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In this paper, we introduce new subclasses of analytic functions in the open unit disc. Furthermore, the necessary and sufficient

conditions for the Poisson distribution series to be in these new subclasses are found.

1. Introduction

Let &/ be the class of all analytic functions f in the open unit
disc U={z€C: |z| <1} and normalized by f(0) =0 and f

'(0)=1. A function f € of has the Taylor series expansion
of the form

flz)=z+ iakzk. (1)
k=2

We denote by & the subclass of &/ consisting of normal-
ized functions of the form (1) which are univalent in U. Fur-
ther, we denote by  the subclass of & consisting of
functions with negative coeflicients of the form

flz)=z- OZO:akzk,ak >0. (2)

k=2

If f, g € o/ such that f is given by (1) and g is given by
9(2) =z + Y 2,b 25, then, the Hadamard product (f * g)(z
) is defined by

(Fra)@)=z+ Y abd )

k=2

In 1837, the French mathematician Siméon Denis Pois-
son created the Poisson distribution which is a popular dis-
tribution expresses the probability of a given number of
events occurring in a fixed interval of time or space. In [1],
Porwal introduced a power series such that its coefficients
are probabilities of the Poisson distribution

0o k-1
_ m -m_k
N(m,z)=z+ };me Z5,m>0,zeU. (4)

In addition, he introduced the series

(o)
R(m,z):ZZ—N(m,z):z—Z " e m>0,zeU.

In [2], Porwal and Kumar introduced a new linear oper-
ator defined by

.
N(m,z)*f(z)=z+kzé(k_l)!e a2k, m>0,zeU. (6)

In [3, 4], El-Ashwah and Kota presented the functions
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H,(m,z) and H}(m, z) as below:

H,(m,z)=(1-v)N(m,z) +vz(N(m, z))

0 mk—l 7
=z+ k;(l+v(k—1))(k_l)!e_"’zk, @)
and
© mk—l
H!(m,z)=2z-H,(m,z) =z~ ;(1 +o(k-1)) = me””zk,
(8)

where m >0,0<v<1,and z € U. Suppose the functions ¢, v
, and ( are given by

$(2)=z+ ) 1 vz 0y(@) =2+ ) wwm =0, (9)
k=2 k=2

() =2+ ) pd' 20, (10)
k=2

for every ze U.

Definition 1. Let 0< A, B < 1. A function f € ¢ is said to be
in the class 9/(¢,y,(, A, B) if the following condition is
satisfied

(1-N)(f * §)(2) +A(F * ¥)(2)
m{ 700 }>ﬁ' 1)

Further, we define the class 7 (¢, v, {, A, ) by

T(owv. AR =6y LARNT. (12)

Indeed, we have

(1)

z z+72? .
(i i pess) -
_ {fegi : 2R{f’(z)+)\zf"(z)} >B,0<) B< 1},
(13)

where the class F(A, 8) was studied by Chichra in [5]. We
define the class #(A, B) N T = %' (A, B) which was intro-
duced and studied by Orhan [6].

()

z+22 z

Va
ﬂ((l—z)z’ (1-2)* l—z’/\’ﬁ> =H(A B),
i {fad : s"{ZJ[,(Z)Jr/\ZZJ“'(Z)} >B,0<A,B< 1},

f(z)

(14)
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where the class H(A, ) was studied by Obradovic and Joshi
in [7], and the class H(A, 0) was intoduced and studied by
Ramesha et al. in [8]. We define the class H(A, B)N T =H
(A, B) which was studied by Lashin [9].

©)

z z
ﬂGiExLJY“J$>EJM$%

={f€g{;m{% +Af’(z)}>ﬁ,og,ﬁ<1},
(15)

where the class 7 (A, 8) was studied by Ding et al. [10]. We
define the class #(A, f)NT = _7*(A, ) which was intro-
duced by Hassan [11].

(4)

z  z+2Z? z _
d(l—_z,m,m,l,ﬁ>:3"()»,ﬁ),

_ , RG] of"'(2)
_{fesz(.i}l{(l A)Zf,(z)+/\<1+ f,(z)>}>ﬁ,0s)l,ﬁ<1},
(16)

where the classes Z'(A, ) and (A, B)NT < I*(A, )
were introduced by Lashin et al. in [12].

In this paper, we find the necessary and sufficient condi-
tions for the Poisson distribution series to be in the classes

S (A ), H(A, B), and (A, p).

