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SARS-CoV-2 is a strain of the large coronavirus family that has led to COVID-19 disease. The virus has been one of the deadliest
known viruses in the world to date. Rapid mutations and the creation of new strains cause researchers to focus on the dynamic
behaviors of the virus and to analyze it accurately through clinical research and mathematical models. In this paper, from the
point of view of mathematical modeling, we intend to focus on the dynamic behavior of the system and examine its analytical
and numerical aspects in two different structures. In other words, by recalling newly formulated hybrid fractional-fractal
operators, we present a fractal-fractional probability-based model of SARS-CoV-2 virus for the first time and extract its
equivalent compact fractal-fractional IVP to investigate its existence and stability criteria. A type of special admissible
contractions will help us in this regard. Moreover, based on the source data, we simulate our system according to algorithms
derived by Adams-Bashforth method and explain the effects of variation of the dimension of fractal and fractional order on
dynamics of solutions. Finally, we transform our fractal-fractional model into a Caputo probability-based model of SARS-CoV-
2 to derive solutions via the operational matrix method under Taylor’s basis. The numerical simulations show close behaviors
for both of models.

1. Introduction

From birth to death, humans are always at risk for a variety of
diseases; the source of these infectious diseases is mainly
microorganisms such as parasites, fungi, viruses, and bacteria.
Over the centuries, various epidemics have killed millions of
people everywhere on the planet and caused great loss of life
and property to families and governments. Recently, in late
2019, the international community contracted a new type of
viral respiratory disease that was reported to have originated

in Wuhan, China. For the sake of rapid spread of this
unknown disease in Wuhan, scientists have used a variety of
terms to describe the viral cause of the disease. According to
the standard classifications in virology and considering its geo-
graphical location, it was first temporarily named Wuhan
coronavirus and then the new coronavirus 2019 (2019-nCov).
Finally, in 2020, an international committee from the World
Health Organization (WHO), which works to classify viruses,
used the official title SARS-CoV-2, which interprets the severe
acute respiratory syndrome of coronavirus 2 [1]; and later, in
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order not to be confused with the SARS virus, the committee
used the abbreviated title COVID-19 [2].

Extensive medical research was conducted worldwide to
identify the nature and spread of the virus, and on January
20, human-to-human transmission of the virus was proved
[3]. The virus has also been shown to be transmitted via respi-
ratory droplets such as coughing and sneezing and even talk-
ing indoors without ventilation [4, 5]. In addition, subsequent
studies have shown that the best site for infection is the nasal
cavity, through which it gradually and immediately enters the
lungs and infects it [6]. However, other studies have shown
that some wild animals, such as bats, mice, rabbits, and mink,
can also transmit the SARS-CoV-2 virus to humans [7]. In
these two years, no part of the human environments has been
spared from the virus, even the most remote islands. As of
March 10, 2022, more than 450 million people have been
infected with COVID-19, of which more than six million
have died, based on the approved reports of theWorld Health
Organization [8]. In some cases, people with the SARS-CoV-
2 virus have severe clinical symptoms and are hospitalized,
but in most cases, patients with the SARS-CoV-2 virus do
not need to be admitted to treatment centers and are treated
with antiviral drugs such as remdesivir [9].

Due to the high rate of transmission of the virus and the
development of its various strains, there was a need for
definitive treatment to control the epidemic. Therefore,
knowledge of the pathobiology of the SARS-CoV-2 virus
was essential. Because vaccines are always an important tool
in the fight against all epidemics, we have also seen extensive
efforts to produce safe and effective vaccines for the SARS-
CoV-2 virus by large pharmaceutical companies. Of course,
it should be noted that in addition to mass vaccination to
eradicate the virus completely, it is necessary for human
societies to continue to maintain social distance and use
masks indoors. It is still unknown whether the vaccines are
effective in killing the disease.

In this regard, to accurately analyze the prevalence of the
SARS-CoV-2 virus worldwide and predict its upward or
downward trends, researchers turned to simulating the
dynamics of the virus by mathematical models. Of course,
it should be noted that in recent decades, mathematical
models have always been helpful in studying the dynamics
of various types of diseases and engineering processes, and
through various modeling, scientists and researchers have
been able to achieve their study goals. In this direction, frac-
tional mathematical models are among the most widely used
methods in the field of accurate analysis and evaluation of
data. Known fractional operators such as Caputo, Atan-
gana-Baleanu, and Caputo-Fabrizio fractional derivatives
are efficient mathematical tools for defining and designing
mathematical systems, so that their role can be clearly
observed in newly published papers, for example, the model-
ling of anthrax in animals [10], genetic regulatory networks
[11], mumps virus [12], Zika virus [13], mosaic disease [14],
computer viruses [15], thermostat control [16], pantograph
equation [17], Q-fever [18], hybrid equation of p-Laplacian
operators [19], geographical models [20, 21], codynamics
of COVID-19 and diabetes [22], chemical compounds such
as methylpropane [23], and immunogenic tumor [24]. Also,

due to difficulties of solving fractional differential equations
analytically, developing efficient numerical methods with
different fractional operators for such equations becomes
an important focus for researchers; for example, in [25],
fractional derivative generalized Atangana-Baleanu differen-
tiability has been implemented to solve fuzzy fractional
differential equations. Also, in 2021, Erturk et al. [26] used
fractional calculus theory to investigate the motion of a
beam on an internally bent nanowire. In [27], Jajarmi et al.
presented a new and general fractional formulation to inves-
tigate the complex behaviors of a capacitor microphone
dynamical system. Alqhtani et al. [28] presented that two
important physical examples that are of current and recur-
ring interests are considered, in which the classical time
derivative was modeled with the Caputo fractional deriva-
tive leading the system of equations to subdiffusive
fractional reaction-diffusion models of predator-prey type,
together with some numerical experiments. In [29], Aljhani
et al. discuss a one-dimensional time-fractional Gray-Scott
model with Liouville-Caputo, Caputo-Fabrizio-Caputo,
and Atangana-Baleanu-Caputo fractional derivatives. They
also utilize the fractional homotopy analysis transformation
method to obtain approximate solutions.

Numerous articles about SARS-CoV-2 or COVID-19
have recently been published in scientific journals around
the world, including a few examples: DarAssi et al. [30] pre-
sented a model of SARS-CoV-2 with hospitalization in the
form of a variable-order fractional model of Caputo’s
differential equations, in which they studied the asymptotic
stability of the system. In the same direction, Gu et al. [31]
also designed the comprehensive Caputo model of SARS-
CoV-2 virus in the framework of the constant-order
operator and analyzed the stable solutions of the system
w.r.t. the index R0 (reproduction number). Under a five-
compartmental SEIRD model, and using real data from Ital-
ian medical authorities, Rajagopal et al. [32] conducted a
case study of the disease and analyzed system behavior in
both classical and fractional modes. In another case research
of the prevalence of SARS-CoV-2 in France and Colombia,
Quintero and Gutiérrez-Carvajal [33] examined the evolu-
tion of the disease under the bound optimization method.
In 2021, Zamir et al. [34] formulated a model of COVID-
19 in nine subclasses and focused the elimination and con-
trol of the infection caused by COVID-19. Jain et al. [35]
presented a prediction model of COVID-19 by using numer-
ous machine learning models, such as SVM, Naïve Bayes, K-
nearest neighbors, AdaBoost, gradient boosting, XGBoost,
random forest, ensembles, and neural networks. Baleanu
et al. [36] introduced a generalized version of fractional
models for the COVID-19 pandemic, including the effects
of isolation and quarantine. In [37], Ali et al. investigate
the transmission dynamics of a fractional-order mathemati-
cal model of COVID-19 under five subclasses, susceptible,
exposed, asymptomatic infected, symptomatic infected, and
recovered, using the Caputo fractional derivative. In 2022,
Ozkose et al. [38] developed a new model of the Omicron
strain of SARS-CoV-2 virus and, based on data collected
across the United Kingdom, studied the relationship
between this strain and heart attack. They also analyzed
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the sensitivity of the system and fitting of the parameters
using the LCM method.

In addition to these articles, many other researchers have
published articles on COVID-19 dynamics and evaluated a
variety of models under different conditions and assump-
tions. For instances, we can mention stochastic models of
COVID-19 [39], or even various case studies of COVID-19
from all over the world like [40–44]. Most researchers simul-
taneously studied the models of COVID-19 analytically and
numerically and evaluated the types of dynamic behaviors of
the solutions under singular and nonsingular systems that
can be mentioned like [45, 46]. In the theoretical study of
all these mentioned models, the theoretical results are
among the basic parts of the analysis of mathematical
models, because the existence of a solution for a system
allows us to continue to study other properties such as stable
solutions, equilibrium solutions, numerical solutions, and
their simulations. Usually, fixed point theory is effective in
this field, and its role can be observed in boundary and
initial value problems [47].

By defining mathematical models and the refinement of
numerical approaches, there is a need to use new mathemat-
ical operators with high computational capabilities to model
processes. As a result, Atangana [48] used fractal derivatives
to introduce a new type of hybrid operators and introduced
fractional-fractal derivatives into the world of modeling in
2017. In fact, to define these advanced operators, he used
two arguments to represent the order of the operator and
the dimension of the operator, which he called the fractional
order and the fractional dimension of the fractional-
fractional derivatives, respectively [48]. Atangana then
divided these derivatives into three different categories and,
with the help of different integral kernels, extracted the
numerical algorithms associated with them. Then, in the last
year, these numerical techniques were used in some new
studies in which researchers simulated the approximate
solutions of fractional-fractal models of new infectious dis-
eases. In 2021, Arfan et al. [49] designed a prey-predation
structure for the four-compartmental fractal-fractional
model of syn-ecosymbiosis and examined some conditions
for species survival in an ecological system. Abdulwasaa
et al. [50] conducted a case study with these fractal-
fractional operators in which they examined the dynamics
of new cases and the number of deaths from the COVID-
19 epidemic over a specific period of time in India. Shah
et al. [51] conducted the same study on a new model in
Pakistan. Khan et al. [52] simulated and evaluated models
of smoking at the incidence rate under the Caputo fractal-
fractional derivative operator. Arif et al. [53] utilized the
same fractal-fractional operators in engineering to analyze
MHD stress fluid in a single channel. Alqhtani et al. [54]
studied three models of fractal-fractional Michaelis-Menten
enzymatic reaction (FFMMER) and presented these models
based on three different kernels, namely, power law, expo-
nential decay, and Mittag-Leffler kernels.

In this work, considering the importance of symptomatic
and asymptomatic populations in spreading of virus, we
present the new fractal-fractional probability-based model
of SARS-CoV-2 virus by dividing the total population into

four subclasses such as susceptible, asymptomatic, symp-
tomatic, and recovered individuals. In [55], the authors
designed a five-compartmental Caputo fractional epidemic
model for the novel coronavirus in which the impact of envi-
ronmental transmission is considered in the final result. This
model motivates us to study an extended model of transmis-
sion of SARS-CoV-2 virus via advanced hybrid operators. In
this paper, we get help from these newly extended hybrid
fractal-fractional operators and discuss a new hybrid model
of transmission of SARS-CoV-2 virus analytically and
numerically. If we want to focus on the novelty and contri-
bution of this manuscript, it is notable that for the first time,
our system is a fractal-fractional probability-based model of
SARS-CoV-2 virus in which we apply new hybrid fractal-
fractional derivatives for modeling of the power law type
kernel. Also, in this model, a probability-based structure of
transmission of virus is considered. In other words, if p is
the probability that both categories susceptible and infected
interact and this leads to the asymptomatic category, in that
case, ð1 − pÞ stands for the portion of the infected persons
that may automatically belong to the symptomatic category.
On the other hand, it should be kept in mind that when peo-
ple become infected with the SARS-CoV-2 virus, they may
not have any symptoms, but at the same time, some people
may experience severe complications and show specific
symptoms. Therefore, the feature of our model is that we
have divided the group of people infected with the virus into
two categories: symptomatic and asymptomatic. Also, from
mathematical point of view, a specific approach of fixed
point methods is applied via ϕ-admissible ϕ-ψ-contractions
to discuss the existence criterion, in which it shows the
applicability of new fixed point techniques in the applied
problems. Also, another novelty of this study is that in addi-
tion to fractal-fractional analysis of the SARS-CoV-2 model,
we extend its Caputo-type version to compare our previous
results with solutions of the fractional model under the Tay-
lor operational matrix method. Also, note that in this paper,
we consider both fractional and fractal-fractional derivatives
as the full memory. We can study similar models by using
the short memory. In this direction, refer to [56, 57].

