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We have defined and studied the weighted Nakano sequence spaces of fuzzy functions. We have constructed the ideal generated
by extended s-fuzzy functions and the sequence spaces of fuzzy functions. We present some topological and geometric structures
of this class of ideal and multiplication mappings acting on this sequence space of fuzzy functions. Moreover, the existence of
Caristi’s fixed point is examined. To show how the work is done, some examples and applications to the existence of solutions
for a class of nonlinear summable and matrix equations are also talked about.

1. Introduction

The mathematical description of the hydrodynamics of non-
Newtonian fluids provided additional impetus to the learn-
ing about variable exponent Lebesgue spaces (see [1, 2]).
Electric rheological fluids have many applications, including
military technology, civil engineering, and orthopedics. In
cybernetics, artificial intelligence, and fuzzy control, the con-
cept of fuzziness was widely embraced after Zadeh [3] intro-
duced fuzzy sets and fuzzy set operations. Javed et al. [4]
investigated the Banach contraction in R-fuzzy b-metric
spaces and discussed some related fixed point results to
ensure a fixed point’s existence and uniqueness. A nontrivial
example is given to illustrate the feasibility of the proposed
methods. They offered an application to solve the first kind
of Fredholm-type integral equation. In [5], Rehman and
Aydi proved some common fixed point theorems for map-
pings involving generalized rational-type fuzzy cone-
contraction conditions in fuzzy cone metric spaces. They
gave a common solution of two definite Fredholm integral
equations. The concept of orthogonal partial b-metric spaces
was pioneered by Javed et al. [6]. They presented a unique
fixed point for some orthogonal contractive-type mappings

with some examples and an application. Humaira et al. [7]
discussed the existence theorem for a unique solution to a
coupled system of impulsive fractional differential equations
in complex-valued fuzzy metric spaces and the fuzzy version
of some fixed point results by using the definition and pre-
sented some properties of a complex-valued fuzzy metric
space with some applications. In this study, Sarwar and
Rodriguez-Lépez [8] looked into the concept of extended
fuzzy rectangular b-metric space. They explained that some
fixed point results in the literature could be generalized by
a-admittance in this space. They used this to show solutions
for a group of integral equations. Many researchers in
sequence spaces and summability theory were active in
studying fuzzy sequence spaces and their properties. Differ-
ent classes of sequences of fuzzy real numbers have been dis-
cussed by Nanda [9], Nuray and Savas [10], Matloka [11],
Altinok et al. [12], Colak et al. [13], Hazarika and Savas
[14], and many others. In [10], the Nakano sequences of
fuzzy integers were defined and analyzed. The mappings’
ideal theory is well regarded in functional analysis. Using s
-numbers is an essential technique. Pietsch [15-18] devel-
oped and studied the theory of s-numbers of linear bounded
mappings between Banach spaces. He offered and explained
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some topological and geometric structures of the quasi-
ideals of €,-type mappings. Then, Constantin [19] general-

ized the class of ¢,-type mappings to the class of ces,-type
mappings. Makarov and Faried [20] showed some inclusion
relations of €,-type mappings. As a generalization of €,-type
mappings, Stolz mappings and mappings’ ideal were exam-
ined by Tita [21, 22]. In [23], Maji and Srivastava studied

the class Af,s) of s-type ces, mappings using s-number
sequence and Cesaro sequence spaces and they introduced
a new class A;,fgi of s-type ces(p,q) mappings by weighted

ces, with 1 <p<co. In [24], the class of s-type Z(u,v;¢,)

mappings was defined and some of their properties were
explained. Yaying et al. [25] defined and studiedy”, withr
-Cesaro matrix inf,, withr € (0,1]andl <#<co. They
explained the quasi-Banach ideal of type y7, with r € (0, 1]
and 1 < #<co. Komal et al. [26] explained the multiplication
mappings defined on ces, equipped with the Luxemburg
norm. The multiplication mappings acting on Cesaro
second-order function spaces discussed by Ilkhan et al.
[27]. Many fixed point theorems in a particular space work
by either expanding the self-mapping acting on it or expand-
ing the space itself. In this paper, we have introduced the
concept of premodular spaces of fuzzy numbers, which are
important extensions of the concept of modular spaces.
We also extended s-fuzzy numbers to build large spaces of
solutions to many nonlinear summable and matrix equa-
tions of fuzzy numbers. It is the first attempt to examine
Caristi’s fixed point in certain premodular vector spaces.
This work is aimed at introducing the particular space of
sequences of fuzzy numbers, in short (pssf), under a partic-
ular function to be pre-quasi (pssf). We have defined and
analyzed weighted Nakano sequence spaces of fuzzy func-
tions. Extended s-fuzzy functions and weighted Nakano
sequence spaces of fuzzy functions have been used to create
the mappings’ ideal. The topological and geometric charac-
teristics of mappings’ ideal and multiplication mappings act-
ing on this sequence space of fuzzy functions are offered.
Caristi’s fixed point is also discussed in this paper. Some
supporting examples and applications to the existence of
solutions for a class of nonlinear summable and matrix
equations are also explored to provide a better understand-
ing of the work that has been done.

2. Definitions and Preliminaries

As a reminder, Matloka [11] presented the concept of ordi-
nary convergence of sequences of fuzzy numbers, where he
introduced bounded and convergent fuzzy numbers,
explored some of their features, and proved that any conver-
gent fuzzy number sequence is bounded. Nanda [9]
explained the sequences of fuzzy numbers and proved the
set of all convergent sequences of fuzzy numbers from a
complete metric space. Kumar et al. [28] investigated the
limit points and cluster points of sequences of fuzzy numbers.
Assume Q is the set of all closed and bounded intervals on
the real-line R. Let f = [f, f,] and g = [g,, g,] in ; suppose
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f<g fifandonlyif f, <g,andf, <g,. (1)
Define a metric p on Q by
p(f> 9) = max {|f, - g,||f, = g, [}- (2)

Matloka [11] showed that p is a metric on Q, (Q, p) is a
complete metric space, and the relation < is a partial order on
Q.

Definition 1. A fuzzy number g is a mapping g : R — [0, 1]
which verifies the following four settings:

(a) g is fuzzy convex; ie., for x,y€R and a€[0,1],
glax + (1 -a)y) = min {g(x), g(y)}
(b) g is normal; i.e., one has y, € R such that g(y,) =1

(c) gis upper semicontinuous; i.e., for alla >0, g~*([0, x
+ a))and for allx € [0, 1], which is open in the usual
topology ofR

(d) The closure of g° == {y e R : >0} is compact
g y g P

The B-level set of g,0 < < 1 indicated by g# is defined
as

g ={yeR:g(y) =B} (3)

The set of every upper semicontinuous, normal, convex
fuzzy number, and g# is compact and is denoted by R ([0, 1]).
The set R can be embedded in R ([0, 1]), when we define k €
R([0,1]) by

Tix) 1, x=k @
(x)_{o, x#k.

