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In this paper, we introduce the concept of Kaleva-Seikkala’s type fuzzy b-metric spaces as a generalization of the notion of b
-metric spaces and fuzzy metric spaces. In such spaces, we establish Banach type, Reich type, and Chatterjea type fixed-point
theorems, which improve the relevant results in fuzzy metric spaces. Two technical lemmas are employed to ensure that a
Picard sequence is a Cauchy sequence. Finally, various applications are given to testify the fact that our main theorems extend
the cases of b-metric spaces.

1. Introduction

In 1965, the theory of fuzzy sets was introduced by Zadeh in
[1]. Henceforth, several researchers have discussed and
developed this theory and applied the results to various dif-
ferent areas, such as mathematical programming, modeling
theory, cybernetics, neural networks, statistics, construction
machinery, and image processing (see, e.g., [2–4]). After this
pioneering work, some types of fuzzy metric spaces (briefly,
FMS) were presented by numerous authors (refer to
[5–7]). In particular, Kramosil and Michalek [7], in 1975,
gave the notion of FMS as a modification of the notion
of probabilistic metric space initiated by Menger [8]. More
detailed information about such spaces and various fixed-
point theorems in these FMS can be seen in [9–16]. In
1984, another type of fuzzy metric spaces called Kaleva-
Seikkala’s type fuzzy metric space (briefly, KS-FMS) was
initiated by Kaleva and Seikkala [17], which generalized
the metric space by defining a nonnegative fuzzy number
as the distance between two points and applying a new trian-
gle inequality which is analogous to the common triangle
inequality. Drawing inspiration from [17], much work has
been done in KS-FMS (see, e.g., [18–22] and the refer-
ences therein). Throughout this paper, we denote by ℕ,

ℕ+, and ℝ+, the sets of natural numbers, positive integer
numbers, and positive real numbers, respectively. All the
concepts about KS-FMS not given in this paper are the
same as in [23, 24].

As a prevalent generalization of the metric spaces, Bakhtin
[25] in 1989 introduced the notion of b-metric spaces (briefly,
b-MS), which was formally defined by Czerwik [26] in 1993.
In the last decades, many authors investigated the existence
and uniqueness of the fixed point for various contractions in
b-MS (see, e.g., [27–33]). Furthermore, Aghajani et al. [34]
generalized the concept of the b-MS to the Gb-metric space
and established several fixed-point theorems in such spaces.
Very recently, Gupta et al. [35] extended various existing
results in Gb-metric spaces.

Regarding the concepts of the b-MS and several classical
contractions in b-MS, we suggest refer to [25, 26, 32, 33].

In 2012, Sedghi and Shobe [36] initiated the definition of
b-FMS as a generalization of FMS presented by George
and Veeramani in [11]. There are some results in such
spaces (see, for example, [36, 37]). Following this trend,
Chauhan and Gupta [38] introduced the notion of George
and Veeramani’s type fuzzy cone b-MS and established
new version of Banach contraction principle. As far as we
know, there is no paper devoted to propose Kaleva-
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Seikkala’s type fuzzy b-metric spaces. Due to the existing
results mentioned above and application potential, it is sig-
nificant to focus on this research topic.

In this paper, we introduce the concept of Kaleva-
Seikkala’s type fuzzy b-metric spaces (briefly, KS-FbMS)
which generalizes the notions of KS-FMS and b-MS. In
Section 2, some basic properties and lemmas of KS-FbMS

were presented, which will be used later. In Sections 3–5, we
establish and prove the fixed-point theorems concerning
Banach type contractions, Reich type contractions, and Chat-
terjea type contractions in such spaces, respectively. It is worth
mentioning that the range of all contraction constants in our
main results are independent of the space coefficient b. These
results improve and generalize the corresponding results in
KS-FbMS. Moreover, two techinical lemmas for the proof
of Cauchy sequence play a pivotal role in the above theorems.
In the final section, we give a lemma to show that a b-MS is a
special FbMS. Applying this lemma, some applications are
presented to illustrate the fact that our main results extend
the cases of b-MS .

2. Kaleva-Seikkala’s Type Fuzzy b-Metric Spaces

In this section, we introduce the concept of KS-FbMS

and present some elementary lemmas which will be applied
in later sections.

Definition 1. Let S be a nonempty set, d : S ×S⟶F+ be
a mapping, and b ≥ 1 be a real number. Suppose that L,R
: ½0, 1� × ½0, 1�⟶ ½0, 1� be two nondecreasing and symmet-
ric functions such that

L 0, 0ð Þ = 0,R 1, 1ð Þ = 1: ð1Þ

For ı ∈ ð0, 1�, define

d x, yð Þ½ �ı = Iı x, yð Þ, ℘ı x, yð Þ½ �, ∀x, y ∈S: ð2Þ

The following conditions are satisfied:
(BM1) dðx, yÞ = �0⇔ x = y;
(BM2) for each x, y ∈S, dðx, yÞ = dðy, xÞ;
(BM3) for each x, y, z ∈S:
(BM3L) dðx, yÞðbðζ + ηÞÞ ≥ Lðdðx, zÞðζÞ, dðz, yÞðηÞÞ,

whenever ζ ≤I1ðx, zÞ, η ≤I1ðz, yÞ and bðζ + ηÞ ≤I1ðx, yÞ;
(BM3R) dðx, yÞðbðζ + ηÞÞ ≤Rðdðx, zÞðζÞ, dðz, yÞðηÞÞ,

whenever ζ ≥I1ðx, zÞ, η ≥I1ðz, yÞ and bðζ + ηÞ ≥I1ðx, yÞ.
Then, d is called a fuzzy b-metric, and the quintuple

ðS, d, L,R, bÞ is called a fuzzy b-metric space with the
coefficient b. If d : S ×S⟶F+

∞ and ðS, d, L,R, bÞ sat-
isfies (BM1)-(BM3), then ðS, d, L,R, bÞ is called a general-
ized fuzzy b-metric space (briefly, GFbMS).

Lemma 2. Let ðS, d, L,R, bÞ be a FbMS . For each ı ∈ ð0, 1�
and x, y ∈S,

d x, yð Þ½ �ı = Iı x, yð Þ, ℘ı x, yð Þ½ �: ð3Þ

Then,

(1) limη⟶+∞dðx, yÞðηÞ = 0 and limη⟶−∞dðx, yÞðηÞ = 0

(2) For each ı ∈ ð0, 1�, ℘ıðx, yÞ is a nonincreasing and left
continuous function

(3) dðx, yÞðηÞ is a nonincreasing and left continuous
function for η ∈ ðI1ðx, yÞ,+∞Þ

Lemma 3. Suppose that ðS, d, L,R, bÞ be a FbMS , and if
(R-1) Rðx, yÞ ≤max fx, yg;
(R-2) ∀ı ∈ ð0, 1�, ∃ȷ ∈ ð0, ı� s.t. Rðȷ, rÞ < ı for all r ∈ ð0, ıÞ;
(R-3) limı⟶0+Rðı, ıÞ = 0.
Then, (R-1)⇒(R-2)⇒(R-3).

Lemma 4. Let ðS, d, L,R, bÞ be a FbMS . Then,
(R

-1)-
⇒℘ıðx, yÞ ≤ b½℘ıðx, zÞ + ℘ıðz, yÞ� for all ı ∈ ð0, 1� and x, y, z ∈
S:

(R-2)⇒ for each ı ∈ ð0, 1�, there exists ȷ = ȷðıÞ ∈ ð0, ı� such
that for all x, y, z ∈S,

℘ı x, yð Þ ≤ b ℘ı x, zð Þ + ℘ȷ z, yð Þ
h i

: ð4Þ

(R-3)⇒ for each ı ∈ ð0, 1�, there exists ȷ = ȷðıÞ ∈ ð0, ı� such
that for all x, y, z ∈S

℘ı x, yð Þ ≤ b ℘ȷ x, zð Þ + ℘ȷ z, yð Þ
h i

: ð5Þ

Proof.

