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Different material supply-related decisions intensively affect the efficiency of manufacturers. To obtain a suitable supply-related
protocol, this study proposes a supply selection model which considers both manufacturers’ development orientation and
material ordering. In contrast to traditional approaches that rely on expert opinions, the proposed approach in this study
allows the time series analysis (ARIMA) to forecast the trend in manufacturers’ development during the execution of the plan.
Based on the predicted trend, taking the minimum of total material management cost as the objective function, the control
function and optimization conditions are constructed to select the appropriate protocol. The dynamic prediction protocol is
obtained by considering the variation in production and material costs by an evolutionary algorithm. The model enables users
to determine material supply protocol in continuous time and autonomously adapt to changes in the manufacturers’
production goals within a lower convergence time.

1. Introduction

The material ordering management solution needs to deter-
mine the quantities and ordering paths for product raw mate-
rials in a time-varying environment. In some papers, different
relative operators were investigated in the last years. Inventory
issues and the selection of material-control solutions have
been important parts of the overall supply chain coordination
process and have been the focus of attention in the field of sup-
ply chain management research. The final object of the eco-
nomical activities is to increase the people’s happiness [1],
and the optimal program can save resources then thus con-
tributing to promoting the people’s satisfaction. The optimal
program can save resources and thus is to contribute to peo-
ple’s happiness. And the model can also be used to optimize
other domain issues, such as some transportation schedules.
In this study, ordering planning is based on a manufacturer’s
perspective consideration of several questions from a theoret-
ical point of view, but also from a practical one: What factors

influence ordering planning? How will changes within the
company orient the ordering planning of raw materials?
How should the planning model respond to this orientation?
These questions not only suggest how the corresponding
model should be built but also determine the situation in
which the model needs to be adapted. The study improves
the adaptability and generalization of the prediction model
and optimizes the information interaction and response speed
of the ordering and distribution network.

This paper is outlined as follows. In Sections 2 and 3, (1)
we investigate the research background of this problem, (2)
we propose dynamic multiobjective optimization based on
development prediction, and (3) we propose an evolutionary
algorithm combined with dynamic strategy (RS/AS) to solve
dynamic multiobjective optimization problem. In Section 4,
we investigate two cases to clearly demonstrate the experi-
mental process and to prove the effectiveness of the method.
In Section 5, a brief conclusion is provided to prove insights
from above researches.
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2. Literature Reviews

Recent years have witnessed remarkable progress in material
ordering and transportation, with a variety of approaches
proposed in some papers and applied in the real application.
The method of finding the optimal ordering strategy that
minimizes the total inventory by an EPQ model has been
extensively studied in the past literature. Wagner and Whi-
tin [2] proposed a forward dynamic algorithm for minimum
dynamic inventory for the assessment of the manufacturer’s
raw material demand situation and gave the ordering strat-
egy in this case. Mirmohammadi et al. [3] proposed a mate-
rial demand planning based on a limited period and
constructed an optimal sequential tree to solve this problem,
but its computational time may increase in exponential form
with the sharp growing number of data. The rapid develop-
ment of the computer and information sciences has wit-
nessed that the big financial data used broadly in the
investment field [4]. And actually, the text data by crawling
can also be applied to the optimal decision of the supply
chain. Qiao and Zhang [5] applied the dynamic multiobjec-
tive algorithm to wastewater treatment and showed that the
parameters of the Pareto front undergo some changes during
the multiobjective optimal control process, but there is no
need to restart the optimization process due to the similarity
of two consecutive changes. However, the above methods
still suffer from limited accuracy and premature conver-
gences. By combining the above literatures, this study estab-
lishes an adaptive dynamic multiobjective optimization
model for the dynamically changing process of material
ordering control to analyze the ordering and storage strate-
gies under different goal orientations and obtain the optimal
results using multiple search algorithms which save compu-
tational resources and increase rate of convergence by
exploiting the similarity of dynamic scenarios and proposes
precise suggestions for different goal orientations according
to the differences like policy orientations and material
properties.

3. Methods

3.1. Future Demand Forecast. According to the need of con-
structing the model, it is necessary to have a general under-
standing of the development cycle of the manufacturer’s
business. It is more interpretable to humans to quantify
the impact of both environment and the manufacture itself.
The special events such as COVID-19 pandemic have
brought great to the price volatility [6], and further, the price
volatility will influence the supply chain. Time series fore-
casting reveals future trends through the historical data of
the time series, i.e., the seasonal cycle can be obtained
through time series forecasting thus facilitating the develop-
ment of the length of time for which the ordering strategy
applies similarly to the method which Benvenuto et al. used
[7]. The outliers in this prediction are clustered and
denoised to obtain a data series that is easy to deal with
[8]. After data processing and cleaning, a general observa-
tion of the data shows that the series contains both a long-
term trend and a seasonal effect with a 24-week cycle, and

the sum of seasonal factor is approximately zero, so the sea-
sonal model could apply to the forecast.