0 and 1 denote the additive identity and multiplicative
identity in R[0, 1] in R0, 1], respectively.
The arithmetic operations on R[0, 1] are defined as

(f®9g)(q) =sup min {f(p),g(q-p)}

qeR

(feg)(q) =sup min {f(p), g(p—9)}>

qeR

(f@g)(q)=sup min {f ()9 (E) } (5)
@ (9) = sup min{(pa). ()}

f('a), p#0

pf(q)={
0, p=0.
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The absolute value |f] of f € R[0, 1] is defined as

max ,f(=q)Y, ifg=>0,
|f|(q)={0 {f(@).f(=9)}> ifq

(6)
ifg<o.

Suppose f, g€ R[0,1] and the B-level sets are [f]F =
[f'f,ff] and [g]f = [g'f,gf], B €[0,1]. A partial ordering for
any f, g € R[0, 1] as follows: f=g if and only if f* < gF, for

all B €0, 1]. Hence, the above operations can be defined by
B-level sets as

fogl=|fl+dl.fi+di].
fogl=|fi-d5fi-di].

g ’gj}

P {( ) (ff)“} 550, forevery e (0, 1],
), xzo0,

b xfl], x<o.

Fogl"= | min fid).

je{1.2}

) =

(7)

Assume p : R[0, 1] x R[0, 1] — R U {0} is defined by
p(f>9) = Suposﬁglp(fﬁ> g°).

Recall that

(1) (R][0,1], p) is a complete metric space

() p(f +k g+k)=p(f, g) forall f, g,k € R[0, 1]

G) p(f+kg+D)<p(f.g)+pk])

4) p(&f.89) = [Elp(f, g), for all £ € R

Definition 2. A sequence of fuzzy numbers f = (f,) is called

(a) bounded if there are two fuzzy numbers g,! such
that g<f.<

(b) convergent to a fuzzy real number f if for all £ >0,
one has n, € // such that f)(fj,fo) <g forall j>j,

By ¢., and £,, we denote the spaces of bounded and
r-absolutely summable sequences of R, respectively.

Lemma 3 (see [29]). Suppose 7,> 0, K =max {I,sup,7,},
and Y, Z, € R with q € /V; hence,

[¥g+ 2" <2 (|, + |2, ). ®)

We will explain our main results.

3. Some Properties of l’,f(_)

This section introduces the particular space of sequences of
fuzzy functions (pssf), under definite function to be pre-
quasi (pssf). We investigate sufficient setup of {’, ) equipped
with definite function h to be pre-quasi closed and Banach
(pssf). We also present the Fatou property of various h
on Ef().

Let w(F) and ¢, (F) mark the classes of all and bounded
sequence spaces of fuzzy functions, respectively. Suppose
T=(1,) eR*", where R*”" is the space of positive real
sequences. The variable exponent sequence space of fuzzy
functions is denoted by

)={2=(2,) cw(F);

h(rZ)<oo,for some r > O}

Theorem 4. If (7,) €, then

={Z=(2,) e w(F): h(rZ)<ocoforanyr>0}. (10)
Proof.
e, ={Z=(2,) € w(F): h(rZ)<oo,for somer>0}
00 1 .
={Z=(2,) €w(F): inf|r[" Y —[p(2,0)]"
q i
< ZTL [p(qu,(_))]T‘*<oo,forsomer>0} (11)
q=0 "4
=0 7= Z q<oo
q=0 Tq
={Z=(2,) € w(F): h(rZ)<oo,foranyr>0}.
U
By [0,00)Y, we denote the space of all functions h : U

—> [0,00). Nakano [30] introduced the concept of modular
vector spaces.

Definition 5. Suppose U is a vector space. A function h €
[0,00]Y is called modular if the next conditions hold:

(@) If YeU, Y=9& h(Y)=0 with h(Y) >0, where 9

= (0,0’0, )
(b) h(nZ) =h(Z) holds, for all Ze U and |y =1
(c) The inequality h(aY + (1 - a)Z) <h(Y) +h(Z) sat-

isfies, for all Y,Z € U and a € [0, 1]



Definition 6. The linear space U is said to be a particular
space of sequences of fuzzy functions (pssf), if

@ {5,},, 10,0,

1 displays at the g™ place

€U, where b, ={0,0, -, }, while

(b) U is solid; i.e., suppose Y = (Y,) € w(F), Z=(Z,) €
U and |Y |S|Z |, forall ge 4, then Y €U

(c) ( q/2])
q/2, if (Y (

€ U, where [q/2] marks the integral part of
[e¢]
)q:O eU

Definition 7. A subclassU,ofUis said to be a premodular
(pssf), if one hash € [0,00)Y which satisfies the next settings:
(i) fYeU, Y=9oh(Y)=0with h(Y) >0

(ii) There is Q>1; the inequality h(aY) < Q|alh(Y)
holds, for every Y e U and o € R

(iii) There is P > 1; the inequality h(Y + Z) < P(h(Y) +
h(Z)) holds, for every Y,Z e U

(iv) If |Y,| < |Z,], for every q € ¥, one has h((
((Zy))

(v) The inequality h((Y,)) <h((Yy)) < Poh((Y,))
holds, for some P, >1

Y,))<h

(vi) The closure of E = Uy, where E is the space of finite
sequences of fuzzy functions

(vii) There is o >0 with h(=,0,0,0,--+) > o|a|h(1,0,0,
0, ---), where
~ L y=a
a0) = { (12)
0, y#«a

Clearly, the concept of premodular vector spaces is more
general than modular vector spaces. Some examples of pre-
modular vector spaces but not modular vector spaces are
shown.

Example 1. The function h(Z)=(}¥2,((3q+4)/(q+1))

p(Z, 0)]V/G1 ) g 3 premodular (not a modular) on
the vector space €7 (((q+1)/(3q + 4));20). As for every Z,Y

€ (((q+1)/(3q+4))2

1)/(3g+4)\ 4
W20 §3q+4 5 Zq+Yq’6 (a+1)/(3q+4)
2 = g+1 2
q

<4(h(Z) +h(Y)).

), one has

(13)

Example 2. The function h(Z)=}((q+4)/(29+3))
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p(Z, 0)]24*3/@*) i a premodular (not a modular) on the
vector space £F(((2q+3)/(q+ 4))20)- As for every Z,Y €

(29 +3)/(g+4))2,

(Z+Y) Z q+4 [ (Z +Y, >}(2q+3)/(q+4)
1.0
$2q9+3 2
‘“ (14)

), one has

an example of premodular vector space and modular vector
space.

Example 3. The function h( Y)=

(2+3))[p(Y /e, 0)] """
lar) on the vector space ¢"(((2q +3)/(q + 2))g20)-

inf {a>0:Y2((q+2)/
<1} isapremodular (modu-

Definition 8. Suppose U is a (pssf). The function h € [0,00)Y
is said to be a pre-quasi-norm on U, if the following setups
are verified:

(i) If YeU, Y=9&h(Y)=0 with h(Y)>0, where
9=1(0,0,0,)

(i) There is Q=>1; the inequality h(aY)< Qlalh(Y)
satisfies, for every Y € U and « € R

(ili) There is P > 1; the inequality h(Y + Z) < P(h(Y) +
h(Z)) holds, for each Y,Z € U.

