Applications of the Bell Numbers on Univalent Functions Associated with Subordination

Sh. Najafzadeh (1 and Mugur Acu $\left.{ }^{1}\right)^{2}$
${ }^{1}$ Department of Mathematics, Payame Noor University, Post Office Box: 19395-3697, Tehran, Iran
${ }^{2}$ Lucian Blaga University of Sibiu, Faculty of Science, Department of Mathematics and Informatics, Street Dr. I. Ratiu 5-7, Sibiu 550012, Romania
Correspondence should be addressed to Mugur Acu; acu_mugur@yahoo.com

Received 1 September 2021; Revised 30 September 2021; Accepted 24 January 2022; Published 10 March 2022
Academic Editor: Muhammad Arif
Copyright © 2022 Sh. Najafzadeh and Mugur Acu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The motivation of the present paper is to define a new subclass of univalent functions associated with the q-analogue of the exponential function and the well-known Bell numbers based on subordination structure. Furthermore, we estimate the coefficient bound and extreme points. Also, geometric properties such as convexity and convolution preserving concept are investigated.

1. Introduction

For a fixed nonnegative integer k, the Bell numbers B_{k} is the number of equivalent relations on a set with k elements or equivalently the number of possible disjoint partitions of a set with k elements into nonempty subsets. The function

$$
\begin{equation*}
Q(z)=e^{e^{z}-1}=\sum_{k=0}^{\infty} B_{k} \frac{z^{k}}{k!}, \tag{1}
\end{equation*}
$$

involving the Bell numbers was considered by Kumar et al. [1], see also [2, 3].

Let \mathscr{A} denote the class of all functions F which are analytic in the open unit disk,

$$
\begin{equation*}
\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}, \tag{2}
\end{equation*}
$$

and normalized by conditions:

$$
\begin{equation*}
F(0)=F^{\prime}(0)-1=0 \tag{3}
\end{equation*}
$$

Hence, $F \in \mathscr{A}$ has a Taylor-Maclaurin series representation:

$$
\begin{equation*}
F(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}, \quad(z \in \mathbb{D}) \tag{4}
\end{equation*}
$$

Also, \mathcal{S} is the subclass of \mathscr{A} consisting of all well-known univalent functions in \mathbb{D}.

Furthermore, we denote by \mathcal{N} a subclass of \mathscr{A} consisting of functions with negative coefficients of the type:

$$
\begin{equation*}
F(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k}, \quad\left(z \in \mathbb{D}, a_{k} \geq 0\right) \tag{5}
\end{equation*}
$$

Since $\left(z F^{\prime}(z) / F(z)\right)$ maps \mathbb{D} onto the right half-plane of \mathbb{C}, so $\operatorname{Re}\left(z F^{\prime}(z) / F(z)\right)>0$, and it is a usual subclass of normalized univalent function class \mathcal{S}, which are star-like functions, see [4]. Thus, $Q(z)$, given by (1), is star-like with respect to 1 , and its coefficients are the Bell numbers.

The theory of q-calculus (or quantum calculus) operators is used in various areas of science and also in the geometric function theory. Also, the theory of q-derivative operators has played an important role in differential equations, physics, mechanics, and so on. The application of q-calculus was initiated by Jackson [5, 6]. He was the first to develop q-integral and q-derivative in a systematic way. Q-calculus is equivalent to classical calculus without the notion of limits. A comprehensive study on applications of q-calculus and q-analogue of well-known operators in theory of univalent functions may be found in [7-12].