From the above method, we get the maximum amount
of products that can be produced by the manufacturer in
the current week in the case of sufficient raw materials com-
pared with the production capacity. For different material
suppliers, except for some extreme cases where the supply
is always large and close to 0, the quantity of supplied mate-
rials mostly obeys the production law of the manufacturer, i.
e., there is a cyclical supply law with a 24-week cycle. We
demonstrate these advantages through using supplier S007
as an example:

To determine and separate the seasonal components,
seasonal indices need to be calculated to determine the sea-
sonal effects in the time series and assume weekly supply
of suppliers be the forecast object indicator X. We linearly
combine the forecast object indicator X as follows:

xi = St + Yi + εi t = i mod 24ð Þ, ð1Þ

where St is the seasonal term, Yi is the linear fit term, and
εi is the error term. Using approximately six months (24
weeks) as a period, the 240 weeks of data were divided
into 10 groups. We define the average value of each group
as set of features from class i:

xi =
∑24

j=1xij
24 i = 1, 2,⋯, 10ð Þ: ð2Þ

Hence, we know that xij is t, the value of week j,
group I, and xi is the average value of group i.

We define the season term of that series is as follows
from class j.

Sj =
∑10

i=1 Xij − xi
� �
10 j = 1, 2,⋯, 24ð Þ: ð3Þ

After obtaining the seasonal term index, the series with
the seasonal term removed can be obtained which is Yij =
Xij − Sj, and after sorting this decomposed series Yij, a
regression fit is performed on this array y1, y2,⋯y240.

3.2. Model Definition. We define these variables which are
required in the following models:

(i) Sij. The supply of the supplier i in the week j

(ii) Wij. The zero-one variable of whether the supplier i
in week j supplies

(iii) Mj. The original material storage at the beginning of
week j

Next, a nested weighted recurrent network [9] can be
used to investigate supply chain network coherence. Based
on the results of the time series analysis, the weekly raw
material ordering forecast for each seasonal cycle can be
obtained, and based on this forecast and the manufacturer’s

2 Journal of Function Spaces



production capacity, the weekly material stock quantity state
transfer equation can be established in (4).

Mj =Mj−1 −min 2:82 × 104,Mj−1
� �

+ Sj j = 1, 2, 3:::24ð Þ: ð4Þ

(i) M0 = 0
(ii) min f2:82 × 104,Mj−1g is the material consumption

of week (j − 1)
(iii) Sj =∑Sij ×Wij

The optimization strategy uses a combination of
continuous-time model and multiobjective optimization
model to measure the uncertainty constraint and to ensure
the reliability of the optimal design through the hybrid opti-
mization strategy [10] which is an important step of our
pipeline.

3.3. Establishment of Flexible Constraints for Multiobjective
Planning. In this section, for a complex optimal supply prob-
lem, the complexity of the working conditions and uncer-
tainty quantification as well as the relationship between
objectives and constraints are fully considered. In addition,
since multiple objectives need to be balanced, multiobjective
optimization is required to make decisions by balancing the
objectives when the constraints are satisfied.

Objective 1. Excessive suppliers may lead to cumbersome
handover, so it is necessary to ensure that as few suppliers as
possible are selected to meet production requirements. The
price ratio of A, B, and C raw materials in the data set is
0.72 : 0.726 : 0.72. Take the example of group A suppliers
who supply A raw materials in the data set, group A contains
146 suppliers, and the plan will cover the next 24 weeks. The
zero-one variable ∑146

i=1SAði, jÞ measures whether the supply
is provided in (5).

min 〠
146

i=1
SA i, jð Þ + 〠

134

i=1
SB i, jð Þ + 〠

122

i=1
SC i, jð Þ

" #
j = 1, 2,⋯, 24ð Þ:

ð5Þ

Objective 2. To minimize the ordering cost, the quanti-
ties of raw materials A, B, and C ordered are set to x, y,
and z. Since in practice, the unit prices of raw materials A
and B are 20% and 10% higher than those of raw materials
C, respectively, and the price of C is set to be the unit price,
this optimization objective can be expressed as (6).

