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This paper explores the optimal censoring schemes from models with U-shaped hazard rates (USHRs) using Bayesian methods.
Topp-Leone (TL) distribution has been considered as a special case. We have used conventional and fuzzy priors for the
estimation. Further, the symmetric and asymmetric loss functions have been considered for the estimation. Since the Bayes
estimators (BEs) for the parameters of the TL distribution cannot be derived in the closed form, we have used Quadrature
method (QuM), Lindley’s approximation (LinA), Tierney and Kadane’s approximation (TKA), and Gibbs sampler (GiS) for the
approximate estimation of the parameters. We also considered the different techniques to compare various progressive
censoring schemes on the basis of their information contents and hence reported the optimal censoring schemes under
Bayesian framework. The performance of the different BEs has been compared on the basis of a simulation study. A real-life
example has been considered for the illustration.

1. Introduction

The TL distribution introduced by Topp and Leone [1] is
a useful lifetime distribution. However, the said contribu-
tion was lacking the application side of the proposed
model. Later, Nadarajah and Kotz [2] reported that TL
distribution has U-shaped hazard rate (USHR). The lives
of human populations can be efficiently modeled by the
lifetime distributions with USHR. The lifetimes of various
manufactured products are also modeled using distribu-
tions with USHR. According to Ghitany et al. [3], TL dis-
tribution is one of few lifetime distributions with USHR
having only two parameters which provides convenience
in modeling and estimation. The regularity conditions
are fulfilled by the TL distribution. In addition, TL distri-
bution has explicit forms for distribution function; hence,
it can easily be applied to the censored lifetime data in
contrast to lognormal and gamma distributions. The other

important features of TL model can be seen from the con-
tributions of Al-Zahrani and Alshomrani [4], Genc [5],
Feroze and Aslam [6], Genc [7], Bayoud [8], MirMostafaee
et al. [9], Feroze and Aslam [10], Reyad and Othman [11],
and Rezaei et al. [12].

The progressive censoring (PC) has become very prom-
inent in reliability studies. It is useful in life-testing experi-
ments because of its capability to withdraw the surviving
items from the experiment at the desire of the researcher.
It has additional edges over the traditional type II censoring.
Balakrishnan and Aggarwala [13] discussed PC and its
applications in detail. More details regarding the develop-
ments, applications, and further potential issues to be stud-
ied on PC have been provided by Balakrishnan [14]. The
analysis of PC samples from the various lifetime models
has been discussed by Kundu and Joarder [15], Lin et al.
[16], Abd-Elmougod et al. [17], Bayoud [18], and the refer-
ences cited therein.
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According to Pan and Klir [19], the conventional Bayes-
ian prior distributions can be obtained as special case of the
fuzzy priors. These priors allow the researchers not to use
the conjugate priors [20]. The performance of the Bayesian
methods can further be improved by use of fuzzy priors.
There have been some important contributions using the
concepts of fuzzy priors in the Bayesian inference [21]. Some
of those important contributions include Wu [22], Salinas
et al. [23], Singh et al. [24], and Pak [25].

Though many papers have appeared considering the
Bayesian and classical analysis of the TL distribution during
the last ten years, however, very few of these contributions
have considered analysis of the PC samples from the TL
distribution. Recently, Abd-Elmougod et al. [17] estimated
coefficient of variation of TL distribution using Bayesian
and classical methods based on adaptive PC samples. Appli-
cability of the estimates has been discussed under the
numerical examples. Similarly, Bayoud [18] used PC sam-
ples to obtain Bayesian and classical estimates for the shape
parameter of the TL distribution. The approximate maxi-
mum likelihood method (MLE), LinA, and importance
sampling method have been used for the estimation. Our
contribution is different from Abd-Elmougod et al. [17]
and Bayoud [18] in the sense that the said contributions
have considered the analysis for shape parameter of the TL
distribution, while considering the scale parameter to be
fixed. Assuming the scale parameter to be fixed results in
the less flexible model. So, the scope of these contributions
has been limited due to the restriction on the flexibility of
the TL distribution by assuming its scale parameter known.
We have addressed the problem of estimating the parame-
ters and selection of the optimal PC plans under Bayesian
framework when both parameters of the TL distribution
are unknown and have explored more options for the esti-
mation of its parameters. The choice of the Bayesian estima-
tion has been made due to the fact that Bayesian methods
often have clear advantage over classical methods even in
case of little prior information, for example, see Kundu
and Joarder [15]. Unfortunately, the joint prior distribution
does exist for the parameters of TL distribution; hence, we
have assumed the conjugate gamma prior for the scale and
a log-concave prior pdf for the shape parameter of the
distribution. It is worth mentioning here that in case of
scale-shape parameter distributions, the consideration of
conjugate gamma prior for the scale parameter and a log-
concave prior pdf for the shape parameter is frequent in
the literature, for example, please see Pradhan and Kundu
[26], Kundu and Raqab [27], and Lin et al. [16]. There are
two main reasons regarding the choice of log-concave den-
sity for the shape parameter: (i) the mathematical tractability
of the corresponding posterior distribution and (ii) that
several well-known densities, with known shape parameters,
are log-concave, for example, normal, log-normal, and
gamma densities are log-concave. The fuzzy priors have also
been assumed for the posterior distribution. The comparison
of fuzzy and conventional priors has also been reported. The
squared error loss function (SELF) and precautionary loss
function (PLF) have been assumed for the posterior estima-
tion. It should be noticed that SELF is symmetric while PLF

is asymmetric loss function. We have used both symmetric
and asymmetric loss functions, because the marginal poste-
rior distributions are not in compact form; hence, their
shapes are unknown and can be in symmetric or asymmetric
form. The detailed discussion regarding the said loss func-
tions can be seen from the works of Feroze and Aslam [10]
and Feroze [28]. Further, the closed form for BEs was not
possible; therefore, we have considered four approximation
techniques, namely, QuM, LinA, TKA, and GiS for the
numerical estimation.