The q-analogue of the exponential function e^{z} is given by

$$
\begin{equation*}
e_{q}^{z}=\sum_{k=0}^{\infty} \frac{z^{k}}{\Gamma_{q}(k+1)}, \tag{6}
\end{equation*}
$$

where $q \in(0,1)$ and $\Gamma_{q}(k+1)$ is the q-gamma function defined by

$$
\begin{equation*}
\Gamma_{q}(k+1)=[k]_{q} \Gamma_{q}(k), \quad \Gamma_{q}(1)=1, \tag{7}
\end{equation*}
$$

and q-number $[k]_{q}$ is introduced by

$$
[k]_{q}= \begin{cases}\frac{1-q^{k}}{1-q}, & k \in \mathbb{C} \tag{8}\\ \sum_{n=0}^{k-1} q^{n}=1+q+q^{2}+\cdots+q^{k-1}, k \in \mathbb{N} & \end{cases}
$$

see [13-15].
The Hadamard product (convolution) for function $F(z)$, given by (5) and $G(z)=z-\sum_{k=2}^{\infty} b_{k} z^{k}$ denoted by $F * G$, is defined by

$$
\begin{equation*}
(F * G)(z)=z-\sum_{k=2}^{\infty} a_{k} b_{k} z^{k}=(G * F)(z), \quad(z \in \mathbb{D}) \tag{9}
\end{equation*}
$$

Let F and G be analytic in \mathbb{D}; then, F is said to be subordinate to G, written $F \prec G$, if there exists a function W analytic in \mathbb{D}, with $W(0)=0$ and $|W(z)|<1$, such that

$$
\begin{equation*}
F(z)=G(W(z)) \tag{10}
\end{equation*}
$$

If G is univalent, then $F \prec G$ if and only if $F(0)=G(0)$ and $F(\mathbb{D}) \subset G(\mathbb{D})$, see [16].

Definition 1. A function H is said to belong to the class $\mathscr{W}^{t}(\alpha, \beta, \gamma)$ if

$$
\begin{equation*}
\frac{z H^{\prime}(z)}{F_{t}(z)}<\frac{1+(\gamma+\alpha(1-\beta)) z}{1+\gamma z} \tag{11}
\end{equation*}
$$

where $0<\beta<1,-1 \leq \gamma \leq 1,-1 \leq \alpha \leq 1, \quad 0 \leq t \leq 1, \quad F_{t}(z)=$ $(1-t) z+t F(z), F(z) \in \mathcal{N}$, and

$$
\begin{equation*}
H(z)=\left[\left(1+2 z-e_{q}^{z}\right) *(2 z+1-Q(z))\right] * F(z) \tag{12}
\end{equation*}
$$

$Q(z), F(z)$, and e_{q}^{z} are given by (1), (5), and (6), respectively.

2. Main Results

In this section, we obtain the coefficient bounds and extreme points of $\mathscr{W}^{t}(\alpha, \beta, \gamma)$.

Theorem 1. Let $H(z)$ be analytic in \mathbb{D}. Then, $H \in \mathscr{W}^{t}(\alpha, \beta, \gamma)$ if and only if

$$
\begin{equation*}
\sum_{k=2}^{\infty}\left[\left(\frac{B_{k}}{(k-1)!\Gamma_{q}(k+1)}-t\right)(1-\gamma)+t \alpha(1-\beta)\right] a_{k} \leq \alpha(1-\beta) . \tag{13}
\end{equation*}
$$

Proof. The γ subordination relation (11) is equivalent to

$$
\begin{equation*}
\left|\frac{\left(z H^{\prime}(z) / F_{t}(z)\right)-1}{\gamma+\alpha(1-\beta)-\gamma\left(z H^{\prime}(z) / F_{t}(z)\right)}\right|<1 . \tag{14}
\end{equation*}
$$

Suppose that (13) holds true. We must show that (11) or equivalently (14) holds. However, we have

$$
\begin{align*}
& \left|z H^{\prime}(z)-F_{t}(z)\right|-\left|(\gamma+\alpha(1-\beta)) F_{t}(z)-\gamma z H^{\prime}(z)\right| \\
= & \left|z-\sum_{k=2}^{\infty} \frac{B_{k}}{(k-1)!\Gamma_{q}(k+1)} a_{k} z^{k}-z+\sum_{k=2}^{\infty} t a_{k} z^{k}\right| \\
& -\left|\alpha(1-\beta) z-\sum_{k=2}^{\infty}\left[t(\gamma+\alpha(1-\beta))-\frac{\gamma B_{k}}{(k-1)!\Gamma_{q}(k+1)}\right] a_{k} z^{k}\right| \tag{15}\\
\leq & \left|\sum_{k=2}^{\infty}\left[\left(\frac{B_{k}}{(k-1)!\Gamma_{q}(k+1)}-t\right)(1-\gamma)+t \alpha(1-\beta)\right] a_{k}-\alpha(1-\beta)\right|
\end{align*}
$$

By (13) and letting $|z|=1$, the above expression is less than or equal to zero, so (14) holds true.