Clearly, from the last two definitions, we conclude the
following two theorems.

Theorem 9. Every premodular (pssf) is a pre-quasi-normed

(pssf).

Theorem 10. Every quasi-normed (pssf) is a pre-quasi-
normed (pssf).

Definition 11.

(a) The function h on (’,TF(') is named h-convex, if

h(aY + (1-a)Z) <ah(Y) + (1 - a)h(Z), (15)

for every a € [0,1] and Y, Z € ¢, .

(b) Whenlim,_, ,h(Y, - Y)=0,we

(Ef(_>) h-convergent toY € (QTF('))h

called{Yq}qE/V C

(0 {Y,} o S < (¢;)), is h-Cauchy, if lim,, _ h(Y, -
Y,)=0

(d Ir'c (ﬁfm) , is h-closed, when for all h-converges
{Y‘I}qe./V cl'toY,thenYerl
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(e) I'c (e, ), is h-bounded, if &,(I) = sup {h(Y - Z):
Y,ZEF}<00

(f) A pre-quasi-norm h on Bf(A) verifies the Fatou prop-
erty, when for all {Z1} c (€ g—oolt(
Z9-7)=0 and Ye (Efo)h, one has h(Y-2Z)<
sup, inf , h(Y - Z)

qzr

f(.))h under lim

Theorem 12. (€F<)) where h(Y) = [X.2,(1/7,) [p(Y 07"k,
forallYe{’, oy €l NI

with T, > 0, where I is the space of every mcreasmg sequences
of reals.

, is a premodular (pssf), when (1 )

Proof.
(i) Evidently, h(Y)>0and h(Y)=0& Y =9.

(1-i) Let Y, Z € Rf(_). One has

h(Y+2Z)= Zé[p(Y +2,,0)] } S[Z—[p(Yq,o)]m}
S0 b en <o
=0 "q

then Y+ Z¢ Ef(‘)
(i) One gets P>1 with h(Y + Z) < P(h(Y) + h(Z)), for

allY,Zet .

(1-ii) Assuming a € R and Y € €7, |, we obtain

wan= |8 2 pler, o)

4=0Tq
© | i UK (17)
gL o1, 0
q q=0 "9
< Q|ajh(v) < oo
As aY € (’. hence, from setups (1-i) and (1-ii), we get

BTF(A) is linear. Also, bp EET(),
o) _ = =\17,11/K
[2go0(1/7y)[p(by, 0)] ]

for all p e, since h(bp) =

= I/Tb.

(iii) There is Q = max {1, supq|¢x|(T K1Y > 1 with h(aY)
<Qlalh(Y), forall Y € l’,F and a e R

(1) Assume |Y | <|Z,|, for all g€ # and Z € (’,f(). One
finds

q=0 q=0
=h(Z) < oo,
(18)
then Y € Ef(.)
(iv) Obviously, from (2)
(1) Let (Y,) € €f(_>; we get
0 1 1/K
h((Y[q/2]>) = L;Tq [f’(Y[q/z]’o)} q}
% 1 - UK
:FT@WOW“ZT PV, 0)] "
q=0 "2q q=0 “2q+1
00 1 1/K
2Ly -2y
s
(19)

then (Y[qlz]) € ef(>
(v) From (3), we obtain P, =2"K > 1
(vi) Evidently, the closure of E = {’,TF(')
(vii) There is 0< o0 < |0c|(T°/K)_1, for a#0 or >0, for

a =0 with

h(&,0,0,0, ) > ola|h(1,0,0,0, ) (20)

O

Example 4. For (t,) € [1,00)", the function h(Y) =inf {a
>0: Y e p(17,)[p(Y, /2 0)]" <1} is a norm on €f<_).

Example 5. The function

VE perll@+ D1Ga+ 2)p(Y,

norm (not a norm) on {’,F(((3q +2)/(q+ 1));20).

h(Y) =

,0)] (Gar2)/(ar) o o pre-quasi-

Example 6. The function h(Y)=%,.,((q+1)/(3q+2))

[p(Y 0)](3q+2) @) s a pre-quasi=norm (not a quasinorm)
on fF(((3q +2)/(q+1))y)-

Example 7. The function h(Y ,0)]% isa

\/quﬂf 1/d (
pre-quasi-norm, quasinorm, and not a norm on €d, with 0
<d<1.



Theorem 13. If (Tq)qE/V € 8oy N1 with 74> 0, then (£5,), is
a pre-quasi-Banach  (pssf), h(Y) = [X20(1/T,)
[p(Y,, 0)]" "5 for every Ye{’,f(‘).

where

Proof. By Theorem 9 and Theorem 12, one obtains(efm)h
which is a pre-quasi-normed (pssf). If Y' = (Y;):z is a Cau-
chy sequence in (ﬂf('))h. Then, for every ¢ € (0, 13, one has
Iy € & such that for all [, m > [, one gets

()= S| e

This implies p(Y, - Y7",0) <&.As(R[0, 1], p)is a com-
plete metric space, then(Y7")is a Cauchy sequence in R[0, 1],
for fixed g € /. Then, lim,,__, Y7 = Y0 for constant g € 4.
Hence, h(Y' - Y°) <&, for every [ > 1, Smce h(Y%) =h(Y° -

Y+ YY) <h(Y' - Y°) + h(Y')<co, so Y0 €l 0

Theorem 14. Suppose (Tq)qe/’/ €., NI with 1,>0; then,

(Cf(_))h is a pre-quasi-closed (pssf), where h(Y)=

[2020(1/7,) [p(Y ( 0)]]"™, for every Y e €.

Proof. In view of Theorem 12 and Theorem 9, the space
(Ef(‘))h is a pre-quasi-normed (pssf). Assume Y'= (Y;):ZO
€ ({me)h and lim,___h(Y'-Y°) = 0; then, for all e € (0, 1),
there is [, € /" such that for all [ >, we obtain

00 1/K
s>h(Y’—Y0)= Zrl[p(Y’q—Yg,())ﬂ . (22)

This implies p(Yé - Yg, 0) <e. As (R][0,1], p)is a com-
plete metric space, therefore,(qu)is a convergent sequence

in R]0, 1], for fixedg € /4. So, lim,_,OOqu = Yg, for fixed g

e, Since h(Y?)=h(Y'-Y'+Y")<h(Y'-Y%) +h(Y)<
00, one has Y € €f<‘). 0

Theorem 15. The function h(Y) = [¥22,(1/7,)[p(Y ;. 0)]" A%
holds the Fatou property, if (Tq)qe./l/ et NI with 7,>0, for

F
allY € QT(A).
h(Z'-Z)=0.

is a pre-quasi-closed space, one has Ze¢

r—00

Proof. Let {Z"} ¢ (€f('>)h such that lim
: F
Since (ZTO)h
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(ef)), Forall Y e (ef)) , one gets

Theorem 16. The function h(Y)=3:2,(1/7,)[p(Y,, 0)]"

does not hold the Fatou property, for all Y € € )» when (7,)
€l and t,>1 withqe V.

0 q
Proof. Let {Z'} ¢ (Efm)h so that lim,  h(Z' -Z)=0.