2. The Model and Likelihood Function

This section contains the description of the TL model and
the likelihood function under PC samples for the TL
distribution.

The TL distribution has the following probability density
function (pdf)

f xð Þ = θ1
θ2

2 −
2x
θ2

� �
2x
θ2

−
x2

θ22

� �θ1−1

, 0 < x < θ2, θ1, θ2 > 0,

ð1Þ

where θ1 and θ2 are the parameters of the TL distribution.
Similarly, the cumulative distribution function (CDF) of

the distribution is

F xð Þ = 2x
θ2

−
x2

θ22

� �θ1

, 0 < x < θ2, θ1, θ2 > 0: ð2Þ

The likelihood function for PC samples, using concept of
Balakrishnan and Aggarwala [13], is

L θ1, θ2 xjð Þ∝ c
Ym
i=1

f xi:m:n θ1, θ2jð Þ 1 − F xi:m:n θ1, θ2jð Þ½ �Ri ,

c = n n − 1 − R1ð Þ n − 2 − R1 − R2ð Þ⋯ n −m − 1 − R1 ⋯−Rm−1ð Þ:
ð3Þ

Putting results in [29], we have

L θ1, θ2 xjð Þ∝ θm1
θm2

Ym
i=1

2 −
2xi:m:n

θ2

� � 2xi:m:n

θ2
−
x2xi:m:n

θ22

 !θ1−1

� 1 −
2xi:m:n

θ2
−
x2xi:m:n

θ22

 !θ1
24 35Ri

:

ð4Þ

3. Bayesian Estimation

Here, we have considered a conjugate gamma prior for the
scale parameter θ1 as

g1 θ1ð Þ∝ θa−11 e−bθ1 , θ1 > 0: ð5Þ
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Further, we have assumed that the log-concave prior
density for the shape parameter θ2 is another gamma prior
having the following form

g2 θ2ð Þ∝ θc−12 e−dθ2 , θ2 > 0: ð6Þ

Using [14, 30], the posterior distribution is

g θ1, θ2 xjð Þ = L x θ1, θ2jð Þg1 θ1ð Þg2 θ2ð ÞÐ∞
0
Ð∞
0 L x θ1, θ2jð Þg1 θ1ð Þg2 θ2ð Þdθ1dθ2

: ð7Þ

Equation (7) can be written as

g θ1, θ2 xjð Þ∝ θm+a−1
1

θm−c+1
2

e−bθ1e−dθ2
Ym
i=1

2 −
2xi:m:n

θ2

� �

� 2xi:m:n

θ2
−
x2i:m:n

θ22

� �θ1−1

1 −
2xi:m:n

θ2
−
x2i:m:n

θ22

� �θ1
" #Ri

:

ð8Þ

We have also used the fuzzy priors for the posterior esti-
mation. These priors have been used following the idea of
Pan and Klir [19]. The classical Bayesian priors can be
derived as special case of the fuzzy priors.

3.1. Loss Functions. In this subsection, a symmetric (SELF)
and an asymmetric (PLF) loss function has been assumed
for estimation. The introduction of these loss functions is

as follows. The expression for the SELF is Lðθ1, bθ1,SÞ =
ðθ1 − bθ1,SÞ

2
, where θ1 is a parameter and the bθ1,S = Εðθ1jxÞ

is BE of the parameter θ1. Similarly, PLF can be defined as

Lðθ1, bθ1,PÞ = bθ−11,Pðbθ1,P − θ1Þ
2

having BE of θ1 as bθ1,P =
½Εðθ21jxÞ�

1/2
. It is clear that using SELF and PLF, the BEs

for the parameter θ1 and θ2 cannot be obtained analytically.
Hence, we have proposed some approximation methods in
the coming sections in order to evaluate the said BEs
numerically.

3.2. Quadrature Methods (QuM). It should be noted that
from [18], the BEs under SELF and PLF are not in closed
form. As we have two parameters to be estimated, the BEs
under SELF and PLF involve the double integrals. These
integrals can be easily handled by employing QuM. In the
Bayesian QuM, we choose a set of points between the finite
integral in order to ensure the stability of our uncertainty.
Consider the posterior density gðθ1, θ2jxÞ, where θ1 and θ2
are the parameters. We evaluate this density over a number
of the points in the entire range asð∞

0

ð∞
0
g θ1, θ2 xjð Þdθ1dθ2 = 〠

m

i=0
〠
m

i=0
wig θ1,i, θ2,i

��x� �
, ð9Þ

where wi is the increments. We have developed a program in
the software mathematica to obtain BEs and associated pos-
terior risks for the parameters θ1 and θ2 using SELF and PLF
under informative priors. Some of the references to solve [8]

using iterative procedures can be seen from the works of Ali
and Pan [29], Ali and Pan [31], and Ali et al. [30].

3.3. Lindley’s Approximation (LinA). The QuM can have
issues in some situations. For example, for a function having
some singularities; this method cannot be employed effec-
tively. In such situations, few other approximation methods,
such as LinA, can be used. This approximation can be used
to obtain BEs without performing complex numerical inte-
grations. Hence, in situations demanding only the BEs, the
LinA can be used effectively. Bayoud [18] used LinA for
estimation of the shape parameter from the TL distribution.
We have considered the more general and flexible case by
performing the LinA for both parameters of the TL distribu-
tion using PC data.

Lindley [32] has proposed an approximation for numer-
ical solution of [28].