To prove the converse, let $H(z) \in \mathscr{W}^{t}(\alpha, \beta, \gamma)$; thus,

$$
\begin{align*}
& \left|\frac{\left(z H^{\prime}(z) / F_{t}(z)\right)-1}{\gamma+\alpha(1-\beta)-\gamma z\left(H^{\prime}(z) / F_{t}(z)\right)}\right| \\
= & \frac{\left|z\left(1-\sum_{k=2}^{\infty}\left(B_{k} /(k-1)!\Gamma_{q}(k+1)\right) a_{k} z^{k-1}\right)-(1-t) z-t\left(z-\sum_{k=2}^{\infty} a_{k} z^{k}\right)\right|}{\left|(\gamma+\alpha(1-\beta))\left((1-t) z+t\left(z-\sum_{k=2}^{\infty} a_{k} z^{k}\right)\right)-\gamma z\left(1-\sum_{k=2}^{\infty}\left(B_{k} /(k-1)!\Gamma_{q}(k+1)\right) a_{k} z^{k-1}\right)\right|}<1 \tag{16}
\end{align*}
$$

for all $z \in \mathbb{D}$. Since $\operatorname{Re}(z) \leq|z|$, we have

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\sum_{k=2}^{\infty}\left(B_{k} /(k-1)!\Gamma_{q}(k+1)-t\right) a_{k} z^{k}}{\alpha(1-\beta) z-\sum_{k=2}^{\infty}\left[t(\gamma+\alpha(1-\beta))-\left(\gamma B_{k} /(k-1)!\Gamma_{q}(k+1)\right)\right] a_{k} z^{k}}\right\}<1 \tag{17}
\end{equation*}
$$

By letting $z \longrightarrow 1$ through positive values and choosing the values of z such that $\left(z H^{\prime}(z) / F_{t}(z)\right)$ is real, we have

$$
\begin{equation*}
\sum_{k=2}^{\infty}\left[\left(\frac{B_{k}}{(k-1)!\Gamma_{q}(k+1)}-t\right)(1-\gamma)+t \alpha(1-\beta)\right] a_{k} \leq \alpha(1-\beta), \tag{18}
\end{equation*}
$$

and this completes the proof.
Remark 1. We note that the function,

$$
\begin{equation*}
V(z)=z-\frac{\alpha(1-\beta)}{\left(\left(B_{2} / \Gamma_{q}(3)\right)-t\right)(1-\gamma)+t \alpha(1-\beta)} z^{2} \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
H_{k}(z)=z-\frac{\alpha(1-\beta)}{\left(\left(B_{k} /(k-1)!\Gamma_{q}(k+1)\right)-t\right)(1-\gamma)+t \alpha(1-\beta)} z^{k} \tag{20}
\end{equation*}
$$

where $k=2,3, \ldots$. Then, $H \in \mathscr{W}^{t}(\alpha, \beta, \gamma)$ if and only if it can be expressed in the form:

$$
\begin{equation*}
H(z)=\sum_{k=1}^{\infty} \lambda_{k} H_{k}(z) \tag{21}
\end{equation*}
$$

where $\lambda_{k} \geq 0$ and $\sum_{k=1}^{\infty} \lambda_{k}=1$. In particular, the extreme points of $\mathscr{W}^{t}(\alpha, \beta, \gamma)$ are the functions $H_{k}(z)$, where $k=1,2,3, \ldots$..

