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A literature review revealed that the general variational inequalities, fixed-point problems, and Winner–Hopf equations are
equivalent. In this study, general variational inequality and fixed-point problem are considered. We introduced a new iterative
method based on a self-adaptive predictor-corrector approach for finding a solution to the GVI. Adaptations in the fixed-point
formulation and self-adaptive techniques have been used to predict a novel iterative approach. Convergence analyses of the
suggested algorithm are demonstrated. Moreover, numerical analysis shows that we establish the new best method for solving
general variational inequality which performs better than the previous one. Furthermore, it is known that GVI consisted of several
classes including variational inequalities and related optimization problems, and results obtained in this study continue to hold for
these problems.

1. Introduction

Applied mathematics has adorned the most promising and
panoramic field referred to as variational inequality theory.
.is theory is a powerful unifying methodology for the study
of equilibrium problems and provides us algorithms with
accompanying convergence analysis for computational
purposes. .erefore, in recent few years, various branches of
mathematical and engineering sciences can be transformed
in the framework of variational inequalities such as elec-
tronics, heat transportation, elasticity, optimization, net-
work analysis, water resources, game theory, equilibrium
problems in economics, mechanics, and traffic analysis; see
[1–10]. Such remarkable development claims the most
simple and unidirectional models of linear and nonlinear
techniques. .e idea of variational inequalities was first
originated by Stampacchia [11]. Related to the variational
inequalities, we have the concept of the Wiener–Hopf

equations and general variational inequalities which were
introduced by Noor [12] and Shi [13] in conjunction with
variational inequalities from different points of view.

Several conventional improvements approach to estab-
lish the solutions for open, moving boundary value problems
and asymmetric obstacle, unilateral, even-order, and odd-
order problems utilizing general variational inequalities, see
[13–18]. Equivalent effects of general variational inequalities
and fixed-point problems utilizing the projection techniques
in recent days are an active research field, see [8, 19–21].
Quantitative knowledge of pseudocontractive and nonlinear
monotone (accretive) operators combined with Lipschitz-
type conditions is vital to prove the convergence of fixed-
point iterative procedures. .e phenomena of variational
inequalities have a significant contribution to solving the
Wiener–Hopf equations. Salient features of Wiener–Hopf
equations and optimization problems in the presence of
variational inequalities are addressed by Shi, see [12, 20–23].
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Variants of projection methods such as Wiener–Hopf
equation techniques, auxiliary principle scheme, decom-
position, and dynamical systems are advanced for solving
various kinds of variational inequalities and other related
optimization problems, see [8, 17–19, 22–26]. A detailed
study by Lions and Stampacchia revealed the utilization of
such tools for finding the detailed solution of variational
inequalities was in consumption a long time ago, see [27, 28].
.e primary objective for employing these abilities is to keep
the variational inequality and the fixed-point problem
similar through projection. Based on this formula, many
projection methods for resolving variational inequalities can
be developed. .is approach has been critical. Convergence
of the projection method has a drawback; it required a
strongly monotone and Lipschitz continuous operator,
which has limited much application. .erefore, innovative
methods or modifications in the projection method are
required to diversify the field.

Publications such as [23, 29–36] comprised of extra
gradient-type methods which delimited the projection
phenomenon by taking additional forward steps, and pro-
jection at each iteration is considered according to the
double projection. .ese methods are a predictor-corrector
tool and have been suggested to quantify variational in-
equalities and their special cases. We improve the recent best
results for GVI by introducing innovative iterative methods.

.e self-adaptive predictor-corrector approach is the
primary goal of this research, which modifies the fixed point
by incorporating a generalized residue vector that includes
general variational inequalities. For the convergence of the
method, we require only pseudomonotonicity, which is
considered a weaker condition than monotonicity. It is
comprehended that the proposed model is simple and ro-
bust. We can see from the numerical results that the pro-
posed technique is both rapid and easy to implement, as
demonstrated by an example.

2. Preliminaries

We denote Hilbert spaceH with the norm and inner product
by ‖ · ‖ and 〈, 〉, respectively. A convex set is represented by
M in H, and let A,ϕ: H⟶ H be considered the nonlinear
operators. For finding α ∈ H, ϕ(α) ∈M, such that

〈Aα,ϕ(β) − ϕ(α)〉≥ 0, for all β ∈ H: ϕ(β) ∈M. (1)

Problem (1) is called the general variational inequal-
ities(GVI), considered by Noor in 1988. We have observed
that a large number of problems in pure and applied
mathematics related to physical sciences, engineering,
equilibrium, moving, nonsymmetric, unified, obstacle, and
contact can be discussed and studied via inequalities (1), see
[18, 19, 22].

