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In this paper, we introduce new subclasses of analytic functions in the open unit disc. Furthermore, the necessary and sufficient
conditions for the Poisson distribution series to be in these new subclasses are found.

1. Introduction

Let A be the class of all analytic functions f in the open unit
disc U = fz ∈ℂ : jzj < 1g and normalized by f ð0Þ = 0 and f
′ð0Þ = 1. A function f ∈A has the Taylor series expansion
of the form

f zð Þ = z + 〠
∞

k=2
akz

k: ð1Þ

We denote by S the subclass of A consisting of normal-
ized functions of the form (1) which are univalent in U . Fur-
ther, we denote by T the subclass of S consisting of
functions with negative coefficients of the form

f zð Þ = z − 〠
∞

k=2
akz

k, ak ≥ 0: ð2Þ

If f , g ∈A such that f is given by (1) and g is given by
gðzÞ = z +∑∞

k=2bkz
k, then, the Hadamard product ð f ∗ gÞðz

Þ is defined by

f ∗ gð Þ zð Þ = z + 〠
∞

k=2
akbkz

k: ð3Þ

In 1837, the French mathematician Siméon Denis Pois-
son created the Poisson distribution which is a popular dis-
tribution expresses the probability of a given number of
events occurring in a fixed interval of time or space. In [1],
Porwal introduced a power series such that its coefficients
are probabilities of the Poisson distribution

N m, zð Þ = z + 〠
∞

k=2

mk−1

k − 1ð Þ! e
−mzk,m > 0, z ∈U: ð4Þ

In addition, he introduced the series

R m, zð Þ = 2z −N m, zð Þ = z − 〠
∞

k=2

mk−1

k − 1ð Þ! e
−mzk,m > 0, z ∈U:

ð5Þ

In [2], Porwal and Kumar introduced a new linear oper-
ator defined by

N m, zð Þ ∗ f zð Þ = z + 〠
∞

k=2

mk−1

k − 1ð Þ! e
−makz

k,m > 0, z ∈U : ð6Þ

In [3, 4], El-Ashwah and Kota presented the functions
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Hυðm, zÞ and H∗
υ ðm, zÞ as below:

Hυ m, zð Þ = 1 − υð ÞN m, zð Þ + υz N m, zð Þð Þ′

= z + 〠
∞

k=2
1 + υ k − 1ð Þð Þ mk−1

k − 1ð Þ! e
−mzk,

ð7Þ

and

H∗
υ m, zð Þ = 2z −Hυ m, zð Þ = z − 〠

∞

k=2
1 + υ k − 1ð Þð Þ mk−1

k − 1ð Þ! e
−mzk,

ð8Þ

wherem > 0, 0 ≤ υ ≤ 1, and z ∈U : Suppose the functions ϕ, ψ
, and ζ are given by

ϕ zð Þ = z + 〠
∞

k=2
γkz

k, γk ≥ 0, ψ zð Þ = z + 〠
∞

k=2
μkz

k, μk ≥ 0, ð9Þ

ζ zð Þ = z + 〠
∞

k=2
ρkz

k, ρk ≥ 0, ð10Þ

for every z ∈U:

Definition 1. Let 0 ≤ λ, β < 1: A function f ∈A is said to be
in the class Aðϕ, ψ, ζ, λ, βÞ if the following condition is
satisfied

R
1 − λð Þ f ∗ ϕð Þ zð Þ + λ f ∗ ψð Þ zð Þ

f ∗ ζð Þ zð Þ
� �

> β: ð11Þ

Further, we define the class T ðϕ, ψ, ζ, λ, βÞ by

T ϕ, ψ, ζ, λ, βð Þ =A ϕ, ψ, ζ, λ, βð Þ ∩T : ð12Þ

Indeed, we have
(1)

A
z

1 − zð Þ2 ,
z + z2

1 − zð Þ3 , z, λ, β
 !

≡F λ, βð Þ,

= f ∈A : R f ′ zð Þ + λzf ′′ zð Þ
n o

> β, 0 ≤ λ, β < 1
n o

,

ð13Þ

where the class Fðλ, βÞ was studied by Chichra in [5]. We
define the class Fðλ, βÞ ∩T =R1ðλ, βÞ which was intro-
duced and studied by Orhan [6].