Proof. Let H be expressed by (21). This means that we can write

$$
\begin{align*}
H(z) & =\sum_{k=1}^{\infty} \lambda_{k} H_{k}(z)=\lambda_{1} H_{1}(z)+\sum_{k=2}^{\infty} \lambda_{k} H_{k}(z) \\
& =\left(\sum_{k=1}^{\infty} \lambda_{k}\right) z-\sum_{k=2}^{\infty} \frac{\alpha(1-\beta) \lambda_{k}}{\left(\left(B_{k} /(k-1)!\Gamma_{q}(k+1)\right)-t\right)(1-\gamma)+t \alpha(1-\beta)} z^{k} . \tag{22}
\end{align*}
$$

Since $\sum_{k=1}^{\infty} \lambda_{k}=1$ and

$$
\begin{align*}
& \sum_{k=2}^{\infty}\left[\left(\frac{B_{k}}{(k-1)!\Gamma_{q}(k+1)}-t\right)(1-\gamma)+t \alpha(1-\beta)\right]\left[\frac{\alpha(1-\beta) \lambda_{k}}{\left(\left(B_{k} /(k-1)!\Gamma_{q}(k+1)\right)-t\right)(1-\gamma)+t \alpha(1-\beta)}\right] \tag{23}\\
= & \sum_{k=2}^{\infty} \alpha(1-\beta) \lambda_{k}=\alpha(1-\beta) \sum_{k=2}^{\infty} \lambda_{k}=\alpha(1-\beta)\left(1-\lambda_{1}\right)<\alpha(1-\beta),
\end{align*}
$$

so, by Theorem 1, we conclude that $H \in \mathscr{W}^{t}(\alpha, \beta, \gamma)$.
Conversely, suppose that $H \in \mathscr{W}^{t}(\alpha, \beta, \gamma)$. Then, by (13), we have

$$
\begin{equation*}
a_{k}<\frac{\alpha(1-\beta)}{\left(\left(B_{k} /(k-1)!\Gamma_{q}(k+1)\right)-t\right)(1-\gamma)+t \alpha(1-\beta)}, \quad(k=2,3, \ldots) . \tag{24}
\end{equation*}
$$

By setting

$$
\begin{equation*}
\lambda_{k}=\frac{\left(\left(B_{k} /(k-1)!\Gamma_{q}(k+1)\right)-t\right)(1-\gamma)+t \alpha(1-\beta)}{\alpha(1-\beta)} a_{k}, \quad(k \geq 2), \tag{25}
\end{equation*}
$$

and $\lambda_{1}=1-\sum_{k=2}^{\infty} \lambda_{k}$, we obtain the required result. So, the proof is complete.

3. Geometric Properties of $\mathscr{W}^{\mathbf{t}}(\alpha, \beta, \gamma)$

In this section, we show convexity of $\mathscr{W}^{t}(\alpha, \beta, \gamma)$. Also, we obtain convolution preserving property.

Proof. We must show that if $H_{j}(z)$, for $j=1,2, \ldots, m$, belong to $\mathscr{W}^{t}(\alpha, \beta, \gamma)$, then the function,

$$
\begin{equation*}
H(z)=\sum_{j=1}^{m} \sigma_{j} H_{j}(z) \tag{26}
\end{equation*}
$$

is also in the same class, where $0<\sigma_{j}<1$ and $\sum_{j=1}^{m} \sigma_{j}=1$.
Since $H_{j}(z) \in \mathscr{W}^{t}(\alpha, \beta, \gamma)$, we have

Theorem 3. $\mathscr{W}^{t}(\alpha, \beta, \gamma)$ is a convex set.

$$
\begin{equation*}
\sum_{k=2}^{\infty}\left[\left(\frac{B_{k}}{(k-1)!\Gamma_{q}(k+1)}-t\right)(1-\gamma)+t \alpha(1-\beta)\right] a_{k, j} \leq \alpha(1-\beta), \quad(j=1,2, \ldots, m) \tag{27}
\end{equation*}
$$

