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In this manuscript, we are getting some novel inequalities for convex functions by a new generalized fractional integral operator
setting. Our results are established by merging the ðk, sÞ-Riemann-Liouville fractional integral operator with the generalized
Katugampola fractional integral operator. Certain special instances of our main results are considered. The detailed results
extend and generalize some of the present results by applying some special values to the parameters.

1. Introduction

Chebyshev [1] presented the celebrated functional described
by
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where the functions f and g are integrable on ½a, b�: If f and
g are synchronous, i.e.,

f x1ð Þ − f x2ð Þð Þ g x1ð Þ − g x2ð Þð Þ ≥ 0, ð2Þ

for x1, x2 ∈ ½a, b�, then, Tð f , gÞ ≥ 0.
The relation (1) has stood out for some researchers

because of the different applications in numerical quadra-
ture, statistical problems, probability, and transform theory.
Among those applications, the relation (1) was utilized to

yield various integral inequalities (see, e.g., [2–6], for
extremely late work, see additionally [7–10]).

There is one more appealing and useful inequality,
namely, the Pólya-Szegö inequality [11], which establishes
the essential key of motivation in our study, which we can
indicate as follows
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where m ≤ f ðxÞ ≤M and n ≤ gðxÞ ≤N , for some m,M, n,N
∈ℝ and for each x ∈ J≔ ½a, b�:

In [12], Dragomir and Diamond introduced the follow-
ing Grüss type integral inequality

T f , gð Þj j ≤ M −mð Þ N − nð Þ
4 b − að Þ2
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by the Pólya-Szegö result, here, 0 <m ≤ f ðxÞ ≤M <∞ and
0 < n ≤ gðxÞ ≤N <∞, for x ∈ J:

The next integral inequalities

ð1
0
vμ−1 xð Þdx ≥

ð1
0
xμv xð Þdx, ð5Þ

ð1
0
vμ−1 xð Þdx ≥

ð1
0
xvσ xð Þdx, ð6Þ

have been proved by Ngo [13], where x > 0 and v are a pos-
itive continuous on ½0, 1� such that

ð1
h
v xð Þdx ≥

ð1
h
xdx, h ∈ 0, 1�: ð7Þ

In this regard, Liu et al. [14] introduced the subsequent
inequality

ðb
a
vμ+ν xð Þdx ≥

ðb
a
x − að Þμvν xð Þdx, ð8Þ

with

ðb
a
vς xð Þdx ≥

ðb
a
x − að Þςdx, ð9Þ

where μ, ν > 0 and v are a positive continuous on J, and ς
=min ð1, νÞ, for x ∈ J:

Since one of the primary inspiration points of fractional
analysis is getting more general and valuable fundamental
integral operators, the generalized fractional integral opera-
tor is a decent tool to sum up numerous past investigations
and results, see [15–18]. Essentially, in inequality theory, sci-
entists utilize such broad operators to generalize and extend
their inequalities.

Lately, these fractional integral operators have been con-
sidered and used to broaden particularly Grüss, Chebychev-
Grüss, Pólya-Szegö, Gronwall, Minkowski, and Hermite-
Hadamard type inequalities. For additional subtleties, Agar-
wal [19] proved some fractional integral inequalities with
Hadamard’s fractional integral operators. Ntouyas et al.
[20] established certain Chebyshev type inequalities involv-
ing Hadamard’s fractional integral operators. Some Grüss
type inequalities under k-Riemann-Liouville fractional inte-
gral operators have been investigated by Set et al. [21]. In
[22], the authors introduced some Pólya-Szegö type inequal-
ities by Hadamard k-fractional integral operators. A new
version for the Gronwall type inequality involving general-
ized proportional fractional integral operators was presented
by Alzabut et al. [23]. Rahman et al. [24] established reverse
Minkowski inequalities with generalized proportional frac-
tional integral operators. Many Chebyshev type inequalities
with generalized conformable fractional integral operators
have been discussed by Nisar et al. [25].

In this regard, Dahmani [26] established some new
inequalities for convex functions involving Riemann-
Liouville fractional integral operator. Jleli et al. [27] obtained

new Hermite-Hadamard type inequalities for convex func-
tions via generalized fractional integral operators. Some
Hermite-Hadamard type inequalities for ðk, sÞ-Riemann-
Liouville fractional integral operators were obtained by
Agarwal et al. [28]. The authors in [29] established certain
Polya-Szego type inequalities involving generalized Katu-
gampola fractional integral operator.