2. Coefficient Inequalities and
Related Properties

We first derive the sufficient and necessary conditions for
the function f to be in the aforementioned classes.

Theorem 2. The sufficient condition for f to be in the class

A (b y, ¢ A B) is

(o)

D (lve—pe+ A —vi)l + (1= Bpla <1-B. (17)
k=2

Proof. We need to show that

(1-X)(f * $)(&) + Mf * ¥)(2)
m{ 00 }>ﬁ' 18)

Then, we have

‘(1 “MN(f*9)@) +Af *y)(2) 1‘
(f =) (=)
Yo (Vi = Pt Mt =~ vi))
1+ 3,20, pay 2k !
< Ll M vdllad g
- 1= 322 pilag| - ’

i (19)
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if condition (17) holds. This implies that f € &/($, v, (, A, ﬁ)
which completes the proof.

Theorem 3. Let F(k) =y, — p, + A(y; — y,) be an increasing
function of k and A > max {0, (p, —v,)/(¢4, —y,)}. Then, the
necessary and sufficient condition for the function f to be in

the class T (¢, v, (, A, ) is

Y- Pt A -y + (L= Bpa<1-B. (20)

k=2

Proof. In view of Theorem 2, it suffices to show the necessary
condition only. Assume that f € 7 (¢, v, &, A, 8). Then

(L=M(f * $)(2) + Af * ¥)(2)
| 700 R
which is equivalent to
D (e D)

Choosing z on the real axis, then

1= 202, (i + Mpty = vi)) a2 (23)
1= Y P! ’

is also real. Let z — 1~ through real values, we get

- Z(n”(/«lk-yk))akzﬁ(l - Zpkak) (24)
k=2 k=2

which is equivalent to (20), and this completes the proof. [

Putting ¢ =2z/(1-2)*, v = (z+22)/(1-2)°, and { = z/(1
—z) in Theorems 3, we get the following corollary due to
Lashin [9].

Corollary 4 (see [9]). A function f € T is in the class H(A, f3)

if and only if
S (k= )Mk + 1)+ (1- B)}ag<1-B0< A B< L (25)
k=2
Putting ¢ =z/(1-2),y =2/(1 -z)°, and { =z in Theo-

rem 3, we get the following corollary due to Hassan [11].

Corollary 5 (see [11]). A function f € T
A, B) if and only if

is in the class 7 (

i[)&(k—])+1]ak£1—ﬁ,0§/\,ﬁ<1. (26)

k=2

Putting ¢p=z/(1-2),y=(z+2%)/(1-2)°, and {=z/
(1-2)* in Theorem 3, we get the following corollary.

Corollary 6 (see [12]). Let 1/3< A< 1. A function f € T is in
the class (A, B) if and only if

(o)

Y {lk=DA(k+1) 1]+ (1

k=2

-B)k}a,<1-B,0<B<1.
(27)

Making use of the techniques and methodology given by
Porwal [1] (see also [13-18]), we get the following theorems.

Theorem 7. The sufficient condition for H,(m, z) to be in the
class H(A, B) is

Aot + (4vd + v+ A)ym? + [(1+24) (1 +v) + v(1 - B)]m

<(1-B)e™.
(28)

Also, condition (28) is necessary and sufficient for H; (
m, z) to be in the class H(A, B).

Proof. According to Theorem 2, we need to show that

- k1
2[= Dk 1)+ (1= B+ vk -l e ™ < 1-f.
(29)
Thus,

e—m

i[(k— D(Ak+1)+ (1~

AL +o(k= 1] 7y

_mz{ SDG-2)+ (1020 (- B

b S oAk — 1) (k- 2)(k-3) + 20A(k— 1) (k—2)} T !
i (k-1)!

+e" i{v(l +2A) (k-
- k1 L kel
)} = =vle

(o) k-1

m
+ (A +v+A)e™ Yy ——
( ) ;(k—3)!

1)(k=2) +v(1+24)(k-1)

+u(1-p)(k-1

k-1

+[(1+20) (1 +v) + (1 —ﬁ)]e’m;(:_ 2)!

o k-1
+(1 —ﬁ)e’mgh,zlvm3 + (4vA + v+/\)m2

+[(1+20) 1 +0)+v(1-B)m+(1-B)(1-e™)<(1-p),

(30)



if condition (28) holds. Then, from Theorem 3, it follows
that the condition (28) is necessary and sufficient for H; (
m,z)€H(A, B). Hence, the proof is completed. O

In Theorem 7, if we put v =0, then, we get the following
corollary which was obtained by Murugusundaramoorthy
et al. [19].