However,

$$
\begin{align*}
H(z) & =\sum_{j=1}^{m} \sigma_{j} H_{j}(z) \\
& =\sum_{j=1}^{m} \sigma_{j}\left(z-\sum_{k=2}^{\infty} \frac{B_{k}}{\Gamma_{q}(k+1) k!} a_{k, j} z^{k}\right) \tag{28}\\
& =z-\sum_{k=2}^{\infty}\left(\sum_{j=1}^{m} \sigma_{j} a_{k, j}\right) \frac{B_{k}}{\Gamma_{q}(k+1) k!} z^{k} .
\end{align*}
$$

It is enough to verify inequality (13) for $H(z)$. However,

$$
\begin{aligned}
& \sum_{k=2}^{\infty}\left[\left(\frac{B_{k}}{(k-1)!\Gamma_{q}(k+1)}-t\right)(1-\gamma)+t \alpha(1-\beta)\right]\left(\sum_{j=1}^{m} \sigma_{j} a_{k, j}\right) \\
= & \sum_{j=1}^{m} \sigma_{j}\left\{\sum_{k=2}^{\infty}\left[\left(\frac{B_{k}}{(k-1)!\Gamma_{q}(k+1)}-t\right)(1-\gamma)+t \alpha(1-\beta)\right]\right\} \\
< & \left(\sum_{j=1}^{m} \sigma_{j}\right) \alpha(1-\beta)=\alpha(1-\beta) .
\end{aligned}
$$

This inequality by (13) shows that $H \in \mathscr{W}^{t}(\alpha, \beta, \gamma)$, and the proof is complete.

Theorem 4. Let the functions $H_{j}(z), j=1,2$, be in the class $\mathscr{W}^{t}(\alpha, \beta, \gamma)$; then, $\left(H_{1} * H_{2}\right)(z)$ belongs to $\mathscr{V}^{t}\left(\alpha, \beta^{*}, \gamma\right)$, where $\beta^{*} \leq 1-X$, and

$$
\begin{equation*}
X=\frac{\alpha\left(\left(B_{k} /(k-1)!\Gamma_{q}(k+1)\right)-t\right)(1-\gamma)}{\left.\left[\left(\left(B_{k} /(k-1)!\Gamma_{q}(k+1)\right)-t\right)(1-\gamma)+t \alpha(1-\beta)\right) /(1-\beta)\right]-t \alpha^{2}} . \tag{30}
\end{equation*}
$$

Proof. Since $H_{j}(z) \in \mathscr{W}^{t}(\alpha, \beta, \gamma)$, so

$$
\begin{equation*}
H_{j}(z)=z-\sum_{k=2}^{\infty} \frac{B_{k}}{\Gamma_{q}(k+1) k!} a_{k, j} z^{k} \tag{31}
\end{equation*}
$$

It is sufficient to show that

$$
\begin{equation*}
\sum_{k=2}^{\infty}\left[\left(\frac{B_{k}}{(k-1)!\Gamma_{q}(k+1)}-t\right)\left(\frac{1-\gamma}{\alpha(1-\beta)}\right)+t\right] a_{k, 1} a_{k, 2} \leq 1 \tag{32}
\end{equation*}
$$

$$
\begin{align*}
& \sum_{k=2}^{\infty}\left[\left(\frac{B_{k}}{(k-1)!\Gamma_{q}(k+1)}-t\right)\left(\frac{1-\gamma}{\alpha\left(1-\beta^{*}\right)}\right)+t\right] a_{k, 1} a_{k, 2} \leq \tag{34}\\
& \sum_{k=2}^{\infty}\left[\left(\frac{B_{k}}{(k-1)!\Gamma_{q}(k+1)}-t\right)\left(\frac{1-\gamma}{\alpha(1-\beta)}\right)+t\right] \sqrt{a_{k, 1} a_{k, 2}} \leq 1,
\end{align*}
$$

or equivalently

$$
\begin{equation*}
\sqrt{a_{k, 1} a_{k, 2}} \leq \frac{\left(\left(B_{k} /(k-1)!\Gamma_{q}(k+1)\right)-t\right)((1-\gamma) / \alpha(1-\beta))+t}{\left(\left(B_{k} /(k-1)!\Gamma_{q}(k+1)\right)-t\right)\left((1-\gamma) / \alpha\left(1-\beta^{*}\right)\right)+t} \tag{35}
\end{equation*}
$$