min 1:2x + 1:1y + zð Þ: ð6Þ

Objective 3. To minimize the relative difference between
the products that can be produced with the order quantity
and the production capacity, the difference is defined as d
+ >0 when the products that can be produced with the
weekly intake are greater than the weekly production capac-
ity, and as d − >0 when the products that can be produced

with the weekly intake are less than the weekly production
capacity. The objective of keeping this relative difference as
small as possible is established:

min d+ − d−
� �

: ð7Þ

3.4. Linear Weighted Transformation for Multiobjective
Planning. The three objective functions are dimensionless
and normalized using the linear weighting method:

min P1
A

Amax
+ P2

B
Bmax

+ P3
C

Cmax

� �
: ð8Þ

3.5. Solution for Dynamic Multiobjective Planning. The diffi-
culty of multiobjective optimization is affected by the change
of Pareto-optimal solutions (PSs) and different ways of its
moving. We commonly use population evolutionary algo-
rithm to find the PS. By the end of evolutionary, the diversity
of population will loss and then make a decline in the adap-
tion competency. In this study, we use the evolutionary algo-
rithm combining with dynamic strategy (including the RS
and AS) to significantly improve the convergence rate.

3.5.1. Reset Strategy (RS). When the environment changes,
we use a small amount of new environment information
earlier to predict the possible movement direction of PS
in the new environment [11]. Then, we also reinitialize
the population by using the estimated direction and local
search, making it close to the Pareto-optimal solution set
in the new environment.

Half of the crowd is generated by the direction of PSmove-
ment estimated by the new environmental information, and
the other half is generated by a local search of the current
crowd. PSt is the noninferior solution obtained by the algo-
rithm in the t-th environment, and the moving step between
two environmental changes is the Euclidean distance between
the centroids of two noninferior solution sets.

St = Ct − Ct−1�� ��
2: ð9Þ

This distance St reflects the movement direction of PS in
the new environment. Through the domain search of individ-
uals in PSt , we obtain the predicted distribution set and the
noninferior order depending on individual adaptation. Then,
we notice that we can obtain the predicted movement direc-
tion by calculating the centroid CS of the set.

D = Cs − Ct

Cs − Ct
�� ��

2
: ð10Þ

We design the corresponding moving step Lt by integrat-
ing historical environmental moving distance and current
environmental information. A new evolutionary population
Pt+1 can be obtained by screening half of Pt from the crowding
distance.

3.5.2. Adjust Strategy (AS).We investigate the PS with higher
speed of convergence by adjust strategy (AS). After
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obtaining more information of the new environment, we
adjust and update the current population to make more
individuals close to the Pareto-optimal solution set of the
new environment in the current population and to accelerate
the speed of convergence.

When the new environment information increases, we
obtain the PS movement direction by the current group’s
center of mass C∗.

D∗ = C∗ − C: ð11Þ

Similar to the RS strategy, we train to generate estima-
tions of new members of the population and replace α ×N
underperforming individuals by crowding distance. Y is a
complement to the diversity of population in the new envi-
ronment during AS strategy.

y = x +D∗ + δt∙N 0, 1ð Þ∙I: ð12Þ

xϵPSt ,Nð0, 1Þ is random normal function, I = ð1, 1⋯ Þ
is n ∗ 1vector, and δt = St/2 ffiffiffi

n
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Figure 1: Time fitted series (take the example of data centralization provider 007).
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Figure 2: Comparison of original data and predictional data.
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By combining traditional evolutionary algorithms with
adjustment strategies, we obtain solutions approaching to
PS in the new environment. Since we predict the position
of Pareto-optimal front (PF) more accurately, we can also
obtain the PS of the set more accurately, which content the
requirements of algorithm design.

4. Result

4.1. Practical Ordering Example

4.1.1. Time Series Forecasting. In this section, we investigate
the feasibility of each module in the proposal method. Con-
sidering the class A supplier S007 in the dataset to confirm
our thoughts, the time series analysis is performed according
to this pipeline, and the final fitted function is shown in
Figure 1. After removing the effect of the seasonal term,
the data is fitted as a gently rising straight line, from which
the trend of supply and demand can be known.

The data series can be further verified to be a seasonal
series based on the comparison between the series with the
seasonal term removed and the original series.