In this study, from a numerical point of view, we present
two numerical techniques for the approximate solution of
the considered model of SARS-CoV-2 virus under two
different fractional operator derivative. The first technique
is the Adams-Bashforth technique which is applied to
probability-based model of SARS-CoV-2 under fractal-
fractional operator in this study. The ABM is a very stable
technique and allows us explicitly to determine the numeri-
cal solution at an instant time from the solutions in the pre-
vious instants. Using the higher-order Adams-Bashforth
method actually becomes more unstable as the timestep is
reduced. So that, the corrector step need to be added to
avoid much of this instability. This can be mentioned as a
disadvantage of AB technique. The second method is a col-
location type of the well-known spectral methods; fractional
Taylor operational matrix method is applied to solve
probability-based model of SARS-CoV-2 under Caputo
operator first time in this paper. The main advantage of
spectral methods is that they are easy to apply for both finite
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and infinite intervals and when the solution of a given prob-
lem is smooth, spectral methods have very good error prop-
erties, namely, the so-called “exponential convergence.”
Thanks to these advantages, for solving many different types
of integral and differential equations numerically, spectral
methods received considerable interest in recent years.
When the solution is not smooth enough, the stability and
accuracy of these methods are decreasing, which is an
important disadvantage because of limiting the applicability.
In this work, we compare our results obtained from
FTOMM with the Adams-Bashforth simulations.

The structure of the manuscript is arranged as follows:
some definitions of ϕ-admissible ϕ-ψ-contractions and
fractal-fractional derivatives are presented in the next sec-
tion. We describe our main fractal-fractional model in Sec-
tion 3 along with the meanings of parameters. Under two
different fixed point methods, we guarantee the existence
property for solutions of the system in Section 4. Section 5
deals with the Lipschitz and uniqueness properties. Then,
in Section 6, we discuss UHR-stable solutions for each four
state functions separately. To predict the future of state func-
tions and their analysis numerically, we simulate them via
the Adams-Bashforth method in two subsections of Section
7. In the next step, in Section 8, we give the Caputo-type
of transmission of the SARS-CoV-2 virus, and in several
subsections, we describe our method via the Taylor opera-
tional matrix technique, and after some simulations, we
compare our numerical results in both fractal-fractional
and fractional systems in the context of some graphs and
tables. The conclusions and further study suggestions are
presented in Section 9.

2. Basic Concepts

Some basic notions on the fractal-fractional operators and
fixed point theory are assembled.

Let Ψ display a subclass of nondecreasing operators like
ψ : ½0,∞Þ⟶ ½0,∞Þ s.t.

〠
∞

j=1
ψj tð Þ <∞,ψ tð Þ < t,∀t > 0: ð1Þ

Definition 1 (see [58]). Let X be a normed space and F : X
⟶X and ϕ : X2 ⟶ℝ≥0.

ðpÞF is ϕ-ψ-contraction if for u1, u2 ∈X,

ϕ ͷ1, ͷ2ð Þd Fͷ1,Fͷ2ð Þ ≤ ψ d ͷ1, ͷ2ð Þð Þ: ð2Þ

(q) F is ϕ-admissible if ϕðͷ1, ͷ2Þ ≥ 1 yields ϕðFͷ1,
Fͷ2Þ ≥ 1.

Definition 2 (see [48]). Let F be fractal differentiable on ða,
bÞ of order ν. The fractional-fractal ωth-derivative of the
function F via the power law type kernel in the Riemann-
Liouville sense is defined by

FFPDω,ν
a,t F tð Þ = 1

Γ n − ωð Þ
d
dtν
ðt
a
t −mð Þn−ω−1F mð Þ dm,

� n − 1 < ω, ν ≤ n ∈ℕð Þ,
ð3Þ

where dFðmÞ/dmν = limt⟶mððFðtÞ −FðmÞÞ/ðtν −mνÞÞ
is the fractal derivative.

It is known that if ν = 1, then the fractal-fractional deriv-
ative FFPDω,ν

a,t is reduced to the standard derivative RLDω
a,t of

order ω.

Definition 3 (see [48]). Let F be continuous on ða, bÞ. The
fractional-fractal integral of the function F with fractional
order ω and fractal order ν is

FFPIω,ν
a,t F tð Þ = ν

Γ ωð Þ
ðt
a
mν−1 t −mð Þω−1F mð Þ dm: ð4Þ

3. Description of the Model for SARS-CoV-
2 Virus

Khan et al. [59, 60] modeled a mathematical structure of
dynamics of SARS-CoV-2 virus in the form of four initial
value problems equipped with four state functions S , P 1,
P 2, and R, which are a part of total population. This
model is

dS tð Þ
dt

=Θ − rP 1 tð ÞS tð Þ − rsP 2 tð ÞS tð Þ − b + b1ð ÞS tð Þ,
dP 1 tð Þ

dt
= p rP 1 tð ÞS tð Þ + rsP 2 tð ÞS tð Þ½ � − b1 + b2 + r1ð ÞP 1 tð Þ,

dP 2 tð Þ
dt

= 1 − pð Þ rP 1 tð ÞS tð Þ + rsP 2 tð ÞS tð Þ½ � + qr1P 1 tð Þ − b1 + b3 + r2ð ÞP 2 tð Þ,
dR tð Þ
dt

= r1 1 − qð ÞP 1 tð Þ + r2P 2 tð Þ + bS tð Þ − b1R tð Þ,

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð5Þ
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where SðtÞ stands for the people belonging to the suscepti-
ble category, P 1ðtÞ is the people belonging to the asymp-
tomatic category, P 2ðtÞ is the people belonging to the
symptomatic category, and RðtÞ stands for the people
belonging to the recovered category at the time t ∈ J≔ ½0,
T�, ðT > 0Þ. Based on these assumptions, the infected catego-
ries are taken to be symptomatic class and asymptomatic

class, because asymptomatic persons are considered as the
main factor of transmission of disease. It is to be noted that
the variables, constants, and parameters are nonnegative.

Inspired by the aforesaid standard epidemic model,
we here consider the fractal-fractional epidemic
probability-based model of the SARS-CoV-2 virus in the
following structure:

subject to

S 0ð Þ = S0 > 0,

P 1 0ð Þ =P 1,0 ≥ 0,

P 2 0ð Þ =P 2,0 ≥ 0,

R 0ð Þ =R0 ≥ 0,

ð7Þ

where FFPDω,ν
0,t is the fractional-fractal derivative of the frac-

tional order ω ∈ ð0, 1� and the fractal order ν ∈ ð0, 1� via the
power law type kernel. We have

N tð Þ = S tð Þ +P 1 tð Þ +P 2 tð Þ +R tð Þ, ð8Þ

in which as we said above, N ðtÞ means the total population
at the time t ∈ J≔ ½0, T�, ðT > 0Þ.

About parameters, the total natural death rate along with
the rate of disease-related death for both infected groups is
specified by the symbols b1, b2, and b3, respectively. We
show the rate of transmission of disease by r, and its reduced

rate is denoted by the symbol s. The vaccination rate is given
by b, and Θ stands for the newborn rate. The probability of
the asymptomatic persons is illustrated by p, and the proba-
bility of these persons that recover in the symptomatic step
is specified by q. Moreover, r2 is the recovery rate in relation
to asymptomatic persons and accordingly, and r1 is the
recovery rate in relation to the symptomatic persons.

4. Existence of Solutions

In this position, we shall get help fixed point theory to the
suggested fractal-fractional IVP (6). For the qualitative
analysis, we define the Banach space X = Y 4, where Y =
CðJ,ℝÞ, as

Xk kX = S ,P 1,P 2,Rð Þk kX
=max S tð Þj j + P 1 tð Þj j + P 2 tð Þj j + R tð Þj j: t ∈ Jf g:

ð9Þ

We write the R.H.S. of model (6) by

Hence,

FFPDω,ν
0,t S tð Þ =Θ − rP 1 tð ÞS tð Þ − rsP 2 tð ÞS tð Þ − b + b1ð ÞS tð Þ,

FFPDω,ν
0,t P 1 tð Þ = p rP 1 tð ÞS tð Þ + rsP 2 tð ÞS tð Þ½ � − b1 + b2 + r1ð ÞP 1 tð Þ,

FFPDω,ν
0,t P 2 tð Þ = 1 − pð Þ rP 1 tð ÞS tð Þ + rsP 2 tð ÞS tð Þ½ � + qr1P 1 tð Þ − b1 + b3 + r2ð ÞP 2 tð Þ,

FFPDω,ν
0,t R tð Þ = r1 1 − qð ÞP 1 tð Þ + r2P 2 tð Þ + bS tð Þ − b1R tð Þ,

8>>>>>><>>>>>>:
ð6Þ

F1 t, S tð Þ,P 1 tð Þ,P 2 tð Þ,R tð Þð Þ =Θ − rP 1 tð ÞS tð Þ − rsP 2 tð ÞS tð Þ − b + b1ð ÞS tð Þ,
F2 t, S tð Þ,P 1 tð Þ,P 2 tð Þ,R tð Þð Þ = p rP 1 tð ÞS tð Þ + rsP 2 tð ÞS tð Þ½ � − b1 + b2 + r1ð ÞP 1 tð Þ,
F3 t, S tð Þ,P 1 tð Þ,P 2 tð Þ,R tð Þð Þ = 1 − pð Þ rP 1 tð ÞS tð Þ + rsP 2 tð ÞS tð Þ½ � + qr1P 1 tð Þ − b1 + b3 + r2ð ÞP 2 tð Þ,
F4 t, S tð Þ,P 1 tð Þ,P 2 tð Þ,R tð Þð Þ = r1 1 − qð ÞP 1 tð Þ + r2P 2 tð Þ + bS tð Þ − b1R tð Þ:

8>>>>><>>>>>:
ð10Þ

RLDω
0,tS tð Þ = νtν−1F1 t, S tð Þ,P 1 tð Þ,P 2 tð Þ,R tð Þð Þ,

RLDω
0,tP 1 tð Þ = νtν−1F2 t, S tð Þ,P 1 tð Þ,P 2 tð Þ,R tð Þð Þ,

RLDω
0,tP 2 tð Þ = νtν−1F3 t, S tð Þ,P 1 tð Þ,P 2 tð Þ,R tð Þð Þ,

RLDω
0,tR tð Þ = νtν−1F4 t, S tð Þ,P 1 tð Þ,P 2 tð Þ,R tð Þð Þ:

8>>>>>><>>>>>>:
ð11Þ
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By (11), we derive the following IVP:

 RLDω
0,tX tð Þ = νtν−1F t,X tð Þð Þ, ω, ν ∈ 0, 1ð �,

X 0ð Þ =X0,

(
ð12Þ

where

X tð Þ = S tð Þ,P 1 tð Þ,P 2 tð Þ,R tð Þð ÞT ,
X0 = S0,P 1,0,P 2,0,R0ð ÞT ,

F t,X tð Þð Þ =

F1 t, S tð Þ,P 1 tð Þ,P 2 tð Þ,R tð Þð Þ,
F2 t, S tð Þ,P 1 tð Þ,P 2 tð Þ,R tð Þð Þ,
F3 t, S tð Þ,P 1 tð Þ,P 2 tð Þ,R tð Þð Þ,
F4 t, S tð Þ,P 1 tð Þ,P 2 tð Þ,R tð Þð Þ:

8>>>>><>>>>>:
ð13Þ

Now, the fractional-fractal integral acts on (12), and
it becomes

X tð Þ =X 0ð Þ + ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1F m,X mð Þð Þ dm:

ð14Þ

In other words, the extended form of the above
fractal-fractional integral is represented as

Consider the operator G : X⟶X as

G X tð Þð Þ =X 0ð Þ + ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1F m,X mð Þð Þdm:

ð16Þ

In the preceding, we recall the required fixed point
theorem in connection with our aim for proving the
existence results.