This inequality holds if

$$
\begin{equation*}
\frac{\alpha(1-\beta)}{\left(\left(B_{k} /(k-1)!\Gamma_{q}(k+1)\right)-t\right)(1-\gamma)+t \alpha(1-\beta)} \leq \frac{\left(\left(B_{k} /(k-1)!\Gamma_{q}(k+1)\right)-t\right)((1-\gamma) / \alpha(1-\beta))+t}{\left(\left(B_{k} /(k-1)!\Gamma_{q}(k+1)\right)-t\right)\left((1-\gamma) / \alpha\left(1-\beta^{*}\right)\right)+t}, \tag{36}
\end{equation*}
$$

or equivalently $\beta^{*} \leq 1-X$, where X is given in (30). So, the proof is complete.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] V. Kumar, N. E. Cho, V. Ravichandran, and H. Srivastava, "Sharp coefficient bounds for starlike functions associated with the bell numbers," Mathematica Slovaca, vol. 69, no. 5, pp. 1053-1064, 2019.
[2] S. Altinkaya and S. O. Olatunji, "Generalized distribution for analytic function classes associated with error functions and bell numbers," Bulletin of the Sociedad Matematica Mexicana, vol. 26, no. 2, pp. 377-384, 2020.
[3] F. Qi, "Some inequalities for the bell numbers," ProceedingsMathematical Sciences, vol. 127, no. 4, pp. 551-564, 2017.
[4] P. L. Duren, Univalent Functions, Springer-Verlag, Berlin, Germany, Grundlehren der Mathematischen Wissenschaften, 1983.
[5] F. H. Jackson, "Q-functions and a certain difference operator," Transactions of the Royal Society of Edinburgh, vol. 46, pp. 253-281, 1908.
[6] F. H. Jackson, "On Q-definite integrals," Pure and Applied Mathematics Quarterly, vol. 41, pp. 193-203, 1910.
[7] K. Ahmad, M. Arif, and J. L. Liu, "Convolution properties for a family of analytic functions involving q-analogue of Ruscheweyh differential operator," Turkish Journal of Mathematics, vol. 43, no. 3, pp. 1712-1720, 2019.
[8] M. Arif, M. Ui Haq, and J. L. Liu, "A subfamily of univalent functions associated with q-analogue of Noor integral operator," Journal of Function Spaces, vol. 2018, Article ID 3818915, 5 pages, 2018.
[9] M. Arif, H. M. Srivastava, and S. Umar, "Some applications of a q-analogue of the Ruscheweyh type operator for multivalent functions," Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales-Serie A: Matematicas, vol. 113, no. 2, pp. 1211-1221, 2019.
[10] M. Arif, O. Barkub, H. M. S. S. Abdullah, and S. Afzal Khan, "Some Janowski type harmonic q-starlike functions associated with symmetrical points," Mathematics, vol. 8, p. 629, 2020.
[11] M. Raza, H. M. Srivastava, M. Arif, and K. Ahmad, "Coefficient estimates for a certain family of analytic functions involving a q-derivative operator," The Ramanujan Journal, vol. 55, no. 53-71, 2021.
[12] L. Shi, M. Raza, K. Javed, S. Hussain, and M. Arif, "Class of analytic functions defined by q-integral operator in a symmetric region," Symmetry, vol. 11, p. 1042, 2019.
[13] E. T. Bell, "Exponential polynomials," Annals of Mathematics, vol. 35, pp. 258-277, 1934.
[14] E. T. Bell, "The iterated exponential integers," Annals of Mathematics, vol. 39, pp. 539-557, 1938.
[15] E. R. Canfield, "Engel's inequality for bell numbers," Journal of Combinatorial Theory, Series A, vol. 72, no. 1, pp. 184-187, 1995.
[16] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, CRC Press, Boca Raton, FL, USA, 2000.

