilbert space ℓa2

Definition 41 (see [37]). Suppose L is the class of all
bounded linear operators between any arbitrary Banach
spaces. A subclass U of L is called an operator ideal, when
every UðΔ,ΛÞ =U ∩LðΔ,ΛÞ holds the next setups:

(i) IΓ ∈U, where Γ marks Banach space of one
dimension

(ii) The space UðΔ,ΛÞ is linear over R
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(iii) If W ∈LðΔ0, ΔÞ, X ∈UðΔ,ΛÞ and Y ∈LðΛ,Λ0Þ,
one has YXW ∈UðΔ0,Λ0Þ

Notations 42.

~✠U ≔ ~✠U Δ,Λð Þf g, where ~✠U Δ,Λð Þ
≔ V ∈L Δ,Λð Þ: gsd Vð Þ

� �� ∞

d=0
∈U

n o
:

ð76Þ

gsdðVÞðxÞ = sdðVÞ, for every x ∈ A:

Theorem 43. If U is a (csss), one has ~✠U an operator ideal.

Proof.

(i) Suppose V ∈FðΔ,ΛÞ and rank ðVÞ = n, for every
n ∈N , since ~bi ∈U, for every i ∈N , and U is a

linear space, then ð gsi ðVÞÞ∞i=0 = ð gs0ðVÞ, gs1ðVÞ,⋯,gsn−1ðVÞ, ~0, ~0, ~0,⋯Þ =∑n−1
i=0

gsi ðVÞ~bi ∈U; for that V ∈
~✠UðΔ,ΛÞ then FðΔ,ΛÞ ⊆ ~✠UðΔ,ΛÞ

(ii) If V1, V2 ∈ ~✠UðΔ,ΛÞ and β1, β2 ∈R so by Defini-

tion 5 condition (25) one has ð gs½i /2�ðV1ÞÞ
∞

i=0 ∈U
and ð gs½i /2�ðV1ÞÞ

∞

i=0 ∈U, as i ≥ 2½i/2�, by the definition
of s-numbers and siðVÞ is decreasing, we havegsi ðβ1V1 + β2V2Þ ≤ gs2½i /2�ðβ1V1 + β2V2Þ ≤ gs½i /2�ðβ1V1Þ +
s½i /2�ðβ2V2Þ = jβ1j gs½i /2�ðV1Þ + jβ2j gs½i /2�ðV2Þ for all i ∈
N . By Definition 5 part (2) and U is a linear space,

we get ð gsi ðβ1V1 + β2V2ÞÞ
∞

i=0 ∈U; hence, β1V1 + β2
V2 ∈ ~✠UðΔ,ΛÞ

(iii) Assume P ∈LðΔ0, ΔÞ, T ∈ ~✠UðΔ,ΛÞ, and R ∈L
ðΛ,Λ0Þ, then ð gsi ðTÞÞ∞i=0 ∈U and since gsi ðRTPÞ ≤
kRk gsi ðTÞkPk, from Definition 5 parts (1) and

(2), then ð gsi ðRTPÞÞ
∞
i=0 ∈U, then RTP ∈ ~✠UðΔ0,Λ0Þ

In view of Theorems 11 and 43, we have the following
theorem.

Theorem 44. If ðτqÞq∈N ∈ ℓ∞ ∩ I so that τ0 > 0, then ~✠ðℓSðτÞÞh
is an operator ideal.

Definition 45 [38]. A function H ∈ ½0,∞ÞU is said to be a pre-
quasi norm on the idealU, when the next setups are verified.

(1) If V ∈UðΔ,ΛÞ, HðVÞ ≥ 0, and HðVÞ = 0, if and only
if, V = 0

(2) One has Q ≥ 1 so as to HðαVÞ ≤DjαjHðVÞ, for all
V ∈UðΔ,ΛÞ and α ∈R

(3) One has P ≥ 1withHðV1 + V2Þ ≤ P½HðV1Þ +HðV2Þ�,
for all V1,V2 ∈UðΔ,ΛÞ

(4) One has σ ≥ 1 for to if V ∈LðΔ0, ΔÞ, X ∈UðΔ,
ΛÞ, and Y ∈LðΛ,Λ0Þ, one has HðYXVÞ ≤ σkYk
HðXÞkVk

Theorem 46 (see [38]). H is a prequasi norm on the ideal U,
whenever H is a quasinorm on the ideal U.