(1) Suppose that, on the contrary, for some ı ∈ ð0, 1� and
x0, y0, z0 ∈S, ℘ıðx0, y0Þ > b½℘ıðx0, z0Þ + ℘ıðz0, y0Þ�.
We can find ζ, η ∈ℝ+ such that bðζ + ηÞ = ℘ıðx0, y0Þ
≥I1ðx0, y0Þ, ζ > ℘ıðx0, z0Þ ≥I1ðx0, z0Þ, and η > ℘ı
ðz0, y0Þ ≥I1ðz0, y0Þ, which implies that

d x0, z0ð Þ ζð Þ < ı and d z0, y0ð Þ ηð Þ < ı: ð6Þ

From (BM3R) and the condition (R-1), we obtain that

ı ≤ d x0, y0ð Þ ℘ı x0, y0ð Þð Þ = d x0, y0ð Þ b ζ + ηð Þð Þ
≤R d x0, z0ð Þ ζð Þ, d z0, y0ð Þ ηð Þð Þ
≤max d x0, z0ð Þ ζð Þ, d z0, y0ð Þ ηð Þf g < ı,

ð7Þ

which is a contradiction.

(2) Assume that (R-2) holds, i.e., for every ı ∈ ð0, 1�,
there is ȷ = ȷðıÞ ∈ ð0, ı� such that Rðȷ, rÞ < ı for all r
∈ ð0, ıÞ. Since ℘ı is left continuous and nonincreas-
ing, it is sufficient to prove that ℘ıðx, yÞ ≤ b½℘ȷðx, zÞ
+ ℘rðz, yÞ� for all r ∈ ð0, ıÞ. If for some ı ∈ ð0, 1� and
r ∈ ð0, ıÞ, we have ℘ıðx0, y0Þ > b½℘ȷðx0, z0Þ + ℘rðz0,
y0Þ� for some x0, y0, z0 ∈S. Then, we can find ζ
and η such that bðζ + ηÞ = ℘ıðx0, y0Þ ≥I1ðx0, y0Þ, ζ
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> ℘ȷðx0, z0Þ ≥I1ðx0, z0Þ and η > ℘rðz0, y0Þ ≥I1ðz0,
y0Þ. It follows that

d x0, z0ð Þ ζð Þ < ȷ and d z0, y0ð Þ ηð Þ < r: ð8Þ

By means of (BM3R), we have

ı ≤ d x0, y0ð Þ ℘ı x0, y0ð Þð Þ = d x0, y0ð Þ b ζ + ηð Þð Þ
≤R d x0, z0ð Þ ζð Þ, d z0, y0ð Þ ηð Þð Þ ≤R ȷ, rð Þ < ı,

ð9Þ

which is a contradiction.

(3) Suppose that (R-3) holds, i.e., for each ı ∈ ð0, 1�, we
have limi⟶0+Rðı, ıÞ = 0: Then, there is ȷ0 ∈ ð0, ı� such
that Rðȷ, ȷÞ < ı for all ȷ < ȷ0. Assume that, on the
contrary, for some ı ∈ ð0, 1� and ȷ ∈ ð0, ıÞ, we have ℘ı

ðx0, y0Þ > b½℘ȷðx0, z0Þ + ℘ȷðz0, y0Þ� for some x0, y0, z0
∈S. Then, we can find ζ, η ∈ℕ+ such that bðζ + ηÞ
= ℘ıðx0, y0Þ ≥I1ðx0, y0Þ, ζ > ℘ȷðx0, z0Þ ≥I1ðx0, z0Þ
and η > ℘ȷðz0, y0Þ ≥I1ðz0, y0Þ, which deduces that

d x0, z0ð Þ ζð Þ < ȷ and d z0, y0ð Þ ηð Þ < ȷ: ð10Þ

On account of (BM3R) and the condition (R-3),

ı ≤ d x0, y0ð Þ ℘ı x0, y0ð Þð Þ = d x0, y0ð Þ b ζ + ηð Þð Þ
≤R d x0, z0ð Þ ζð Þ, d z0, y0ð Þ ηð Þð Þ ≤R ȷ, ȷð Þ < ı,

ð11Þ

which is a contradiction.

Definition 5. Let ðS, d, L,R, bÞ be a FbMS and fxng be a
suquence in S.

(1) If limn⟶∞dðxn, xÞ = �0, i.e., limn⟶∞℘ıðxn, xÞ = 0 for
each ı ∈ ð0, 1�, fxng is said to converge to x ∈S
(xn ⟶ x as n⟶∞ or limn⟶∞xn = x)

(2) If limn,m⟶∞dðxn, xmÞ = �0, equivalently, for any
given ϵ > 0 and ı ∈ ð0, 1�, there exists N =Nðϵ, ıÞ
∈ℕ+ such that ℘ıðxn, xmÞ < ϵ, whenever n,m ≥N ,
fxng is said to be a Cauchy sequence

(3) If every Cauchy sequence in S converges, ðS, d, L,
R, bÞ is called complete

Lemma 6. Let ðS, d, L,R, bÞ be a FbMS with (R-2) and
fxng ⊆S be a sequence. If the sequence fxng converges to
both x ∈S and y ∈S, then x = y.

We end this section by giving an example to illustrate
that a FbMS is obviously not a FMS or a b-MS .

Example 1. LetS = ½0,+∞Þ and dðx, yÞ: ℝ⟶ℝ a mapping.
If x = y ∈S, we define dðx, yÞðηÞ = �0ðηÞ for all η ∈ℝ. If x, y

∈S with x ≠ y, dðx, yÞ is defined by

d x, yð Þ ηð Þ =
0, η < 0,

1
1 + η/ x − yð Þ4� � , η ≥ 0:

8><
>: ð12Þ

Define that

L a, bð Þ =min a, bf g,
R a, bð Þ =max a, bf g:

(
ð13Þ

Then, the assertions hold:

(1) ðS, d, L,R, bÞ is complete, and the coefficient is b

= 8;
(2) ðS, d, L,R, bÞ is not a FMS .

Proof.

(1) First, we show that (BM1) in Definition 1 is satisfied
for all x, y ∈S. From the definition of dðx, yÞ, it is
sufficient to verify that dðx, yÞðηÞ = �0ðηÞ implies x
= y. Note that

�0 ηð Þ =
1, η = 0,
0, η ≠ 0:

(
ð14Þ

Suppose that there exist x0 ≠ y0 such that dðx0, y0ÞðηÞ =
�0ðηÞ. Taking η = 1, we have dðx0, y0ÞðηÞ = 1/ð1 + ð1/ð
ðx0 − y0Þ4ÞÞÞ ≠ 0, which is a contradiction. It is easy to verify
that for each x, y ∈S, (BM2) in Definition 1 holds. Next, for
each x, y, z ∈S, we prove that the condition (BM3) is satisfied.
By a simple calculation, we get I1ðx, yÞ = ℘1ðx, yÞ = 0 for all
x, y ∈S.