(2)

A
z

1 − zð Þ2 ,
z + z2

1 − zð Þ3 ,
z

1 − z
, λ, β

 !
≡H λ, βð Þ,

= f ∈A : R
zf ′ zð Þ + λz2 f ′′ zð Þ

f zð Þ

( )
> β, 0 ≤ λ, β < 1

( )
,

ð14Þ

where the class Hðλ, βÞ was studied by Obradovic and Joshi
in [7], and the class Hðλ, 0Þ was intoduced and studied by
Ramesha et al. in [8]. We define the class Hðλ, βÞ ∩T = �H
ðλ, βÞ which was studied by Lashin [9].

(3)

A
z

1 − z
, z

1 − zð Þ2 , z, λ, β
 !

≡ J λ, βð Þ,

= f ∈A : R
1 − λð Þf zð Þ

z
+ λf ′ zð Þ

� �
> β, 0 ≤ λ, β < 1

� �
,

ð15Þ

where the class J ðλ, βÞ was studied by Ding et al. [10]. We
define the class J ðλ, βÞ ∩T = J ∗ðλ, βÞ which was intro-
duced by Hassan [11].

(4)

A
z

1 − z
, z + z2

1 − zð Þ3 ,
z

1 − zð Þ2 , λ, β
 !

≡X λ, βð Þ,

= f ∈A : R 1 − λð Þ f zð Þ
zf ′ zð Þ

+ λ 1 + zf ′′ zð Þ
f ′ zð Þ

 !( )
> β, 0 ≤ λ, β < 1

( )
,

ð16Þ

where the classes Xðλ, βÞ and Xðλ, βÞ ∩T ≪X∗ðλ, βÞ
were introduced by Lashin et al. in [12].

In this paper, we find the necessary and sufficient condi-
tions for the Poisson distribution series to be in the classes
J ∗ðλ, βÞ, �Hðλ, βÞ, and X∗ðλ, βÞ.

2. Coefficient Inequalities and
Related Properties

We first derive the sufficient and necessary conditions for
the function f to be in the aforementioned classes.

Theorem 2. The sufficient condition for f to be in the class
Aðϕ, ψ, ζ, λ, βÞ is

〠
∞

k=2
γk − ρk + λ μk − γkð Þj j + 1 − βð Þρkð Þ akj j ≤ 1 − β: ð17Þ

Proof. We need to show that

R
1 − λð Þ f ∗ ϕð Þ zð Þ + λ f ∗ ψð Þ zð Þ

f ∗ ζð Þ zð Þ
� �

> β: ð18Þ

Then, we have

1 − λð Þ f ∗ ϕð Þ zð Þ + λ f ∗ ψð Þ zð Þ
f ∗ ζð Þ zð Þ − 1

����
����

= ∑∞
k=2 γk − ρk + λ μk − γkð Þð Þakzk−1

1 +∑∞
k=2ρkakz

k−1

����
����,

≤
∑∞

k=2 γk − ρk + λ μk − γkð Þj j akj j
1 −∑∞

k=2ρk akj j ≤ 1 − β,

ð19Þ
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if condition (17) holds. This implies that f ∈Aðϕ, ψ, ζ, λ, βÞ
which completes the proof.

Theorem 3. Let FðkÞ = γk − ρk + λðμk − γkÞ be an increasing
function of k and λ ≥max f0, ðρ2 − γ2Þ/ðμ2 − γ2Þg: Then, the
necessary and sufficient condition for the function f to be in
the class T ðϕ, ψ, ζ, λ, βÞ is

〠
∞

k=2
γk − ρk + λ μk − γkð Þ + 1 − βð Þρkf gak ≤ 1 − β: ð20Þ

Proof. In view of Theorem 2, it suffices to show the necessary
condition only. Assume that f ∈T ðϕ, ψ, ξ, λ, βÞ. Then

R
1 − λð Þ f ∗ ϕð Þ zð Þ + λ f ∗ ψð Þ zð Þ

f ∗ ζð Þ zð Þ
� �

> β, ð21Þ

which is equivalent to

R
1 − ∑∞

k=2 γk + λ μk − γkð Þð Þakzk−1
1 −∑∞

k=2ρkakz
k−1

� �
> β: ð22Þ

Choosing z on the real axis, then

1 −∑∞
k=2 γk + λ μk − γkð Þð Þakzk−1
1 − ∑∞

k=2ρkakz
k−1

� �
, ð23Þ

is also real. Let z⟶ 1− through real values, we get

1 − 〠
∞

k=2
γk + λ μk − γkð Þð Þak ≥ β 1 − 〠

∞

k=2
ρkak

 !
, ð24Þ

which is equivalent to (20), and this completes the proof.

Putting ϕ = z/ð1 − zÞ2, ψ = ðz + z2Þ/ð1 − zÞ3, and ζ = z/ð1
− zÞ in Theorems 3, we get the following corollary due to
Lashin [9].