Since (wa)h is a pre-quasi-closed space, one gets Z ¢

(Ef('))h. For every Z € (ﬁf(»)h, we obtain
© 1 supr,-1
h(Y -2) = Z—[p(Yq—Zq,O)] 121
=0"q
v L 1 A\t
—p(Y,-z,0)| "+ > —|p(z--2,0 q)
q;)rq[(q )] q=oq[< q>]
supzf1
<21 sup i>nfh(Y—Z’)A
(24)
O

4. Caristi’s Fixed Point Theorem in (¢}, )) ,

In this section, the existence of Caristi’s fixed point in (€f(_>)h
is presented according to Farkas [31], where h(Y)=

o) — S\1T K
(202 (177,)[p(Y,,, 0)] 7], for all Y € €F, .

Definition 17. The function ¥, : (Ef(_))h —> (—00,00] is said
to be € (l’,f(_))h if
liminf, ;0% (G)=%,(GY), where lim inf, 0¥, (G)
¥, (G), where 7/(G”)) is a neighbor-

lower semicontinuous at G©

= SUPy ey () Ifgey
hood system of G\

Definition 18. The function ¥,
called proper, when

: (€h)), — (~co00] is

a(¥)={ce (zf<_))h ¥,(G)<co} #2. (25)
Theorem 19. Assume Z+ & and = is a h-closed subset of
(Ef<_))h and ¥, : E —> (—00,00] is a proper, h -lower semi-
continuous function with inf ;.z¥,(G) > —co. Suppose y > 0,
{@,} < (0,00), and G € & with ¥ ,(G\”) <inf ;. ¥,(G) +
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y. Therefore, one has {G} € & which h-converges to some
G, and

G9) <y/29@,, with g€ N
-G) < q/I(G(O))

(i) h(g(y) —
(ii) ¥, (GV) + Y20, h(GY)
(iii) when G+ GY), we have

v, (G(V>) Zw h(

><‘P

+ i (th(G - G<‘1>)
q (26)

Proof Let S(GY)= {Ge_. (G) +@,h(G-GO) <, (

G)}. As G € S(GY), hence, S(G*) + @. Since ¥, is h
-lower semicontinuous, h Veriﬁes the Fatou property, and
Z is h-closed, one has S$(G'”)) which is h-closed. Choose
G e $(G®) and

CORYCED

Gesl?Gfm){?' (G)+@h(G-G) )+ % @)
Take
s(6) = {G €s(G"): ¥, (G) + jgw]h(g -69)
<7, (6V) + (G -GY) )
(28)

As S(GI)), we get S(G'V) # @ and h-closed. Assume that
one has built {G), G, G? | G} and {S(G), S(GV), S
(G?), .-+, 8(G9)}. Next, choose G4*!) € §(G'?)) and

(o) Sap(arr-o)
< inf

q
. , Y@
v (G @h(G-GY it By
Ggs(G(q)){ 1( )+ Z J ( )}+ ZQ(DO

j=0

(o w>+iw< m-c0)}

_ (30)

Hence, we form by induction the sequences {G?} and

{S(G)}. Fix q € . Suppose W € S(G'?)). One obtains

W, (W) + Jio@"h(w - GU)) <y, (G(‘f)) + jzswjh(c@ - GU)).

(31)
Hence,
-1
o (W-G0) <7, (6%) + T ap(6v -6V)
=
q-1
— yelt) (9)
W (W) + j_zowjh(w 6") [ <¥,(c)
q-1
Y wjh((;(q) _ Gm)
=0
q-1
_ Ny | < Y%
ety [11(0) Z2(G=6V) | <
(32)
As {S(G'9)} is decreasing with G € §(G'9)), for every

q € N, we obtain
(a+) _ Gla) 14
h(G G ) < 1 (33)
with g, p € 4. This implies {G@} is h-Cauchy. Since (Ef(')) h

is a h-Banach space, hence, {G9} has h-limits G} and
ﬂqemS(G@) ={G}. Since G*Y) € §(G'9)), we can see

(o) San(o-o”)
'3 (Gw)) n Z o (G<q> _ G(f))'

Hence, {¥,(G'7) + Z;I;; (Djh(G@ ~GY)} is decreasing.
After, let G# GY). One gets m € N with G ¢ S(G<‘1)), with g

>m, ie.,

(69)+ Son(as-co) r

(34)

Since G € S(G), with g > m, we get

(o)« Sap(or-a) ov, (a)

q-1
+ Y ah (G@ - GU)) <y, (G<m>) £ Y o <G<m> _ G(j)),
=0

.
.
]

=]



Putting ¢ — o0 in the previous inequality, one can see

v, (G(V)> + f oh (G<V) - G<f>) <V, (x,,)

=0
m—1 m
(m) _ GO e
» @h(G"’ GU ) <¥,(G)+ ;@jh(G Gf)
<¥,(G)+ Yo (6-67)
=0
(37)

This gives

v, (60) + i n(6" -6w) <wy(c +g@wgkcw)
(38)

O

Example 8. Suppose Z={Y € (¢"(((29+3)/(q+2))%)),

Yo =0} and h(Y) = \/S,c4 (4 +2)/(2q +3))(p(¥,, 0) 2,
for every Y € (QF(((2q+3) (q+2)) o)), Suppose y>0, {
@} C (0,00), and G € 2 with sup..z In h(G) <In h(G?)

+7.Since¥, : E—(-00,00],  where¥,(G) = - In (h(G)),
clearly,= + @an¢1s ah-closed subset of(2 (>) , and¥,is a
proper,h-lower semicontinuous function

withinf ¥, (G)>-00. From Theorem 19, one has {G\?} €
Z which h-converges to some G), and

(i) h(GY - G) < y/29@,, with g € N
(i) In (h(G))) + ¥ 2@,h(GY)

(iii) when G # G, we have

- G(q)) <Iln (h(Gm))

+§%4mm<q<m@@m)
+ gwqh (G - G(q))

(39)

Example 9. Suppose E={Y e (ef(((q+1)/(3q+ 4));20))h

Yo =0} and h(Y)=F,c, (g +4)/(q+1)(p(¥,,0) "0,
for every Y € (€7(((q +1)/(39 +4));2)),. Suppose y >0, {@,}
 (0,00), and G € £ with h(G(O)) <y. Since ¥, : E—>(—
00,00|, where ¥,(G) =h(G), clearly, E+J and E is a h
-closed subset of (l’,f(_)) W and ¥, is a proper, h-lower semi-
continuous function with inf; c¥,(G)>—co0. From Theo-
rem 19, one has {G?}e=
G, and

which h-converges to some

(i) h(GY - G < /2@, with g € N
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(i) h(GY)) +¥2@,h(GY) -

(iii) when G # G, we have

w(G") + g a (G -G9) <h(G

G) < h((;(O))

+ i @qh(G - GW)

q=0
(40)

Theorem 20. If Z+ & and E is a h-closed subset of (Ef(‘))h,
by choosing y>0 and {@,} and 0<w=Y,2,@, < 00, sup-
pose H : E— Z is a mapping and there is a function ¥,
: & — (—00,00] that holds a proper andh-lower semicontin-
uous with inf ;. c¥,(G) > —co0 and

(1) h(H(G)-Y)-h(G-Y) <h(H(G) - G), for any G,
Ye&
(2) h(H(G)-G)<Y¥,(G)-¥,(H(G)), with Ge E

Hence, H has a fixed point in E.