I θð Þ = Ε h θ1, θ2ð Þ½ � =
Ð

θ1,θ2ð Þh θ1, θ2ð Þel x θ1,θ2jð Þ+G θ1,θ2ð Þd θ1, θ2ð ÞÐ
θ1,θ2ð Þe

l x θ1,θ2jð Þ+G θ1,θ2ð Þd θ1, θ2ð Þ ,

ð10Þ

where hðθ1, θ2Þ is any function of θ1 or θ2, lðxjθ1, θ2Þ is the
log-likelihood function, and Gðθ1, θ2Þ is the logarithmic of
joint prior for the parameters θ1 and θ2. The basic idea of
the approximation is to expand lðxjθ1, θ2Þ and Gðθ1, θ2Þ of
[28] into a Taylor series expansion about the MLEs of the
parameters ðθ1, θ2Þ. This approximation can produce rea-
sonably good results if the concerned posterior distribution
is unimodal or at least dominated by a single mode, and
the sample is sufficiently large.

In case of two unknown parameters ðθ1, θ2Þ, the LinA of
[28] is of the form

I θð Þ = h bθ1, bθ2

� �
+ g1ψ1 + g2ψ2 + ψ3 + ψ4ð Þ

+
1
2

α1β1 + α2β2ð Þ,
ð11Þ

where bθ1 and bθ2 are MLEs of the parameters θ1 and θ2 ,
respectively,

αi = τ11L11i + τ22L22i + 2τ12L12i, βi = g1τi1 + g2τi2,
ψi = P1τi1 + P2τi2, i = 1, 2,

ψ3 = g12τ12, ψ4 =
1
2

g11τ11 + g22τ22ð Þ,

Pi =
∂G θð Þ
∂θi

, i = 1, 2, θ = θ1, θ2ð Þ,

gij =
∂2h θð Þ
∂θi∂θ j

, Lij =
∂2l x θjð Þ
∂θi∂θ j

, i, j = 1, 2,

Lijk =
∂3l xjθð Þ
∂θi∂θj∂θk

, i, j, k = 1, 2,

ð12Þ
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and τij is the ði, jÞth element of the inverse of the matrix
fLijg, all evaluated at the MLEs of the parameters.

From [31], the log-likelihood function is of the form

l x θ1, θ2jð Þ∝m log θ1 −m log θ2 + 〠
m

i=1
log 2 − 2

xi:m:n

θ2

� �
+ θ1 − 1ð Þ〠

m

i=1
log

2xi:m:n

θ2
−
x2i:m:n

θ22

� �
+ 〠

m

i=1
Ri log 1 −

2xi:m:n

θ2
−
x2i:m:n

θ22

� �θ1
" #

:

ð13Þ

The MLEs for θ1 and θ2 can be obtained from the
following equations:

m
θ1

+ 〠
m

i=1
logλ1 x, θ2ð Þ − 〠

m

i=1

Riλ1 x, θ2ð Þθ1 log λ1 x, θ2ð Þ
1 − λ1 x, θ2ð Þθ1

= 0,

−
m
θ2

+ θ1 − 1ð Þ〠
m

i=1

λ2 x, θ2ð Þ
λ1 x, θ2ð Þ

− 〠
m

i=1

Riθ1λ1 x, θ2ð Þθ1−1λ2 x, θ2ð Þ
1 − λ1 x, θ2ð Þθ1

+ 〠
m

i=1

2xi:m:n

λ3 x, θ2ð Þ = 0,

ð14Þ

where λ1ðx, θ2Þ = ð2xi:m:n/θ2Þ − ðx2i:m:n/θ
2
2Þ, λ2ðx, θ2Þ = ð2

x2i:m:n/θ
3
2Þ − ð2xi:m:n/θ

2
2Þ, and λ3ðx, θ2Þ = ð2 − ð2xi:m:n/θ2ÞÞθ22.

Now, MLEs for the parameters θ1 and θ2 cannot be
obtained in the closed form from [33, 34]; hence, iterative
methods have been used for numerical MLEs.

From [6], the second order derivatives are

L11 = −
mbθ21 − 〠

m

i=1

Riλ1 x, bθ2

� �bθ1 log λ1 x, bθ2� �2
1 − λ1 x, bθ2

� �bθ 1

26664

+
Riλ1 x, bθ2� �2bθ 1 log λ1 x, bθ2

� �2
1 − λ1 x, bθ2� �bθ 1

( )2

3777775,
ð15Þ

L12 = −〠
m

i=1

Riλ1 x, bθ2� �bθ1−1
λ2 x, bθ2

� �
1 − λ1 x, bθ2

� �bθ 1

26664

+
Ri
bθ1λ1 x, bθ2� �bθ 1−1

λ2 x, bθ2

� �
log λ1 x, bθ2

� �
1 − λ1 x, bθ2

� �bθ 1

+
Ri
bθ1λ1 x, bθ2

� �2bθ 1−1
λ2 x, bθ2� �

log λ1 x, bθ2

� �
1 − λ1 x, bθ2

� �bθ 1

( )2

3777775
+ 〠

m

i=1

λ2 x, bθ2� �
λ1 x, bθ2� � ,

ð16Þ

L22 =
mbθ2
2

− bθ1 − 1
� �

〠
m

i=1

λ2 x, bθ2

� �2
λ1 x, bθ2

� �2 −
λ3 x, bθ2

� �
λ1 x, bθ2

� �
8><>:

9>=>;
− 〠

m

i=1

4x2i:m:n

λ5 x, bθ2� � +
2xi:m:n

λ4 x, bθ2

� �
8<:

9=;
− 〠

m

i=1

Ri
bθ1 bθ1 − 1
� �

λ1 x, bθ2

� �bθ1−2
λ2 x, bθ2

� �2
1 − λ1 x, bθ2� �bθ 1

26664

+
Ri
bθ1λ1 x, bθ2

� �bθ1−1
λ3 x, bθ2

� �
1 − λ1 x, bθ2� �bθ 1

+
Ri
bθ2
1λ1 x, bθ2

� �2bθ 1−2
λ2 x, bθ2� �

1 − λ1 x, bθ2

� �bθ 1

( )2

3777775,
ð17Þ

where

λ1 x, bθ2

� �
=
2xi:m:nbθ2 −

x2i:m:nbθ2
2

,

λ2 x, bθ2

� �
=
2x2i:m:nbθ32 −

2xi:m:nbθ2
2

,

λ3 x, bθ2

� �
=
4xi:m:nbθ32 −

6x2i:m:nbθ4
2

,

λ4 x, bθ2

� �
= 2 −

2xi:m:nbθ2
 !bθ3

2,

ð18Þ

and

λ5 x, bθ2� �
= 2 −

2xi:m:nbθ2

 !2bθ42: ð19Þ
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Now, (15)–(17) have been evaluated at the MLEs of θ1
and θ2.

As the third-order derivatives with respect to θ1 and θ2
contain long expressions, therefore, they have not been pre-
sented in the paper.

Based on the second-order derivatives, the matrix fLijgis

Lij
	 


= −
L11 L21

L12 L22

" #
, ð20Þ

and its inverse is

Lij
	 
−1 = τ11 τ21

τ12 τ22

" #
: ð21Þ

Based on [10], BEs for θ1 and θ2 under SELF are

bθ1,S = bθ1 +
1
2

τ11α1 + τ21α2ð Þ + a − 1bθ1 − b

 !
τ11

+
c − 1bθ2

− d

 !
τ12,

bθ2,S = bθ2 +
1
2

τ12α1 + τ22α2ð Þ + a − 1bθ1 − b

 !
τ21

+ c − 1bθ2

− d

 !
τ22:

ð22Þ

Again, BEs for θ1 and θ2 under PLF are

3.4. Tierney and Kadane’s Approximation (TKA). Estimation
using LinA often gets tedious especially when dealing with
posteriors having several parameters. This problem is due
to the reason that the LinA needs evaluation of the third-
order derivatives from the log-likelihood function. This
problem can be addressed by employing another conve-
niently computable approximation called TKA. The addi-
tional benefit of TKA is its smaller error than LinA. Hence,
we have also considered TKA to obtain BEs using PC
samples. Consider Kðθ1, θ2Þ = Gðθ1, θ2Þ + lðxjθ1, θ2Þ, where
Gðθ1, θ2Þ is the logarithmic of the joint informative prior
for the parameters ðθ1, θ2Þ and lðxjθ1, θ2Þ is the logarithmic
of likelihood function given in [31].

Further consider Ωðθ1, θ2Þ = Kðθ1, θ2Þ/n and Ω∗ðθ1, θ2Þ
= ½log hðθ1, θ2Þ + Kðθ1, θ2Þ�/n, where log hðθ1, θ2Þ is the
logarithmic of the function of the parameter(s) θ1 or θ2.
Then, according to Tierney and Kadane [35], the expression
Εfhðθ1, θ2jxÞg using [18] can be presented in the form

Ε h θ1, θ2 xjð Þf g =
Ð∞
0
Ð∞
0 enΩ

∗ θ1,θ2ð Þdθ1dθ2Ð∞
0
Ð∞
0 enΩ θ1,θ2ð Þdθ1dθ2

: ð24Þ

The approximation for Εfhðθ1, θ2jxÞg is

ĥ θ1, θ2ð Þ = det ∑∗

det∑

� �1/2
exp n Ω∗ bθ∗

1 , bθ∗2� �
−Ω bθ1, bθ2

� �n oh i
,

ð25Þ

where ðbθ∗
1 , bθ∗2 Þ and ðbθ1, bθ2Þ maximize Ω∗ðθ1, θ2Þ and

Ωðθ1, θ2Þ, respectively, and ∑∗ and ∑ are the negatives
of the inverse Hessians ofΩ∗ðθ1, θ2Þ andΩðθ1, θ2Þ evaluated
at ðbθ∗

1 , bθ∗2 Þ and ðbθ1, bθ2Þ, respectively.
Here, we have

Ω θ1, θ2ð Þ = 1
n
k + m + a − 1ð Þ log θ1 − m − c + 1ð Þ log θ2½

+ 〠
m

i=1
log 2 − 2

xi:m:n

θ2

� �
+ θ1 − 1ð Þ

�〠
m

i=1
log

2xi:m:n

θ2
−
x2i:m:n

θ22

� �
+ 〠

m

i=1
Ri log

� 1 −
2xi:m:n

θ2
−
x2i:m:n

θ22

� �θ1
( )

− bθ1 − dθ2

#
,

Ω∗ θ1, θ2ð Þ = 1
n
k + log h θ1, θ2ð Þ + m + a − 1ð Þ log θ1½

− m − c + 1ð Þ log θ2 + 〠
m

i=1
log 2 − 2

xi:m:n

θ2

� �
+ θ1 − 1ð Þ〠

m

i=1
log

2xi:m:n

θ2
−
x2i:m:n

θ22

� �
+ 〠

m

i=1
Ri log 1 −

2xi:m:n

θ2
−
x2i:m:n

θ22

� �θ1
( )

− bθ1 − dθ2�,
ð26Þ

bθ1,P =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibθ21 + 1
2

2bθ1τ11 + τ11α1 + τ21α2
� �

+
a − 1bθ1

− b

 !
τ11 +

c − 1bθ2 − d

 !
τ12

vuut ,

bθ2,P =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibθ2
2 +

1
2

2bθ2τ22 + τ12α1 + τ22α2
� �

+
a − 1bθ1 − b

 !
τ21 +

c − 1bθ2

− d

 !
τ22

vuut :

ð23Þ
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where k is any constant independent of the parameters θ1
and θ2.