(i) We prove (BM3L) with b = 8. Let ζ, η ∈ℝ satisfying

ζ ≤I1 x, zð Þ,
η ≤I1 z, yð Þ,
8 ζ + ηð Þ ≤I1 x, yð Þ:

8>><
>>: ð15Þ

Since Lða, bÞ =min fa, bg, if ζ <I1ðx, zÞ = 0 or η <
I1ðz, yÞ = 0, then

min d x, zð Þ ζð Þ, d z, yð Þ ηð Þf g = 0 ≤ d x, yð Þ 8 ζ + ηð Þð Þ: ð16Þ

Assume that ζ =I1ðx, zÞ = 0 and η =I1ðz, yÞ = 0, we
obtain that

8 ζ + ηð Þ = 8 0 + 0ð Þ = 0 =I1 x, yð Þ: ð17Þ
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Thus, we conclude that

d x, yð Þ 8 ζ + ηð Þð Þ = 1 =min d x, zð Þ ζð Þ, d z, yð Þ ηð Þf g
=L d x, zð Þ ζð Þ, d z, yð Þ ηð Þð Þ: ð18Þ

That completes the proof of (BM3L).

We prove (BM3R) with b = 8. Let ζ, η ∈ℝ satisfying

ζ ≥I1 x, zð Þ,
η ≥I1 z, yð Þ,
8 ζ + ηð Þ ≥I1 x, yð Þ:

8>><
>>: ð19Þ

Now, we consider the following three cases.

Case 1. Assume that

ζ =I1 x, zð Þ = 0,
η =I1 z, yð Þ = 0,

(
ð20Þ

we have

d x, yð Þ 8 ζ + ηð Þð Þ = d x, yð Þ 8 0 + 0ð Þð Þ = 1
=max d x, zð Þ 0ð Þ, d z, yð Þ 0ð Þf g
=R d x, zð Þ ζð Þ, d z, yð Þ ηð Þð Þ:

ð21Þ

Case 2. If

ζ >I1 x, zð Þ = 0,
η =I1 z, yð Þ = 0,

(
ð22Þ

or

ζ =I1 x, zð Þ = 0,
η >I1 z, yð Þ = 0,

(
ð23Þ

(Here, we discuss the previous assumption), then

8 ζ + ηð Þ > 0 =I1 x, yð Þ,
d x, yð Þ 8 ζ + 0ð Þð Þ ≤max d x, zð Þ ζð Þ, 1f g

=max d x, zð Þ ζð Þ, d z, yð Þ 0ð Þf g
=R d x, zð Þ ζð Þ, d z, yð Þ 0ð Þð Þ:

ð24Þ

Case 3. Suppose that

ζ >I1 x, zð Þ = 0,
η >I1 z, yð Þ = 0:

(
ð25Þ

For each x, y, z ∈X ,

(a) If x = y and z ∈S, then

d x, yð Þ 8 ζ + ηð Þð Þ = �0 8 ζ + ηð Þð Þ
= 0 ≤max d x, zð Þ ζð Þ, d z, yð Þ ηð Þf g
=R d x, zð Þ ζð Þ, d z, yð Þ ηð Þð Þ:

ð26Þ

(b) If x = z ≠ y or x ≠ y = z, without loss of generality, let
x = z ≠ y, then

d x, yð Þ 8 ζ + ηð Þð Þ = 1
1 + 8 ζ + ηð Þ/ x − yð Þ4� � = 1

1 + 8 ζ + ηð Þ/ z − yð Þ4� �
≤

1
1 + η/ z − yð Þ4� � = d z, yð Þ ηð Þ =max 0, d z, yð Þ ηð Þf g

=max �0 ζð Þ, d z, yð Þ ηð Þ� �
=R d x, zð Þ ζð Þ, d z, yð Þ ηð Þð Þ:

ð27Þ

(c) If x ≠ y ≠ z. Note that

min ζ

x − zð Þ4 ,
η

z − yð Þ4
( )

≤
ζ + η

x − zð Þ4 + z − yð Þ4 : ð28Þ

Might as well set min fζ/ðx − zÞ4, η/ðz − yÞ4g = ζ/
ðx − zÞ4, which implies that ζ/ðx − zÞ4 ≤ ðζ + ηÞ/ððx − zÞ4 +
ðz − yÞ4Þ and

max d x, zð Þ ζð Þ, d z, yð Þ ηð Þf g =max 1
1 + ζ/ x − zð Þ4� � , 1

1 + η/ z − yð Þ4� �
( )

= 1
1 + ζ/ x − zð Þ4 = d x, zð Þ ζð Þ:

ð29Þ

Thus, we conclude that

d x, yð Þ 8 ζ + ηð Þð Þ = 1
1 + 8 ζ + ηð Þ/ x − yð Þ4� � = 1

1 + 8 ζ + ηð Þ/ x − z + z − yð Þ4� �
≤

1
1 + 8 ζ + ηð Þ/ 2 x − zð Þ2 + 2 z − yð Þ2� �2� 	 ≤

1
1 + 8 ζ + ηð Þ/8 x − zð Þ4 + z − yð Þ4� �� �

= 1
1 + ζ + η/ x − zð Þ4 + z − yð Þ4� � ≤

1
1 + ζ/ x − zð Þ4� � = d x, zð Þ ζð Þ

=max d x, zð Þ ζð Þ, d z, yð Þ ηð Þf g =R d x, zð Þ ζð Þ, d z, yð Þ ηð Þð Þ:

ð30Þ
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The part of (BM3R) is completed. Therefore, ðS, d, L,
R, bÞ is a FbMS .

Finally, we prove ðS, d, L,R, bÞ is complete. Let fxng
⊆S be a Cauchy sequence in ðS, d, L,R, bÞ. For any ε > 0
, there exists N1 > 0 such that

℘1/2 xm, xnð Þ = 1 − 1/2ð Þð Þ xm − xnð Þ4
1/2 = xm − xnð Þ4 < ϵ4,

ð31Þ

for all m, n >N1. It implies that jxm − xnj < ϵ. Thus, fxng is a
Cauchy sequence in ð½0, +∞Þ, j·jÞ. Due to ð½0, +∞Þ, j·jÞ is
complete, we can find x∗ ∈ ½0,+∞Þ such that limn⟶∞xn =
x∗. For any ϵ > 0 and ı ∈ ð0, 1�, by virtue of xn ⟶ x∗ as n

⟶∞, there is N2 > 0 such that

xn − x∗j j < ıϵ
1 − ı

� 	1/4
, for all n >N2: ð32Þ

Then,

℘ı xn, x∗ð Þ = 1 − ıð Þ xn − x∗ð Þ4
ı

< 1 − ı
ı

· ıϵ
1 − ı

� 	1/4
 �4
= ϵ:

ð33Þ

Thus, xn ⟶ x∗ as n⟶∞ in FbMS . Therefore,
ðS, d, L,R, bÞ is complete.

Let x = 3, y = 1, z = 2, and 0 < ζ = η. Obviously, ζ >I1
ðx, zÞ = 0, η >I1ðz, yÞ = 0 and ζ + η >I1ðx, yÞ = 0. By the
definition of R,

Since 0 < ðζ/8Þ < ζ, we have ð1/ð1 + ðζ/8ÞÞÞ > ð1/ð1 + ζÞÞ.
Thus,

d 3, 1ð Þ ζ + ζð Þ >R d 3, 2ð Þ ζð Þ, d 2, 1ð Þ ζð Þð Þ: ð35Þ

Therefore, ðS, d, L,R, bÞ is not a FMS .

3. Banach Type Contractions in KS-FbMS

In this section, we will state and prove a fixed-point theorem
for Banach type contractions in KS-FbMS . This theorem
extends Banach’s results in FMS .