As shown in Figure 2, the original data are more consis-
tent with the predicted values, so the prediction of the data
combines the strength both accurate and reliable. Therefore,
it is feasible to transform the original series into a smooth
series through the low-order difference and then use the
ARMA model to fit the smooth series, which can provide
information on the seasonal development pattern required
for the model building. After removing the seasonal factor,
since the lag coefficient P of ARMA tends to 0 at this point,
it is known that the data series is smooth.

The trend predicted by ARMA gives a rough limitation
of the availability of suppliers, which is further used as a con-
straint in the multiobjective optimization process, and the
model can be solved as described in Methods.

The trend in time series shows a significant increase in
supply availability in weeks 1 and 5 but also shows that in
most weeks, the supply is less than the supply limitation,

and there is a hidden danger of oversupply for the producer.
Therefore, in order to ensure that inventory levels are always
no less than the number of raw materials stocked to meet the
two-week production demand and to even out the transpor-
tation pressure across weeks, more stock can be predeter-
mined to be stocked in weeks 1 and 5.

4.1.2. Rigid Requirements for Multiobjective Planning.

x
0:6 + y

0:66 + Z
0:72 + d+ − d− =

2:82 × 104 j ≠ 1, 5ð Þ,
4:23 × 104 j = 1, 5ð Þ,

(

x = 〠
146

i=1
〠
24

j=1
SA i, jð Þ ∗wA i, jð Þ,

y = 〠
134

i=1
〠
24

j=1
SB i, jð Þ ∗wB i, jð Þ,

z = 〠
122

i=1
〠
24

j=1
SC i, jð Þ ∗wC i, jð Þ,

SA, SB, SC ∈ 0, 1f g,
d+d− = 0:

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

ð13Þ

The supply is replenished at the peak 1 and 5 weeks of
the forecasted incoming stock; the weekly availability of the
three raw materials is defined; one of the offset variables d
+ and d − must be 0 is affirmed. Inspired by these con-
strains, we develop a new algorithm to solve such multiob-
jective planning problem.

4.1.3. Result of Multiobjective Planning. In this section, we
address the problem arising from the trade-off between
objectives and constraints. The result of multiobjective plan-
ning was solved by linear weighted transformation. Through
the multiple search algorithm, it is found that the best results
are obtained at 7 : 2 : 1 by using plane separation [12]. Based
on the allocation of the supply selection status for that week,
the supply efficiency is calculated using the total supply fore-
cast table as follows in (10).

ηj =
gj

wj
= ∑402

i=1g i, jð Þ
∑402

i=1w i, jð Þ
j = 1, 2,⋯, 24ð Þ, ð14Þ

where gði, jÞ is the total amount of materials ordered for the
i-th supplier in week j and wði, jÞ is the total amount of

Table 1: The manufacturer’s material utilization rate for next 24 weeks.

Week 1 2 3 4 5 6 7 8

Utilization efficiency 0.7188 0.9832 0.8800 1 0.9747 0.9767 0.9353 1

Week 9 10 11 12 13 14 15 16

Utilization efficiency 1 1 1 1 1 1 1 1

Week 17 18 19 20 21 22 23 24

Utilization efficiency 1 1 1 1 1 1 1 1

Table 2: The CRICTIC score of all suppliers.

Supplier ID Grade Score Week of supply

S282 1 0.676545207 24

S275 2 0.626091153 23

S329 3 0.581412859 23

S229 4 0.575577464 23

… … … …
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materials provided by the i-th supplier in week j. The result-
ing utilization rates for each state are shown in Table 1
which presents the manufacturer’s utilization rate for raw
materials for the next 24 weeks, which shows that the utiliza-
tion rate for materials purchased according to the ordering
plan is basically greater than 93%.

4.1.4. Feasibility Verification of Result. The industry has a
monopoly or dominant position in the larger supply of sup-
pliers. The top-ranked suppliers are selected by CRICTIC
importance assessment and compared with the planning
results obtained from the multiobjective optimization strategy
and provided that the two can be verified with each other, and
it means that the selected strategy has feasibility. To verify that,
the following results are proposed to confirm our proposal.

A matrix of size n ∗ p is constructed, with n representing
the number of suppliers and p representing the number of eval-
uation indicators. By dimensionless processing, all indicators
are normalized to positive indicators. We investigate this
method to consider the standard deviation between indicators
to measure their difference fluctuation and the correlation
between indicators to solve the endogeneity problem.We com-
plement our method with considering the size of the informa-
tion entropy of indicators for weight assignment, and get the
weight score ranking by program. Then, by comparison, it
can be seen that the manufacturer material sources are mainly
the top 50 suppliers in this ranking such as in Table 2.