∂Ω θ1, θ2ð Þ
∂θ1

=
1
n

m + a − 1
θ1

+ 〠
m

i=1
logλ1 x, θ2ð Þ

"

− 〠
m

i=1

Riλ1 x, θ2ð Þθ1 log λ1 x, θ2ð Þ
1 − λ1 x, θ2ð Þθ1

− b

#
= 0,

∂Ω θ1, θ2ð Þ
∂θ2

=
1
n

−
m − c + 1

θ2
+ θ1 − 1ð Þ〠

m

i=1

λ2 x, θ2ð Þ
λ1 x, θ2ð Þ

"

− 〠
m

i=1

Riθ1λ1 x, θ2ð Þθ1−1λ2 x, θ2ð Þ
1 − λ1 x, θ2ð Þθ1

+ 〠
m

i=1

2xi:m:n

λ3 x, θ2ð Þ − d

#
= 0:

ð27Þ

Now, ðbθ1, bθ2Þ are estimated using ([19, 25].
The determinant for the negative of the inverse Hessian

of Ωðθ1, θ2Þ evaluated at ðbθ1, bθ2Þ is

det 〠 = Ω11Ω22 −Ω2
12

� �−1, ð28Þ

where Ω11 = ∂2Ωðθ1, θ2Þ/∂θ21jbθ 1,bθ 2
, Ω22 = ∂2Ωðθ1, θ2Þ/

∂θ22jbθ 1,bθ 2
, and Ω12 = ∂2Ωðθ1, θ2Þ/∂θ1∂θ2jbθ 1,bθ2

.

The second-order derivatives from Ωðθ1, θ2Þ contain
lengthy expressions; therefore, they have not been presented
here. Once Ω11, Ω12, Ω22, Ω

∗
11, Ω

∗
12, and Ω∗

22 have been
calculated, they can easily be used to compute det∑ and
det ∑∗; hence, using [36], the BEs can be obtained from [18].

3.5. Gibbs Sampler. Consider a posterior distribution gðθ1,
θ2jxÞ given in [18]. Let the full conditional densities gðθ1j
θ2, xÞ and gðθ2jθ1, xÞ from [18] are tractable, and we aim
to obtain gðθ1jxÞ and gðθ2jxÞ. To implement a Gibbs sam-
pler, we start with choosing some initial values for the
parameters θ1 and θ2 denoted by θ10 and θ20, and then, we
draw the samples from the two conditional distributions in
the following sequence

θ11 ~ g θ1 θ20, xjð Þ
θ21 ~ g θ2 θ11, xjð Þ

,
θ12 ~ g θ1 θ21, xjð Þ
θ22 ~ g θ2 θ12, xjð Þ

,
θ1m ~ g θ1 θ2 m−1ð Þ, x

���� �
θ2m ~ g θ2 θ1m, xjð Þ

:

ð29Þ

As values at the mth step depend on the values at the
(m-1)th step, therefore, sequence given in [37] is a Markov
chain. In order to implement a GiSfor the posterior distri-
bution [18], we need to extract the conditional distribu-
tions, for each unknown parameter, from the posterior
distribution [18].

From [18], the conditional distribution of the parameter
θ1 given θ2 is

g1 θ1jθ2, xð Þ∝ θm+a−1
1 e−bθ1

Ym
i=1

2xi:m:n

θ2
−
x2i:m:n

θ22

� �θ1

� 1 −
2xi:m:n

θ2
−
x2i:m:n

θ22

� �θ1
" #Ri

:

ð30Þ

Similarly, the conditional distribution of the parameter
θ2 given θ1 is of the form

g2 θ2jθ1, xð Þ∝ θ−m+c−1
2 e−dθ2

Ym
i=1

2 −
2xi:m:n

θ2

� �

� 2xi:m:n

θ2
−
x2i:m:n

θ22

� �θ1−1

� 1 −
2xi:m:n

θ2
−
x2i:m:n

θ22

� �θ1
" #Ri

:

ð31Þ

Using [11, 26], the GiS can be employed considering the
methodology proposed by Pandey and Bandyopadhyay [37]
using Winbugs software. The generated samples for the
parameters θ1 and θ2 can be utilized for the estimation
of the said parameters under SELF and PLF. The BE and
the posterior risks for the parameter θ1 using SELF can

be obtained by using the formulae bθ1,S =∑m
i=1θ1,i/m and

ρðbθ1,SÞ =∑m
i=1ðθ1,i − bθ1,SÞ

2
, respectively. Similarly, the BE

and posterior risk for the parameter θ1 using PLF can be

computed by using the formulae bθ1,P =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑m

i=1θ1
2
,i/m

q
and

ρðbθ1,PÞ = 2f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑m

i=1θ1
2
,i/m

q
−∑m

i=1θ1,i/mg, respectively.

4. Simulation Study

This section contains simulation study using different sam-
ples sizes (n) and effective sample sizes (m). The parametric
space ðθ1, θ2Þ = fð0:5, 0:5Þ, ð0:5, 1Þ, ð1, 1Þg used for estima-
tion to compare different BEs.

The PC samples from the TL model have been drawn by
using the method proposed by Balakrishnan and Aggarwala
[13]. The choice of hyperparameters ða, b, c, dÞ have been
made by using prior means approach. The SELF and PLF
have been assumed for BEs. Since close form expressions
were not available for the BEs, we have used QuM, LinA,
TKA, and GiS for the numerical computation of the estima-
tors. All the results have been reported under 10,000 replica-
tions. The following censoring schemes (CS) have been used
for the estimation.