Theorem 7. Suppose that ðS, d, L,R, bÞ be a complete Fb
MSðb ≥ 1Þ with (R-2). Let F : S⟶S be a mapping. If
there exists k ∈ ½0, 1Þ such that

℘ı Fx,Fyð Þ ≤ k℘ı x, yð Þ,∀x, y ∈S, ð36Þ

for all ı ∈ ð0, 1�, then F admits a unique fixed point in S.

Proof. Since k ∈ ½0, 1Þ, there exists l ∈ℕ such that kl < ð1/bÞ.
Suppose that ı ∈ ð0, 1�, applying (36), we derive

℘ı Fx,Fyð Þ ≤ k℘ı x, yð Þ, ð37Þ

for all x, y ∈S. Clearly,

℘ı F
2x,F2y

� �
≤ k℘ı Fx,Fyð Þ ≤ k2℘ı x, yð Þ: ð38Þ

Continuing this process, we deduce

℘ı Flx,Fly
� 	

≤ kl℘ı x, yð Þ: ð39Þ

Let g =Fl, α = kl ∈ ½0, 1/bÞ. From the above inequality,
for each i ∈ ð0, 1� we obtain that

℘ı gx, gyð Þ ≤ α℘ı x, yð Þ, ð40Þ

for all x, y ∈S.
Now, we shall prove that g admits a unique fixed point

in S. Taking x0 ∈S, we construct a sequence fxng by xn
= gxn−1 = gnx0 (∀n ∈ℕ). For each ı ∈ ð0, 1�, n ∈ℕ, by (40),
we deduce

℘ı xn, xn+1ð Þ = ℘ı gxn−1, gxnð Þ ≤ α℘ı xn−1, xnð Þ
≤ α2℘ı xn−2, xn−1ð Þ ≤⋯≤ αn℘ı x0, x1ð Þ: ð41Þ

Thus, for each ı ∈ ð0, 1�, due to ðS, d, L,R, bÞ satisfies
(R-2), it follows that we can find ȷ = ȷðıÞ ∈ ð0, ı� such that

℘ı x, yð Þ ≤ b ℘ȷ x, zð Þ + ℘ı z, yð Þ
h i

, ∀x, y, z ∈S: ð42Þ

R d 3, 2ð Þ ζð Þ, d 2, 1ð Þ ζð Þð Þ =max d 3, 2ð Þ ζð Þ, d 2, 1ð Þ ζð Þf g =max 1
1 + ζ/ 3 − 2ð Þ4� � , 1

1 + ζ/ 2 − 1ð Þ4� �
( )

= 1
1 + ζ

:

d 3, 1ð Þ 2ζð Þ = 1
1 + 2ζ/ 3 − 1ð Þ4� � = 1

1 + ζ/8ð Þ :
ð34Þ
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For m, n ∈ℕ with m < n, using (41) and (42), we derive

℘ı xm, xnð Þ ≤ b ℘ȷ xm, xm+1ð Þ + ℘ı xm+1, xnð Þ
h i

≤ b℘ȷ xm, xm+1ð Þ + b2℘ȷ xm+1, xm+2ð Þ + b2℘ı xm+2, xnð Þ
≤⋯≤ b℘ȷ xm, xm+1ð Þ + b2℘ȷ xm+1, xm+2ð Þ

+⋯ + bn−m−1℘ȷ xn−2, xn−1ð Þ + bn−m−1℘ı xn−1, xnð Þ
≤ b℘ȷ xm, xm+1ð Þ + b2℘ȷ xm+1, xm+2ð Þ

+⋯ + bn−m−1℘ȷ xn−2, xn−1ð Þ + bn−m℘ȷ xn−1, xnð Þ
≤ bαm℘ȷ x0, x1ð Þ + b2αm+1℘ȷ x0, x1ð Þ

+⋯ + bn−mαn−1℘ȷ x0, x1ð Þ

≤ bαm 1 + bα + b2α2+⋯
� �

℘ȷ x0, x1ð Þ = bαm

1 − bα
℘ȷ x0, x1ð Þ:

ð43Þ

Due to α ∈ ½0, 1/bÞ, we can conclude that fxng ⊆S is a
Cauchy sequence. Note that ðS, d, L,R, bÞ is a complete
FbMS . Thus, there exists v ∈S such that limn⟶∞xn = v,
equivalently, limn⟶∞℘ıðxn, vÞ = 0 for all ı ∈ ð0, 1�.

For each ı ∈ ð0, 1� and n ∈ℕ, by virtue of (40), we obtain
that

℘ı xn+1, gvð Þ = ℘ı gxn, gvð Þ ≤ α℘ı xn, vð Þ: ð44Þ

Thus, ℘ıðxn+1, gvÞ⟶ 0 as n⟶∞, that is, xn+1 ⟶ gv
as n⟶∞. From Lemma 6, we deduce that gv = v. There-
fore, v ∈S is a fixed point of g. This completes the proof
of the existence of the fixed point.

If g has another fixed point ϖ ∈S, i.e., gϖ = ϖ and ϖ ≠ v,
then ℘ı0

ðϖ, vÞ > 0 for some i0 ∈ ð0, 1�. Using (40), we have

℘ı0
ϖ, vð Þ = ℘ı0

gϖ, gvð Þ ≤ α℘ı0
ϖ, vð Þ < ℘ı0

ϖ, vð Þ, ð45Þ

a contradiction. Therefore, ϖ = v, and the fixed point of g is
unique. Hence, Flv = v. Then, FlðFvÞ =FðFlvÞ =Fv,
which deduce thatFv is a fixed point ofFl. By the uniqueness
of fixed point of Fl = g, we get Fv = v. Furthermore, if there
exists �v ∈S such that F�v = �v, then �v is a fixed point of Fl.
Again, by the uniqueness of the fixed point of Fl, we obtain
that �v = v. Thus, F admits a unique fixed point in S.

The following corollary is an immediate consequence of
Theorem 7.

Corollary 8. Suppose that ðS, d, L,R, bÞ be a complete F

MS with (R-2), F : S⟶S be a mapping. For each ı
∈ ð0, 1� and x, y ∈S,

℘ı Fx,Fyð Þ ≤ k℘ı x, yð Þ, ð46Þ

where k ∈ ½0, 1Þ. Then, F has a unique fixed point in S.

Proof. Obviously, a FbMS is a generalized FMS , and thus,
taking b = 1 in Theorem 7, we obtain the result.

To support our results, we give an illustrative example in
FbMS .

Example 2. Assume that S = ½0,+∞Þ, dðx, yÞ: ℝ⟶ℝ a
mapping. If x = y ∈S, we define dðx, yÞðηÞ = �0ðηÞ, ∀η ∈ℝ.
If x, y ∈S with x ≠ y, dðx, yÞ is defined by

d x, yð Þ ηð Þ =
0, η < 0,

1
1 + η/ x − yð Þ2� � , η ≥ 0:

8><
>: ð47Þ

Define L,R by

L a, bð Þ =min a, bf g,
R a, bð Þ =max a, bf g:

(
ð48Þ

Let Y : S⟶S defined by

Yx =

3x
4 , x ∈ 0, 1½ Þ,
x
2 + 1

4 , x ∈ 1, +∞½ Þ:

8>><
>>: ð49Þ

Then, Y is a Banach type contraction with the contrac-
tion constant k = 5/8.

Proof. We can obtain that ðS, d, L,R, bÞ is a complete Fb
MS with the coefficient b = 2, which is similar to Example
1. By the definition of d, it is easy to prove that Y has the
unique fixed point 0. Note that

d x, yð Þ ℘ı x, yð Þð Þ = ı, ð50Þ

for all ı ∈ ð0, 1�. Then,

℘ı x, yð Þ = ı − 1ð Þ x − yð Þ2
ı

: ð51Þ

Now, we divide it into three cases.