Theorem 47. Suppose ðτqÞq∈N ∈ ℓ∞ ∩ I so that τ0 > 0; hence,

the function H is a prequasi norm on ~✠ðℓSðτÞÞh , with HðZÞ =
hð gsqðZÞÞ∞q=0, for every Z ∈ ~✠ðℓSðτÞÞhðΔ,ΛÞ.

Proof.

(1) If X ∈ ~✠ðℓSðτÞÞhðΔ,ΛÞ, HðXÞ = hð gsqðXÞÞ∞q=0 ≥ 0 and

HðXÞ = hð gsqðXÞÞ∞q=0 = 0, if and only if, gsqðXÞ = ~0,
for all q ∈N , if and only if, X = 0

(2) One has Q ≥ 1 with HðαXÞ = hð gsqðαXÞÞ∞q=0 ≤Qjαj
HðXÞ, for every X ∈ ~✠ðℓSðτÞÞhðΔ,ΛÞ and α ∈R

(3) There are PP0 ≥ 1 with for X1, X2 ∈ ~✠ðℓSðτÞÞhðΔ,ΛÞ,
we have

H X1 + X2ð Þ = h gsq X1 + X2ð Þ
� �∞

q=0

≤ P h gs q/2½ � X1ð Þ
� �∞

q=0
+ h gs q/2½ � X2ð Þ
� �∞

q=0

� �
≤ PP0 h gsq X1ð Þ

� �∞
q=0

+ h gsq X2ð Þ
� �∞

q=0

� �
:

ð77Þ

(4) There are ρ ≥ 1, assume X ∈LðΔ0, ΔÞ, Y ∈ ~✠ðℓSðτÞÞh
ðΔ,ΛÞ and Z ∈LðΛ,Λ0Þ, one has HðZYXÞ = h

ð gsqðZYXÞÞ
∞

q=0 ≤ hðkXkkZk gsqðYÞÞ∞q=0 ≤ ρkXkHðYÞkZk

In the next theorems, we will use the notation ð~✠ðℓSðτÞÞh ,
HÞ, where HðVÞ = hðð gsqðVÞÞ∞q=0Þ, for every V ∈ ~✠ðℓSðτÞÞh .

Theorem 48. If ðτqÞq∈N ∈ ℓ∞ ∩ I so that τ0 > 0, then

ð~✠ðℓSðτÞÞh ,HÞ is a prequasi Banach operator ideal.

Proof. Assume ðVaÞa∈N is a Cauchy sequence in ~✠ðℓSðτÞÞh
ðΔ,ΛÞ. Since LðΔ,ΛÞ ⊇ SðℓSðτÞÞhðΔ,ΛÞ, we have

H Vr −Vað Þ = h gsq Vr −Vað Þ
� �∞

q=0

� �
≥ h gs0 Vr −Vað Þ, ~0, ~0, ~0,⋯
� �

≥ Vr −Vak kτ0/K :
ð78Þ
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Then, ðVaÞa∈N is a Cauchy sequence in LðΔ,ΛÞ. Since
LðΔ,ΛÞ is a Banach space, one has V ∈LðΔ,ΛÞ with

lima⟶∞kVa −Vk = 0 and as ð gsqðVaÞÞ
∞

q=0 ∈ ðℓSðτÞÞh, for

every a ∈N and ðℓSðτÞÞh is a premodular (csss). Then,

H Vð Þ = h gsq Vð Þ
� �∞

q=0

� �
≤ h gs q/2½ � V −Vað Þ

� �∞
q=0

� �
+ h gs q/2½ � Vað Þ∞q=0

� �� �
≤ h Va − Vk k~1� �∞

q=0

� �
+ 2ð Þ1/Kh gsq Vað Þ

� �∞
q=0

� �
< ε,

ð79Þ

one gets ð gsqðVÞÞ∞q=0 ∈ ðℓSðτÞÞh, then V ∈ ~✠ðℓSðτÞÞhðΔ,ΛÞ.