Motivated by the above works and discussions, in this
manuscript, we establish certain novel inequalities for con-
vex functions under a new generalized fractional integral
operator which integrates the two proposed fractional inte-
gral operators in [30, 31]. Moreover, we consider certain
special cases of our main results. The results obtained extend
and generalize some of the existing results by substituting
some parameters.

The manuscript is marshaled as follows: Section 2 pre-
sents some main definitions and results. The acquired results
are presented in Section 3. The last section concludes the
manuscript.

2. Preliminaries

Let us first present the essential definitions and properties of
fractional analysis that will be frequently used in this study.

Definition 1 (see [15]). The right and left-sided Riemann-
Liouville fractional integral operators of order α > 0 of u ∈
L1½a, b� are defined by

aI
αuð Þ xð Þ = 1

Γ αð Þ
ðx
a
x − yð Þα−1u yð Þdy, a < x, ð10Þ

Iαbuð Þ xð Þ = 1
Γ αð Þ

ðb
x
y − xð Þα−1u yð Þdy, x < b: ð11Þ

Definition 2 (see [30]). For >0,k > 0, and s ∈ℝ \ f−1g, the
left-sided ðk, sÞ-Riemann-Liouville fractional integral opera-
tor is defined as

Iαa,s,ku xð Þ = s + 1ð Þ1−α/k α/kð Þ

kΓk αð Þ
ðx
a
xs+1 − ys+1
� �α

k−1ysu yð Þdy, a < x:

ð12Þ

Definition 3 (see [31]). For α, ρ > 0, and β, η, r ∈ℝ, the left-
sided generalized Katugampola fractional integral operator
is defined as

ρIα,βa,η,ru xð Þ = ρ1−βxr

Γ αð Þ
ðx
a
xρ − yρð Þα−1yρ η+1ð Þ−1u yð Þdy, a < x:

ð13Þ

The subsequent important results have been established
by Liu et al. [32].

Theorem 4 (see [32]). Let u and v be two positive continuous
functions with u ≤ v on J. Assume that the functions u/v and
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u are decreasing and increasing, respectively. If the function
Ω is a convex with Ωð0Þ = 0, then

Ð b
au xð ÞdxÐ b
av xð Þdx

≥
Ð b
aΩ u xð Þð ÞdxÐ b
aΩ v xð Þð Þdx

: ð14Þ

Theorem 5 (see [32]). Let u, z, and v be positive continuous
functions with u ≤ v on J: Let also u, z are increasing func-
tions and u/v is a decreasing function. If the function Ω is a
convex with Ωð0Þ = 0, then

Ð b
au xð ÞdxÐ b
av xð Þdx

≥
Ð b
aΩ u xð Þð Þz xð ÞdxÐ b
aΩ v xð Þð Þz xð Þdx

: ð15Þ

3. Main Results

In this section, we will establish some new tolerances for the
convex functions under a new fractional integral operator
which combine together the two operators proposed in
[30, 31].

Definition 6. Let α > 0,k > 0,s > −1, and β, η, r ∈ℝ: Then, the
generalized fractional integral operator of order α for a con-
tinuous function u is defined as

s
kI
α,β
a,η,ru xð Þ = s + 1ð Þ1−β/k β/kð Þxr

kΓk αð Þ
ðx
a
xs+1 − ys+1
� �α/kαk−1y s+1ð Þη+su yð Þdy, a < x:

ð16Þ

Remark 7.

(1) Setting k = 1,s = ρ − 1 in Eq. (16), the fractional inte-
gral operator Eq. (16) reduces to the generalized
Katugampola fractional integral operator defined by
Eq. (13)

(2) Setting α = β,r = 0, and η = 0 in Eq. (16), the frac-
tional integral operator Eq. (16) reduces to the gen-
eralized fractional integral operator defined by Eq.
(12)

(3) Setting k = 1,α = β,r = 0, η = 0, and s⟶ −1 in Eq.
(16), with L’Hôpital’s rule, the fractional integral
operator Eq. (16) reduces to the Hadamard frac-
tional integral operator, namely,