Proof. Since 0 < w =72 @, < 0o, we get ¥, := w¥,; which is
also proper, h-lower semicontinuous, and bounded from
below. If G € , one gets

wh(H(G) - G) < ¥,(G) - ¥, (H(G)). (41)
As inf; s¥,(G) > —co, one obtains G € £ with ¥,
(G <inf; z¥,(G) +y. From Theorem 19, there is {G(9}

which h-converges to some G € &, and

v, (G )Zw% G) <¥,(G +§%m;my
(42)
for every G # G). Assume that H(G")) # G"); we have
v, (G(Y)) + gwqh (G(V) _ G(q)) <Y, <H<G(Y))> "
+ gwqh (H(Gm) - G(q)>
Then,
ACORACIEDIE ? ap(H(G) -G9)
_ g‘%h (6 -69) - :0 a,(n(H(c") ~6¥)
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From condition (41), one can see

ACORACCHIEXNCCHRD
= wh (H(G(Y)> - G<V>).

(45)

The inequality (1) implies that

wh(H(GV) - ) <w, (G0 -, (1 (G1)) »
<wh(H(G")-G").

This is a disagreement. Therefore, H(G")) = GIV), O

Example 10. Suppose Z={Y € (¢(((2q+3)/(q+ 2));’20))h

Y, =0} and h(Y)= /3,0 ,((q+2)/(2+3)(p(Y,, 0) "2,
for every Ye (EF(((2q+ 3)1(q+2))2 ), Suppose H:E
— E is a mapping and h(H(G) - G) <In h(H(G)) -Inh
(G), with Ge Z. From Theorem 20, H has a fixed point
in 5.

Example 11. Suppose Z={Y € (¢5(((q+1)/ (3q+4)) ))h

¥y =0} and (Y) = 5,0, (3q +4(q-+ 1)1, 0) o0
for every Y e (ef(((q+1)/ (3q+4))f;z ), Suppose H:E
— E is a mapping and h(H(G) - G) <h(G) - h(H(G)),

with G € £. From Theorem 20, H has a fixed point in =.

Definition 21. Pick upU,as a pre-quasi-normed (pssf
),V :U,— U,andZ e U;,. The operator V is called h
-sequentially continuous at Z, if and only if, when
lim h(Y,-Z) =0, then lim h(VY,-VZ)=0

q—00 q—

Example 12. Suppose V : (ef(((q+ 1)/(2q+4));20))h —
(€7 (((q+1)/(29+4))%)),» where h(Z)=[¥2((2q+4)/

(q+1)(P(Z, DIV o ey Zet
((q+1)/(2q+4))%,) and
Tlfi(B°+Z)’ ZO@)G[O,;),
VA= SR Z0)= 5 @)
TISBO’ Zy(y) € (117 1]

V is clearly both h-sequentially continuous and discontin-
uous at (1/17)b, € (e (((q+ 1)/(2q + 4)0),

Example 13. Assume V : (ef

(€"(((29+3)/(a+2))20)),

(((29+3)1(q+2))¢

where

V2R ((a+2)/(29+3)) (P, 0) 0, for every ge

e (((29+3)/(q+2))gS,) and
2. h(g)e1),
Vig)=14 (48)
5 h(g) € [1,00).
Suppose {Z<”)}Q(EF(((2q+3)/(q+2))220))h is such

that lim,  h(Z" - Z©) =0, where Z(© € (€"(((2q +3)/
(q+ 2));20))h with h(Z¥) =1.
As the pre-quasi-norm / is continuous, we have

) 7(0) (0)
Vz<°>)= im K2~ 20 ch(Z) s
n—>00 4 5 20

(49)

lim h(VZ( ) -

n—o0

Therefore, V is not h-sequentially continuous at Z(©.

Theorem 22. If (Tq)qe/v

: (ef(.))h - (efp))h’ where h(Y) = 2220
for all Y € €% (1), suppose

€t NI with 7y>1 and V
(1/Tq)[/_)(Yq’D)]Tq’

(D) Vi (ef), — (&)
function ¥,
proper and h-lower semicontinuous with infGE(ep())

w0

¥,(G) > —oo, and there is a € [0, 1) so that h(V*1G
- VIG) <d(¥,(G) - ¥,(V(G))), with G € (efm)h

, is a mapping, and there is a

:((’,f(p))h—>(—oo,oo] that holds a

(2) V is h-sequentially continuous at Z € (P,f(_))

(3) there is Y € (lZF( ) with {V'Y} which has {V'Y}
converging to Z

Then, Z € (Qf(p))h is a fixed point of V.

Proof. Assume Z is not a fixed point of V; one has VZ # Z.
From parts (2) and (3), we get

jrﬂ,nooh(vljy_ Z) -
lim h(V’f“Y - VZ) - 0.

j4>00

From part (1), one obtains

0<h(VZ-2) =h((vz- VIJ“Y> + (vhy-z) + (V’J“Y_ VlfY))

2 supr;-2
<2 i

. 2 supr,-2
h(vf+ Y—VZ>+2 i

supr,-1
+20 di(E(Y)

h(VZJY—Z)

~ ¥, (VY).

(51)
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As lj — 00, one has a contradiction. Then, Z is a fixed
point of V. O

5. Multiplication Mappings on {Zf(‘)
In this section, we examine the sufficient conditions on

(Bf(‘)) , such that the multiplication mapping defined on it

is bounded, isometry, approximable, compact, closed range,
invertible, and Fredholm, where h(Y)=[¥2,(l/7,)
[p(Y,, 0)]"]"™, for every Y e €f, .

The space of approximable and compact bounded linear
mappings from a Banach space A into a Banach space A will
be marked by Y(A, A) and Z.(4, A), and if A= A, we mark
Y(A) and Z_(A), respectively.

Definition 23. Let k€ C”" ne, and U, be a pre-quasi-
normed (pssf). A mapping V, : U, — U, is called multi-
plication mapping if VY =«Y = (x,Y,)2, € U, with Y € U.
When V,_e Z(U), we call it a multiplication mapping
generated by «.

N .
Theorem 24. Suppose k€ C" and (Tq)qu €t NI with
Ty > 0; then, k €€, if and only if V€ Z((Kf('))h).

Proof. Let the conditions be satisfied. Assume « € £; hence,
one gets £ >0 with |k,|<e, with re /. If x€ (Cf('))h, since
(Tq)qem €€, NI with 7,>0, then

o | UK
< supe™’X lz = p(Y,, 0)]”] =supe™® h(Y).

(52)

One has V, 63((81(_))h). Conversely, assume that V,
€ ff((Qf('))h). Suppose « ¢ €, then, for each j € /4, there is
ij €/ such that x; > j. Since (Tq)qs/lf €t NI with 7,>0,

we have

(53)

This shows that V¢ 3((ET(_))h). Therefore, k€ 8. [

Journal of Function Spaces

Theorem 25. Pick upke C”and(ﬁf('))has a pre-quasi-
normed (pssf). Then, |« | =1, for every q € ¥, if and only if
V. is an isometry.