4.2. Dynamic Multiobjective Change in Practical Ordering
Example. Considering the well solved on prior constraints,
we further use the more challenging changing situation to
evaluate the proposal method. Assume that the ordering sce-
nario has a new dynamic due to the larger volume of mate-
rial C, which requires more transshipment resources. The
emergence of new objectives and changes in the original
objectives lead to a consequent change in the optimization,
which is the result of the combined conflicting objectives
of the optimization algorithm [13]. To save transshipment
resource plan to purchase as much as possible of material

A and as little as possible of material C, set the quantity of
material A ordered to x, the quantity of material B ordered
to y, and the quantity of material C ordered to z. Optimiza-
tion objective one is replaced by the following:

min xj − zj
� �

j = 1, 2,⋯, 24ð Þ: ð15Þ

The approximated POF is searched based on similar sce-
narios by a multiple search algorithm which referring some
similar multiobjective optimization methods [5, 14, 15].

The optimal allocation ratio can be solved by this pro-
gram as the algorithm in Algorithm 1, in this case, changes
to 0.80 : 0.15 : 0.05.

We investigate our method with contrastive learning to
further combat the results of the two optimizations in
Table 3 which compares the different order quantity between
the second ordering scenario and the first ordering scenario
after changing the optimization objective, reflecting the con-
sideration of dynamic factors for this scenario. Solution for
multiobjective optimization is the fundamental problems in
this study. Our algorithm has proven to be highly effective
and efficient in dynamic multiobjective ordering strategy
because of the saved storage costs. The empirical results show
that the method satisfies the manufacturer’s need for planning
for ordering materials, satisfies reasonable strategy changes
under target differences and can recommend for the planning
of material ordering problems.

4.3. Practical Transport Example

4.3.1. Model Definition. The process of transshipment is sim-
ilar despite the different optimization objectives and can be
modeled analogously:

(i) gði, jÞ. The amount of material available from sup-
plier i in j-th week

(ii) cði, jÞ. Whether supplier i provides material in week
j (0-1 variable)

1. INPUT: Population P, Maximum Iteration, Time Step(t=0), Evolution Generation(i=1)
2. OUTPUT: Approximated POF
3. BEGIN
4. Randomly initialize a population P
5. Iterate (until Maximum Iteration)
6. If change has appeared
7. t=t+1
8. Collect old and new environment information
9. If evolution generation meet the adjustment conditions
10. Calculate the new allocation ratio score
11. Aggregate the scores and calculate the rank
12. Exact search results for different empowerment goals
13. Comparing weight combinations and optimal solutions
14. Perform the domination process among population, i=i+1
15. Select the highest domination and crowding distance as output POF
16.END

Algorithm 1: Algorithm for dynamic multiobjective optimization.
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(iii) tði, jÞ. Whether supplier i uses forwarder j to deliver
material (0-1 variable)

(iv) cði, jÞ and tði, jÞ are decision variables

Optimization objective

max 〠
24

j=1
〠
402

i=1
g i, jð Þ ∗ c i, jð Þ

 !
: ð16Þ

Requirements for multiobjective planning

〠
8

j=1
t i, jð Þ = 1, i = 1, 2,⋯, 402ð Þ,

〠
402

i=1
t i, jð Þ ⋅ g i, kð Þ ⋅ c i, kð Þ ≤ 6000, j = 1, 2,⋯, 8ð Þ k = 1, 2,⋯, 24ð Þ

t i, jð Þ ∈ 0, 1f g, i = 1, 2,⋯, 402ð Þ j = 1, 2,⋯8ð Þ,
c i, jð Þ ∈ 0, 1f g, i = 1, 2,⋯, 402ð Þ j = 1, 2,⋯24ð Þ:

8>>>>>>>>>>><
>>>>>>>>>>>:

,

ð17Þ

Due to the constraints mentioned in this section, the
solution of this model requires a trade-off between the objec-
tives and the limitations, and the same algorithm as above
can be used to solve for the optimal transportation method.
Considering its variable correlation, the yield can be
expressed by a topological network of recursive form [16].
On this basis, the maximum capacity of yield can be accom-

modated is inverted by setting the weekly capacity to M and
the weekly production to P as follows:

M ≥
P1
2 ,

k ⋅M ≥ 〠
k

i=1
Pi i = 2, 3,⋯, 24ð Þ:

8>>><
>>>:

ð18Þ

4.3.2. Result of Multiobjective Planning. The specific trans-
porters corresponding to each supplier in regular situation
are allocated according to Tables 4 and 5, which allows for
the most rational allocation plan and a stable partnership
between the suppliers and the transporters. Tables 4 and 5
show the weekly volume of each transporter where 0 means
no shipment and the corresponding value represents the
shipment of the corresponding value. We notate the utiliza-
tion efficiency and quantify it by the data in Tables 4 and 5.