HI
α
au xð Þ = 1

Γ αð Þ
ðx
a

log x
y

� �α−1 u yð Þ
y

dy, a < x: ð17Þ

(4) Setting k = 1, β = 0,s = ρ − 1, and r = −ρðη + αÞ, in
Eq. (16), the fractional integral operator Eq. (16)
reduces to the Erdélyi-Kober fractional integral
operator (see [15])

(5) Setting α = β,r = 0, η = 0, and s = 0 in Eq. (16), the
fractional integral operator Eq. (16) reduces to the
k-Riemann-Liouville fractional integral operator, i.e.,

s
kI
α,β
a,η,ru xð Þ⟶ Iαa,ku xð Þ = 1

kΓk αð Þ
ðx
a
x − yð Þα/kαk−1u yð Þdy, a < x:

ð18Þ

(6) Setting k = 1, α = β,r = 0, η = 0, and s = 0 in Eq. (16),
the fractional integral operator Eq. (16) reduces to
the Riemann-Liouville fractional integral operator
defined by

Iαau xð Þ = 1
Γ αð Þ

ðx
a
x − yð Þα−1u yð Þdy, a < x: ð19Þ

Now, we are ready to provide the inequalities for convex
functions by using the considered fractional integral opera-
tor defined by Eq. (16).

Theorem 8. Let u and v be positive continuous functions with
u ≤ v on J. If u and u/v are increasing and decreasing on J,
respectively, then for any convex function Ω with Ωð0Þ = 0,
we have

s
kI
α,β
a,η,r u xð Þ½ �

s
kI
α,β
a,η,r v xð Þ½ �

≥
s
kI
α,β
a,η,r Ω u xð Þð Þ½ �

s
kI
α,β
a,η,r Ω v xð Þð Þ½ �

, ð20Þ

where α, β, a, η, r, s, k are as in Definition 6.

Proof. By the hypotheses of theorem, Ω is convex with Ωð0
Þ = 0. Then the function ΩðxÞ/x is increasing. Since u is an
increasing function, thus, ΩðuðxÞÞ/uðxÞ is an increasing
function too.

Obviously, uðxÞ/vðxÞ is a decreasing function. Therefore,
for each ζ, ξ ∈ J, we have

Ω u ζð Þð Þ
u ζð Þ −

Ω u ξð Þð Þ
u ξð Þ

� �
u ξð Þ
v ξð Þ −

u ζð Þ
v ζð Þ

� �
≥ 0: ð21Þ

It follows that

Ω u ζð Þð Þ
u ζð Þ

u ξð Þ
v ξð Þ + Ω u ξð Þð Þ

u ξð Þ
u ζð Þ
v ζð Þ −

Ω u ξð Þð Þ
u ξð Þ

u ξð Þ
v ξð Þ −

Ω u ζð Þð Þ
u ζð Þ

u ζð Þ
v ζð Þ ≥ 0:

ð22Þ
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Multiplying Eq. (22) by vðζÞvðξÞ, we obtain

Ω u ζð Þð Þ
u ζð Þ u ξð Þv ζð Þ + Ω u ξð Þð Þ

u ξð Þ u ζð Þv ξð Þ − Ω u ξð Þð Þ
u ξð Þ u ξð Þv ζð Þ

−
Ω u ζð Þð Þ
u ζð Þ u ζð Þv ξð Þ ≥ 0:

ð23Þ

Multiplying Eq. (23) by ðs + 1Þ1−β/kxr/kΓkðαÞ
ðxs+1 − ζs+1Þα/k−1ζðs+1Þη+s and integrating Eq. (23) with
respect to ζ over ½a, x�,a < x ≤ b, we get

s + 1ð Þ1−β/kxr
kΓk αð Þ

ðx
a
xs+1 − ζs+1
� �α/k−1

ζ s+1ð Þη+s Ω u ζð Þð Þ
u ζð Þ u ξð Þv ζð Þdζ

+ s + 1ð Þ1−β/kxr
kΓk αð Þ

ðx
a
xs+1 − ζs+1
� �α/k−1

ζ s+1ð Þη+s Ω u ξð Þð Þ
u ξð Þ u ζð Þv ξð Þdζ

−
s + 1ð Þ1−β/kxr
kΓk αð Þ

ðx
a
xs+1 − ζs+1
� �α/k−1

ζ s+1ð Þη+s Ω u ξð Þð Þ
u ξð Þ u ξð Þv ζð Þdζ

−
s + 1ð Þ1−β/kxr
kΓk αð Þ

ðx
a
xs+1 − ζs+1
� �α/k−1

ζ s+1ð Þη+s Ω u ζð Þð Þ
u ζð Þ u ζð Þv ξð Þdζ ≥ 0:

ð24Þ

Hence

u ξð ÞskIα,βa,η,r
Ω u xð Þð Þ
u xð Þ v xð Þ

� �
+ Ω u ξð Þð Þ

u ξð Þ v ξð Þ
� �

s
kI
α,β
a,η,r u xð Þð Þ

−
Ω u ξð Þð Þ
u ξð Þ u ξð Þ

� �
s
kI
α,β
a,η,r v xð Þð Þ − v ξð ÞskIα,βa,η,r

Ω u xð Þð Þ
u xð Þ u xð Þ

� �
≥ 0:

ð25Þ

Again, multiplying Eq. (25) by ðs + 1Þ1−β/kxr/kΓkðαÞ
ðxs+1 − ξs+1Þα/k−1ξðs+1Þη+s and integrating Eq. (25) with
respect to ξ over ½a, x�,a < x ≤ b, we obtain

s
kI
α,β
a,η,ru xð ÞskIα,βa,η,r

Ω u xð Þð Þ
u xð Þ v xð Þ

� �
+ s

kI
α,β
a,η,r

Ω u xð Þð Þ
u xð Þ v xð Þ

� �
s
kI
α,β
a,η,r u xð Þð Þ

≥ s
kI
α,β
a,η,r Ω u xð Þð Þð ÞskIα,βa,η,rv xð Þ + s

kI
α,β
a,η,rv xð ÞskIα,βa,η,r Ω uð xð Þð Þ:

ð26Þ

Consequently, we have

s
kI
α,β
a,η,ru xð Þ

s
kI
α,β
a,η,rv xð Þ

≥
s
kI
α,β
a,η,r Ω u xð Þð Þð

s
kI
α,β
a,η,r Ω u xð Þð Þ/u xð Þð Þv xð Þð Þ

: ð27Þ

Since uðxÞ ≤ vðxÞ for all x ∈ J and the function ΩðxÞ/x is
an increasing, thus, for ζ ∈ a, x�,a < x ≤ b, we have

Ω u ζð Þð Þ
u ζð Þ ≤

Ω v ζð Þð Þ
v ζð Þ : ð28Þ

Multiplying both sides of Eq. (28) by ½ðs + 1Þ1−β/kxr/kΓk

ðαÞðxs+1 − ζs+1Þα/k−1ζðs+1Þη+s�vðζÞ then integrating with
respect to ζ over ½a, x�,a < x ≤ b, we get

s + 1ð Þ1−β/kxr
kΓk αð Þ

ðx
a
xs+1 − ζs+1
� �α/k−1 

ζ s+1ð Þη+s Ω u ζð Þð Þ
u ζð Þ v ζð Þdζ

≤
s + 1ð Þ1−β/kxr
kΓk αð Þ

ðx
a
xs+1 − ζs+1
� �α/k−1

ζ s+1ð Þη+sΩ v ζð Þð Þdζ:

ð29Þ

As per Eq. (16) can be written Eq. (29) as follows

s
kI
α,β
a,η,r

Ω u xð Þð Þ
u xð Þ v xð Þ

� �
≤ s

kI
α,β
a,η,rΩ v xð Þð Þ: ð30Þ

Hence, from Eq. (27) and Eq. (30), we obtain the desired
result Eq. (20).

Remark 9.

(i) When = 1, α = β,r = 0, η = 0, and s = 0 in Theorem 8,
we get the result (Theorem 3.1) proved by Dah-
mani [26].

(ii) When α = β = 1,k = 1,r = η = s = 0, and x = b in The-
orem 8, we recapture Theorem 4

(iii) In Theorem 8, if we replace the operator s
kI
α,β
a,η,r with

the generalized proportional fractional integral
operator, then, we obtain the result (Theorem 3.1)
proved by Neamah and Ibrahim [33].