Corollary 4 (see [9]). A function f ∈T is in the class �Hðλ, βÞ
if and only if

〠
∞

k=2
k − 1ð Þ λk + 1ð Þ + 1 − βð Þf gak ≤ 1 − β, 0 ≤ λ, β < 1: ð25Þ

Putting ϕ = z/ð1 − zÞ, ψ = z/ð1 − zÞ2, and ζ = z in Theo-
rem 3, we get the following corollary due to Hassan [11].

Corollary 5 (see [11]). A function f ∈T is in the class J ∗ð
λ, βÞ if and only if

〠
∞

k=2
λ k − 1ð Þ + 1½ �ak ≤ 1 − β, 0 ≤ λ, β < 1: ð26Þ

Putting ϕ = z/ð1 − zÞ, ψ = ðz + z2Þ/ð1 − zÞ3, and ζ = z/
ð1 − zÞ2 in Theorem 3, we get the following corollary.

Corollary 6 (see [12]). Let 1/3 ≤ λ < 1: A function f ∈T is in
the class X∗ðλ, βÞ if and only if

〠
∞

k=2
k − 1ð Þ λ k + 1ð Þ − 1½ � + 1 − βð Þkf gak ≤ 1 − β, 0 ≤ β < 1:

ð27Þ

Making use of the techniques and methodology given by
Porwal [1] (see also [13–18]), we get the following theorems.

Theorem 7. The sufficient condition for Hυðm, zÞ to be in the
class Hðλ, βÞ is

λυm3 + 4υλ + υ + λð Þm2 + 1 + 2λð Þ 1 + υð Þ + υ 1 − βð Þ½ �m
≤ 1 − βð Þe−m:

ð28Þ

Also, condition (28) is necessary and sufficient for H∗
υ ð

m, zÞ to be in the class �Hðλ, βÞ:

Proof. According to Theorem 2, we need to show that

〠
∞

k=2
k − 1ð Þ λk + 1ð Þ + 1 − βð Þ½ � 1 + v k − 1ð Þ½ � mk−1

k − 1ð Þ! e
−m ≤ 1 − β:

ð29Þ

Thus,

〠
∞

k=2
k − 1ð Þ λk + 1ð Þ + 1 − βð Þ½ � 1 + υ k − 1ð Þ½ � mk−1

k − 1ð Þ! e
−m

= e−m 〠
∞

k=2
k − 1ð Þ λ k − 2ð Þ + 1 + 2λð Þ½ � + 1 − βð Þf g mk−1

k − 1ð Þ!

+ e−m 〠
∞

k=2
υλ k − 1ð Þ k − 2ð Þ k − 3ð Þ + 2υλ k − 1ð Þ k − 2ð Þf g mk−1

k − 1ð Þ!

+ e−m 〠
∞

k=2
υ 1 + 2λð Þ k − 1ð Þ k − 2ð Þ + υ 1 + 2λð Þ k − 1ð Þf

+ υ 1 − βð Þ k − 1ð Þg mk−1

k − 1ð Þ! , = υλe−m 〠
∞

k=4

mk−1

k − 4ð Þ!

+ 4υλ + υ + λð Þe−m 〠
∞

k=3

mk−1

k − 3ð Þ!

+ 1 + 2λð Þ 1 + υð Þ + υ 1 − βð Þ½ �e−m 〠
∞

k=2

mk−1

k − 2ð Þ!

+ 1 − βð Þe−m 〠
∞

k=2

mk−1

k − 1ð Þ! , = λυm3 + 4υλ + υ + λð Þm2

+ 1 + 2λð Þ 1 + υð Þ + υ 1 − βð Þ½ �m + 1 − βð Þ 1 − e−mð Þ ≤ 1 − βð Þ,
ð30Þ
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if condition (28) holds. Then, from Theorem 3, it follows
that the condition (28) is necessary and sufficient for H∗

υ ð
m, zÞ∈�Hðλ, βÞ. Hence, the proof is completed.

In Theorem 7, if we put υ = 0, then, we get the following
corollary which was obtained by Murugusundaramoorthy
et al. [19].