For ϕ ≡ I (take identity operator), problem (1) reduces to
finding α ∈M, such that

〈Aα, β − α≥ 0〉, ∀β ∈M. (2)

Problem (2) is defined by the original variational in-
equalities introduced by Stampacchia, see [11].

.e following concept and known results are required to
approach the main algorithms.

Definition 1. Let A: H⟶ H be called the operator and
also ϕ-pseudomonotone if 〈Aα, ϕ(β) − ϕ(α)〉≥ 0 provides
〈Aβ, ϕ(β) − ϕ(α)〉≥ 0, ∀α, β ∈ H.

It is considered [22, 24] that monotonicity implies
pseudomonotonicity, but the converse does not exist.

Lemma 1. For z ∈ H, α ∈M holds for the inequality:

〈α − z, β − α≥ 0〉, ∀β ∈M, (3)

if and only if

α � PMz, (4)

where PM is called the projection of H onto the convex set M.

It is also known that PM is called the projection operator
and also nonexpansive which satisfies the following
inequality:

PMz − α
����

����≤ ‖z − α‖ − z − PMz
����

����. (5)

Lemma 2. α is a solution of the given GVI (1) if and only if
α ∈M satisfies the relation

ϕ(α) � PM[ϕ(α) − ρAα], (6)

where ρ≥ 0 is taken as the constant and PM is considered the
projection operator H onto M.

Residue vector R1(α) is defined by

R1(α) ≔ ϕ(α) − PM[ϕ(α) − ρAα]. (7)

From Lemma 1, we can see that α satisfy (1) if and only if
α is a zero point of the function:

R1(α) ≔ 0. (8)

For the GVI (1), we consider the problem for the
Wiener–Hopf equations. Let QM � I − PM, where I is the
identity operator and PM is projection operation. For the
operators A, ϕ: H⟶ H, and ϕ− 1 exists; then, for finding
z ∈ H, we have

ρAϕ− 1
PMz + QMz � 0, (9)

where (9) is the general Wiener–Hopf equation(GWHE),
investigated by Noor [18]. We have seen that the Wie-
ner–Hopf equations are considered and used to establish
various efficient and powerful iterative schemes.

Lemma 3. <e function α ∈ H: ϕ(α) ∈M satisfies in-
equalities (1) if and only if z ∈ H satisfies equation (9),
provided

ϕ(α) � PMz, (10)

z � ϕ(α) − ρAα. (11)
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Lemma 3 provides that the GVI (1) is equivalent to
GWHE (9). .is fixed-point formulation was considered by
Noor [24] to establish various iterative schemes for solving
the GVI and other optimization theory and related
problems.

.is useful scheme has been considered to make and
establish a self-adaptive method for solving the GVI (1).

By using (7) and (10) and (11), the GWHE (9) can be
modified in the form:

0 � ϕ(α) − PM[ϕ(α) − ρAα] − ρAα + ρAϕ− 1
PM[ϕ(α) − ρAα],

� R1(α) − ρAα + ρAϕ− 1
PM[ϕ(α) − ρAα].

(12)

For ω ∈ [0, 1], (9) can be mentioned as

ϕ(α) � PM ϕ(α) − ωd1(α)􏼂 􏼃, (13)

where

d1(α) � R1(α) − ρAα + ρAϕ− 1
PM[ϕ(α) − ρAα]. (14)

.is equivalent modification has been considered by
Noor [31] for solving the general variational inequalities
(GVI).

Algorithm 1.

Step 0. We set the parameters as follows. For αo ∈ H,

set n � 0, and take δ0, δ ∈ (0, 1), ϵ> 0, c ∈ [1, 2),

μ ∈ (0, 1), and ρ> 0.

Step 1. If R1(αn)< ϵ, then we terminate; otherwise, take
ρn � ρμmn , where mn finds the smallest nonnegative
integer that satisfies the inequality ρn〈A(αn) −

Aϕ− 1PM[ϕ(αn) − ρnA(αn)], R1(αn)〉≤ δ‖R1(αn)2‖.