Theorem 4 (see [58]). Assume ðX, dÞ as a Banach space,
ϕ : X ×X⟶ℝ, ψ ∈Ψ, and F : X⟶X as an ϕ-ψ-con-
traction s.t.

(1) F is ϕ-admissible

(2) ∃u0 ∈X, s:t:ϕðͷ0,Fͷ0Þ ≥ 1

(3) for any sequence fͷng in X with ͷn ⟶ ͷ and ϕðͷn,
ͷn+1Þ ≥ 1 for all n ≥ 1, we have ϕðͷn, ͷÞ ≥ 1, ∀n ∈ℕ

Then, ∃ͷ ∗ s.t. Fðͷ ∗Þ = ͷ ∗.

Now, the first existence result is proved here under some
special operators.

Theorem 5. Let ∃T : ℝ ×ℝ⟶ℝ, ∃ a continuous map
F : J ×X⟶X, and ∃ a nondecreasing map ψ ∈Ψ. Let
(B1)∀X1,X2 ∈X, and t ∈ J,

F t,X1 tð Þð Þ −F t,X2 tð Þð Þj j ≤ ~ℓψ X1 tð Þ −X2 tjð Þjð , ð17Þ

with TðX1ðtÞ,X2ðtÞÞ ≥ 0, where ~ℓ = ðΓðν + ωÞÞ/ðνTν+ω−1

ΓðνÞÞ.
(B2) X0 ∈X exists so that ∀t ∈ J,

T X0 tð Þ,G X0 tð Þð Þð Þ ≥ 0, ð18Þ

and also, the inequality

T X1 tð Þ,X2 tð Þð Þ ≥ 0, ð19Þ

gives

T G X1 tð Þð Þ,G X2 tð Þð Þð Þ ≥ 0, ð20Þ

for any X1,X2 ∈X and t ∈ J.
(B3)∀fXngn≥1 belonging to X with Xn ⟶X and

T Xn tð Þ,Xn+1 tð Þð Þ ≥ 0, ð21Þ

for each n and t ∈ J, we get

S tð Þ = S0 +
ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1F1 m, S mð Þ,P 1 mð Þ,P 2 mð Þ,R mð Þð Þ dm,

P 1 tð Þ =P 1,0 +
ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1F2 m, S mð Þ,P 1 mð Þ,P 2 mð Þ,R mð Þð Þ dm,

P 2 tð Þ =P 2,0 +
ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1F3 m, S mð Þ,P 1 mð Þ,P 2 mð Þ,R mð Þð Þ dm,

R tð Þ =R0 +
ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1F4 m, S mð Þ,P 1 mð Þ,P 2 mð Þ,R mð Þð Þ dm:

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

ð15Þ
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T Xn tð Þ,X tð Þð Þ ≥ 0: ð22Þ

In such a case, ∃ is a solution for the fractal-fractional
problem (12), and so there exists a solution for the given
fractal-fractional epidemic model of SARS-CoV-2 virus (6).

Proof. Let X1 and X2 be two members belonging to X with

T X1 tð Þ,X2 tð Þð Þ ≥ 0, ð23Þ

for each t ∈ J. Then, by definition of the Beta function, we
may write

G X1 tð Þð Þ −G X2 tð Þð Þj j

≤
ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1 F m,X1 mð Þð Þ −F m,X2 mð Þð Þj j dm

≤
ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1~ℓψ X1 mð Þ −X2 mjð Þð dm

≤
ν~ℓTν+ω−1B ν, ωð Þ

Γ ωð Þ ψ X1 −X2k kXð Þ

=
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ

~ℓψ X1 −X2k kXð Þ:

ð24Þ

Consequently, we have

G X1ð Þ −G X2ð Þk kX ≤
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ

~ℓψ X1 −X2k kXð Þ

= ψ X1 −X2k kXð Þ:
ð25Þ

Now, ϕ : X ×X⟶ ½0,∞Þ is introduced by the this rule:

ϕ X1,X2ð Þ =
1 if T X1 tð Þ,X2 tð Þð Þ ≥ 0,

0 otherwise:

(
ð26Þ

Then, for every X1,X2 ∈X, we will get

ϕ X1,X2ð Þd G X1ð Þ,G X2ð Þð Þ ≤ ψ d X1,X2ð Þð Þ: ð27Þ

Thus, G is found as an ϕ-ψ-contraction. To verify that G
is ϕ-admissible, let X1,X2 ∈X be arbitrary and ϕðX1,X2Þ
≥ 1. By definition of ϕ, we have

T X1 tð Þ,X2 tð Þð Þ ≥ 0: ð28Þ

Then, by ðP2Þ, TðGðX1ðtÞÞ,GðX2ðtÞÞÞ ≥ 0 is satisfied.
Again, the definition of ϕ gives ϕðGðX1Þ,GðX2ÞÞ ≥ 1. Thus,
G is ϕ-admissible.

On the other hand, the condition ðP2Þ guarantees the
existence of X0 ∈X. In this case, for each t ∈ J, TðX0ðtÞ,
GðX0ðtÞÞÞ ≥ 0 holds. Clearly, we get ϕðX0,GðX0ÞÞ ≥ 1.
These show that the conditions (1) and (2) of Theorem 4
are fulfilled.

Now, we assume that fXngn≥1 is a sequence in X s.t.
Xn ⟶X , and for all n, ϕðXn,Xn+1Þ ≥ 1. By virtue of
definition of ϕ,

T Xn tð Þ,Xn+1 tð Þð Þ ≥ 0: ð29Þ

Therefore, in the light of hypothesis ðP3Þ, we obtain

T Xn tð Þ,X tð Þð Þ ≥ 0: ð30Þ

This indicates that ϕðXn,XÞ ≥ 1 for every n. This guar-
antees the condition (3) of Theorem 4. Ultimately, by utiliz-
ing Theorem 4, we conclude that it found a fixed point for G
like X∗ ∈X: This implies that X∗ = ðS∗,P ∗

1 ,P
∗
2 ,R

∗ÞT is
interpreted as a solution of the fractal-fractional model of
SARS-CoV-2 (6) and the argument is finally completed.

In the sequel, we use the Leray-Schauder criterion to
prove the existence result.

Theorem 6 (see [61]). Regard X as a Banach space, E as a
bounded closed set in X with the convexity property, and an
open set O ⊆ E with 0 ∈O. The compact continuous map G : �O
⟶ E, either

(i) G possesses fixed point in �O or

(ii) ∃∈∂O and μ ∈ ð0, 1Þ s.t. ϰ = μGðϰÞ.

Theorem 7. Assume F ∈ CðJ ×X,XÞ along with the
following:

(C1): φ ∈ L1ðJ,ℝ+Þ and an increasing map B ∈ Cð½0,∞Þ,
ð0,∞ÞÞ exist provided that

F t,X tð Þð Þj j ≤ φ tð ÞB X tð Þj jð Þ ð31Þ

(C2): There exist γ > 0 with

γ

Λ + Δφ∗
0B γð Þ > 1, ð32Þ

in which φ∗
0 = supt∈JjφððtÞÞj and Λ, Δ are given in () and ()

Then, a solution exists for fractal-fractional problem (12),
and so a solution exists for the given fractal-fractional model
of SARS-CoV-2 virus (6) on J.

Proof. We define a map G : X⟶X as in (15) and the ball

V ε = X ∈X : Xk kX ≤ ε
� �

, ð33Þ

for some ε > 0. From the continuity of F , we yield the
continuity of operator G. (C1) gives
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G X tð Þð Þj j ≤ X 0ð Þj j + ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω F m,X mð Þð ÞÞj jdm

≤X0 +
ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þωφ mð ÞB X mð Þð Þdm

≤X0 +
νTν+ω−1B ν, ωð Þ

Γ ωð Þ φ∗
0B Xk kXð Þ

≤X0 +
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ φ∗

0B εð Þ,

ð34Þ

for X ∈ Vε. Consequently, we obtain

G X tð Þð Þk k ≤X0 +
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ φ∗

0B εð Þ <∞: ð35Þ

This gives the uniformally boundedness of the operator G
onX. We now verify the equicontinuity of operator G. For the
purpose, arbitrarily, take t, t′ ∈ ½0, T� such that t < t′ and X

∈ V ε. Assuming

sup
t,X∈J×V ε

F t,X tð Þð Þj j =F∗ <∞, ð36Þ

estimate

G X t′
� �� �

−G X tð Þð Þ
��� ���

=
ν

Γ ωð Þ
ðt′
0
mν−1 t′ −m

� �ω−1
F m,X mð Þð Þj jdm

�����
−

ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1 F m,X mð Þð Þj jdm

����
≤

νF∗

Γ ωð Þ
ðt′
0
mν−1 t′ −m

� �ω−1
dm −

ðt
0
mν−1 t −mð Þωdm

 !

≤
νF∗B ν, ωð Þ

Γ ωð Þ t′ν+ω−1 − tν+ω−1
h i

=
νF∗Γ νð Þ
Γ ν + ωð Þ t′ν+ω−1 − tν+ω−1

h i
,

ð37Þ

which is independent of X, as t′ ⟶ t, the R.H.S. of above,
tends to 0. It implies that

G X t′
� �� �

−G X tð Þð Þ
��� ���

X
⟶ 0: ð38Þ

This confirms the equicontinuity ofG. Arzelà-Ascoli’s the-
orem implies the compactness of operator G on Vε. The
hypothesis of Theorem 6 on the operator G has now been
verified. Utilizing (C2), we construct

ℙ = X ∈X : Xk kX < γ
� �

, ð39Þ

for some γ > 0 via

X0 +
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ φ∗

0B γð Þ < γ: ð40Þ

Utilizing (C1) and by (35), we write

GXk kX ≤X0 +
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ φ∗

0B Xð Þ: ð41Þ

Now, we assume the existence of X ∈ ∂ℙ and α ∈ ð0, 1Þ
subject to X = αGðXÞ. For such α and X, by (41), one may
write that

γ = Xk kX = α GXk kX
<X0 +

νTν+ω−1Γ νð Þ
Γ ν + ωð Þ φ∗

0B Xk kXð Þ

<X0 +
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ φ∗

0B γð Þ < γ,

ð42Þ

which is impossible. Therefore, (ii) is not valid, and by Theo-
rem 6, G possesses a fixed point in ℙ. Therefore, the fractal-
fractional model of SARS-CoV-2 virus (6) admits a solution
and so proof is complete.