Case 1. If x, y ∈ ½0, 1Þ, we can see that

℘ı Yx, Yyð Þ = ı − 1ð Þ Yx − Yyð Þ2
ı

= ı − 1ð Þ 3x/4ð Þ − 3y/4ð Þð Þ2
ı

= ı − 1
ı

· 9
16 x − yð Þ2 = 9

16 · ı − 1ð Þ x − yð Þ2
ı

= 9
16℘ı x, yð Þ ≤ 5

8℘ı x, yð Þ:
ð52Þ
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Case 2. Suppose that x, y ∈ ½1,+∞Þ, we can derive that

℘ı Yx, Yyð Þ = ı − 1ð Þ Yx − Yyð Þ2
ı

= ı − 1ð Þ x/2ð Þ + 1/4ð Þð Þ − y/2ð Þ + 1/4ð Þð Þ½ �2
ı

= ı − 1
ı

· 14 x − yð Þ2 = 1
4 · ı − 1ð Þ x − yð Þ2

ı

= 1
4℘ı x, yð Þ ≤ 5

8℘ı x, yð Þ:

ð53Þ

Case 3. Assume that x ∈ ½0, 1Þ and y ∈ ½1,+∞Þ, we get

℘ı Yx, Yyð Þ = ı − 1ð Þ Yx − Yyð Þ2
ı

= ı − 1ð Þ 3x/4ð Þ − y/2ð Þ − 1/4ð Þð Þ2
ı

= ı − 1
ı

· 1
16 3x − 2y − 1ð Þ2:

ð54Þ

Note that ðx − 1Þ2 ≤ ðx − yÞ2. Thus, we deduce

3x − 2y − 1ð Þ2 = x − 1ð Þ + 2 x − yð Þ½ �2
≤ 2 x − 1ð Þ2 + 4 x − yð Þ2� �

≤ 10 x − yð Þ2,
ð55Þ

then

℘ı Yx, Yyð Þ ≤ ı − 1
ı

· 1016 x − yð Þ2 = 5
8 · ı − 1ð Þ x − yð Þ2

ı
= 5
8℘ı x, yð Þ:

ð56Þ

In conclusion, Y is a Banach type contraction, and the
contraction constant is k = 5/8.

4. Reich Type Contractions in KS-FbMS

In this section, our main contribution is to establish a fixed-
point theorem concerning Reich type contraction. Firstly, we
introduce a crucial lemma to show that a Picard sequence is
a Cauchy sequence.

Lemma 9. Suppose that ðS, d, L,R, bÞ be a FbMS (b ≥ 1)
with (R-2) and fxng ⊆S a sequence. Assume that there
exists Q ∈ ½0, 1Þ such that for each ı ∈ ð0, 1�, we can find Pı
≥ 0 satisfying

℘ı xn, xn+1ð Þ ≤PıQ
n+1, ∀n ∈ℕ, ð57Þ

then fxng ⊆S is a Cauchy sequence.

Proof. Owing to Q < 1, we can find l ∈ℕ+ such that Ql <
1/b. For each ı ∈ ð0, 1� and m, n ∈ℕ+ with m < n, we will
show that

lim
m,n⟶∞

℘ı xm, xnð Þ = 0: ð58Þ

Since ðS, d, L,R, bÞ is with (R-2), there exists ȷ = ȷðıÞ

∈ ð0, ı� such that

℘ı x, yð Þ ≤ b ℘ȷ x, zð Þ + ℘ı z, yð Þ
h i

, ∀x, y, z ∈S: ð59Þ

(i) If n −m ≤ l, then taking account of (57) and (59), we
get

℘ı xm, xnð Þ ≤ b ℘ȷ xm, xm+1ð Þ + ℘ı xm+1, xnð Þ
h i

≤ b℘ȷ xm, xm+1ð Þ
+ b2℘ȷ xm+1, xm+2ð Þ + b2℘ı xm+2, xnð Þ

≤⋯ ≤ b℘ȷ xm, xm+1ð Þ + b2℘ȷ xm+1, xm+2ð Þ
+⋯ + bn−m−1℘ȷ xn−2, xn−1ð Þ + bn−m−1℘ı xn−1, xnð Þ
≤ b℘ȷ xm, xm+1ð Þ + b2℘ȷ xm+1, xm+2ð Þ
+⋯+bn−m−1℘ȷ xn−2, xn−1ð Þ + bn−m℘ȷ xn−1, xnð Þ

= 〠
n−m

i=1
bi℘ȷ xm+i−1, xm+ið Þ ≤ 〠

n−m

i=1
biPȷQ

m+i

≤ 〠
l

i=1
biPȷQ

m+i =QmCı,

ð60Þ

where Cı =∑l
i=1ðbQÞiPȷ.

(ii) If n −m > l, take θ = dðn −mÞ/le − 1, where dne =
min fκ ≥ n : κ ∈ℕ+g, then θ < ððn −mÞ/lÞ ≤ θ + 1.
Thus, 0 < n − ðm + θlÞ ≤ l. Then, making the most
of (5) and (6), we get

℘ı xm, xnð Þ ≤ b ℘ȷ xm, xm+lð Þ + ℘ı xm+l, xnð Þ
h i

≤ b℘ȷ xm, xm+lð Þ + b2℘ȷ xm+l, xm+2lð Þ
+ b2℘ı xm+2l, xnð Þ ≤ b℘ȷ xm, xm+lð Þ
+ b2℘ȷ xm+l, xm+2lð Þ+⋯+bθ℘ȷ xm+ θ−1ð Þl, xm+θl

� 	
+ bθ℘ı xm+θl, xnð Þ ≤ b℘ȷ xm, xm+lð Þ
+ b2℘ȷ xm+l, xm+2lð Þ+⋯+bθ℘ȷ xm+ θ−1ð Þl, xm+θl

� 	
+ bθ+1℘ȷ xm+θl, xnð Þ ≤ bQmCȷ + b2Qm+lCȷ

+⋯+bθQm+ θ−1ð ÞlCȷ + bθ+1Qm+θlCȷ

= bQmCȷ 〠
θ

i=0
bQl

� 	i
≤ bQmCȷ〠

∞

i=0
bQl

� 	i
=

bQmCȷ

1 − bQl
:

ð61Þ

Therefore, for each ı ∈ ð0, 1� and m, n ∈ℕ+ (m < n), we
conclude that
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℘ı xm, xnð Þ ≤Qm max Cı,
bCȷ

1 − bQl

� 
⟶ 0 asm⟶∞:

ð62Þ

The proof is completed.

Remark 10. In fact, we cannot prove the uniqueness of the
fixed point concerning the Reich type contractions without
additional conditions. To figure this out, we consider the
assumption that d has the Fatou property.

Let us review the definition of the Fatou property.

Definition 11. Suppose that ðS, d, L,R, bÞ be a FbMS

(b ≥ 1) with (R-2) and fxng ⊆S be a sequence. We say that
d has the Fatou property if, for each ı ∈ ð0, 1�,

℘ı x, yð Þ ≤ lim inf
n⟶∞

℘ı xn, yð Þ, ð63Þ

whenever xn ⟶ x as n⟶∞ and any y ∈S.

Remark 12. It is obvious that d has Fatou property if ðS, d
, L,R, bÞ is a KS - FMS .

Now, we establish and prove our main contents of this
section.