Step 2. Compute d1(αn) � R1(αn) − ρnA(αn)+

ρnAϕ− 1PM[ϕ(αn) − ρnA(αn)] and ωn � .((1 − δ)

R1(αn)2)/d1(αn)2.
Step 3. Find the next iteration, ϕ(αn+1) � ϕ(αn)

− ωnd1(αn).

Step 4. If ρnA(αn) − Aϕ− 1PM[ϕ(αn) − ρnA (αn)],

R1(αn)≤ δ0R1(αn)2, then again take ρ � ρn/μ, else ρ �

ρn. Consider n � n + 1, and start iteration from step 1.

3. Main Results

We suggest predictor-corrector techniques for updating the
scheme to find the solution of the GVI (1):

ϕ(y) � PM[ϕ(α) − ρAα],

ϕ(α) � PM[ϕ(y) − ρAy].
(15)

Here, we suggest the residue vector involving projection
by the relation:

R(α) � ϕ(α) − PM[ϕ(y) − ρA(y)] � ϕ(α) − ϕ(y)

� ϕ(α) − PM PM[ϕ(α) − ρAα]􏼂

− ρAϕ− 1
PM[ϕ(α) − ρAα]􏽩.

(16)

It is clear that α ∈ H, andϕ(α) ∈M is a solution of the
GVI (1) if and only if α ∈ H, andϕ(α) ∈M is satisfied with
the residue vector:

R(α) � 0. (17)

Since the convex set is defined by M, then, for all
η ∈ [0, 1], using (16), we have

ϕ(α) � PM ϕ(α) − ω ηR(α) + ρAϕ− 1
(ϕ(α) − ηR(α))􏽮 􏽯􏽨 􏽩,

� PM[ϕ(α) − ωd(α)].

(18)

where

d(α) � ηR(α) + ρAϕ− 1
(ϕ(α) − ηR(α)). (19)

We now analyze and recommend the following pre-
dictor-corrector scheme for finding the GVI (1).

Algorithm 2.
Step 0. For parameters ϵ> 0, ρ> 0, δ0, δ ∈ (0,

1), c ∈ [0, 1], μ ∈ (0, 1), and αo ∈ H, we start from
n � 0, η ∈ (0, 1).
Step 1. We again take ρn � ρ. If ‖R(αn)‖< ϵ, then
computation stops; otherwise, we continue and con-
sider ρn � ρμmn and find the smallest nonnegative in-
teger mn, which satisfies the inequality ρn〈A(αn) −

Aϕ− 1(ϕ(αn) − ηnR(αn)), R(αn)〉 ≤ ‖σR(αn)2‖, σ ∈
[0, 1].
Step 2. Calculate the next iterate:

ϕ αn+1( 􏼁 � PM ϕ αn( 􏼁 − ωnd αn( 􏼁􏼂 􏼃, (20)

where

d αn( 􏼁 � R αn( 􏼁 + ρnAϕ− 1 ϕ αn( 􏼁 − ηnR αn( 􏼁( 􏼁,

ϕ αn+1( 􏼁 � PM ϕ αn( 􏼁 − ωnd αn( 􏼁􏼂 􏼃,

(21)

ωn

〈R αn( 􏼁, D αn( 􏼁〉
d αn( 􏼁

����
����
2 . (22)

Step 3. If

ρn〈A αn( 􏼁 − Aϕ− 1 ϕ αn( 􏼁 − ηnR αn( 􏼁( 􏼁, R αn( 􏼁〉

≤ σR αn( 􏼁
2
, and σ ∈ [0, 1],

(23)

then again we set ρ � ρn/μ, else by setting ρ � ρn. Take
n � n + 1, and repeat step 1.

Here, ωn is taken as corrector step size which contains
the GWHE (9).

We consider the convergence of the main established
results, which is the main target of this research.

Theorem 1. If α∗ is a solution of inequality(1) and the
operator A: H⟶ H is ϕ-pseudomonotone, then
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〈ϕ(α) − ϕ α∗( 􏼁, d(α)〉 ≥ (η − σ) R(α)
2����
����, ∀α ∈ H. (24)

Proof. Let α∗ ∈ H be a solution of GVI (1). .en,

〈Aα∗, ϕ(β) − ϕ α∗( 􏼁〉 ≥ 0, ∀ϕ(β) ∈M, (25)

since T is ϕ-pseudomonotone. Taking ϕ(β) � ϕ(α) − ηR(α)

in (25), we have

〈Aϕ− 1
(ϕ(α) − ηR(α)), ϕ(α) − ηR(α) − ϕ α∗( 􏼁〉 ≥ 0. (26)