ηj =
∑24

i=1tw i, jð Þ
∑24

i=1sgn tw i, jð Þð Þ
j = 1, 2,⋯, 8ð Þ: ð19Þ

This equation characterizes the ratio between the average
and maximum transshipment volume of the j-th trans-
porter, where twði, jÞ refers to the week i of the j-th trans-
porter in the equation, and ∑24

i=1 sgn ðtwði, jÞÞ represents
the total number of weeks carried by the transporter. We
obtain that the efficiency of each transporter is greater than
60%. In particular, the efficiency of transporter 2 is as high
as 91.31%, which shows the high efficiency of the model
and the improvement over the current state-of-the-art.

Table 3: The different order quantity after changing the optimization objective (unit: m3).

Week 1 2 3 4 5 6 7

Plan A 30665.8 20400.6 20405 16994.6 34012.5 20340.2 13866.2

Plan B 30645.3 20401 20407.5 16994.6 34020.3 20345.8 13866.2

Order difference 20.5 -0.4 -2.5 0 -7.8 -5.6 0

Table 4: Table of suppliers to transporters (1-12 weeks).

Transporter
ID 1 2 3 4 5 6 7 8
Week

1 924 2018 3006 6000 6000 2252 6000 1536

2 0 1609 5179 209 2317 3271 0 6000

3 0 1860 5837 0 6000 3110 0 1887

4 0 1810 5772 209 2371 2942 0 2327

5 5433 2227 5988 6000 1202 2602 6000 1499

6 0 2077 6067 1521 6624 3390 0 739

7 0 1955 5075 227 657 3247 0 657

8 0 1887 5460 236 712 4135 0 941

9 0 2464 5959 259 862 5013 0 1244

10 0 3394 5891 266 737 5114 0 1131

11 0 4546 5111 272 802 4986 0 1245

12 0 5169 5412 268 656 5080 0 1004

Table 5: Table of suppliers to transporters (13-24 weeks).

Transporter ID
1 2 3 4 5 6 7 8

Week

13 0 2868 5682 266 3787 6000 0 1312

14 0 3046 5835 271 845 5465 0 1147

15 0 3030 5870 305 837 5504 0 1550

16 0 2981 5573 336 825 5302 0 1213

17 0 4194 5791 328 880 5063 0 1406

18 0 3876 5338 322 707 5619 0 1082

19 0 5990 5375 309 813 5728 0 1250

20 0 3683 4963 296 896 5313 0 1233

21 0 5766 5112 291 938 5573 0 1197

22 0 3936 6000 290 764 5326 0 1040

23 0 2822 5545 291 2396 5020 0 1152

24 0 3332 5648 276 935 5384 0 947
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5. Conclusion

The study assisted in the establishment of the ordering and
transportation strategy, and a time series prediction model
was established to forecast the corresponding material sup-
ply based on the historical data of manufacturer and supplier
capacity and supply, analyzing its trend and seasonality. At
the same time, considering the number of suppliers and
material procurement costs, dynamic multiobjective pro-
gramming model is established. Then, multiple search algo-
rithm using a minority new environment information and
the old environment information to adjust the population
with candidate solutions is used to solve this problem thus
improving the convergence speed of the algorithm to meet
market demand and business needs when a change in the
environment is detected. The experience in the paper con-
siders the minimum inventory strategy and empirically
proves the good adaptability of the model through the estab-
lishment of a hybrid strategy model. Through the compari-
son of ordering strategies under dynamic target changes, it
is found that the method provides decision reference and
theoretical support to the customization of raw material
ordering strategies for actual projects.

The empirical results of the ordering strategy show that,
first, the positive effects of material storage space and sea-
sonal factors on the supply chain system should be increased
to facilitate centralized decision-making for greater benefits;
second, the dynamic ordering strategy model responds to
the digital representation of demand and has a positive effect
on the overall efficiency improvement of the supply chain.
The prediction process in our study can be similar to the
prediction of coke price [17] combining with the deep learn-
ing model to improve the consideration of internal and
external variables. Moreover, this paper does not consider
the impact of nonimmediately decaying materials on order-
ing, storage, and preservation, which will be further consid-
ered in future studies.
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