5. Uniqueness Result

Lemma 8. Assume S ,P 1,P 2,R, S∗,P ∗
1 ,P

∗
2 ,R

∗ ∈ Y = C
ðJ,ℝÞ. Let (H1) kSk ≤ λ1, kP 1k ≤ λ2, kP 1k ≤ λ3, and
kRk ≤ λ4 for some λ1, λ2, λ3, λ4 > 0.

Then, the kernels F1, F2, F3, and F4 given in (10) satis-
fied the Lipschitz property w.r.t. the corresponding compo-
nents if ϖ1, ϖ2, ϖ3, ϖ4 < 1, where

ϖ1 = qλ1 + r,

ϖ2 = r + s,

ϖ3 = r + b,

ϖ4 = r:

ð43Þ

Proof. Starting from the kernel F1, for each S , S∗ ∈ Y ,
we estimate

F1 t, S tð Þ,P 1 tð Þ,P 2 tð Þ,R tð Þð Þk
−F1 t, S∗ tð Þ,P 1 tð Þ,P 2 tð Þ,R tð Þð Þk

= p − qS tð ÞP 2 tð Þ − rS tð Þð Þk
− p − qS∗ tð ÞP 2 tð Þ − rS∗ tð Þð Þk

≤ q P 2 tð Þk k + r½ � S tð Þ − S∗ tð Þk k
≤ qλ3 + r½ � S tð Þ − S∗ tð Þk k
= ϖ1 S tð Þ − S∗ tð Þk k:

ð44Þ

This shows that the kernel F1 is Lipschitz w.r.t. S

with constant ϖ1 < 1. Regarding the kernel function F2,
for each P 1,P ∗

1 ∈ Y ≔ CðJ,ℝÞ, we estimate
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F2 t, S tð Þ,P 1 tð Þ,P 2 tð Þ,R tð Þð Þk
−F2 t, S tð Þ,P ∗

1 tð Þ,P 2 tð Þ,R tð Þð Þk
= qS tð ÞP 2 tð Þ − r + sð ÞP 1 tð Þð Þk

− qS∗ tð ÞP 2 tð Þ − r + sð ÞP ∗
1 tð Þð Þk

≤ r + s½ � P 1 tð Þ −P ∗
1 tð Þk k

= ϖ2 P 1 tð Þ −P ∗
1 tð Þk k:

ð45Þ

This leads that F2 is Lipschitz w.r.t. P 1 with con-
stant ϖ2 < 1. Now for each P 2,P ∗

2 ∈ Y , we have

F3 t, S tð Þ,P 1 tð Þ,P 2 tð Þ,R tð Þð Þk
−F3 t, S tð Þ,P 1 tð Þ,P ∗

2 tð Þ,R tð Þð Þk
= sP 1 tð Þ − r + bð ÞP 2 tð Þð Þk

− sP 1 tð Þ − r + bð ÞP ∗
2 tð Þð Þk

≤ r + b½ � P 2 tð Þ −P ∗
2 tð Þk k

= ϖ3 P 2 tð Þ −P ∗
2 tð Þk k:

ð46Þ

This shows that F3 is Lipschitz w.r.t. P 2 with con-
stant ϖ3 < 1. Now for each R,R∗ ∈ Y , we have

F4 t, S tð Þ,P 1 tð Þ,P 2 tð Þ,R tð Þð Þk
−F4 t, S tð Þ,P 1 tð Þ,P 2 tð Þ,R∗ tð Þð Þk

= bP 2 tð Þ − rR tð Þð Þ − bP 2 tð Þ − rR∗ tð Þð Þk k
≤ r½ � R tð Þ −R∗ tð Þk k = ϖ4 R tð Þ −R∗ tð Þk k:

ð47Þ

This shows that F4 is Lipschitz w.r.t. R with
constant ϖ4 < 1. From the above, we conclude that the
kernels F i, i = 1, 2, 3, 4, are Lipschitzian w.r.t. the corre-
sponding component with constants ϖi, i = 1, 2, 3, 4,
respectively.

We study the uniqueness result for solution to the presumed
fractal-fractional model (6) based on the conclusions gained
in Lemma 8.

Theorem 9. Assume (H1), then the given fractal-fractional
model of SARS-CoV-2 virus (6) has a unique solution if

νTν+ω−1Γ νð Þ
Γ ν + ωð Þ ϖi < 1, i ∈ 1, 2, 3, 4: ð48Þ

Proof. The outcome of the theorem is assumed to be inva-
lid. That is to say, there is another solution for the given
fractional-fractal model of SARS-CoV-2 virus (6). Assume
that ðS∗ðtÞ,P ∗

1 ðtÞ,P ∗
2 ðtÞ,R∗ðtÞÞ is another solution with

ðS0; ;P 1,0,P 2,0,RÞ such that by (16), we have

Now, we can estimate

S tð Þ − S∗ tð Þj j ≤ ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1

× F1 m, S mð Þ,P 1 mð Þ,P 2 mð Þ,R mð Þð Þj
−F1 m, S∗ mð Þ,P ∗

1 mð Þ,P ∗
2 mð Þ,R∗ mð Þð Þjdm

≤
ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1ϖ1 S − S∗k kdm

≤
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ ϖ1 S − S∗k k,

ð50Þ

and so

1 −
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ ϖ1

� 	
S − S∗k k ≤ 0: ð51Þ

It is true if kS − S∗k = 0, and accordingly, S = S∗. Next,
from

P 1 −P ∗
1k k ≤ 1 −

νTν+ω−1Γ νð Þ
Γ ν + ωð Þ ϖ2

� 	
P 1 −P ∗

1k k, ð52Þ

S∗ tð Þ = S0 +
ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1F1 m, S∗ mð Þð Þ,P ∗

1 mð Þ,P ∗
2 mð Þ,R∗ mð Þdm,

P ∗
1 tð Þ =P 1,0 +

ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1F2 m, S∗ mð Þð Þ,P ∗

1 mð Þ,P ∗
2 mð Þ,R∗ mð Þdm,

P ∗
2 tð Þ =P 2,0 +

ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1F3 m, S∗ mð Þð Þ,P ∗

1 mð Þ,P ∗
2 mð Þ,R∗ mð Þdm,

R∗ tð Þ =R0 +
ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1F4 m, S∗ mð Þð Þ,P ∗

1 mð Þ,P ∗
2 mð Þ,R∗ mð Þdm:

ð49Þ
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we get

1 −
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ ϖ2

� 	
P 1 −P ∗

1k k ≤ 0: ð53Þ

This implies that kP 1 −P ∗
1k = 0 and so P 1 =P ∗

1 : Also,
we have

P 2 −P ∗
2k k ≤ 1 −

νTν+ω−1Γ νð Þ
Γ ν + ωð Þ ϖ3

� 	
P 2 −P ∗

2k k: ð54Þ

This gives

1 −
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ ϖ3

� 	
P 2 −P ∗

2k k ≤ 0: ð55Þ

This implies that kP 2 −P ∗
2k = 0 and so P 2 =P ∗

2 :
Finally, from

R −R∗k k ≤ 1 −
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ ϖ4

� 	
R −R∗k k, ð56Þ

we get

1 −
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ ϖ4

� 	
R −R∗k k ≤ 0: ð57Þ

This implies that kR −R∗k = 0 and so R =R∗: Conse-
quently, we get

S tð Þ,P 1 tð Þ,P 2 tð Þ,R tð Þð Þ = S∗ tð Þ,P ∗
1 tð Þ,P ∗

2 tð Þ,R∗ tð Þð Þ:
ð58Þ

This shows that the fractal-fractional model of SARS-
CoV-2 virus (6) has exactly one solution.

6. UH and UHR Stability Criterion

We now proceed to review stable solutions in the context of
the Ulam-Hyers (UH) and Ulam-Hyers-Rassias (UHR) to
the given fractal-fractional model of SARS-CoV-2 virus (6).

Definition 10. The fractal-fractional model of SARS-CoV-2
virus (6) is UH-stable if ∃0 <MFi

∈ℝ, i = 1, 2, 3, 4 s.t. ∀εi >
0 and ∀, ðS∗,P ∗

1 ,P
∗
2 ,R

∗Þ ∈X fulfilling

FFPD
ω,ν
0,t S

∗ tð Þ −F1 t, S∗ tð Þ,P ∗
1 tð Þ,P ∗

2 tð Þ,R∗ tð Þð Þ
��� ��� < ε1,

FFPD
ω,ν
0,t P

∗
1 tð Þ −F2 t, S∗ tð Þ,P ∗

1 tð Þ,P ∗
2 tð Þ,R∗ tð Þð Þ

��� ��� < ε2,

FFPD
ω,ν
0,t P

∗
2 tð Þ −F3 t, S∗ tð Þ,P ∗

1 tð Þ,P ∗
2 tð Þ,R∗ tð Þð Þ

��� ��� < ε3,

FFPD
ω,ν
0,t R

∗ tð Þ −F4 t, S∗ tð Þ,P ∗
1 tð Þ,P ∗

2 tð Þ,R∗ tð Þð Þ
��� ��� < ε4:

8>>>>>>>>>><>>>>>>>>>>:
ð59Þ

There exist ðS ,P 1,P 2,RÞ ∈X satisfying the given fractal-
fractional model of SARS-CoV-2 virus (6) with

S∗ tð Þ − S tð ÞÞj j ≤MF1
ε1,∀t ∈ J,

P ∗
1 tð Þ −P 1 tð ÞÞj j ≤MF2

ε2,∀t ∈ J,

P ∗
2 tð Þ −P 2 tð ÞÞj j ≤MF3

ε3,∀t ∈ J,

R∗ tð Þ −R tð ÞÞj j ≤MF4
ε4,∀t ∈ J:

8>>>>><>>>>>:
ð60Þ

Definition 11. The given fractal-fractional model of SARS-
CoV-2 virus (6) is generalized UH-stable if ∃MFi

∈ Cðℝ+,
ℝ+Þ, i = 1, 2, 3, 4 with MFi

ð0Þ = 0 s.t. ∀εi > 0 and ∀ðS∗,P ∗
1 ,

P ∗
2 ,R

∗Þ ∈X fulfilling

FFPD
ω,ν
0,t S

∗ tð Þ −F1 t, S∗ tð Þ,P ∗
1 tð Þ,P ∗

2 tð Þ,R∗ tð Þð Þ
��� ��� < ε1,

FFPD
ω,ν
0,t P

∗
1 tð Þ −F2 t, S∗ tð Þ,P ∗

1 tð Þ,P ∗
2 tð Þ,R∗ tð Þð Þ

��� ��� < ε2,

FFPD
ω,ν
0,t P

∗
2 tð Þ −F3 t, S∗ tð Þ,P ∗

1 tð Þ,P ∗
2 tð Þ,R∗ tð Þð Þ

��� ��� < ε3,

FFPD
ω,ν
0,t R

∗ tð Þ −F4 t, S∗ tð Þ,P ∗
1 tð Þ,P ∗

2 tð Þ,R∗ tð Þð Þ
��� ��� < ε4:

8>>>>>>>>>><>>>>>>>>>>:
ð61Þ

There exist a solution ðS ,P 1,P 2,RÞ ∈X of the given
fractal-fractional model of SARS-CoV-2 virus (6) with

S∗ tð Þ − S tð ÞÞj j ≤MF1
ε1,∀t ∈ J,

P ∗
1 tð Þ −P 1 tð ÞÞj j ≤MF2

ε2,∀t ∈ J,

P ∗
2 tð Þ −P 2 tð ÞÞj j ≤MF3

ε3,∀t ∈ J,

R∗ tð Þ −R tð ÞÞj j ≤MF4
ε4,∀t ∈ J:

8>>>>><>>>>>:
ð62Þ

Remark 12. Note that ðS∗,P ∗
1 ,P

∗
2 ,R

∗Þ ∈X is a solution of
(59) iff ∃η1, η2, η3, η4 ∈ Cð½0, T�,ℝÞ (depending upon S∗,
P ∗

1 ,P
∗
2 ,R

∗, respectively) so that for all t ∈ J,

(i) jηiðtÞj < εi, ði = 1, 2, 3, 4Þ
(ii) We have

FFPDω,ν
0,t S

∗ tð Þ −F1 t, S∗ tð Þ,P ∗
1 tð Þ,P ∗

2 tð Þ,R∗ tð Þð Þ�� �� + η1 tð Þ,
FFPDω,ν

0,t P
∗
1 tð Þ −F2 t, S∗ tð Þ,P ∗

1 tð Þ,P ∗
2 tð Þ,R∗ tð Þð Þ�� �� + η2 tð Þ,

FFPDω,ν
0,t P

∗
2 tð Þ −F3 t, S∗ tð Þ,P ∗

1 tð Þ,P ∗
2 tð Þ,R∗ tð Þð Þ�� ��η3 tð Þ,

FFPDω,ν
0,t R

∗ tð Þ −F4 t, S∗ tð Þ,P ∗
1 tð Þ,P ∗

2 tð Þ,R∗ tð Þð Þ�� ��η4 tð Þ

8>>>>>><>>>>>>:
ð63Þ

Definition 13. The fractal-fractional model of SARS-CoV-2
virus (6) is UHR-stable w.r.t. functions Ψi, i = 1, 2, 3, 4, if ∃
0 <MFi ,Ψi

∈ℝ, i = 1, 2, 3, 4 s.t. ∀εi > 0 and ∀ðS∗,P ∗
1 ,P

∗
2 ,

R∗Þ ∈X fulfilling

10 Journal of Function Spaces



FFPD
ω,ν
0,t S

∗ tð Þ −F1 t, S∗ tð Þ,P ∗
1 tð Þ,P ∗

2 tð Þ,R∗ tð Þð Þ
��� ��� < ε2Ψ2 tð Þ:
FFPD

ω,ν
0,t P

∗
1 tð Þ −F2 t, S∗ tð Þ,P ∗

1 tð Þ,P ∗
2 tð Þ,R∗ tð Þð Þ

��� ��� < ε2Ψ2 tð Þ,
FFPD

ω,ν
0,t P

∗
2 tð Þ −F3 t, S∗ tð Þ,P ∗

1 tð Þ,P ∗
2 tð Þ,R∗ tð Þð Þ

��� ��� < ε3Ψ3 tð Þ,
FFPD

ω,ν
0,t R

∗ tð Þ −F4 t, S∗ tð Þ,P ∗
1 tð Þ,P ∗

2 tð Þ,R∗ tð Þð Þ
��� ��� < ε4Ψ4 tð Þ:

8>>>>>>>>>><>>>>>>>>>>:
ð64Þ

There exist ðS ,P 1,P 2,RÞ ∈X satisfying the given fractal-
fractional model of SARS-CoV-2 virus (6) with

S∗ tð Þ − S tð ÞÞj j ≤MF1,Ψ1
ε1Ψ1 tð Þ,∀t ∈ J,

P ∗
1 tð Þ −P 1 tð ÞÞj j ≤MF2,Ψ1

ε2Ψ2 tð Þ,∀t ∈ J,

P ∗
2 tð Þ −P 2 tð ÞÞj j ≤MF3,Ψ3

ε3Ψ3 tð Þ,∀t ∈ J,

R∗ tð Þ −R tð ÞÞj j ≤MF4,Ψ1
ε4Ψ4 tð Þ,∀t ∈ J:

8>>>>><>>>>>:
ð65Þ

Definition 14. The given fractal-fractional model of SARS-
CoV-2 virus (6) is generalized UHR-stable w.r.t. Ψi, i = 1, 2
, 3, 4, if ∃MFi ,Ψi

∈ℝ, i = 1, 2, 3, 4 with MFi
ð0Þ = 0 s.t. ∀εi > 0

and ∀ðS∗,P ∗
1 ,P

∗
2 ,R

∗Þ ∈X fulfilling

FFPD
ω,ν
0,t S

∗ tð Þ −F1 t, S∗ tð Þ,P ∗
1 tð Þ,P ∗

2 tð Þ,R∗ tð Þð Þ
��� ��� <Ψ1 tð Þ,
FFPD

ω,ν
0,t P

∗
1 tð Þ −F2 t, S∗ tð Þ,P ∗

1 tð Þ,P ∗
2 tð Þ,R∗ tð Þð Þ

��� ��� <Ψ2 tð Þ,
FFPD

ω,ν
0,t P

∗
2 tð Þ −F3 t, S∗ tð Þ,P ∗

1 tð Þ,P ∗
2 tð Þ,R∗ tð Þð Þ

��� ��� <Ψ3 tð Þ,
FFPD

ω,ν
0,t R

∗ tð Þ −F4 t, S∗ tð Þ,P ∗
1 tð Þ,P ∗

2 tð Þ,R∗ tð Þð Þ
��� ��� <Ψ4 tð Þ:

8>>>>>>>>>><>>>>>>>>>>:
ð66Þ

There exist a solution ðS ,P 1,P 2,RÞ ∈X of the given
fractal-fractional model of SARS-CoV-2 virus (6) with

S∗ tð Þ − S tð ÞÞj j ≤MF1,Ψ1
Ψ1 tð Þ,∀t ∈ J,

P ∗
1 tð Þ −P 1 tð ÞÞj j ≤MF2,Ψ2

Ψ2 tð Þ,∀t ∈ J,

P ∗
2 tð Þ −P 2 tð ÞÞj j ≤MF3,Ψ3

Ψ3 tð Þ,∀t ∈ J,

R∗ tð Þ −R tð ÞÞj j ≤MF4,Ψ4
Ψ4 tð Þ,∀t ∈ J:

8>>>>><>>>>>:
ð67Þ

Remark 15. Note that ðS∗,P ∗
1 ,P

∗
2 ,R

∗Þ ∈X is a solution of
(64) iff there exists η1, η2, η3, η4 ∈ Cð½0, T�,ℝÞ (depending
upon S∗,P ∗

1 ,P
∗
2 ,R

∗, respectively) so that for all t ∈ J,

(i) jηiðtÞj <ΨiðTÞεi, ði = 1, 2, 3, 4Þ
(ii) We have

FFPDω,ν
0,t S

∗ tð Þ =F1 t, S∗ tð Þ,P ∗
1 tð Þ,P ∗

2 tð Þ,R∗ tð Þð Þ + η1 tð Þ,
FFPDω,ν

0,t P
∗
1 tð Þ =F2 t, S∗ tð Þ,P ∗

1 tð Þ,P ∗
2 tð Þ,R∗ tð Þð Þ + η2 tð Þ:

FFPDω,ν
0,t P

∗
2 tð Þ =F3 t, S∗ tð Þ,P ∗

1 tð Þ,P ∗
2 tð Þ,R∗ tð Þð Þ + η3 tð Þ,

FFPDω,ν
0,t R

∗ tð Þ =F4 t, S∗ tð Þ,P ∗
1 tð Þ,P ∗

2 tð Þ,R∗ tð Þð Þ + η4 tð Þ

8>>>>>><>>>>>>:
ð68Þ

Theorem 16. The given fractal-fractional model of SARS-
CoV-2 virus (6) is UH-stable on J≔ ½0, T�, and it is general-
ized UH-stable such that

νTν+ω−1Γ νð Þ
Γ ν + ωð Þ ϖi < 1, i ∈ 1, 2, 3, 4f g, ð69Þ

where ϖi are given by () provided that the assumption (H1) is
valid.

Proof. Let ε1 > 0 and S∗ ∈ Y be arbitrary so that

 FFPDω,ν
0,t S

∗ tð Þ −F1 t, S∗ tð Þ,P ∗
1 tð Þ,P ∗

2 tð Þ,R∗ tð Þð Þ�� �� < ε1:

ð70Þ

Then, in view of Remark 12, we can find a function η1ðtÞ
satisfying

FFPDω,ν
0,t S

ast tð Þ =F1 t, Sast tð Þ,P ast
1 tð Þ,P ast

2 tð Þ,R∗ tð Þ
 �
+ η1 tð Þ,

ð71Þ

with jη1ðtÞj ≤ ε1. So

S∗ tð Þ = S0 +
ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1F1 m, S∗ mð Þ,P ∗

1ð

� mð Þ,P ∗
2 mð Þ,R∗ mð ÞÞdm

+
ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1η1 mð Þdm:

ð72Þ

By Theorem 9, let S ∈ Y be the unique solution of the
given fractal-fractional model of NOV-COV-2 virus ().
Then, SðtÞ is given by

S tð Þ = S0 +
ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1F1

� m, S mð Þ,P 1 mð Þ,P 2 mð Þ,R mð Þð Þdm:

ð73Þ

11Journal of Function Spaces



Then,

S∗ tð Þ − S tð Þj j ≤ ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1 η1 mð Þj jdm

+
ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1

× F1 m, S∗ mð Þ,P ∗
1 mð Þ,P ∗

2 mð Þ,R∗ mð Þð Þj
−F1 m, S mð Þ,P 1 mð Þ,P 2 mð Þ,R mð Þð Þjdm,

≤
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ ε1 +

νTν+ω−1Γ νð Þ
Γ ν + ωð Þ ϖ1 S∗ − Sk k:

ð74Þ

Hence, we get

S∗ − Sk k ≤ νTν+ω−1Γ νð Þ
 �
/ Γ ν + ωð Þð Þ
 �

ε1
1 − νTν+ω−1Γ νð Þ
 �

/ Γ ν + ωð Þð Þ
 �
ϖ1

: ð75Þ

If we let MF1
= ððνTν+ω−1ΓðνÞÞ/ðΓðν + ωÞÞÞ/ð1 − ððν

Tν+ω−1ΓðνÞÞ/ðΓðν + ωÞÞÞϖ1Þ, then kS∗ − Sk ≤MF1
ε1. Sim-

ilarly, we have

P ∗
1 −P 1k k ≤MF2

ε2, P ∗
2 −P 2k k ≤MF3

ε3, R∗ −Rk k ≤MF4
ε4,

ð76Þ

where

MFi
=

νTν+ω−1Γ νð Þ
 �
/ Γ ν + ωð Þð Þ

1 − νTν+ω−1Γ νð Þ
 �
/ Γ ν + ωð Þð Þ
 �

ϖi

, i ∈ 2, 3, 4f gð Þ:

ð77Þ

Hence, the UH stability of the given fractal-fractional
model (6) is fulfilled. Next, by assuming

MFi
εið Þ = νTν+ω−1Γ νð Þ
 �

/ Γ ν + ωð Þð Þ
 �
εi

1 − νTν+ω−1Γ νð Þ
 �
/ Γ ν + ωð Þð Þ
 �

ϖi

, i ∈ 1, 2, 3, 4f gð Þ,

ð78Þ

with MFi
ð0Þ = 0, the generalized UH stability of the given

fractional-fractal model (6) is fulfilled.