Theorem 10. Let u and v be positive continuous functions
with u ≤ v on J. If u is increasing and u/v is decreasing on
J, then for any convex function Ω with Ωð0Þ = 0, we have

s
kI
α,β
a,η,r u xð Þ½ �skIγ,βa,η,r Ω v xð Þð Þ½ � + s

kI
γ,β
a,η,r u xð Þ½ �skIα,βa,η,r Ω v xð Þð Þ½ �

s
kI
α,β
a,η,r v xð Þ½ �skIγ,βa,η,r Ω u xð Þð Þ½ � + s

kI
γ,β
a,η,r v xð Þ½ �skIα,βa,η,r Ω u xð Þð Þ½ �

≥ 1,

ð31Þ

where γ > 0 and α, β, a, η, r, s, k are as in Definition 6.

Proof. Thanks to the hypotheses of theorem,Ω is convex with
Ωð0Þ = 0. Thus, ΩðxÞ/x is an increasing function. Further-
more, since u is increasing function, the function ΩuðxÞ/uðx
Þ is increasing. Distinctly, uðxÞ/vðxÞ is decreasing function.
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Thus, by multiplying Eq. (25) by ðs + 1Þ1−β/kxr/kΓkðγÞ
ðxs+1 − ξs+1Þγ/k−1ξðs+1Þη+s and integrating the nascent identity
with respect to ξ over ½a, x�,a < x ≤ b, we obtain

s
kI
γ,β
a,η,ru xð ÞskIα,βa,η,r

Ω u xð Þð Þ
u xð Þ v xð Þ

� �

+ s
kI
γ,β
a,η,r

Ω u xð Þð Þ
u xð Þ v xð Þ

� �
s
kI
α,β
a,η,r u xð Þð Þ

≥ s
kI
γ,β
a,η,r

Ω u xð Þð Þ
u xð Þ u xð Þ

� �
s
kI
α,β
a,η,r v xð Þð Þ

+ s
kI
γ,β
a,η,rv xð ÞskIα,βa,η,r

Ω u xð Þð Þ
u xð Þ u xð Þ

� �
:

ð32Þ

Consequently, the inequalities Eq. (30) and Eq. (32) give
the inequality Eq. (31).

Remark 11.

(i) Applying Theorem 10 for α = γ, we get Theorem 8

(ii) Applying Theorem 10 for = 1, α = β,r = 0, η = 0, and
s = 0, we get the result (Theorem 8) proved by Dah-
mani [26].

(iii) Applying Theorem 10 for α = β = γ = 1,k = 1,
r = η = s = 0, and x = b, we get Theorem 4

Theorem 12. Let u, z, and v be three positive continuous
functions and u ≤ v on J: If u/v is decreasing, u and z are
increasing, and Ω is convex function with Ωð0Þ = 0. Then

s
kI
α,β
a,η,r u xð Þ½ �

s
kI
α,β
a,η,r v xð Þ½ �

≥
s
kI
α,β
a,η,r Ω u xð Þð Þz xð Þ½ �

s
kI
α,β
a,η,r Ω v xð Þð Þz xð Þ½ �

: ð33Þ

Proof. In view of conditions of theorem, Ω is convex with
Ωð0Þ = 0. Thus, ΩðxÞ/x is increasing. Besides, from the
increasing of u,ΩðuðxÞÞ/uðxÞ is increasing. Obviously, the
function uðxÞ/vðxÞ is decreasing. So, for all ζ, ξ ∈ a, x� and
a < x ≤ b, we have

Ω u ζð Þð Þ
u ζð Þ z ζð Þ − Ω u ξð Þð Þ

u ξð Þ z ξð Þ
� �

u ξð Þv ζð Þ − u ζð Þv ξð Þð Þ ≥ 0:

ð34Þ

Then,

Ω u ζð Þð Þz ζð Þ
u ζð Þ u ξð Þv ζð Þ + Ω u ξð Þð Þz ξð Þ

u ξð Þ u ζð Þv ξð Þ

−
Ω u ξð Þð Þz ξð Þ

u ξð Þ u ξð Þv ζð Þ − Ω u ζð Þð Þz ζð Þ
u ζð Þ u ζð Þv ξð Þ ≥ 0:

ð35Þ

Multiplying Eq. (35) by ðs + 1Þ1−β/kxr/kΓkðαÞ
ðxs+1 − ζs+11 Þα/k−1ζðs+1Þη+s then integrating the resulting
inequality with respect to ζ over ½a, x�,a < x ≤ b, we get

s + 1ð Þ1−β/kxr
kΓk αð Þ

ðx
a
xs+1 − ζs+1
� �α/k−1

ζ s+1ð Þη+s Ω u ζð Þð Þ
u ζð Þ u ξð Þv ζð Þz ζð Þdζ

+ s + 1ð Þ1−β/kxr
kΓk αð Þ

ðx
a
xs+1 − ζs+1
� �α/k−1

ζ s+1ð Þη+s Ω u ξð Þð Þ
u ξð Þ u ζð Þv ξð Þz ξð Þdζ

−
s + 1ð Þ1−β/kxr
kΓk αð Þ

ðx
a
xs+1 − ζs+1
� �α/k−1

ζ s+1ð Þη+s Ω u ξð Þð Þ
u ξð Þ u ξð Þv ζð Þz ξð Þdζ

−
s + 1ð Þ1−β/kxr
kΓk αð Þ

ðx
a
xs+1 − ζs+1
� �α/k−1

1
ζ s+1ð Þη+s Ω u ζð Þð Þ

u ζð Þ u ζð Þv ξð Þz ζð Þdζ ≥ 0:

ð36Þ

Hence,

u ξð ÞskIα,βa,η,r
Ω u xð Þð Þ
u xð Þ v xð Þz xð Þ

� �
+ Ω u ξð Þð Þ

u ξð Þ v ξð Þz ξð Þ
� �

s
kI
α,β
a,η,r u xð Þð Þ

−
Ω u ξð Þð Þ
u ξð Þ u ξð Þz ξð Þ

� �
s
kI
α,β
a,η,r v xð Þð Þ − v ξð ÞskIα,βa,η,r

Ω u xð Þð Þ
u xð Þ u xð Þz xð Þ

� �
≥ 0:

ð37Þ

With the same arguments as above for Eq. (37), we
obtain

s
kI
α,β
a,η,r u xð Þð ÞskIα,βa,η,r

Ω u xð Þð Þ
u xð Þ v xð Þz xð Þ

� �

+ s
kI
α,β
a,η,r

Ω u xð Þð Þ
u xð Þ v xð Þz xð Þ

� �
s
kI
α,β
a,η,r u xð Þð Þ

≥ s
kI
α,β
a,η,r Ω u xð Þð Þz xð Þð ÞskIα,βa,η,r v xð Þð Þ

+ s
kI
α,β
a,η,r v xð Þð ÞskIα,βa,η,r Ω u xð Þð Þz xð Þð Þ:

ð38Þ

It follows that

s
kI
α,β
a,η,ru xð Þ

s
kI
α,β
a,η,rv xð Þ

≥
s
kI
α,β
a,η,r Ω u xð Þz xð Þð Þð

s
kI
α,β
a,η,r Ω u xð Þð Þ/u xð Þð Þv xð Þz xð Þð Þ

: ð39Þ

Further, since u ≤ v on J then using fact that the func-
tion ΩðxÞ/x is increasing, we can write

Ω u ζð Þð Þ
u ζð Þ ≤

Ω v ζð Þð Þ
v ζð Þ , for ζ ∈ a, x�: ð40Þ

By some previously repeated procedure, the inequality
Eq. (40) leads to

s + 1ð Þ1−β/kxr
kΓk αð Þ

ðx
a
xs+1 − ζs+1
� �α/k−1

ζ s+1ð Þη+s Ω u ζð Þð Þ
u ζð Þ v ζð Þz ζð Þdζ

≤
s + 1ð Þ1−β/kxr
kΓk αð Þ

ðx
a
xs+1 − ζs+1
� �α/k−1

ζ s+1ð Þη+sΩ v ζð Þð Þz ζð Þdζ:

ð41Þ
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Given Eq. (16), the inequality Eq. (41) can be written as

s
kI
α,β
a,η,r

Ω u xð Þð Þ
u xð Þ v xð Þz xð Þ

� �
≤ s

kI
α,β
a,η,r Ω v xð Þð Þz xð Þð Þ: ð42Þ

Therefore, from Eq. (42) and Eq. (39), we get Eq. (33),
which completes the proof.

Remark 13.