Theorem 49. Assume ðτqÞq∈N ∈ ℓ∞ ∩ I so that τ0 > 0, then

ð~✠ðℓSðτÞÞh ,HÞ is a prequasi closed operator ideal.

Proof. If Va ∈ ~✠ðℓSðτÞÞhðΔ,ΛÞ, for every a ∈N and lima⟶∞
HðVa −VÞ = 0. Since LðΔ,ΛÞ ⊇ SðℓSðτÞÞhðΔ,ΛÞ, we have

H Va −Vð Þ = h gsq Va − Vð Þ
� �∞

q=0

� �
≥ h gs0 Va −Vð Þ, ~0, ~0, ~0,⋯
� �

≥ Va −Vk kτ0/K :
ð80Þ

Hence, ðVaÞa∈N is convergent in LðΔ,ΛÞ; i.e.,

lima⟶∞ kVa − Vk = 0 and as ð gsqðVaÞÞ
∞

q=0 ∈ ðℓSðτÞÞh, for

every q ∈N and ðℓSðτÞÞh is a premodular (csss). Then,

H Vð Þ = h gsq Vð Þ
� �∞

q=0

� �
≤ h gs q/2½ � V −Vað Þ

� �∞
q=0

� �
+ h gs q/2½ � Vað Þ∞q=0

� �� �
≤ h Va −Vk k~1� �∞

q=0

� �
+ 2ð Þ1/Kh gsq Vað Þ

� �∞
q=0

� �
< ε:

ð81Þ

We obtain ð gsqðVÞÞ∞
q=0 ∈ ðℓSðτÞÞh; hence, V ∈ ~✠ðℓSðτÞÞhðΔ,ΛÞ.

Definition 50. A prequasi norm H on the ideal ~✠Uh
holds the

Fatou property if for all fTqgq∈N ⊆ ~✠Uh
ðΔ,ΛÞ with

limq⟶∞HðTq − TÞ = 0 and M ∈ ~✠Uh
ðΔ,ΛÞ, then

H M − Tð Þ ≤ sup
q

inf
j≥q

H M − T j

� �
: ð82Þ

Theorem 51. If ðτqÞq∈N ∈ ℓ∞ ∩ I so that τ0 > 0, then ð~✠ðℓSðτÞÞh ,
HÞ does not satisfy the Fatou property.

Proof. Let fTqgq∈N ⊆ ~✠ðℓSðτÞÞhðΔ,ΛÞ so that limq⟶∞HðTq

− TÞ = 0: As ~✠ðℓSðτÞÞh is a prequasi closed ideal, one has
T ∈ ~✠ðℓSðτÞÞhðΔ,ΛÞ. So for all M ∈ ~✠ðℓSðτÞÞhðΔ,ΛÞ, then

H M − Tð Þ = 〠
∞

q=0
md

gsq M − Tð Þ, ~0
� �� �τq" #1/K

≤ 〠
∞

q=0
md

gs q/2½ � M − Tið Þ, ~0
� �� �τq" #1/K

+ 〠
∞

q=0
md

gs q/2½ � Ti − Tð Þ, ~0
� �� �τq" #1/K

≤ 2ð Þ1/K sup
r

inf
j≥r

〠
∞

q=0
md

gsq M − T j

� �
, ~0

� �� �τq" #1/K
:

ð83Þ

Definition 52. An operator V : ~✠Uh
ðΔ,ΛÞ⟶ ~✠Uh

ðΔ,ΛÞ is
called a Kannan H-contraction, if there is α ∈ ½0, 1/2Þ so that
HðVT −VMÞ ≤ αðHðVT − TÞ +HðVM −MÞÞ, for every
T ,M ∈ ~✠Uh

ðΔ,ΛÞ.

Definition 53. An operator V : ~✠Uh
ðΔ,ΛÞ⟶ ~✠Uh

ðΔ,ΛÞ is
called H-sequentially continuous at M, where M ∈ ~✠Uh

ðΔ,
ΛÞ, if and only if, limr⟶∞HðTr −MÞ = 0⇒ limr⟶∞HðV
Tr −VMÞ = 0.