Corollary 8. The sufficient condition for N(m, z) to be in the
class H(A, B) is

Am? + (1+20)m< (1-B)e™. (31)

Also, condition (31) is necessary and sufficient for R(m
,Z) to be in the class H(A, ).

Theorem 9. The sufficient condition for H,(m, z) to be in the
class F(A, B) is

Am? + (A+v(I+A))m+1-e™<1-p. (32)

Also, condition (32) is necessary and sufficient for H; (
m, z) to be in the class 7" (A, 8).

Proof. According to Theorem 2, we need to show that

.. k-1
I;Z[1+A(k—1)][1+u<k—1)](]:”_1)!e*’”s1—ﬁ- (33)
Thus,

o mk1

;2(1+A(k—1))(1+v(k—1))me’m

0 mk_l
:e*’”k;{/\v(k—1)(k—2)+(Av+l+v)(k—1)+l}m,

) 0 mk—l © mk’l & mk71
:em{“’;m+“+“(l”ﬂ§(k—2>!+kzz(k—1>!}’
=dm? + (A +v(1l+A))m+1-e"<1-p,

(34)

if condition (32) holds. Then, from Theorem 3, it follows
that condition (32) is necessary and sufficient for H; (m, z)
€ 7" (A, B). Hence, the proof is completed. O

In Theorem 9, if we put v =0, then, we get the following
corollary which was obtained by Frasin [20].
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Corollary 10. The sufficient condition for N(m, z) to be in
the class (A, ) is

Am+1-e"<1-p. (35)

Also, condition (35) is necessary and sufficient for R(m
,z) to be in the class #* (A, f3).

Theorem 11. The sufficient condition for N(m, z) to be in the
class X(A, B) is

Am’ + (3A = Bym < (1- )™, (36)

where 1/3<A < 1. Also, condition (36) is necessary and suffi-
cient for R(m, z) to be in the class (A, ).

Proof. According to Theorem 2, we need to show that

00 k-1

m —m
k;{(k— D[Ak+1)=1]+ (1 - B)k} = 1)!e <1-p.
(37)
Thus,
& mk1
k;{(k— DAk+1) = 1]+ (1 - Bk} - 1)!5"1

mk—l

=S NG k=2)+ (G- Bk=1)+ (- B)

o) k-1 S k=1 \ !
{Azmmsy = *“‘mz(km—l)’}’

k=3 k=2

=Am* +(3A-Bym+(1-P)(1-e™)<(1-B),
(38)
if condition (36) holds. Then, from Theorem 3, it follows

that the condition (36) is necessary and sufficient for R(m,
z) € X*(A, B). Hence, the proof is completed. O

Theorem 12. The sufficient condition for H,(m,z) to be in
the class (A, B) is

Avm® + [A+v(51 - [)’)]mz +[BA=-B)(v+1)+v(l-B)m
<(I-Pe™,
(39)

where 1/3<A < 1. Also, condition (39) is necessary and
sufficient for H;; (m, z) to be in the class (A, ).
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Proof. According to Theorem 2, we need to show that
2 “D)A(k+1) = 1)+ (1= Bk (1 +v(k—1)) (:ﬁ)!e—mgl—p’.
(40)
Thus,
[eS) k-1 (o]
;[(k— D(A(k+1) = 1)+ (1= B)k|(1 +v(k - 1)) - l)!e_”’ :e‘me{Av(k— 1)(k-2)(k-3)
k1
A+ vGA-B)l(k-1)(k=2)+[(BA-B)(v+ 1) +v(1-B)l(k-1) + (1 - B)} = =y
e o k- X k-l O k-1
=em{)wz(k_4) + k= [(BA=B)(v+1)+v(1-p) k; %) +(1_ﬁ)k§2(k—1)!}’
= Ao’ + [A+ (5L = B)]m* + [(3A - B) (v + ) + v(l -B)m+(1-p)(1-e™)<1-,
(41)

if condition (39) holds. Then, from Theorem 3, it follows
that the condition (39) is necessary and sufficient for H; (
m,z)eZ™ (A, B). Hence, the proof is completed. O
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