Corollary 8. The sufficient condition for Nðm, zÞ to be in the
class Hðλ, βÞ is

λm2 + 1 + 2λð Þm ≤ 1 − βð Þe−m: ð31Þ

Also, condition (31) is necessary and sufficient for Rðm
, zÞ to be in the class �Hðλ, βÞ:

Theorem 9. The sufficient condition for Hυðm, zÞ to be in the
class J ðλ, βÞ is

λυm2 + λ + υ 1 + λð Þð Þm + 1 − e−m ≤ 1 − β: ð32Þ

Also, condition (32) is necessary and sufficient for H∗
υ ð

m, zÞ to be in the class J ∗ðλ, βÞ:

Proof. According to Theorem 2, we need to show that

〠
∞

k=2
1 + λ k − 1ð Þ½ � 1 + υ k − 1ð Þ½ � mk−1

k − 1ð Þ! e
−m ≤ 1 − β: ð33Þ

Thus,

〠
∞

k=2
1 + λ k − 1ð Þð Þ 1 + υ k − 1ð Þð Þ mk−1

k − 1ð Þ! e
−m

= e−m 〠
∞

k=2
λυ k − 1ð Þ k − 2ð Þ + λυ + λ + υð Þ k − 1ð Þ + 1f g mk−1

k − 1ð Þ! ,

= e−m λυ〠
∞

k=3

mk−1

k − 3ð Þ! + λ + υ 1 + λð Þ½ �〠
∞

k=2

mk−1

k − 2ð Þ! + 〠
∞

k=2

mk−1

k − 1ð Þ!

( )
,

= λυm2 + λ + υ 1 + λð Þð Þm + 1 − e−m ≤ 1 − β,
ð34Þ

if condition (32) holds. Then, from Theorem 3, it follows
that condition (32) is necessary and sufficient for H∗

υ ðm, zÞ
∈J ∗ðλ, βÞ. Hence, the proof is completed.

In Theorem 9, if we put υ = 0, then, we get the following
corollary which was obtained by Frasin [20].

Corollary 10. The sufficient condition for Nðm, zÞ to be in
the class J ðλ, βÞ is

λm + 1 − e−m ≤ 1 − β: ð35Þ

Also, condition (35) is necessary and sufficient for Rðm
, zÞ to be in the class J ∗ðλ, βÞ:

Theorem 11. The sufficient condition for Nðm, zÞ to be in the
class Xðλ, βÞ is

λm2 + 3λ − βð Þm ≤ 1 − βð Þe−m, ð36Þ

where 1/3≤λ < 1: Also, condition (36) is necessary and suffi-
cient for Rðm, zÞ to be in the class X∗ðλ, βÞ:

Proof. According to Theorem 2, we need to show that

〠
∞

k=2
k − 1ð Þ λ k + 1ð Þ − 1½ � + 1 − βð Þkf g mk−1

k − 1ð Þ! e
−m ≤ 1 − β:

ð37Þ

Thus,

〠
∞

k=2
k − 1ð Þ λ k + 1ð Þ − 1½ � + 1 − βð Þkf g mk−1

k − 1ð Þ! e
−m

= e−m 〠
∞

k=2
λ k − 1ð Þ k − 2ð Þ + 3λ − βð Þ k − 1ð Þ + 1 − βð Þf g mk−1

k − 1ð Þ! ,

= e−m λ〠
∞

k=3

mk−1

k − 3ð Þ! + 3λ − βð Þ〠
∞

k=2

mk−1

k − 2ð Þ! + 1 − βð Þ〠
∞

k=2

mk−1

k − 1ð Þ!

( )
,

= λm2 + 3λ − βð Þm + 1 − βð Þ 1 − e−mð Þ ≤ 1 − βð Þ,
ð38Þ

if condition (36) holds. Then, from Theorem 3, it follows
that the condition (36) is necessary and sufficient for Rðm,
zÞ ∈X∗ðλ, βÞ. Hence, the proof is completed.

Theorem 12. The sufficient condition for Hυðm, zÞ to be in
the class Xðλ, βÞ is

λυm3 + λ + υ 5λ − βð Þ½ �m2 + 3λ − βð Þ υ + 1ð Þ + υ 1 − βð Þ½ �m
≤ 1 − βð Þe−m,

ð39Þ

where 1/3≤λ < 1: Also, condition (39) is necessary and
sufficient for H∗

υ ðm, zÞ to be in the class X∗ðλ, βÞ:
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Proof. According to Theorem 2, we need to show that

〠
∞

k=2
k − 1ð Þ λ k + 1ð Þ − 1ð Þ + 1 − βð Þk½ � 1 + υ k − 1ð Þð Þ mk−1

k − 1ð Þ! e
−m ≤ 1 − β:

ð40Þ

Thus,

if condition (39) holds. Then, from Theorem 3, it follows
that the condition (39) is necessary and sufficient for H∗

υ ð
m, zÞ∈X∗ðλ, βÞ: Hence, the proof is completed.
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