In the next result, UHR stability for the given fractal-
fractional model of SARS-CoV-2 (6) is studied:

Theorem 17. The condition ðH1Þ is assumed to be held:
(H′): ∃ increasing mappings Ψi ∈ Cð½0, T�,ℝ+Þ, ði ∈ f1, 2,

3, 4g and ∃ΛΨi
> 0 such that ∀t ∈ J,

FFPJ ω,ν
0,t Ψi tð Þ <ΛΨi

Ψi tð Þ, i ∈ 1, 2, 3, 4f gð : ð79Þ

Then, the given fractal-fractional model of SARS-CoV-2
virus (6) is UHR and generalized UHR-stable.

Proof. For every ε1 > 0 and ∀S∗ ∈ Y satisfying

FFPDω,ν
0,t S

∗ tð Þ −F1 t, S∗ tð Þ,P ∗
1 tð Þ,P ∗

2 tð Þ,R∗ tð Þð Þ�� �� < ε1Ψ1 tð Þ,
∃η tð Þ s:t:

FFPDω,ν
0,t S

∗ tð Þ =F1 t, S∗ tð Þ,P ∗
1 tð Þ,P ∗

2 tð Þ,R∗ tð Þð Þ + η1 tð Þ,
ð80Þ

with η1ðtÞ ≤ ε1Ψ1ðtÞ. It follows that

S∗ tð Þ = S0 +
ν

Γ ωð Þ
ðt
0
tν−1 t − tð Þω−1F1 t, S∗ tð Þ,P ∗

1 tð Þ,P ∗
2 tð Þ,R∗ tð Þð Þdt

+
ν

Γ ωð Þ
ðt
0
tν−1 t − tð Þω−1η1 tð Þdt:

ð81Þ

By Theorem 9, let S ∈ Y be the unique solution of the
given fractal-fractional model of SARS-CoV-2 virus (6).
Then, SðtÞ is given by

S tð Þ = S0 +
ν

Γ ωð Þ
ðt
0
tν−1 t − tð Þω−1F1 t, S tð Þ,P 1 tð Þ,P 2 tð Þ,R tð Þð Þdt:

ð82Þ

Then, by (61),

S∗ tð Þ − S tð Þj j ≤ ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1 h1 mð Þj jdm

+ ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1

× F1 m, S∗ mð Þ,P ∗
1 mð Þ,P ∗

2 mð Þ,R∗ mð Þð Þj
−F1 m, S mð Þ,P 1 mð Þ,P 2 mð Þ,R mð Þð Þdmj

≤
ε1ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1Ψ1 mð Þdm

+
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ ϖ1 S∗ − Sk k

≤ ε1ΛΨ1
Ψ1 +

νTν+ω−1Γ νð Þ
Γ ν + ωð Þ ϖ1 S∗ − Sk k:

ð83Þ

Accordingly, it gives

S∗ − Sk k ≤ ε1ΛΨ1
Ψ1

1 − νTν+ω−1Γ νð Þ
 �
/ Γ ν + ωð Þð Þ
 �

ϖ1
: ð84Þ

If we let

M F1,Ψ1ð Þ =
ΛΨ1

1 − νTν+ω−1Γ νð Þ
 �
/ Γ ν + ωð Þð Þ
 �

ϖ1
, ð85Þ
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then kS∗ − Sk ≤ ε1MðF1,Ψ1ÞΨ1: Similarly, we have

P ∗
1 −P 1k k ≤ ε2M F2,Ψ2ð ÞΨ2, P ∗

2 −P 2k k
≤ ε3M F3,Ψ3ð ÞΨ3, R∗ −Rk k
≤ ε4M F4,Ψ4ð ÞΨ4,

ð86Þ

where

M Fi ,Ψið Þ =
ΛΨi

1 − νTν+ω−1Γ νð Þ
 �
/ Γ ν + ωð Þð Þ
 �

ϖi

, i ∈ 1, 2, 3, 4f gð Þ:

ð87Þ

Hence, the given fractal-fractional model of SARS-CoV-
2 virus (6) is stable in the sense of UHR. Along with this, by
setting εi = 1 ; ði ∈ f1, 2, 3, 4gÞ, the mentioned fractal-
fractional model of SARS-CoV-2 virus (6) is generalized
UHR-stable.

7. Numerical Algorithms and Simulations

7.1. Numerical Adams-Bashforth Method. In this section, we
describe the numerical scheme in relation to the fractal-
fractional model of SARS-CoV-2 virus (6). For this, we have
taken help from the technique regarding two-step Lagrange
polynomials called fractional Adams-Bashforth method
(ABM). To begin this process, we follow the numerical
method of fractal-fractional integral equations (15) using a
new approach at tn+1. In other words, we discretize the
mentioned equation (15) for t = tn+1, and we have

S tn+1ð Þ = S0 +
ν

Γ ωð Þ
ðtn+1
0

tn+1 −mð Þω−1H 1 mð Þ dm,

P 1 tn+1ð Þ =P 1,0 +
ν

Γ ωð Þ
ðtn+1
0

tn+1 −mð Þω−1H 2 mð Þ dm,

P 2 tn+1ð Þ =P 2,0 +
ν

Γ ωð Þ
ðtn+1
0

tn+1 −mð Þω−1H 3 mð Þ dm,

R tn+1ð Þ =R0 +
ν

Γ ωð Þ
ðtn+1
0

tn+1 −mð Þω−1H 4 mð Þ dm,

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
ð88Þ

where

H 1 mð Þ =mν−1F1 m, S mð Þ,P 1 mð Þ,P 2 mð Þ,R mð Þð Þ,
H 2 mð Þ =mν−1F2 m, S mð Þ,P 1 mð Þ,P 2 mð Þ,R mð Þð Þ,
H 3 mð Þ =mν−1F3 m, S mð Þ,P 1 mð Þ,P 2 mð Þ,R mð Þð Þ,
H 4 mð Þ =mν−1F4 m, S mð Þ,P 1 mð Þ,P 2 mð Þ,R mð Þð Þ:

8>>>>><>>>>>:
ð89Þ

By approximating above integrals, we get

S tn+1ð Þ = S0 +
ν

Γ ωð Þ〠
n

l=0

ðtl+1
tl

tn+1 −mð Þω−1H 1 mð Þdm,

P 1 tn+1ð Þ =P 1,0 +
ν

Γ ωð Þ〠
n

l=0

ðtl+1
tl

tn+1 −mð Þω−1H 2 mð Þdm,

P 2 tn+1ð Þ =P 2,0 +
ν

Γ ωð Þ〠
n

l=0

ðtl+1
tl

tn+1 −mð Þω−1H 3 mð Þdm,

R tn+1ð Þ =R0 +
ν

Γ ωð Þ〠
n

l=0

ðtl+1
tl

tn+1 −mð Þω−1H 4 mð Þdm:

0BBBBBBBBBBBBBBBB@
ð90Þ

In the sequel, we approximate the functionsH 1,H 2,H 3
, and H 4, introduced by (89), on the interval ½tl, tl+1� via
two-step Lagrange interpolation polynomials with the step
size h = tl − tl−1 as

H∗
1,l mð Þ ≃ m − tl−1

h tν−1l F1 ml, S l,P 1,l,P 2,l,Rlð Þ

−
m − tl
h tν−1l−1 F1 ml−1, S l−1,P 1,l−1,P 2,l−1,Rl−1ð Þ,

H∗
2,l mð Þ ≃ m − tl−1

h tν−1l F2 ml, S l,P 1,l,P 2,l,Rlð Þ

−
m − tl
h tν−1l−1 F2 ml−1, S l−1,P 1,l−1,P 2,l−1,Rl−1ð Þ,

H∗
3,l mð Þ ≃ m − tl−1

h tν−1l F3 ml, S l,P 1,l,P 2,l,Rlð Þ

−
m − tl
h tν−1l−1 F3 ml−1, S l−1,P 1,l−1,P 2,l−1,Rl−1ð Þ,

H∗
4,l mð Þ ≃ m − tl−1

h tν−1l F4 ml, S l,P 1,l,P 2,l,Rlð Þ

−
m − tl
h tν−1l−1 F4 ml−1, S l−1,P 1,l−1,P 2,l−1,Rl−1ð Þ:

ð91Þ

Then, we have

S tn+1ð Þ = S0 +
ν

Γ ωð Þ〠
n

l=0

ðtl+1
tl

tn+1 −mð Þω−1H∗
1,l mð Þdm,

P 1 tn+1ð Þ =P 1,0 +
ν

Γ ωð Þ〠
n

l=0

ðtl+1
tl

tn+1 −mð Þω−1H∗
2,l mð Þdm,

P 2 tn+1ð Þ =P 2,0 +
ν

Γ ωð Þ〠
n

l=0

ðtl+1
tl

tn+1 −mð Þω−1H∗
3,l mð Þdm,

R tn+1ð Þ =R0 +
ν

Γ ωð Þ〠
n

l=0

ðtl+1
tl

tn+1 −mð Þω−1H∗
4,l mð Þdm:

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
ð92Þ

13Journal of Function Spaces



By evaluating above integrals directly, the approximate
solutions of the given fractional-fractal model of SARS-
CoV-2 virus (6) are given by

Sn+1 = S0 +
νhω

Γ ω + 2ð Þ〠
n

l=0
tν−1l F1 tl , S l ,P 1,l ,P 2,l ,Rlð ÞY n,lð Þ
h

− tν−1l−1 F1 tl−1, S l−1,P 1,l−1,P 2,l−1,Rl−1ð ÞŶ n,lð Þ
i
,

P 1,n+1 =P 1,0 +
νhω

Γ ω + 2ð Þ〠
n

l=0
tν−1l F2 tl, S l ,P 1,l ,P 2,l ,Rlð ÞY n,lð Þ
h

− tν−1l−1 F2 tl−1, S l−1,P 1,l−1,P 2,l−1,Rl−1ð ÞŶ n,lð Þ
i
,

P 2,n+1 =P 2,0 +
νhω

Γ ω + 2ð Þ〠
n

l=0
tν−1l F3 tl, S l ,P 1,l ,P 2,l ,Rlð ÞY n,lð Þ
h

− tν−1l−1 F3 tl−1, S l−1,P 1,l−1,P 2,l−1,Rl−1ð ÞŶ n,lð Þ
i
,

Rn+1 =R0 +
νhω

Γ ω + 2ð Þ〠
n

l=0
tν−1l F4 tl , S l,P 1,l ,P 2,l ,Rlð ÞY n,lð Þ
h

− tν−1l−1 F4 tl−1, S l−1,P 1,l−1,P 2,l−1,Rl−1ð ÞŶ n,lð Þ
i
,

ð93Þ

where

Y n,lð Þ = n + 1 − lð Þω n − l + 2 + ωð Þ − n − lð Þω n − l + 2 + 2ωð Þ,
Ŷ n,lð Þ = n + 1 − lð Þω+1 − n − lð Þω n − l + 1 + ωð Þ,

ð94Þ

where ω is the fractional order of the given fractal-fractional
system (6).

7.2. Simulations Based on Adams-Bashforth Method. In this
section, using the AB method for fractal-fractional, we pres-
ent approximate solutions for the fractal-fractional
probability-based model of SARS-CoV-2 virus (6). We dem-
onstrate simulations to observe the behavior of four sub-
classes of SARS-CoV-2, which are S , P 1, P 2, and R

under the different set of parameters.
To provide a numerical simulation, we start by deter-

mining the value of the parameters by using reported cases
in Turkey from 01 January 2021 to 03 July 2021. The birth
rate for the Turkey in 2021 is 15.408 births per 1000 people,
and the death rate is b1 = 5:5 per 1000 people. The Turkey’s
population on 1st of January was N = 84339067. Since we
use the day as time limit, we can calculate the newborn rate
as Θ = ð84339067 × 15:408Þ/ð1000 × 365Þ. To estimate the
remaining parameters, we use the curve fitting technique
with the data reported for SARS-CoV-2. Using this method,
we determine the parameters as follows: p = 0:4, r = 0:003, s
= 0:05, b = 0:05, r1 = 0:05, and r2 = 0:6, and we assume q =
0:2, b2 = 0:04, and b3 = 0:6. Also, the stepsize for the time
interval is choosen as h = 10−3. As a first visualization, in
Figure 1, we demonstrate the real data versus present model
simulation. Then, behaviors of four subclasses are presented

in Figures 2(a)–2(d) with the chosen initial values S = 100,
P 1 = 90, P 2 = 80, and R = 70, respectively, and under vari-
ous fractal-fractional orders ω and v.