.is implies that

〈Aϕ− 1
(ϕ(α) − ηR(α)), ϕ(α) − ϕ α∗( 􏼁〉≥ η〈Aϕ− 1

(ϕ(α) − ηR(α)), R(α)〉. (27)

Taking z � ϕ(α) − ρAα, α � PM[ϕ(y) − ρAα], and β �

ϕ(α∗) in (3), we obtain

0≤ 〈PM[ϕ(y) − ρAα] − ϕ(α) + ρAα, ϕ α∗( 􏼁 − PM[ϕ(y) − ρAα]〉

�〈ρAα − ϕ(α) − PM[ϕ(y) − ρAα]􏼂 􏼃,ϕ α∗( 􏼁 − ϕ(α) + ϕ(α) − PM[ϕ(y) − ρAα]〉

�〈ρAα − R(α), ϕ α∗( 􏼁 − ϕ(α) + R(α)〉.

(28)

Using(3.1),

�〈R(α) − ρAα, ϕ(α) − ϕ α∗( 􏼁 − R(α)〉

�〈R(α),ϕ(α) − ϕ α∗( 􏼁〉 − 〈ρAα,ϕ(α) − ϕ α∗( 􏼁〉 − 〈R(α) − ρAα, R(α)〉

≤ 〈R(α), ϕ(α) − ϕ α∗( 􏼁〉 − 〈R(α) − ρAα, R(α)〉,

(29)

from which, we have

〈R(α),ϕ(α) − ϕ α∗( 􏼁〉≥ 〈R(α) − ρAα, R(α)〉. (30)

Adding (27) and (30), we obtain

〈ϕ(α) − ϕ α∗( 􏼁, Aϕ− 1
(ϕ(α) − ηR(α)) + R(α)〉 ≥ η〈R(α) − ρAα + Aϕ− 1

(ϕ(α) − ηR(α)), R(α)〉. (31)

Using (19), (21), (23), (27), and (31), we have

〈ϕ(α) − ϕ α∗( 􏼁, d(α)≥ ηR(α), D(α)〉

� η〈R(α), R(α)〉 − ηρ〈R(α), Aα − Aϕ− 1
(ϕ(α) − ηR(α))〉

� η R(α)
2����
���� − ηρ〈R(α), Aα − Aϕ− 1

(ϕ(α) − ηR(α))〉

≥ (η − σ) R(α)
2����
����,

(32)

which is the desired result. □

Theorem 2. If α∗ ∈ H is a solution of GVI (1) and αn+1 is the
approximate solution found from Algorithm 2, then

ϕ αn+1( 􏼁 − ϕ α∗( 􏼁≤ϕ αn( 􏼁 − ϕ α∗( 􏼁 −
ηn − σ( 􏼁R αn( 􏼁

4

d αn( 􏼁
2 .

(33)
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Proof. From (20), (21), (22), and (32), we have

ϕ αn+1( 􏼁 − ϕ α∗( 􏼁
2

� PM ϕ αn( 􏼁 − ωnd αn( 􏼁􏼂 􏼃 − ϕ α∗( 􏼁
2

≤ϕ αn( 􏼁 − ωnd αn( 􏼁 − ϕ α∗( 􏼁
2

≤ϕ αn( 􏼁 − ϕ α∗( 􏼁
2

− 2ωn ηn − σ( 􏼁R αn( 􏼁
2

+ ω2
nd αn( 􏼁

2

� ϕ αn( 􏼁 − ϕ α∗( 􏼁
2

− 2 ηn − σ( 􏼁
R αn( 􏼁, D αn( 􏼁

d αn( 􏼁
2 R αn( 􏼁

2
+

R αn( 􏼁, D αn( 􏼁􏼂 􏼃
2

d αn( 􏼁
4 d αn( 􏼁

2

≤ϕ αn( 􏼁 − ϕ α∗( 􏼁
2

− 2 ηn − σ( 􏼁
2R αn( 􏼁

4

d αn( 􏼁
2 + ηn − σ( 􏼁

2R αn( 􏼁
4

d αn( 􏼁
2

� ϕ αn( 􏼁 − ϕ α∗( 􏼁
2

− ηn − σ( 􏼁
2R αn( 􏼁

4

d αn( 􏼁
2 ,

(34)

which is the required result. □

Theorem 3. Let αn+1 be the approximated solution obtained
from Algorithm 2 and α∗ ∈M be a solution of GVI (1). If H

is a finite-dimensional space, then limαnn⟶∞ � α∗.