CS1: n = 20, m = 15, R1 =⋯ = R14 = 0, R15 = 5
CS2: n = 20, m = 15, R1 =⋯ = R7 = R9 =⋯ = R15 = 0,

R8 = 5
CS3: n = 20, m = 15, R2 =⋯ = R15 = 0, R1 = 5
CS4: n = 20, m = 18, R1 =⋯ = R17 = 0, R18 = 2
CS5: n = 20, m = 18, R1 = 2, R2 =⋯ = R18 = 0
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CS6: n = 30, m = 20, R1 =⋯ = R19 = 0, R20 = 10
CS7: n = 30, m = 20, R1 =⋯ = R10 = R12 =⋯ = R20 = 0,

R11 = 10
CS8: n = 30, m = 20, R2 =⋯ = R20 = 0, R1 = 10
CS9: n = 30, m = 20, R2 =⋯ = R19 = 0, R1 = R20 = 5
The results from the simulation study have been

reported in Tables 1–6. The results for the estimation of
θ1 = 0:50 and θ2 = 0:50 have been presented in Tables 1
and 2, those for estimation of θ1 = 0:50 and θ2 = 1:00 have
been given in Tables 1 and 2, and those for estimation of
θ1 = 1:00 and θ2 = 1:00 have been reported in Tables 5 and
6. On the other hand, the results under SELF have been
presented in Tables 1, 3, and 5 and those under PLF have
been reported in Tables 2, 4, and 6. The comparison
among the different BEs has been made on the basis of
amounts of posterior risks (PRs) associated with these esti-
mates. The larger m and n imposes a positive impact on
the performance of BEs. Interestingly, whenever the true
parametric values are less than one, the SELF performs
better than PLF. In converse, whenever the true paramet-
ric values are equal or greater than one (the results for
the greater than one values of the parameters have not
been presented here due to the space restriction), the perfor-
mance of the PLF seems better than SELF due to the same
reason. Similarly, using TKA have little advantage over
QuM, LinA, and GiS as the amounts of PRs associated with
estimates considering TKA are the least among all the
approximation methods used in the study. The TKA also
provides better convergence in majority of the cases.

Comparing censoring schemes 1-9 given in Tables 1–6,
it is clear that CS3, CS5, and CS8 have the least amounts
of PRs as compared to their counterparts for the same “n
” and “m.” This is according to the expectation, because
the expected test time for the censoring schemes CS3,
CS5, and CS8 are greater than their counterparts. Hence,
the data obtained under CS3, CS5, and CS8 is likely to
provide more information about the said parameters as
compared to other censoring schemes. In addition, CS3,
CS5, and CS8 are in accordance with the shape of hazard
rate of the TL distribution, as the hazard rate of TL dis-
tribution is U-shaped which proceeds with more failures
in the start and at the end of the experiment. The cen-
soring schemes 1, 4, and 6 are the close competitors of
CS3, CS5, and CS8, respectively, and interestingly, these
CSs incorporate more failures at the end of experiments.
It is interesting to note that in case of CS2 and CS7,
the amounts of PRs are the most; it may be due to the
fact that for these CSs, we have assumed more failures
in the middle of the experiments which is generally not
suited for the TL distribution. For a “n,” the increase in
“m” results in the decreased amounts of corresponding
posterior risks.

We have not reported the comparison of MLE with BEs
as it is a well-known fact that the results for MLE and BEs
under noninformative priors are often similar, and in such
case, the MLE can be preferred over BEs as the BEs are com-
putationally more expensive. However, in case of informa-
tive priors, the BEs provides better results than MLE. The
comparison of BEs under informative/noninformative priors

and MLE having similar findings has been observed by
Kundu and Joarder [15] and Kundu [38].

5. Optimum Censoring Scheme

In real-life situations it is vital to select an optimum censor-
ing scheme among different schemes. Here, the different
schemes mean, for predetermined sample size (n) and fixed
effective sample size (m), the various choices of ðR1, R2,⋯,
RmÞ such that ∑m

i=1Ri +m = n. Suppose there are two differ-
ent censoring scheme denoted by S1 = ðR1

1, R1
2,⋯, R1

mÞ and
S2 = ðR2

1, R2
2,⋯, R2

mÞ respectively, such that ∑m
i=1R

1
i +m = n

and ∑m
i=1R

2
i +m = n, then S1 will considered to be better than

S2 if it provides more information regarding the parameters
of the concerned model as compared to S2. In coming
sections, we have reported two criteria to determine the opti-
mum censoring scheme between the two competing censor-
ing schemes based on their information contents. These
criteria have also been used by Kundu [38] and are based
on the estimation of the pth, ð0 < p < 1Þ, quantile. The pth

quantile for the TL distribution is Xp = θ2f1 − ð1 − p1/θ1Þ1/2g.
The first criteria is

C1 Sð Þ =
Edata Vpost Sð Þ ln Xp

� �n o
Edata Vpost Cð Þ ln Xp

� �n o , ð32Þ

where S = ðR1, R2,⋯, RmÞ denotes the censoring scheme and
VpostðSÞðln XpÞ and VpostðCÞðln XpÞ denote the posterior vari-
ance of ln Xp for a censored and complete sample, respec-
tively. It is clear that C1ðSÞ depends on the quantile (p)
and not on the sample; hence, according to this criteria,
the censoring scheme S1 is better than S2 if C1ðS1Þ < C1ðS2Þ
. The drawback of this criterion is that it is the function of
quantile point p.

The second criteria is

C2 Sð Þ = Edata
Ð 1
0Vpost Sð Þ ln Xp

� �
dW pð Þ

Edata
Ð 1
0Vpost Cð Þ ln Xp

� �
dW pð Þ

, ð33Þ

where S, VpostðSÞðln XpÞ, and VpostðCÞðln XpÞ have same defi-
nitions as above. Here, 0 ≤WðpÞ ≤ 1 is a nonnegative weight
function defined on [0, 1]; it has to be predetermined based
on the nature of the study. For example, if more concentra-
tion is required at the middle, then larger weight should be
given at p = 0:5; conversely, if tail probabilities are more
vital, then more weight can be attached to the lager p. Again,
S1 will be better than S2 if C2ðS1Þ < C2ðS2Þ.