Theorem 13. Suppose that ðS, d,L,R, bÞ be a complete F
bMS (b ≥ 1) with (R-2). Assume that F : S⟶S be a
mapping. If there exist a1, a2, a3 ≥ 0 and a1 + a2 + a3 < 1 such
that

℘ı Fx,Fyð Þ ≤ a1℘ı x, yð Þ + a2℘ı x,Fxð Þ + a3℘ı y,Fyð Þ, ∀x, y ∈S,
ð64Þ

for all i ∈ ð0, 1�. If d has the Fatou property, then F admits a
unique fixed point in S.

Proof. Let z0 ∈S, we can construct a sequence fzng∞n=0 by
zn =Fzn−1 =Fnz0. Assume that ı ∈ ð0, 1�. By (64), we have

℘ı zn, zn+1ð Þ ≤ a1℘ı zn−1, znð Þ + a2℘ı zn−1, znð Þ + a3℘ı zn, zn+1ð Þ
= a1 + a2ð Þ℘ı zn−1, znð Þ + a3℘ı zn, zn+1ð Þ:

ð65Þ

It immediately follows that

℘ı zn, zn+1ð Þ ≤ a1 + a2
1 − a3

℘ı zn−1, znð Þ = β℘ı zn−1, znð Þ, ð66Þ

where β = ða1 + a2Þ/ð1 − a3Þ. Since a1 + a2 + a3 < 1, we
obtain that β = ða1 + a2Þ/ð1 − a3Þ ∈ ½0, 1Þ. Again by (64), we
get

℘ı zn, zn+1ð Þ ≤ β℘ı zn−1, znð Þ ≤ β2℘ı zn−2, zn−1ð Þ
≤⋯ ≤ βn℘ı z0, z1ð Þ = βn+1Pı,

ð67Þ

where Pı = ð1/βÞ℘ıðz0, z1Þ ≥ 0. Using Lemma 9, we can con-
clude that fzng ⊆S is a Cauchy sequence. Since ðS, d, L,
R, bÞ is complete, we can find u ∈S such that limn⟶∞zn
= u. Next, we prove that u is a fixed point of F . Suppose
that, on the contrary, Fu ≠ u, that is, ℘ı0

ðu,FuÞ > 0 for
some ı0 ∈ ð0, 1�. By means of (64), we deduce that

℘ı0
zn+1,Fuð Þ = ℘ı0

Fzn,Fuð Þ ≤ a1℘ı0
zn, uð Þ

+ a2℘ı0
zn,Fznð Þ + a3℘ı0

u,Fuð Þ:
ð68Þ

Using the fact that zn ⟶ u as n⟶∞ and d has the
Fatou property, we get

℘ı0
u,Fuð Þ ≤ lim inf

n⟶∞
℘ı0

zn,Fuð Þ = lim inf
n⟶∞

℘ı0
zn+1,Fuð Þ:

ð69Þ

Note that limn⟶∞℘ı0
ðzn, uÞ = limn⟶∞℘ı0

ðzn, zn+1Þ = 0.
Combining (68) and (69), we obtain that

℘ı0
u,Fuð Þ ≤ lim inf

n⟶∞
℘ı0

zn+1,Fuð Þ
≤ lim inf

n⟶∞
a1℘ı0

zn, uð Þ + a2℘ı0
zn,Fznð Þ + a3℘ı0

u,Fuð Þ
h i

= a1 lim
n⟶∞

℘ı0
zn, uð Þ + a2 lim

n⟶∞
℘ı0

zn, zn+1ð Þ + a3℘ı0
u,Fuð Þ

= a3℘i0
u,Fuð Þ < ℘ı0

u,Fuð Þ,
ð70Þ

which is a contradiction. Thus, Fu = u.
If v ∈S is a fixed point of F and v ≠ u, that is, f v = v and

℘ı1
ðv, uÞ > 0 for some ı1 ∈ ð0, 1�, by virtue of (64), we derive

℘ı1
v, uð Þ = ℘ı1

Fv,Fuð Þ ≤ a1℘ı1
v, uð Þ + a2℘ı1

v,Fvð Þ
+ a3℘ı1

u,Fuð Þ = a1℘ı1
v, uð Þ + a2℘ı1

v, vð Þ
+ a3℘ı1

u, uð Þ = a1℘ı1
v, uð Þ < ℘ı1

v, uð Þ,
ð71Þ

which contradicts the assumption that v ≠ u. Therefore, v
= u and F has a unique fixed point in S.

Theorem 13 can deduce the following corollary in FMS .

Corollary 14. Suppose that ðS, d, L,R, bÞ be a complete F
MS with (R-2). Assume that F : S⟶S be a mapping.
If there exist a1, a2, a3 ≥ 0 and a1 + a2 + a3 < 1 such that

℘ı Fx,Fyð Þ ≤ a1℘ı x, yð Þ + a2℘ı x,Fxð Þ + a3℘ı y,Fyð Þ, ∀x, y ∈S,
ð72Þ

for all ı ∈ ð0, 1�. Then, F has a unique fixed point in S.

Remark 15. Taking a2 = a3 = 0 in Theorem 13, we can obtain
a result for Banach contractions in FbMS . If we take a1 = 0
and a2 = a3 in Theorem 13, the fixed-point theorem for Kan-
nan type contractions is derived in the same context.
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Corollary 16. Let ðS, d, L,R, bÞ be a completeFbMS (b ≥ 1)
with (R-2) andF : S⟶S. If there exists γ ∈ ½0, 1Þ such that

℘ı Fx,Fyð Þ ≤ γ ℘ı x,Fxð Þ + ℘ı y,Fyð Þ½ �, ∀x, y ∈S, ð73Þ

for all ı ∈ ð0, 1�. If d has the Fatou property, thenF has a unique
fixed point inS.

5. Chatterjea Type Contractions in KS-FbMS

The following lemma is crucial in order to prove a Picard
sequence is a Cauchy sequence.

Lemma 17. Let ðS, d, L,R, bÞ be a complete FbMS (b ≥ 1)
with (R-2). Assume that F : S⟶S be a mapping. Define
the sequence fxngn∈ℕ∪f0g by xn =Fxn−1 =Fnx0. Suppose
that for each ı ∈ ð0, 1�

℘ı Fx,Fyð Þ ≤ c
2
℘ı x,Fyð Þ + ℘ı y,Fxð Þ½ �, ∀x, y ∈S, ð74Þ

where c ∈ ½0, 1Þ. Let q ∈ℕ such that bcq < 1. Then, the follow-
ing assertions hold:

(i) For each ı ∈ ð0, 1� there exists Hı > 0 such that ℘ı
ðxk, xnÞ ≤Hı, for all k ∈ f0, 1,⋯,qg, n ∈ℕ

(ii) For each ı ∈ ð0, 1�, there exists ȷ ∈ ð0, ı� and Hȷ > 0
such that ℘ıðxm, xnÞ ≤ 2bH ȷ, for all m, n ∈ℕ

(iii) The sequence fxng ⊆S is a Cauchy sequence

Proof.

(i) Firstly, we show by induction that, for each ı ∈ ð0, 1�,

℘ı xk, xnð Þ ≤Hı =
b

1 − bcq
max ℘ȷ xı, xȷ

� �
: 0 ≤ ı, ȷ ≤ q

n o
,

ð75Þ

for all n ∈ℕ, k ∈ f0, 1,⋯,qg and for some ȷ ∈ ð0, ı�.
Clearly, (75) holds for all n ≤ q. Assume that (75) holds

for all n ≤m (m ∈ℕ). Notice that ðS, d, L,R, bÞ satisfies
the condition (R-2). By Lemma 4 (2), we can find ȷ = ȷðıÞ
∈ ð0, ı� such that

℘ı x, yð Þ ≤ b ℘ȷ x, zð Þ + ℘ı z, yð Þ
h i

, ∀x, y, z ∈S: ð76Þ

Next, in order to prove (75) for n =m + 1, we divide it
into two cases.