Proof. Let α∗ ∈M be a solution of GVI (1). From (34), we
get that the sequence αn􏼈 􏼉 is bounded; we have

ηn − σ( 􏼁
2R αn( 􏼁

4

d αn( 􏼁
2 ≤ϕ αn( 􏼁 − ϕ α∗( 􏼁

2
, (35)

which shows both expressions are going to be zero when
n⟶∞ such as

limR αn( 􏼁
n⟶∞

� 0 (36)

and

limηn
n⟶∞

� 0, (37)

which implies (36) holds. Let α∗ be taken as the cluster point of
αn􏼈 􏼉 , and consider the subsequence αni􏼈 􏼉 of the sequence αn􏼈 􏼉

converge to point α∗. We know continuity of R holds; we have

R α∗( 􏼁 � limR αn( 􏼁
n⟶∞

� 0, (38)

which provides that α∗ is a solution of GVI (1) by.eorem 3
and

ϕ αn+1( 􏼁 − ϕ α∗( 􏼁
2 ≤ϕ αn( 􏼁 − ϕ α∗( 􏼁

2
. (39)

.us, the sequence αn􏼈 􏼉 converges exactly one cluster
point and the consequences, and we obtain

limϕ αn( 􏼁
n⟶∞

� ϕ α∗( 􏼁. (40)

Since ϕ is injective, it gives that limηnn⟶∞ � α∗ ∈ H,

which satisfies the GVI (1).

Suppose that (37) holds and limηnn⟶∞ � 0. If (32)
does not hold, then, by taking the value of ηn, we obtain

σR αn( 􏼁≤ ηnρnA αn( 􏼁 − Aϕ− 1 ϕ αn( 􏼁 − ηnR αn( 􏼁( 􏼁, R αn( 􏼁.

(41)

Let α∗ be the cluster point of αn􏼈 􏼉 and let αni􏼈 􏼉 be the
subsequence αni􏼈 􏼉 converge to α∗. We apply the limit in (41);
then,

σR α∗( 􏼁
2 ≤ 0, (42)

which gives R(α∗) � 0, that is, α∗ ∈ H is a solution of in-
equality (1), and by Lemma 1, inequality (41) holds. By
repeating the same process and arguments, we approach that
limαnn⟶∞ � α∗, the desired result. □

4. Numerical Example

Problem 1. .is problem is relevant to inequality (1), with
ϕ(α) � Aα + q and Aα � α, where

A �

4 − 2 0 · · · 0 0

1 4 − 2 · · · 0 0

0 1 4 ⋱ 0 0

⋮ ⋮ ⋱ ⋱ ⋱ ⋮

0 0 0 ⋱ ⋱ − 2

0 0 0 · · · 1 4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

q �

1

⋮

⋮

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(43)

We set the following domain for the considered problem:
M � α ∈ (Rn/0)≤ αi ≤ 1, for i � 1, 2, 3, . . . , n􏼈 􏼉. Results for
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Algorithm 1 are mentioned in Table 1. Tables 2 and 3
represent the outcomes of Algorithm 2 with the initial
point α0 � − A− 1q for the order n � 100 of the generated
matrix . For all output, we consider μ, δ ∈ (0, 1), c ∈ [1, 2],
and ρ> 0. .e iterative process will stop when we have
r(αn, ρn)≤ 10− 7.

From Tables 1 and 2, we observe with the change of
parameters that the number of iterations also varies. Table 2
gives the results for the newly established method (Algo-
rithm 2). From the output, we observe that the newly
established method converges more quickly than Algo-
rithm 1 for solving the main GVI.

From Tables 3 and 4, we see that, in the new iterative
scheme, the number varies (iterations) by changing the
parameters δ, ρ, and μ. By changing the parameters ac-
cordingly, we can reduce the number of iterations.

5. Conclusion

For this study, the predictor-corrector self-adaptive
method has been applied and considered to find the so-
lution of the GVI. We used pseudomonotone of the op-
erator, which is considered as a weaker condition than
monotonicity. We also proved the convergence analysis,
which is the main motivation of this paper. It has been
analyzed that the new technique is more efficient than the
already proved methods. .e efficiency of the method has
been illustrated through an example. Comparison is
provided with other known methods. .e numerical re-
sults reflect the output of our newly established algorithms
well for the considered problem.
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