Now, [1, 35] cannot be computed directly; therefore, we
have used the LinA to approximate [1, 35] considering
Monte Carlo simulation. The details of the approximation
have been presented in the Appendix A.

We have presented the optimum censoring schemes
considering four different objective functions for selected
combinations of m and n in Table 7. We have considered
p = 0:95, p = 0:75, and p = 0:50 for the calculation of C1ðSÞ.
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On the other hand, the C2ðSÞ values have been obtained for
WðpÞ = 1. We have also reported the ratio of expected
experimental time required to carry complete sample and
the sample under a particular censoring scheme. That is,
we have calculated RETT = ETTðSÞ/ETTðCÞ, where RETT,
ETTðSÞ, and ETTðCÞ are relative expected test time,
expected test time under censored sample, and expected test
time under complete sample, respectively. The independent
Gamma ð0:7263, 0:6884Þ priors have been assumed for both
of the parameters ðθ1, θ2Þ. The results have been presented
in Table 3.

In majority of the cases, the censoring schemes having
all the removals at the time of first failure provide the
maximum information whenever p = 0:95 and p = 0:75
for C1ðSÞ. This may be due to the reason that for a larger
choice of “p” in C1ðSÞ, we are interested in the tail behav-
ior of the TL distribution. Also, the larger choice of “p”
will suit the shape of hazard rate of the TL distribution.
It is also quite apparent that for p = 0:50 in C1ðSÞ, the cen-
soring schemes having failures other than the tails of the
experiment provide more information than their counter-
parts. The RETT also clarify that the censoring schemes
having all/more failures at the start of the experiment provide
the maximum information about the parameters under the
study. Hence, larger choice of “p” in C1ðSÞ may be recom-
mended for the choice of optimum censoring scheme when
failure times comes from the TL distribution.

In addition, the optimum censoring schemes are not
much sensitive, a little depart from the optimal censoring
scheme does not change the efficiency to a large extend.
For example, for p = 0:95 in C1ðSÞ, if we depart from the
optimal censoring scheme (R1 = 10, R2 =⋯ = R10 = 0) to
the other scheme say (R1 = 8, R2 = 2, R3 =⋯ = R10 = 0) the
relative efficiency becomes 0.9645. Similar patterns can be
observed for other cases.

6. Real-Life Example

In this section, the data regarding the failure times (in mile-
age) of eighteen military carriers reported by Grubbs [39]
has been used to illustrate the applicability of the proposed
estimators. Bayoud [18] has confirmed that this data follow
TL distribution by employing Kolmogorov-Smirnov test.
The data is as follows 162, 200, 271, 302, 393, 508, 539,
629, 706, 777, 884, 1101, 1182, 1463, 1603, 1984, 2355, and
2880. For convenience, we have divided each value in the
data by 10000. We considered following censoring schemes
for the estimation.

CS1: n = 18, m = 10, R1 = 8, R2 =⋯ = R10 = 0
CS2: n = 18, m = 10, R1 = 6, R2 = 2, R3 =⋯ = R10 = 0
CS3: n = 18, m = 10, R1 =⋯ = R9 = 0, R10 = 8
CS4: n = 18, m = 10, R1 =⋯ = R5 = R7 =⋯ = R10 = 0,

R6 = 8
CS5: n = 18, m = 15, R1 = 3, R2 =⋯ = R15 = 0

Table 7: Optimum sampling schemes for different choices of n = 20 and different choices of m.

m Censoring schemes C1(S) (p = 0:95) C1(S) (p = 0:75) C1(S) (p = 0:5) C2(S) (p = 1) RETT