Case 1. Assume that k = 0. Then, by (74) and (76), we have

which implies that

℘ı x0, xn+1ð Þ ≤ b ℘ȷ x0, xq
� �

+ ℘ı xq, xn+1
� �h i

≤ b℘ȷ x0, xq
� �

+ b · c2 ℘ı xq−1, xn+1
� �

+ ℘ı xq, xn
� �� �

≤ b℘ȷ x0, xq
� �

+ b · c
2

� 	2
℘ı xq−2, xn+1
� �

+ 2℘ı xq−1, xn
� �

+ ℘ı xq, xn−1
� �� �

≤⋯≤ b℘ȷ x0, xq
� �

+ b · c
2

� 	q
C0
q℘ı x0, xn+1ð Þ + C1

qρt x1, xnð Þ +⋯ + Cq−1
q ℘ı xq−1, xn−q+2

� �
+ Cq

q℘ı xq, xn−q+1
� �h i

≤ b℘ȷ x0, xq
� �

+ b · c
2

� 	q
℘ı x0, xn+1ð Þ + b · c

2
� 	q

C1
q℘ȷ x1, xnð Þ+⋯+Cq−1

q ℘ȷ xq−1, xn−q+2
� �

+ Cq
q℘ȷ xq, xn−q+1

� �h i
,

ð77Þ

℘ı x0, xn+1ð Þ ≤ b℘ȷ x0, xq
� �

1 − b c/2ð Þq + b · c/2ð Þq
1 − b c/2ð Þq C1

q℘ȷ x1, xnð Þ +⋯ + Cq−1
q ℘ȷ xq−1, xn−q+2

� �
+ Cq

q℘ȷ xq, xn−q+1
� �h i

≤
b℘ȷ x0, xq

� �
1 − b c/2ð Þq + b · c/2ð Þq

1 − b c/2ð Þq C1
q + C2

q+⋯+Cq
q

h i
Hı ≤

b

1 − b c/2ð Þq max ℘ȷ xı, xȷ
� �

: 0 ≤ i, j ≤ q
n o

+ b · c/2ð Þq
1 − b c/2ð Þq C1

q + C2
q+⋯+Cq

q

h i
Hı =

1 − bcq

1 − b c/2ð Þq Hi +
b · c/2ð Þq
1 − b c/2ð Þq 2q − 1ð ÞHı =

Hi

1 − b c/2ð Þq 1 − bcq + bcq − b
c
2

� 	qh i
=Hı:

ð78Þ
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Case 2. Suppose that k ∈ f1, 2,⋯,qg. In this case, taking
account of (74), we deduce that

℘ı xk, xn+1ð Þ ≤ c
2℘ı xk−1, xn+1ð Þ + c

2℘ı xk, xnð Þ

≤
c
2

� 	2
℘ı xk−2, xn+1ð Þ + c

2
� 	2

℘ı xk−1, xnð Þ
� �

+ c
2Hı ≤⋯≤

c
2

� 	k
ρt x0, xn+1ð Þ + c

2
� 	k

℘ı x1, xnð Þ
� �

+ c
2

� 	k−1
+ c

2
� 	k−2

+⋯ + c
2

� �
Hı ≤

c
2

� 	k
℘ı x0, xn+1ð Þ

+ c
2

� 	k
Hı +

c
2

� 	k−1
+ c

2
� 	k−2

+⋯ + c
2

� �
Hı:

ð79Þ

From case 1, we derive

℘ı xk, xn+1ð Þ ≤ c
2

� 	k
Hı +

c
2

� 	k
Hı +

c
2

� 	k−1
+ c

2
� 	k−2

+⋯ + c
2

� �
Hı

≤
1
2


 �k

+ 1
2


 �k

+ 1
2


 �k−1
+⋯ + 1

2

" #
Hı =Hı:

ð80Þ

Therefore, from the above two cases, we prove that (75)
holds for all n ∈ℕ.

(ii) For each ı ∈ ð0, 1� and m, n ∈ℕ, by means of (74)
and (76), we obtain that

℘ı xm, xnð Þ ≤ b ℘ȷ xm, xq
� �

+ ℘ı xq, xn
� �h i

≤ b Hȷ +Hı

� �
≤ 2bH ȷ,

ð81Þ

where Hȷ = ðb/ð1 − bcqÞÞ max f℘ȷ0
ðxi, xjÞ: 0 ≤ i, j ≤ qg, for

some ȷ0 ∈ ð0, ȷ�.

(iii) For each ı ∈ ð0, 1� and m, n ∈ℕ (m < n), from (74)
and (ii), we have

℘ı xm, xnð Þ ≤ c
2 ℘ı xm−1, xnð Þ + ℘ı xm, xn−1ð Þ½ �

≤
c
2

� 	2
℘ı xm−2, xnð Þ + 2℘ı xm−1, xn−1ð Þ + ℘ı xm, xn−2ð Þ½ �

≤⋯≤
c
2

� 	m
C0
m℘ı x0, xnð Þ + C1

m℘ı x1, xn−1ð Þ+⋯+Cm
m℘ı xm, xn−mð Þ� �

≤
c
2

� 	m
C0
m + C1

m+⋯+Cm
m

� �
· 2bHȷ ≤

c
2

� 	m
· 2m · 2bHȷ = 2bH ȷc

m:

ð82Þ

Thus, we can obtain that limm,n⟶∞℘ıðxm, xnÞ = 0.
Therefore, we conclude that fxng ⊆S is a Cauchy sequence.

By Lemma 17, we establish a fixed-point theorem for
Chatterjea type contraction in FbMS .

Theorem 18. Suppose that ðS, d, L,R, bÞ be a complete F
bMS (b ≥ 1) with (R-2). Assume that F : S⟶S be a
mapping. For each ı ∈ ð0, 1�,

℘ı Fx,Fyð Þ ≤ c
2
℘ı x,Fyð Þ + ℘ı y,Fxð Þ½ �, ∀x, y ∈S, ð83Þ

where c ∈ ½0, 1Þ. Then, F has a unique fixed point u ∈S, and
for any x ∈S, the sequence of iterates fFnxg converges to u.