(1) Applying Theorem 12 for k = 1,α = β, and r = η = s
= 0, we get the result (Theorem 10) proved by Dah-
mani [26]

(2) It is noteworthy that Theorem 5 is a special case of
Theorem 12 when α = β = 1,k = 1,r = η = s = 0, and
x = b

Theorem 14. Let u, z, and v be three positive continuous
functions and u ≤ v on J. If u/v is decreasing, u and z are
increasing on J, and Ω is convex function such that Ωð0Þ =
0: Then, we have

s
kI
α,β
a,η,r u xð Þ½ �skIγ,βa,η,r Ω v xð Þð Þz xð Þ½ � + s

kI
γ,β
a,η,r u xð Þ½ �skIα,βa,η,r Ω v xð Þð Þz xð Þ½ �

s
kI
α,β
a,η,r v xð Þ½ �skIγ,βa,η,r Ω u xð Þð Þz xð Þ½ � + s

kI
γ,β
a,η,r v xð Þ½ �skIα,βa,η,r Ω u xð Þð Þz xð Þ½ �

≥ 1:

ð43Þ

Proof. Applying ðs + 1Þ1−β/kxr/kΓkðγÞðxs+1 − ξs+1Þγ/k−1
ξðs+1Þη+s on both sides of Eq. (37), then integrating the result-
ing inequality with respect to ξ over ½a, x�,a < x ≤ b, we get

s
kI
γ,β
a,η,ru xð ÞskIα,βa,η,r

Ω u xð Þð Þ
u xð Þ v xð Þz xð Þ

� �

+ s
kI
γ,β
a,η,r

Ω u xð Þð Þ
u xð Þ v xð Þz xð Þ

� �
s
kI
α,β
a,η,r u xð Þð Þ

≥ s
kI
γ,β
a,η,r

Ω u xð Þð Þ
u xð Þ u xð Þz xð Þ

� �
s
kI
α,β
a,η,r v xð Þð Þ

+ s
kI
γ,β
a,η,rv xð ÞskIα,βa,η,r

Ω u xð Þð Þ
u xð Þ u xð Þz xð Þ

� �
:

ð44Þ

Since u ≤ v on J, then using fact that the functionΩðxÞ/x
is increasing, we have

Ω u ζð Þð Þ
u ζð Þ ≤

Ω v ζð Þð Þ
v ζð Þ , for ζ ∈ a, ξ� and ξ ∈ J: ð45Þ

Multiplying Eq. (45) by

s + 1ð Þ1−β/kxr
kΓk αð Þ xs+1 − ζs+1

� �α/k−1
ζ s+1ð Þη+s

" #
v ζð Þz ζð Þ, ð46Þ

then integration with respect to ζ over ½a, x�,a < x ≤ b, we
obtain

s
kI
α,β
a,η,r

Ω u xð Þð Þ
u xð Þ v xð Þz xð Þ

� �
≤ s

kI
α,β
a,η,r Ω v xð Þð Þz xð Þð Þ: ð47Þ

Following similar arguments as mentioned earlier, we
conclude that

s
kI
γ,β
a,η,r

Ω u xð Þð Þ
u xð Þ v xð Þz xð Þ

� �
≤ s

kI
γ,β
a,η,rz Ω v xð Þð Þz xð Þð Þ: ð48Þ

Hence, by virtue of Eq. (44), Eq. (47), and Eq. (48), we
obtain Eq. (43). Thus, the proof is completed.

Remark 15.

(i) Applying Theorem 14 for α = γ, we obtain Theorem
12

(ii) Applying Theorem 14 for k = 1,α = β = γ, and r = η
= s = 0, we obtain Theorem 12 proved by Dahmani
[26]

4. Conclusions

In this work, we have established certain Pólya-Szegö
inequalities by using convex functions under a new general-
ized fractional integral operator. More precisely, some new
results have been established by merging the ðk, sÞ-Rie-
mann-Liouville fractional integral operator with the general-
ized Katugampola fractional integral operator. Moreover, we
have introduced several new special results that cover many
classical fractional integral operators.

In future work, it will be very interesting to study the
inequalities considered in this work under a more general
fractional integral operator in terms of another function ψ,
precisely, we hint to ψðxÞ = xs+1, and this is what we will
think about in the next work.
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