10

R1 = 10, R2 =⋯ = R10 = 0 0.0843 0.3003 0.9989 0.9558 0.8480

R1 =⋯ = R9 = 0, R10 = 10 0.0951 0.3353 0.9234 0.8836 0.1763

R1 =⋯ = R10 = 1 0.0946 0.3225 0.8506 0.8139 0.7101

R1 = 8, R2 = 2, R3 =⋯ = R10 = 0 0.0874 0.3247 0.9056 0.8665 0.8432

R1 = 5, R2 = 5, R3 =⋯ = R10 = 0 0.0943 0.3355 0.9173 0.8777 0.8100

R1 = 5, R2 =⋯ = R9 = 0, R10 = 5 0.0949 0.3248 0.9065 0.8673 0.4398

R1 = , ⋯, R8 = 0, R9 = 5, R10 = 5 0.1015 0.3329 0.9021 0.8232 0.1909

15

R1 = 5, R2 =⋯ = R15 = 0 0.0757 0.1846 0.8393 0.8031 0.9422

R1 =⋯ = R14 = 0, R15 = 5 0.0862 0.2172 0.7971 0.7627 0.4954

R1 =⋯ = R5 = 1, R6 =⋯ = R15 = 0 0.0798 0.1977 0.7175 0.6865 0.9042

R1 =⋯ = R10 = 0, R11 =⋯ = R15 = 1 0.0828 0.2044 0.7265 0.6760 0.5632

R1 = 3, R2 = 2, R3 =⋯ = R15 = 0 0.0775 0.1912 0.8055 0.7707 0.9162

R1 = 2, R2 = 3, R3 =⋯ = R15 = 0 0.0857 0.2004 0.7855 0.7516 0.9256

R1 = 2, R2 =⋯ = R14 = 0, R15 = 3 0.0881 0.2386 0.7571 0.7244 0.6085

R1 = , ⋯, R13 = 0, R14 = 2, R15 = 3 0.0910 0.2243 0.7806 0.7469 0.4699

18

R1 = 2, R2 =⋯ = R18 = 0 0.0527 0.1734 0.6046 0.5785 0.9842

R1 =⋯ = R17 = 0, R15 = 2 0.0658 0.1908 0.5894 0.5640 0.7413

R1 = 1, R2 = 1, R3 =⋯ = R18 = 0 0.0630 0.1840 0.5616 0.5374 0.9614

R1 = 1, R2 =⋯ = R17 = 0, R18 = 1 0.0539 0.1857 0.5749 0.5627 0.8038

R1 = , ⋯, R16 = 0, R17 = 1, R18 = 1 0.0620 0.1869 0.5547 0.5499 0.6890
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CS6: n = 18, m = 15, R1 = 2, R2 = 1, R3 =⋯ = R15 = 0
CS7: n = 18, m = 15, R1 =⋯ = R14 = 0, R15 = 3
CS8: n = 18, m = 15, R1 =⋯ = R7 = R9 =⋯ = R15 = 0,

R8 = 3
The MLEs for θ1 and θ2 have been computed using

iterative methods. Using the initial guess for θ1 as 0.50, we
obtained the MLEs of the parameters θ1 and θ2 as 0.6835
and 2.9761, respectively. From the results given in
Tables 8–11, it can be assessed that the increase in the “m”
results in the decreased amounts of PRs. In case of estima-
tion of the parameter θ1, the BEs under SELF are better than
those under PLF, while for the estimation of the parameter
θ2, the PLF out performs SELF. Having in mind that the esti-
mated values of the parameter θ1 are always less than one
and those for the parameter θ2 are always greater than one,
these results can be perceived as replication of the findings
from the simulated results. The results using TKA are again
associated with the least amounts of the PRs which also con-
firmed the findings of the simulation study. In addition, the
results based on fuzzy priors are slightly better than those
under conventional priors.

On comparing different censoring schemes, it has been
found that the censoring schemes with all/more removals
at the time of first failure give least amounts of posterior
risks. In addition, as observed in the simulation study, the
censoring schemes with all the removals at the time of last
failure are having smaller posterior risks than those with
more removals in the middle of the experiments. In short,
most of the findings from the simulation study have also
been replicated by the analysis of the real life dataset.

7. Conclusion

This paper is aimed to discussing the BEs for the parameters
of the TL distribution under PC samples. It has been
observed that BEs cannot be obtained in the explicit form;
therefore, we have proposed QuM, LinA, TKA, and GiS for
the approximate computations of the BEs and PRs. From
the results, it has been assessed that TKA has little advantage
of other approximation methods, as the amounts of the PRS
using TKA are the least among the estimates under all the
approximation methods. The BEs under fuzzy priors were
slightly better than those under conventional priors.

Different criteria for the comparing to different censor-
ing schemes, based on the information they contain, have
been proposed. Based on these criteria, we have reported
the optimal CSs with respect to different values of m
and n. The future aspects of the study can be finding an
algorithm for selection of the optimal censoring scheme
for the TL distribution from all the possible censoring
schemes which are often large in the practical situations.

Appendix

A. Approximation of [1, 34]

In [34], we have VpostðSÞðln XpÞ = Efðln XpÞ2jxg −
½Efðln XpÞjxg�2, and we have to approximate Efðln XpÞ2jxg
and ½Efðln XpÞjxg�2 separately. For the estimation of

½Efðln XpÞjxg�2, we have considered hðθ1, θ2Þ = ln Xpðθ1,
θ2Þ in [9] with the following details.

ln Xp θ1, θ2ð Þ = ln θ2 + ln 1 − 1 − p1/θ1
� �1/2� �

,

g1 = −
p1/θ1 ln p

2 1 − p1/θ1
� �1/2 1 − 1 − p1/θ1

� �1/2n o
θ21

,

g2 =
1
θ2

, g22 =
−1
θ22

, g12 = 0,

g11 = −
p2/θ1 ln p2

4 1 − p1/θ1
� �

1 − 1 − p1/θ1
� �1/2n o2

θ41

+
p2/θ1 ln p2

4 1 − p1/θ1
� �3/2 1 − 1 − p1/θ1

� �1/2n o
θ41

+
p1/θ1 ln p2

2 1 − p1/θ1
� �1/2 1 − 1 − p1/θ1

� �1/2n o
θ41

+
p1/θ1 ln p

1 − p1/θ1
� �1/2 1 − 1 − p1/θ1

� �1/2n o
θ31

:

ðA:1Þ

The remaining quantities in [9] will remain the same.
Similarly, in order to estimate Efðln XpÞ2jxg, put

h θ1, θ2ð Þ = ln Xp θ1, θ2ð Þ	 
2, ðA:2Þ

in [9] and considering all other quantities the same.
In addition to approximateð1

0
Vpost Sð Þ ln Xp

� �
dW pð Þ, ðA:3Þ

we have to approximateð1
0
E ln Xp

� ���x	 

dW pð Þ, ðA:4Þ

and ð1
0
E ln Xp

� �2���xn o
dW pð Þ: ðA:5Þ

These can be computed consideringð1
0
ln 1 − 1 − p1/θ1

� �1/2� �
dW pð Þ, ðA:6Þ

in place of

ln 1 − 1 − p1/θ1
� �1/2� �

, ðA:7Þ
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in all the above expressions. For different weight functions
WðpÞ, the integration can be carried out numerically, for
example, considering uniform weight function and θ1 =
0:50, we haveð1

0
ln 1 − 1 − p1/θ1

� �1/2� �
dW pð Þ = −2:5708: ðA:8Þ
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