Proof. Let x0 ∈S, we construct a sequence fxngn∈ℕ∪f0g by
xn =Fxn−1 =Fnx0. Owing to c ∈ ½0, 1Þ, there exists q ∈ℕ
such that bcq < 1. Using the Lemma 17, we can obtain that
fxng ⊆S is a Cauchy sequence. Due to ðS, d, L,R, bÞ is
complete, there exists u ∈S such that limn⟶∞xn = u. Next,
we show that u is a fixed point of F . For each ı ∈ ð0, 1�, from
Lemma 4 (40), we can find ȷ ∈ ð0, ı� such that

℘ı x, yð Þ ≤ b ℘ȷ x, zð Þ + ℘ı z, yð Þ
h i

, ∀x, y, z ∈S: ð84Þ

By virtue of (83) and (84), we have

℘ı xn,Fuð Þ ≤ c
2℘ı xn−1,Fuð Þ + c

2℘ı xn, uð Þ

≤
c
2

� 	2
℘ı xn−2,Fuð Þ + c

2
� 	2

℘ı xn−1, uð Þ
� �

+ c
2℘ı xn, uð Þ ≤⋯≤

c
2

� 	q
℘ı xn−q,Fu
� �

+ c
2

� 	q
℘ı xn−q+1, u
� �

+ c
2

� 	q−1
℘ı xn−q+2, u
� �

+⋯+ c
2℘ı xn, uð Þ ≤ b

c
2

� 	q
℘ȷ xn−q, xn
� �

+ ℘ı xn,Fuð Þ
h i

+ c
2

� 	q
℘ı xn−q+1, u
� �

+ c
2

� 	q−1
℘ı xn−q+2, u
� �

+⋯+ c
2℘ı xn, uð Þ:

ð85Þ

It follows that

℘ı xn,Fuð Þ ≤ b c/2ð Þq
1 − b c/2ð Þq ℘ȷ xn−q, xn

� �
+ 1
1 − b c/2ð Þq

c
2

� 	q
℘ı xn−q+1, u
� �

+ c
2

� 	q−1
℘ı xn−q+2, u
� �

+⋯+ c
2℘ı xn, uð Þ

� �
: ð86Þ
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Note that limn⟶∞℘ȷðxn−q, xnÞ = 0 and limn⟶∞℘ıðxn−i,
uÞ = 0, i = 0, 1,⋯, q − 1. Therefore, we obtain that limn⟶∞
℘ıðxn,FuÞ = 0, that is, xn converges to Fu, by Lemma 6,
we have Fu = u. This completes the proof of the existence
of the fixed point of F .

If there exists v ∈S such that Fv = v and v ≠ u, that is,
℘ı0

ðv, uÞ > 0 for some ı0 ∈ ð0, 1�. Taking (83) into account,
we have

℘ı0
v, uð Þ = ℘ı0

Fv,Fuð Þ ≤ c
2 ℘ı0

v,Fuð Þ + ℘ı0
u,Fvð Þ

h i
= c
2 · 2℘ı0

v, uð Þ = c℘ı0
v, uð Þ < ℘ı0

v, uð Þ,
ð87Þ

which contradicts the fact that v ≠ u. Therefore, v = u and F

has a unique fixed point in S.

Corollary 19. Suppose that ðS, d, L,R, bÞ be a complete F
MS with (R-2), F : S⟶S. If there exists c ∈ ½0, 1Þ such
that

℘ı Fx,Fyð Þ ≤ c
2
℘ı x,Fyð Þ + ℘ı y,Fxð Þ½ �, ∀x, y ∈S, ð88Þ

for all ı ∈ ð0, 1�. Then, F has a unique fixed point u ∈S, and
for any x ∈S, the sequence of iterates fFnxg converges to u.

Proof. Taking b = 1 in Theorem 18, the desired result is
obtained immediately.

6. Applications

The aim of the following lemma is to prove that a b-MS is a
special FbMS . And then, we can establish the relevant
fixed-point theorems in b-MS as corollaries of our main
results presented in Sections 3–5.

Lemma 20. Let ðS,DÞ be a b - MS and dðx, yÞ: ℝ⟶ℝ a
mapping defined by

d x, yð Þ ηð Þ = �D x, yð Þ ηð Þ = �0 η −D x, yð Þð Þ, ∀x, y ∈S: ð89Þ

Then, ðS, d,L,R, bÞ is a FbMS , where

L a, bð Þ =min a, bf g,
R a, bð Þ =max a, bf g:

(
ð90Þ

Proof. In view of (89), we have

d x, yð Þ ηð Þ =
1, η =D x, yð Þ,
0, η ≠D x, yð Þ:

(
ð91Þ

It is easy to verify (BM1) and (BM2) in Definition 1.
Next, for every x, y, z ∈S, we prove that (BM3) holds.

First, we prove (BM3L). Let ζ, η ∈ℝ satisfying

ζ ≤I1 x, zð Þ,
η ≤I1 z, yð Þ,
b ζ + ηð Þ ≤I1 x, yð Þ:

8>><
>>: ð92Þ

Note that Lða, bÞ =min fa, bg. Suppose that ζ <I1ðx, zÞ
or η <I1ðz, yÞ, we can obtain that

min d x, zð Þ ζð Þ, d z, yð Þ ηð Þf g = 0 ≤ d x, yð Þ b ζ + ηð Þð Þ: ð93Þ

Assume that ζ =I1ðx, zÞ and η =I1ðz, yÞ, we deduce

b ζ + ηð Þ = b D x, zð Þ +D z, yð Þð Þ ≥D x, yð Þ: ð94Þ

Note that bðζ + ηÞ ≤I1ðx, yÞ =Dðx, yÞ. Thus, we
conclude that

d x, yð Þ b ζ + ηð Þð Þ = d x, yð Þ D x, yð Þð Þ = 1
=min d x, zð Þ ζð Þ, d z, yð Þ ηð Þf g
=L d x, zð Þ ζð Þ, d z, yð Þ ηð Þð Þ:

ð95Þ

That completes the proof of (BM3L).
Now, we verify (BM3R). Let ζ, η ∈ℝ satisfying

ζ ≥I1 x, zð Þ,
η ≥I1 z, yð Þ,
b ζ + ηð Þ ≥I1 x, yð Þ:

8>><
>>: ð96Þ

Assume that ζ =I1ðx, zÞ or η =I1ðz, yÞ, we get

max d x, zð Þ ζð Þ, d z, yð Þ ηð Þf g = 1 ≥ d x, yð Þ b ζ + ηð Þð Þ: ð97Þ

If ζ >I1ðx, zÞ and η >I1ðz, yÞ, we derive

b ζ + ηð Þ > b D x, zð Þ +D z, yð Þð Þ ≥D x, yð Þ: ð98Þ

Thus, we conclude that

d x, yð Þ b ζ + ηð Þð Þ = 0 =max d x, zð Þ ζð Þ, d z, yð Þ ηð Þf g
=R d x, zð Þ ζð Þ, d z, yð Þ ηð Þð Þ: ð99Þ

The part of (BM3R) is completed.

Remark 21. From Lemma 20, it is obvious that ðS,DÞ and
ðS, d, L,R, bÞ are homeomorphic, and for each ı ∈ ð0, 1�,
℘ıðx, yÞ =Dðx, yÞ. Therefore, we give the following three
results as corollaries of Theorem 7, Theorem 13, and Theo-
rem 18, respectively.
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Corollary 22 (see [32]). Suppose that ðS, dÞ be a complete b -
MS (b ≥ 1), F : S⟶S. If x, y ∈S,

d Fx,Fyð Þ ≤ kd x, yð Þ, ð100Þ

where k ∈ ½0, 1Þ. Then, F has a unique fixed point in S.

Corollary 23. Let ðS, dÞ be a complete b - MS (b ≥ 1), F
: S⟶S. Suppose that there exist a1, a2, a3 ≥ 0 and a1 +
a2 + a3 < 1 such that

d Fx,Fyð Þ ≤ a1d x, yð Þ + a2d x,Fxð Þ + a3d y,Fyð Þ, ∀x, y ∈S:

ð101Þ

If d has the Fatou property, then F has a unique fixed
point in S.

Corollary 24 (see [33]). Let ðS, dÞ be a complete b - MS

(b ≥ 1), F : S⟶S. If

d Fx,Fyð Þ ≤ c
2
d x,Fyð Þ + d y,Fxð Þ½ �, ∀x, y ∈S, ð102Þ

where c ∈ ½0, 1Þ, then F has a unique fixed point x∗, and for
any x ∈S, the sequence of iterates fFnxg converges to x∗.
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