Example 54. Assume V : ~✠ðℓSððð2q+3Þ/ðq+2ÞÞ∞q=0ÞÞhðΔ,ΛÞ⟶

~✠ðℓSððð2q+3Þ/ðq+2ÞÞ∞q=0ÞÞhðΔ,ΛÞ, where HðTÞ =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑∞

q=0ðmdð gsqðTÞ, ~0ÞÞð2q+3Þ/ðq+2Þ
r

, for all T ∈
~✠ðℓSððð2q+3Þ/ðq+2ÞÞ∞q=0ÞÞh ðΔ,ΛÞ and

V Tð Þ =
T
6 , H Tð Þ ∈ 0, 1½ Þ,
T
7 , H Tð Þ ∈ 1,∞½ Þ:

8>><>>: ð84Þ

Clearly, V is H-sequentially continuous at the zero
operator Θ ∈ ~✠ðℓSððð2q+3Þ/ðq+2ÞÞ∞q=0ÞÞh . Suppose fTðjÞg ⊆
~✠ðℓSððð2q+3Þ/ðq+2ÞÞ∞q=0ÞÞh so that limj⟶∞HðTðjÞ − Tð0ÞÞ = 0,where
Tð0Þ ∈ ~✠ðℓSððð2q+3Þ/ðq+2ÞÞ∞q=0ÞÞh with HðTð0ÞÞ = 1. As the prequasi
norm H is continuous, we have

lim
j⟶∞

H VT jð Þ −VT 0ð Þ
� �

= lim
j⟶∞

H
T 0ð Þ

6 −
T 0ð Þ

7

 !

=H
T 0ð Þ

42

 !
> 0:

ð85Þ

Hence, V is not H-sequentially continuous at Tð0Þ.
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Theorem 55. If ðτqÞq∈N ∈ ℓ∞ ∩ I so that τ0 > 0 and V :

~✠ðℓSðτÞÞhðΔ,ΛÞ⟶ ~✠ðℓSðτÞÞhðΔ,ΛÞ. Suppose

(i) V is Kannan H-contraction mapping

(ii) V is H-sequentially continuous at a vector M ∈
~✠ðℓSðτÞÞhðΔ,ΛÞ

(iii) we have G ∈ ~✠ðℓSðτÞÞhðΔ,ΛÞ so that the sequence of
iterates fVrGg has a fVriGg converging to M

Then, M ∈ ~✠ðℓSðτÞÞhðΔ,ΛÞ is the unique fixed point of V .

Proof. AssumeM is not a fixed point of V , one has VM ≠M.
By using conditions (ii) and (iii), one has

lim
ri⟶∞

H VriG −Mð Þ = 0 and lim
ri⟶∞

H Vri+1G −VM
� �

= 0:

ð86Þ

As V is Kannan H-contraction, we get

0 <H VM −Mð Þ
=H VM − Vri+1G

� �
+ VriG −Mð Þ + Vri+1G −VriG

� �� �
≤ 2ð Þ1/KH Vri+1G −VM

� �
+ 2ð Þ2/KH VriG −Mð Þ

+ 2ð Þ2/Kα α

1 − α

� �ri−1
H VG −Gð Þ:

ð87Þ

Since ri ⟶∞, we have a contradiction. Therefore, M is
a fixed point of V . To prove the uniqueness of the fixed
point M, assume there are two not equal fixed points M,
J ∈ ~✠ðℓSðτÞÞhðΔ,ΛÞ of V . We get HðM − JÞ ≤HðVM −VJÞ
≤ αðHðVM −MÞ +HðVJ − JÞÞ = 0: So, M = J:

Example 56. According to Example 54, as for every T1, T2
∈ ~✠ðℓSððð2q+3Þ/ðq+2ÞÞ∞q=0ÞÞh with HðT1Þ,HðT2Þ ∈ ½0, 1Þ, then

H VT1 −VT2ð Þ =H
T1
6 −

T2
6

� �
≤

ffiffiffi
2

pffiffiffiffiffiffiffi
1254

p H
5T1
6

� �
+H

5T2
6

� �� �
=

ffiffiffi
2

pffiffiffiffiffiffiffi
1254

p H VT1 − T1ð Þ +H VT2 − T2ð Þð Þ:

ð88Þ

For every T1, T2 ∈ ~✠ðℓSððð2q+3Þ/ðq+2ÞÞ∞q=0ÞÞh with HðT1Þ,
HðT2Þ ∈ ½1,∞Þ, then

H VT1 −VT2ð Þ =H
T1
7 −

T2
7

� �
≤

ffiffiffi
2

pffiffiffiffiffiffiffi
2164

p H
6T1
7

� �
+H

6T2
7

� �� �
=

ffiffiffi
2

pffiffiffiffiffiffiffi
2164

p H VT1 − T1ð Þ +H VT2 − T2ð Þð Þ:

ð89Þ

For each T1, T2 ∈ ~✠ðℓSððð2q+3Þ/ðq+2ÞÞ∞q=0ÞÞh withHðT1Þ ∈ ½0, 1Þ
and HðT2Þ ∈ ½1,∞Þ, one gets

H VT1 −VT2ð Þ =H
T1
6 −

T2
7

� �
≤

ffiffiffi
2

pffiffiffiffiffiffiffi
1254

p H
5T1
6

� �
+

ffiffiffi
2

pffiffiffiffiffiffiffi
2164

p H
6T2
7

� �
≤

ffiffiffi
2

pffiffiffiffiffiffiffi
1254

p H VT1 − T1ð Þ +H VT2 − T2ð Þð Þ:

ð90Þ

Therefore, V is Kannan H-contraction and

Vr Tð Þ =
T
6r , H Tð Þ ∈ 0, 1½ Þ,
T
7r , H Tð Þ ∈ 1,∞½ Þ:

8>><>>: ð91Þ

Clearly, V is H-sequentially continuous at Θ ∈
~✠ðℓSððð2q+3Þ/ðq+2ÞÞ∞q=0ÞÞh and fVrTg has a subsequence fVriTg
that converges to Θ. According to Theorem 55, Θ is the only
fixed point of G.

7. Applications

In this section, some successful applications to the existence
of solutions of nonlinear difference equations of soft func-
tions are introduced.

Theorem 57. Assume the summable equations

Yq = Rq + 〠
∞

r=0
D q, rð Þm r, Yrð Þ, ð92Þ

which are considered by many authors [46–48], and let
V : ðℓSðτÞÞh ⟶ ðℓSðτÞÞh, where ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1

and hð~YÞ = ½∑∞
j=0ðmdðfY j , ~0ÞÞ

τ j �1/K , for all ~Y ∈ ℓSðτÞ, given by

V fYq

� �
q∈N

= eRq + 〠
∞

r=0
D q, rð Þv r,fYr

� � !
q∈N

: ð93Þ
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The summable equation (92) has a unique solution in
ðℓSðτÞÞh, when D : N 2 ⟶R,v : N ×RðAÞ⟶RðAÞ,
~R : N ⟶RðAÞ,~Z : N ⟶RðAÞ, and for all q ∈N , suppose

〠
r∈N

D q, rð Þ v rg, Yr

� �
− v r,fZr

� �� ������
�����

~≤
1

2K
eRq −fYq + 〠

∞

r=0
D q, rð Þv r,fYr

� ������
�����

"

+ eRq −fZq + 〠
∞

r=0
D q, rð Þv r,fZr

� ������
�����
#
:

ð94Þ

Proof. We have

h V ~Y − V~Z
� �
= 〠

q∈N
md VfYq −VfZq, ~0
� �� �τq" #1/K

= 〠
q∈N

md 〠
r∈N

D q, rð Þ v r,fYr

� �
− v r,fZr

� �h i
, ~0

 ! !τq
" #1/K

≤
1
2 〠

q∈N
md

eRq −fYq + 〠
∞

r=0
D q, rð Þv r,fYr

� �
, ~0

 ! !τq
" #1/K

+ 1
2 〠

q∈N
md

eRq −fZq + 〠
∞

r=0
D q, rð Þv r,fZr

� �
, ~0

 ! !τq
" #1/K

= 1
2 h V ~Y − ~Y

� �
+ h V~Z − ~Z
� �� �

:

ð95Þ

In view of Theorem 37, there is a unique solution of
equation (92) in ðℓSðτÞÞh:

Example 58. If ðℓSððð2q + 3Þ/ðq + 2ÞÞ∞q=0ÞÞh, where hð~YÞ =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑q∈N ðmdðYq, ~0ÞÞð2q+3Þ/ðq+2Þ

q
, for every ~Y ∈ ℓSððð2q + 3Þ/

ðq + 2ÞÞ∞q=0Þ. Assume the summable equations

fYq = eRq + 〠
∞

r=0
−1ð Þq+r

fYq

q2 + r2 + 1

 !t

, ð96Þ

so that q ≥ 2 and t > 0. Let Γ = f~Y ∈ ðℓSððð2q + 3Þ/ðq +
2ÞÞ∞q=0ÞÞh : fY0 =fY1 = ~0g. Clearly, Γ is a nonempty, h
-convex, h-closed, and h-bounded subset of ðℓSððð2q +
3Þ/ðq + 2ÞÞ∞q=0ÞÞh. Suppose V : Γ⟶ Γ is defined as

V fYq

� �
q≥2

= eRq + 〠
∞

r=0
−1ð Þq+r

fYq

q2 + r2 + 1

 !t !
q≥2

: ð97Þ

Evidently,

〠
∞

r=0
−1ð Þq

fYq

q2 + r2 + 1

 !t

−1ð Þr− −1ð Þrð Þ
�����

�����
~≤
1
4

eRq −fYq + 〠
∞

r=0
−1ð Þq+r

fYq

q2 + r2 + 1

 !t�����
�����

"

+ eRq −fZq + 〠
∞

r=0
−1ð Þq+r

fZq

q2 + r2 + 1

 !t
������

������
35:

ð98Þ

According to Theorem 57 and Corollary 38, the
summable equations (96) have a solution in Γ.

Example 59. If ðℓSððð2q + 3Þ/ðq + 2ÞÞ∞q=0ÞÞh, where hð~YÞ =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑q∈N ðmdðYq, ~0ÞÞð2q+3Þ/ðq+2Þ

q
, for every ~Y ∈ ℓSððð2q + 3Þ/

ðq + 2ÞÞ∞q=0Þ, let the nonlinear difference equations

fYq = eRq + 〠
∞

l=0
−1ð Þq+l

gYr
q−2gYq

q−1 + el2 + ~1
, ð99Þ

so that r, q > 0, gY−2ðxÞ,gY−1ðxÞ > 0, for every x ∈ A, and
suppose V : ℓSððð2q + 3Þ/ðq + 2ÞÞ∞q=0Þ⟶ ℓSððð2q + 3Þ/ðq +
2ÞÞ∞q=0Þ, explained by

V Yq

� �∞
q=0 = eRq + 〠

∞

l=0
−1ð Þq+l

gYr
q−2gYq

q−1 + el2 + ~1

0@ 1A∞

q=0

: ð100Þ

It is clear that

〠
∞

l=0
−1ð Þq

gYr
q−2gYq

q−1 + el2 + ~1
−1ð Þl − −1ð Þl

� �������
������

≤
1
4

eRq −fYq + 〠
∞

l=0
−1ð Þq+l

gYr
q−2gYq

q−1 + el2 + ~1

������
������

24
+ eRq −fZq + 〠

∞

l=0
−1ð Þq+l

gZr
q−2gZq

q−1 + el2 + ~1

������
������
35:

ð101Þ

In view of Theorem 57, the nonlinear difference equations
(99) have a unique solution in ℓSððð2q + 3Þ/ðq + 2ÞÞ∞q=0Þ.

8. Conclusion

The site we discussed was a “pre-quasinormed” place rather
than a “quasinormed” location. In the prequasi Banach
space, the concept of a fixed point of the Kannan prequasi
norm contraction mapping is introduced (csss). Both (R)
and the pre-quasinormal structure are supported. The
occurrence of a fixed point in the Kannan nonexpansive
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mapping was studied in this study. A fixed point of Kannan
contraction mapping in the prequasi Banach operator ideal
formed by Nakano (csss) and the s-soft real numbers has
also been investigated for a fixed point of Kannan contrac-
tion mapping. Finally, we have demonstrated how the results
can be applied to a problem by presenting a few examples of
how this has happened. Under a wide range of flexible con-
ditions, the presence of a sequence can be established using
the Nakano sequence space. Specifically, when it comes to
the variable exponent in the previously described space,
our key conclusions have helped to strengthen several well-
established ideas.
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