Proof. If |«,| = 1, for all r € W, one gets

r=0"‘r

. 1/K
H(V.Y) = h(kY) = h((5,Y,)5%) = [Zl Pl on”]

r=0 TV

=[Zi[r)<m>r'] ~h(Y),
(54)

forall Y € (¢ )) ,- Therefore, V,_is an isometry. Conversely,
Assume that |x; | <1 for some i =i,. We obtain

h(xb; ) = h((KY(BiO)r)OO )

r=0

Bibec]

1/K

Selr(eo]] e

h(VKBiO)

N

r=0 "1

When |; | > 1, we can prove that h(VKBiO) > h(f)io). One
gets a contradiction. So, |x,| =1, with r € /.
By card (A), we indicate the cardinality of the set A. [J

Vs .
Theorem 26. Suppose k € C* and (Tq)qE/V €, NI with 7,
>0. Then, V€ Y(((’,f(.))h) if and only if (k,).2, € ¢,

Proof. Assume that V, € Y((¢;,),). One gets V, € Z (
(Ef(~))h)' To show(x, )2 belongs tocy, suppose(x, ) ¢ ¢,
One gets v > 0 such that A, = {r € # : || = v} verifies card
(A,)=00. If z;€ A, with i€/, then {b, :z;€ A} is an
infinite bounded in (¢;,) - Let

> iIrlfVT'/K h (Bzf - sz> ,

for all z;,z; € A,. One obtains {Bzi 1z;€ A} €€ (F) which
cannot have a convergent subsequence under V,, which
gives V ¢ 35(((’,2‘))]1). Then, V, ¢ Y((Efo)h); this gives a

contradiction. Then, lim;_, x;=0. On the other hand, if

lim, x; =0, hence, for each v >0, the set A, ={ie ./ : |

1—>00""1

;| = v} holds card (A,) <oco. So, for all v>0, the space
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((Bf(‘))h)/x ={Y=(Y,) € CN} is finite dimensional. Then,

F
VK|((ET<4))]1)AV
define x; € C" by

is a finite rank mapping. For every i€/,

Ky J€Ay
<x,~>j={ : (57)

0, otherwise.

Obviously, V, has rank(V, )<co as dim ((ff(,))h) "
1/i

< 00, with i € //; hence, as (‘rq)qu €., NI with 7,>0, we

get

Il
&)
<
& 8
s
=~ ‘ —_
I
/N
/N
\a
|
—
bl
(.
~
N——
\:‘<
(e]]
~—
[—
-

0o 1 . 1/K
_ j
C 3 (e
J=0.j€Ay; 7T

Il
2 8
z
~ | —
%
—
'N.x
\:<
o
SN—
a
=
=

(58)

This implies that ||V, -V, || < (1/i)"'%; hence, V, is an
approximable mapping. O

Theorem 27. If k€ C" and (‘rq)qu €l NI with 7,>0,
then, V€ Zc((ﬁf('))h), if and only if (k;)oy € c,.

Proof. Easy. O

Corollary 28. Assume k € C" and (Tq)qe/v €., NI with T,
> 0; then, Z.((65),)PZ((¢5)),)-

Proof. As I is a multiplication mapping on (ﬁf('))h generated
by x=(1,1,---), therefore, I¢ gc((ﬁf('))h) and TeZ(

Definition 29 (see [32]). A mapping D€ L (V) is called
Fredholm if it satisfies that dim (ker D) < co, dim (R(D))*
<00 and D has closed range, where (R(D)) denotes the
complement of the range D.
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Theorem 30. If k€ C" and (Tq)qe/y €t NI with 7,>0,

then « is bounded away from zero on (ker (x))‘, if and only
if R(V,) is closed., where V€ 3((€f<‘))h).

Proof. Let the sufficient condition be satisfied. Therefore,
there is €>0 with |x|>e, for all i€ (ker (x))". To
explainR(V,)is closed, assumeZis a limit point ofR(V,).
One has V X, in (BTF(A))h, with i€/ such that lim,_, V.
X;=Z. Clearly, (V X;) is a Cauchy sequence. Since
(ty) _, €t NI with 7,> 0, one has

qenN

h(V,X, - VX)) = 2%[p<xq(xl)q_xq(xj) O)”
— .
= L_M%r . & [P(Kq(X,)q K, (X;) 0)]
3 . 1/K
DY %[ﬁ(xq(x,)q_xq(xj)q, 0)] }

q=0,q¢ (ker (x))° "4

L5 bt

1/K
g=0.ge (ker (x))° " }

> ir;fs% {21—1‘1 [’ ((Y!)q -(Y), O)]Tq} ’
(59)
where
m @
0, q ¢ (ker (x))“.

So (Y,) is a Cauchy sequence in ({’,f(_))h. Since ({’,f(‘))h is

complete, one has X € (ﬁf(‘)) , such that lim,  Y,=X.
Since V, is continuous, lim, , V. Y,=V, X. But lim;,
V.X;=lim, V. .Y,=Z; hence, V.X=Z. So, ZeR(V,).
One obtainsR(V,)which is closed. On the other hand,
assume R(V,) is closed; hence, V, is bounded away from
Z€ro on ((Ef('))h)(ker (’;))E. One gets € >0 such that h(V X)
>¢eh(X), with X € ((ET(_))h)(ker )"

Assume A ={q € (ker (k) : |x,|<e}. If A# ¢, then for

iy € /A, we obtain
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One gets a contradiction. Then, A = ¢ with |x, | >¢, and
q € (ker (x))". O

Vs .
Theorem 31. Ifx € C” and and (Tq)qem €l NIwithty>0,
one has d >0 and D > 0 with d < |k | <D, and q € /¥, if and
only if V, € 3((@(‘))}’) is invertible.

Proof. Let the conditions be verified. Define y € C* by Vg
- F

= 1/x,. From Theorem 7.5, we have V,,V, EZ((ET(.))h)
and V..V, =V, .V, =1 hence, V, is the inverse of V,. On
the other side, assume V, is invertible. Hence, R(V,) =
(((’,f(_))h)m. One gets, R(V,) which is closed. By Theorem
30, we have d > 0 with |« | > d, and q € (ker (k))". We have
ker (k) = ¢, if x, =0; for several g, € /#, one has e, €ker
(V,), which is a contradiction, as ker (V) is trivial
Therefore, [x,[>d, for all ge #. As V, is bounded, by
Theorem 7.5, one gets D>0 such that |x,| <D, for all q
eN. O

Theorem 32. If k€ C" and (t,) _, €t NI with 75> 0,
qenN

then Vkeg(({if(_>)h) is Fredholm mapping, if and only if

(a) card(ker (x)) < co and (b) |r,| > &, with q € (ker (x))".