Now, we simulate and discuss the dynamics of the model
based on the parameters provided by [60]. Based on this
source, we assume Θ = 30, r = 0:003, s = 0:05, b = 0:05, b1
= 0:05, p = 0:4, b2 = 0:04, r1 = 0:05, q = 0:2, b3 = 0:6, and r2
= 0:6. Finally, the initial values for state functions are Sð0Þ
= 0:5, P 1ð0Þ = 0:3, P 2ð0Þ = 0:2, and Rð0Þ = 0:1: In differ-
ent figures, we will show the behaviors of four state functions
S , P 1, P 2, and R by assuming different values for fractal
and fractional orders ω = ν = 1:00,0:99,0:98,0:97,0:96,0:95.

In Figures 3(a) and 3(b), we illustrate the obtained
dynamics of all four state functions S , P 1, P 2, and R by
the use of ABM with the vaccination rate (a) b = 0:05 and
(b) b = 0:1, respectively. The great impact of the vaccine
can be clearly observed from these illustrations as increasing
the vaccination rate decreases the infected population and
increases the recovered population.

In Figure 4, the susceptible subclass SðtÞ is demon-
strated with the initial value Sð0Þ = 0:5. From this illustra-
tion, we observed that the graphs of this category of people
converge quickly to a stable case at higher fractal-fractional
orders and slowly to such a stable case at lower fractal-
fractional orders. Also, we can see that by increasing the
fractal-fractional orders, the density of SðtÞ also increases.

In Figure 5, the asymptomatic subclass P 1ðtÞ is demon-
strated with the initial value P 1ðtÞ = 0:3. From this illustra-
tion, we observed that the graphs of this category of people
converge quickly to a stable case at higher fractal-fractional
orders and slowly to such a stable case at lower fractal-
fractional orders. Also, we can see that by increasing the
fractal-fractional orders, the density of asymptomatic cate-
gory P 1ðtÞ also increases.
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Figure 1: Simulated data vs. Real data for the SARS-CoV-2 cases in
Turkey from 01 January 2021 to 03 July 2021.
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Figure 2: Continued.
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In Figure 6, the symptomatic subclass P 2ðtÞ is pre-
sented with the initial value P 2ðtÞ = 0:2. From this illustra-
tion, we can see that the graphs of this category of people
converge quickly to a stable case at higher fractal-

fractional orders and slowly to such a stable case at lower
fractal-fractional orders. Also, we can see that by increasing
the fractal-fractional orders, the density of symptomatic
category P 2ðtÞ also increases.
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Figure 2: Behaviors of each compartments: (a) SðtÞ, (b) P 1ðtÞ, (c) P 2ðtÞ, and (d) RðtÞ under various fractal-fractional orders ω = v =
1,0:95,0:90,0:85,0:80 with the estimated parameters from the reported data.
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ω = v = 1.
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In Figure 7, the recovered category RðtÞ is demon-
strated with the initial value RðtÞ = 0:1. From this illustra-
tion, we observed that the graphs of this category of
people converge quickly to a stable case at higher fractal-
fractional orders and slowly to such a stable case at lower

fractal-fractional orders. Also, we can see that by increas-
ing the fractal-fractional orders, the density of recovered
population RðtÞ also increases.

It is seen that the graphs of all four category of people
have the similar behaviors regarding to different values of
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Figure 4: Behavior of SðtÞ by changing fractal-fractional order ω and v.

60

50

40

30

20

10

0

w = v = 1
w = v = 0.98
w = v = 0.96

w = v = 0.94
w = v = 0.92
w = v = 0.90

0 50
Time (days)

100 150

A
sy

m
pt

om
at

ic
 p

op
ul

at
io

n 
(

1(
t)

) 

Figure 5: Behavior of P 1ðtÞ by changing fractal-fractional order ω and v.
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fractal-fractional orders, and they converge quickly to a sta-
ble case at higher fractal-fractional orders and slowly to such
a stable case at lower fractal-fractional orders. Also, the den-
sities of all four group of population are increasing as the
fractal-fractional order increases.

8. Model Dynamics in the Caputo Sense

In this section, we convert the presented fractal-fractional
epidemic probability-based model of SARS-CoV-2 virus
(6) into a Caputo-type model. The main motivation of this
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Figure 6: Behavior of P 2ðtÞ by changing fractal-fractional order ω and v.
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Figure 7: Behavior of RðtÞ by changing fractal-fractional order ω and v.
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replacement is to compare the proposed model in two differ-
ent type and capture the memory effects on the given model

by using different fractional-order dynamics. The new
formulation of the proposed model is as follows:

where

CDω
0,tu tð Þ= RLI

η−ω
0,t

dη

dtη
u tð Þ

� 
, η − 1 < ω ≤ η, η ∈ℕ: ð96Þ

The Caputo fractional derivative satisfies the Newton–
Leibniz formula for every 0 < ω < 1, that is,

RLIω
0,t

CDω
0,tu tð Þ
 �

= u tð Þ − 〠
ωd e−1

j=0
u jð Þ 0ð Þ t

j

j!
: ð97Þ

In recent years, many researchers have developed a
number of numerical methods to solve different types of
fractional-order models. In this section, our aim is to use a
new method called the FTOMM (see ref. [62, 63]) method
(fractional Taylor operational matrix method), to solve the
probability-based model of the SARS-CoV-2 virus (95) in
the Caputo settings.

8.1. Function Approximation and Operational Matrix. The
Taylor vector of the fractional order is given as [64]

Tnκ = 1, tκ, t2κ,⋯, tnκ
� �

, ð98Þ

where n ∈ℕ and κ > 0: Let Tnκ ⊂ S where S ∈ L2½0, 1�: For
any φ ∈M, since M = spanf1, tκ, t2κ,⋯, tnκg is a vector
space of finite dimension in S, thus φ possesses a unique best
apporoximation φ∗, that is,

∀bφ ∈M, φ − φ∗k k ≤ φ − bφk k: ð99Þ

Then, the function φ is approximated by the fractional-
order Taylor vector by

φ ≃ φ∗ = 〠
n

j=0
gjt

jκ =GTTnκ, ð100Þ

where GT = ½g0, g1,⋯, gm� are the unique coefficients.

Consider Fðt,wÞ as an operational matrix of ωth-integra-

tion with ðm + 1Þ2 dimension. Then, the ωth-R-L-integration
of the Taylor vector defined in equation (98) is

RLIω
0,tTnκ tð Þ = F t,ωð ÞTnk tð Þ: ð101Þ

By applying the ωth-R-L integral for Tnκ, it becomes

RLIω
0,t Tnκ tð Þð Þ = 1

Γ ω + 1ð Þ t
ω,

Γ κ + 1ð Þ
Γ κ + ω + 1ð Þ t

κ+ω,⋯,
Γ nκ + 1ð Þ

Γ nκ + ω + 1ð Þ t
nκ+ω

� 	
:

ð102Þ

Thus, (102) can be reformulated as

RLIω
0,t Tnκ tð Þð Þ = tωSωTnκ tð Þ, ð103Þ

where

Sω = diag
1

Γ ω + 1ð Þ ,
Γ κ + 1ð Þ

Γ κ + ω + 1ð Þ ,
Γ 2κ + 1ð Þ

Γ 2κ + ω + 1ð Þ ,⋯,
Γ nκ + 1ð Þ

Γ nκ + ω + 1ð Þ
� 	

:

ð104Þ

Set Φðt,ωÞ = tωSω. In this case, the fractional Taylor oper-
ational matrix of integration is reformulated by

F t,ωð Þ = diag Φ t,ωð Þ,Φ t,ωð Þ,⋯,Φ t,ωð Þ
h i

: ð105Þ

The product of two Taylor basis vectors is

RLIω
0,t Tnκ tð ÞTT

nκ tð Þ
 �
= tωPω ∗ Tnκ tð ÞTT

nκ tð Þ
 �
, ð106Þ

where

CDω
0,tS tð Þ =Θ − rP 1 tð ÞS tð Þ − rsP 2 tð ÞS tð Þ − b + b1ð ÞS tð Þ,

CDω
0,tP 1 tð Þ = p rP 1 tð ÞS tð Þ + rsP 2 tð ÞS tð Þ½ � − b1 + b2 + r1ð ÞP 1 tð Þ,

CDω
0,tP 2 tð Þ = 1 − pð Þ rP 1 tð ÞS tð Þ + rsP 2 tð ÞS tð Þ½ � + qr1P 1 tð Þ − b1 + b3 + r2ð ÞP 2 tð Þ,

CDω
0,tR tð Þ = r1 1 − qð ÞP 1 tð Þ + r2P 2 tð Þ + bS tð Þ − b1R tð Þ,

8>>>>>><>>>>>>:
ð95Þ
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Again, by utilizing RLIω
0,t on the matrix (108), we get

8.2. Application of FTOMM on the SARS-CoV-2 Model. In
this part, the suggested FTOMM method is utilized to the
model of SARS-CoV-2 virus given in (95).

We start by expanding CDω
0,tSðtÞ, CDω

0,tP 1ðtÞ,
CDω

0,tP 2ðtÞ, and CDω
0,tRðtÞ with the help of a fractional

Taylor basis vector as following:

CDω
0,tS tð Þ ≈ CTTnκ tð Þ,

CDω
0,tP 1 tð Þ ≈ KTTnκ tð Þ,

CDω
0,tP 2 tð Þ ≈ LTTnκ tð Þ,

CDω
0,tR tð Þ ≈NTTnκ tð Þ:

8>>>>>><>>>>>>:
ð110Þ

Next, operating the ωth-R-L integral on above equa-
tions and using initial values Sð0Þ,P 1ð0Þ,P 2ð0Þ, and R

ð0Þ, we get

S tð Þ ≈ CTF t,ωð ÞTnκ tð Þ + S 0ð Þ,
P 1 tð Þ ≈ KTF t,ωð ÞTnκ tð Þ +P 1 0ð Þ,
P 2 tð Þ ≈ LTF t,ωð ÞTnκ tð Þ +P 2 0ð Þ,
R tð Þ ≈NTF t,ωð ÞTnκ tð Þ +R 0ð Þ:

8>>>>>><>>>>>>:
ð111Þ

Substituting (110) and (111) into SARS-CoV-2 model
(95), we get

CTTnκ tð Þ =Θ − r KT F t,ωð ÞTnκ tð Þ + S1 0ð Þ
� �

CTF t,ωð ÞTnκ tð Þ + S 0ð Þ
� �h i

− rs KT F t,ωð ÞTnκ tð Þ +P 1 0ð Þ
� �

CTF t,ωð ÞTnκ tð Þ + S 0ð Þ
� �h i

− b + b1ð Þ CTF t,ωð ÞTnκ tð Þ + S 0ð Þ
� �

,

Pω =

1
Γ ω + 1ð Þ

Γ κ + 1ð Þ
Γ κ + ω + 1ð Þ ⋯

Γ nκ + 1ð Þ
Γ nκ + ω + 1ð Þ

Γ κ + 1ð Þ
Γ κ + ω + 1ð Þ

Γ 2κ + 1ð Þ
Γ 2κ + ω + 1ð Þ ⋯

Γ n + 1ð Þκ + 1ð Þ
Γ n + 1ð Þκ + ω + 1ð Þ

⋮ ⋮ ⋮ ⋮
Γ nκ + 1ð Þ

Γ κ + ω + 1ð Þ
Γ n + 1ð Þκ + 1ð Þ

Γ n + 1ð Þκ + ω + 1ð Þ ⋯
Γ 2nκ + 1ð Þ

Γ 2nκ + ω + 1ð Þ

2666666666664

3777777777775
, ð107Þ

Tnκ tð ÞTT
nκ tð Þ =

1 tω t2ω ⋯ tnω

tω t2ω t3ω ⋯ t n+1ð Þω

t2ω t3ω t4ω ⋯ t n+2ð Þω

⋮ ⋮ ⋮ ⋮ ⋮

tnω t n+1ð Þω t n+2ð Þω ⋯ t2nω

2666666664

3777777775
: ð108Þ

RLIω
0,t Tnκ tð ÞTT

nκ tð Þ
 �
=

1
Γ ω + 1ð Þ

Γ κ + 1ð Þ
Γ κ + ω + 1ð Þ t

ω ⋯
Γ nκ + 1ð Þ

Γ nκ + ω + 1ð Þ t
nω

Γ κ + 1ð Þ
Γ κ + ω + 1ð Þ t

ω Γ 2κ + 1ð Þ
Γ 2κ + ω + 1ð Þ t

2ω ⋯
Γ n + 1ð Þκ + 1ð Þ

Γ n + 1ð Þκ + ω + 1ð Þ t
n+1ð Þω

⋮ ⋮ ⋮ ⋮
Γ nκ + 1ð Þ

Γ κ + ω + 1ð Þ t
nω Γ n + 1ð Þκ + 1ð Þ

Γ n + 1ð Þκ + ω + 1ð Þ t
n+1ð Þω ⋯

Γ 2nκ + 1ð Þ
Γ 2nκ + ω + 1ð Þ t

2nω

2666666666664

3777777777775
: ð109Þ
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Figure 8: Continued.
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Figure 8: Comparisons between the ABM and FTOMM for the parametric values.
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Figure 9: Continued.
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KTTnκ tð Þ = pr KTF t,ωð ÞTnκ tð Þ +P 1 0ð Þ
� �

CTF t,ωð ÞTnκ tð Þ + S 0ð Þ
� �h i

+ prs KT F t,ωð ÞTnκ tð Þ +P 1 0ð Þ
� �

CTF t,ωð ÞTnκ tð Þ + S 0ð Þ
� �h i

− b1 + b2 + r1ð Þ KTF t,ωð ÞTnκ tð Þ +P 1 0ð Þ
� �

,

LTTnκ tð Þ = 1 − pð Þr KT F t,ωð ÞTnκ tð Þ +P 1 0ð Þ
� �h

� CTF t,ωð ÞTnκ tð Þ + S 0ð Þ
� �i
+ 1 − pð Þrs KTF t,ωð ÞTnκ tð Þ +P 1 0ð Þ

� �h
� CTF t,ωð ÞTnκ tð Þ + S 0ð Þ
� �

�

+ qr1ð Þ KTF t,ωð ÞTnκ tð Þ +P 1 0ð Þ
� �

− b1 + b3 + r2ð Þ LT F t,ωð ÞTnκ tð Þ +P 2 0ð Þ
� �

,

NTTnκ tð Þ = r1 1 − qð Þ KTF t,ωð ÞTnκ tð Þ +P 1 0ð Þ
� �

+ r2 LT F t,ωð ÞTnκ tð Þ +P 2 0ð Þ
� �

+ b CT F t,ωð ÞTnκ tð Þ + S 0ð Þ
� �

− b1 NTF t,ωð ÞTnκ tð Þ +R 0ð Þ
� �

:

ð112Þ

Now, by using above equations and collocation points
t j = j/n, where j = 0, 1,⋯n, we derive a system of 4n + 4
algebraic nonlinear equations with 4n + 4 unknown coeffi-
cients. This system is solved efficiently for the unknown
coefficient vectors CT , KT , LT , and NT by using the New-
ton method in MATLAB software.
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Figure 9: Absolute error comparisons between the ABM and FTOMM for the parametric values.
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As a final step, substituting the vectors of coefficients CT ,
KT , LT , and NT into (111), we obtain for SðtÞ, P 1ðtÞ, P 2ðtÞ,
and RðtÞ approximately.

8.3. Simulations Based on FTOMM Method and Comparison
with Adams-Bashforth Method. In this section, all graphical
results of the fractional SARS-CoV-2 model (95) by using
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Figure 10: SðtÞ by changing ω where m = 7.
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Figure 11: P 1ðtÞ by changing ω where m = 7.
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FTOMM and their comparison between ABM are illustrated
through Figures 8–14. To see the correctness and having a
comparison, we illustrate the graphical representation of
the presented model at several values of ω.

In Figure 8, we present a comparison of obtained solu-
tions by use of the ABM and FTOMM for the parametric
values assumed in subsection 7.2. From Figures 8(a)–8(d),
we can clearly conclude that the both acquired numerical
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Figure 12: P 2ðtÞ by changing ω where m = 7.
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Figure 13: RðtÞ by changing ω where m = 7.
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solutions of four state functions SðtÞ, P 1ðtÞ, P 2ðtÞ, and
RðtÞ by use of ABM and FTOMM are identical.

In Table 1, we present the solutions of four subclasses
SðtÞ, P 1ðtÞ, P 2ðtÞ, and RðtÞ obtained by use of the

Adams-Bashforth and fractional Taylor operational matrix
methods.

In Figure 9, we give the graphical illustration of the abso-
lute errors of four subclasses SðtÞ, P 1ðtÞ, P 2ðtÞ, and RðtÞ
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Figure 14: Comparisons between the ABM and FTOMM for the parametric values of S2.
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obtained by the Adams-Bashforth and fractional Taylor
operational matrix methods.

In this part, by using FTOMM, we simulate and discuss
the behavior of the model based on the parametric values of
the set S2 provided by [60]. From this source, we assume the
new parametric values to be Θ = 20, r = 0:079, s = 0:0001, b

= 0:9, b1 = 0:16, p = 0:29, b2 = 0:11, r1 = 0:45, q = 0:2, b3 =
0:8, and r2 = 0:9. Finally, the initial values for state functions
are the following:

S 0ð Þ = 0:5,

P 1 0ð Þ = 0:3,

P 2 0ð Þ = 0:2,

R 0ð Þ = 0:1:

ð113Þ

In Figures 10–13, we present the behaviors of solutions
of four state functions SðtÞ, P 1ðtÞ, P 2ðtÞ, andRðtÞ, respec-
tively, which are obtained by using FTOMM for some values
of ω = 1:00,0:90,0:80,0:70,0:60,0:50 where t ∈ ½0,150�.

From Figure 10, we can see the illustration of SðtÞ with
initial value Sð0Þ = 0:5 for several values of ω. It can be
observed from this graph that the order of fractional deriva-
tive has an effect on convergence of people of susceptible
category to stable case. Namely, at higher fractional orders,
it converges slowly to a stable case, while at lower fractional
order, this process is more quickly. About the density of S
ðtÞ, we can observe that by increasing the fractional order,
the density also increases. Also, we can clearly see that the
fractional orders are highly consistent with integer order
when using FTOMM.

From Figures 11–13, we can see the illustration of P 1ðtÞ,
P 2ðtÞ, and RðtÞ with P 1ð0Þ = 0:3, P 2ð0Þ = 0:2, and Rð0Þ
= 0:1, respectively, for some values of ω. It can be observed
from these graphs that at higher fractional orders, people of
asymptomatic, symptomatic, and recovered categories con-
verge slowly to a stable case, while at lower fractional order,
it is more quickly. Also, we observe that by increasing the
fractional orders, the densities of SðtÞ, P 1ðtÞ, P 2ðtÞ, and
RðtÞ increases too.

In Figure 14, we present the comparison of the obtained
solutions by use of the ABM and FTOMM for the paramet-
ric values of set S2. From Figures 14(a)–14(d), we can clearly
see that the both obtained approximate solutions of four
state functions SðtÞ, P 1ðtÞ, P 2ðtÞ, and RðtÞ by use of
ABM and FTOMM are behaving identical.

It is clear from all figures that both obtained solutions by
fractional Taylor operational matrix method and Adams-
Bashforth method are identical. We can conclude that frac-
tional Taylor operational matrix method gives almost the
same results as the results acquired by Adams-Bashforth
technique. Also, more accurate results can be obtained by
enhancing the value of m and κ. Due to the simplicity of
FTOMM, it is effective and has advantages for mathematical
modelling of dynamics of SARS-CoV-2 virus.

9. Conclusions

In this manuscript, a fractal-fractional epidemic probability-
based model of the SARS-CoV-2 virus with four compart-
ments including susceptible, asymptomatic, symptomatic,
and recovered was designed. By recalling a special group of
contractions, named ϕ-admissible ϕ-ψ-contractionas, we
proved the existence property for fixed points of a fractal-

Table 1: Compared approximate results of four state functions
obtained by ABM and FTOMM. (a) S, (b) P 1, (c) P 2, and (d) R).

(a)

t S ABMð Þ S FTOMMð Þ
0 0.50 0.50

25 266.9033 269.7917

50 129.1402 130.4819

75 114.4625 115.8542

100 115.6538 117.1644

125 115.6506 115.2917

150 115.6489 115.1839

(b)

t P 1 ABMð Þ P 1 FTOMMð Þ
0 0:30 0:30
25 2.6859 1.9753

50 54.1815 52.9918

75 53.1316 53.3214

100 52.6601 52.7443

125 52.6713 53.5863

150 52.6717 53.9160

(c)

t P 2 ABMð Þ P 2 FTOMMð Þ
0 0:20 0:20
25 1.9753 0.8732

50 10.7542 10.1061

75 9.2629 9.1954

100 9.2682 9.2501

125 9.2702 9.3729

150 9.2702 9.1423

(d)

t R ABMð Þ R FTOMMð Þ
0 0:10 0:10
25 150.9550 158.0875

50 270.5701 270.5721

75 271.7889 271.7783

100 269.6428 269.7108

125 269.2052 269.9315

150 269.0798 266.3295
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fractional operator which is the same soultion of the
mentioned system. Furthermore, other theoretical properties
like stable solutions and their uniqueness for each compart-
ments of the fractal-fractional model were established. We
derived numerical solutions via the Adams-Bashforth and
simulated them from several aspects such as variations of
fractal-fractional dimension orders. Further, we formulated
a Caputo type of the fractional model and compared its solu-
tions obtained by the FTOMM method, with the previous
ones of the fractal-fractional model. All simulations showed
similar and close outcomes. From all illustrations presented
in this work, we observed that the population of infected
people converge quickly to a stable case at higher fractal-
fractional orders and slowly to such a stable case at lower
fractal-fractional orders. Also, we can see that by increasing
the fractal-fractional orders, the density of susceptible popu-
lation also increases. Also, from Figure 3, we can see that the
probability of disease extinction increases with vaccination
rate. All the numerical results and calculations are obtained
with the help of MATLAB version R2019A. In the future,
we aim to compare the results of our methods in the frame-
work of other types of nonsingular kernels. Also, as a future
study, the techniques introduced in this study can be
modified to apply to other diseases and new variants of
SARS-CoV-2 for different compartments.
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