Proof. Assume V, is Fredholm. When card(ker (x)) = oo,
one has b, € ker (V,), with n € ker (k). As b,’s are linearly
independent, one obtains card(ker (V) = co, which implies
a contradiction. Hence, card(ker (x)) < co. In view of Theo-
rem 30, the condition (b) is confirmed. After, when the nec-
essary conditions hold, prove thatV,is Fredholm. According
to Theorem 30, the condition (b) proves that R(V,) is
closed. The condition (a) gives that dim (ker (V,)) < oo
and dim ((R(V,))) < c0. So, V, is Fredholm. O

6. Mappings’ Ideal

The structure of the mappings’ ideal by (ef(.))h, where h(g)

0 _ S\ T LUK
= [2o(1/7,)(P(g,, 0)™]™, for every getr ), and
extended s-fuzzy functions has been explained. We study
the enough setups on (€5, |) such that the class & | is

7(.) h (er(.))h

complete and closed. We investigate the enough setups
(not necessary) on (Zf(')) , such that the closure of F=
2 @) - This gives a negative answer of Rhoades [33] open
problem about the linearity of s-type (Ef(‘)) , spaces. We
explain the enough setups on (ﬁfm) , such that ’%(QP()) is
— T
strictly contained for different powers, »F"(ep( ) is minimum,
O
the class Pi(ef(.))h is simple, and the space of every bounded
linear mappings in which the sequence of eigenvalues
in(ﬁf('))hequals%(ef(.))h.

We indicate the space of all bounded, finite rank linear
mappings from an infinite dimensional Banach space A into
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an infinite dimensional Banach space A by Z(A, A) and §
(4, A), and when A = A, we inscribe Z(A) and F(A).

Definition  33. (see [34]). Ans-number function

iss : (A, A) — R which  sorts  everyV € Z(A, A)
and(s;(V))2,which verifies the following settings:

@ [|V||=5(V)25(V) =s,(V)=--->0, for all VeZ
(4,4)

() spaq(Vi+V,) <5(Vy) +54(V,), forall Vi, V, € &
(A, A)and L, de sV

(©) s;(VYW) <||[V]sy(Y)||W]|, for all WeZ(AyA),
YeZ(A A) and Ve (A, Ay), where A, and A,
are arbitrary Banach spaces

(d) When Ve Z(A, A) and y € R, then s;(yV) =lyls,
V)

(e) Suppose rank (V) <d; then, s;(V) =0, for each V
eZL(AAN)

(£) sp4(I;) =0 or 5,.,(I,) =1, where I, denotes the unit

map on the g-dimensional Hilbert space €

We mention here some examples of s-numbers:

(1) The gth Kolmogorov number, described by d, (X)), is
marked by

dy(X) =infg, 1o SUP|f/j<1 inf ;|| Xf - 4| (62)

(2) The gth approximation number, described by a, (X),

is marked by
a,(X)=inf
oX) (63)
{|IX=Y]|: YeZ(A, A),rank (Y)<q}

Definition 34 (see [17]). Assume Z is the class of all
bounded linear mappings within any two arbitrary Banach
spaces. A subclass % of & is said to be a mappings’ ideal, if
all (A, A) =% N Z(A, A) verifies the following conditions:

(i) I € %, where I' marks the Banach space of one
dimension

(i) The space % (A, A) is linear over R

(ili) If WeZ(Ay,A4), XeU(A A) and Y € L(A, Ay)
then, YXW € %(4,, A,)

Notations 1.

Sy = {Fo(4, A)} where iy (8, 4) = {V e 2(4,4): ((5(V)), €U},
(V)7 €U},
wy = {a05(4,4) }, where sy(8, A) = {V e 2, A): ((d(V)), € U,

(64)

#y = {5°y(A A) }, where #y (4, A) = {v € Z(A, A): ((ocj(
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where

L
®
H#
—
<
~—

Theorem 35. Suppose U is a (pssf); then, &, is a mappings’
ideal.

Proof.

(i) Assume V € §(A, A) and rank (V) =n with ne ./,
as b, e U for all ie ./ and U is a linear space, one

has-
(SI(V))f:of( (V)o51(V), -+ 5, (), 0,0,0, ) =
Z, 0 Si(V)b; e, forV e 3y(A, A),

then$(4A, A) € F5(4, A)

(ii) Suppose V|, V, € ¥y(A, A) and B, B, € R; then, by
Definition 6 condition (78), one has (s[i,Z](VI))Z)O
€U and (S[i/z](vl))?:() €U, as i > 2[i/2] ; by the defi-
nition ofs-numbers ands;(P)which is a decreasing

sequence, we
have-

si(ﬁ1V17+ ﬁz_Vz) < S2ip) (B ‘;1 + ﬁz_vz) <

5[i/2]£ﬁ1V1) * Sl (B,V,) = |ﬁ1|5[i/2](v1) + B,

Sjin) (V) for each i € . In view of Definition 6 con-
dition (77) and U whcih is a linear space, one
obtains (s;(,V, + 3, Vz))?:o0 € U; hence, 5,V + 5,
V, € dgy(A, A)

(ili) Suppose P € L(A,, A), T € ¥y3(A, A), and Re (A
»Ap); one has (si(T)) €U and as s;(RTP) < |R|
s;(T)|IPl; by Definition 6 conditions (41) and (77),
one gets (s (RTP)) €U, then RTP € Fy (4, Ay)

According to Theorem 12 and Theorem 35, one con-
cludes the next theorem. O

Theorem 36. Let(rq)qE P

which is a mappings’ ideal.

€ £, NIwitht, > 0; one has»i@p())
T(. h

Definition 37 (see [35]). A function H € [0,00)% is called a
pre-quasi-norm on the ideal % if the next conditions hold:

(1) Let Ve%(A,A), HV)>0 and H(V)=0, if and
only if V=0

(2) We have Q=1 so as to H(aV)<D|a|H(V), for
every Ve %(A A) and a e R

(3) We have P>1 so that H(V, +V,)<PH(V,)+H
(V,)], for each V|, V, e %(A, A)

(4) We have 0>1, when VeZ(4y,A4), Xe¥(A A)
and Y € Z(A, A,) then H(YXV) < 0| Y|H(X)|| V]|
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Theorem 38 (see [36]). Every quasinorm on the ideal % is a
pre-quasi-norm on the same ideal.

Theorem 39. If (7, ) €€, NI witht,>0, then H is a pre-

quasz norm on %(ep wzth H(Z)= h(sq(Z)):ZO, for all Z €

Proof.
(1) WhenXE%(erp ), (A, A), HX ):h(sq(X))q ,20and
H(X) = h(sq(X)) =0, if and only if s ( ) =0, for

all ge /¥, if and onlyle 0
(2) There is Q=1 with H(aX) =h(sq(5cX)):zo <Qla|H
(X), for all X € %(zp()) (A,A) and e R
<)

(3) One has PP, >1 so that for X;,X, € ;(efm)h(A’ A),

one can see

H(X, +X5) =h(sy(X, + X,)) 7

SP(h(S[q/szl))j_’o+h(s[q/z]<Xz>):‘_’o) (66)

S CEAREE RIS

(4) We have p>1; if X € &L(4,4), YG%(er ), (4, AN),
and Z e Z(A, f&o), then H(ZYX) =h(s q(ZYX))q=O
<h(IX[[1Z]l54(Y)) 2, < PIX[HY)|Z]]

In the next theorems, we will use the notation (% -

) >
T () h
H), where H(V) = h((sq(V))qZO), forall V e %(ﬂ‘()) . O

Theorem 40. Suppose (Tq)qe./V €, NI with T,> 0; one has

(’i‘(el-‘()) ,H) which is a pre-quasi-Banach ideal.
w0

Proof. Suppose (V.
A). Since (A, A) 2 S<€F()) (4, A), one has
)7h

o)acy is @ Cauchy sequence in T ) (4,

H(V,-V,)= h((sq(v’,va)):jo) > h(sy(V,V,),0,0,0, )
1 7
= ?Ollvr_ Va” :

(67)

Hence, (V,) ., is a Cauchy sequence in Z(A, A). As &
(A, A) is a Banach space, so there exists V € Z(A, A) so that

lim, . ||V,- V| =0and since(sq(i/a)):(io € (Ef('))h, for all

aeN,and (€f<‘))his a premodular (pssf); hence, one can see



) hence, V € %(e:( ), (4, A).
O

Theorem 41. If (Tq)qeﬂefooﬂl with 1,>0, one has (

é("fm)h’ H) which is a pre-quasi-closed ideal.

Proof.  Suppose Vae%(ef()) (A A), for all aet and
™) 7h
lim,  H(V,-V)=

o 0. Therefore, there is ¢>0 and as
Z(A,A)2 S(el-‘U) (A, A), one has
0

H(Va—V)zh(( (VaV))2y) 2 h(s0(V,V).0,0,0,--:)
= V-V

(69)

So (V,),ep is convergent in ZL(A, A), ie., lim,_ ||
V,= V| =0, and since (sq(Va))q:0 € (ef(_))h, for all ge

and (Bfo) , is a premodular (pssf), hence, one can see

We obtain (sq(V)):zO € (€F< ), hence, V€ &,

()’

) (4, 4)
O

Definition 42. A pre-quasi-norm H on the ideal %, verifies
the Fatou property if for every {Tq}qe L SFu, (4, A) so that
lim H(T,—T)=0and M € %y, (A, A), one gets

h

q—00

H(M - T)<sup1an(M T)). (71)
q 24

Theorem 43. Suppose (Tq)qE P

(%(ef(-))h’

€, NI with 7,>0; then,
H) does not satisfy the Fatou property.

Proof. If {T,} qer SEE ), (4, A) with lim, H(T,-T)

=0, since ’*‘(eF()) is a pre—quasi—closed ideal, hence, T €
0

Fer ), (A, A). So with M € %(ef(_))h(A, A), one has

q—
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Definition 44. An operator V : %y (4, A) — #y, (4, A) is
said to be H-sequentially continuous at M, where M ¢
Fy, (A, A), if and only if lim H(T,-M)=0=
lim, , H(VT,-VM)=0.

r—00

r—00

Exﬂmpl@ 14. If V. @(EF(((24+3)/(9+2));20)),, (A, A) —

(e (2qe3)a+2) 5, (B A)» where H(T) =

— [ 2q+3)/(q+2)
\/ZZZO«(J +2)/(2q+3))(p(s4(T), 0)>( o , for every T
€ ;(e*'(((zq+3)/(q+z));go))h (A, A) and

€[o,1),
(73)
€ [1,00),

evidently, V is H-sequentially continuous at the zero
operator O €¥ur(gaygez,), Lot {TV}e

H(T(j> - T(O)) =0,
() = 1. Since the

%(eF(((2q+3)/(q+2));2 )) be such that lim;

]/
where T<0) € %<€F(((2q+3)/<q+2))q=0))h with H(

pre-quasi-norm H is continuous, one gets

j—00 j—00 7

(T(0)>
= — | >0.
42

Therefore, V is not H-sequentially continuous at T,

, © 70
lim H(VT<J> - VT(°)> = lim H<TT - T_>
(74)

Theorem 45. Pick up (Tq)qe/’/ €l NI with 7,>0 and V
: é(gg))h(A, A)— é“fm)h (A, A). Assume

(i) there is a function ¥, : ’i*@f(.))h (A, A) —

that holds a proper and h-lower semicontinuous with
infGE,;aF ) ¥ 1(G) > —00 and thereis a € [0, 1) so
™)'

(=00,00]
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that —~ H(V*G-VIG)<d
with G € ’%(ef(.))h (A, A)

(¥,(G) =¥, (V(G))),

(ii) V is H-sequentially continuous at an element M €

%) (4 4)

(iii) there are G € »i(eF()) (A, A) such that the sequence of
0
iterates { V' G} has a {V'»G} converging to M

Then, M € %“f(»J)h (4, A) is a fixed point of V.

Proof. Let M be not a fixed point of V; hence, VM # M. By
using parts (ii) and (iii), we get

lim H(V'"G-M)=0and lim H(V""'G-VM)=0.
(o]

T Ty ——00

(75)
By using part (i), one obtains

0<H(VM-M)=H((VM-V"""'G) + (V"G - M)
+ (VG- VnG)) < (2)V*H (V"' G- VM)
+ ()" H(V"G - M) + (2)" (¥, (G) - ¥,(VG)).
(76)

As r,, — 00, there is a contradiction. Hence, M is a
fixed point of V. O

Theorem 46. ’i:a(eFU) (A, A) = the closure of F(A, A), if
20
(Tq)qE/V € €., NI with T, > 0. But the converse is not necessar-

ily true.

Proof. As b_ € ({’,F

space, suppose Z € %(A A); one has (ocX(Z))OOO € E. There-
fore, the closure of F(A, A) € &” (e), (A, A). Assume Z €
’( ), (&, A); we have (a, 25 (aF( ), As h(a,(2)),2,

<oo, assume p € (0,1); then, there is x, € A/ — {0} with

) for every x € #, and (€f('>)h is a linear

h((ocx(Z)) 4,) < pl4. Since (ocx(Z))zZO is decreasing, we
have
2x, 1 B B 2x, 1 B B
2 [P, (2).0)]" < Y —[p(«(2),0)]"
x=xy+1 “X x=xy+1 Tx
N L 7o Gy P
< X; - [P(a(2),0)] " < i
(77)

Hence, there is Y €, (A, A) so that rank(Y) <2x,
and

15
3x, 1 B 2%, 1 B p
> —pZyho)]™ < Y —[p(I1ZY(,0)]" < 7.
x=2x,+1 "X x=xp+1 "X
(78)
Since (Tq)qe/V €., NI with 7, >0, we can choose
> Lip(ivon”<f. )
x=0 Tx ) 4

In view of inequalities (2)-(4), one has

3xp-1

d(Z,Y) =h(a,(2Y))" = ZO —[P(e(2Y),0)]™

0 3x

o Lo s Y Lo

x=3x, x=0 "x

[i)( X+2x, (ZY) )] o

,0)]™

- 1

X=X, Tx+2x0

< Y (7Y + 3 2 (w20
<3) L [p(1Z¥1,0)]" + Y. ~ [p(w2).0)] " <p

(80)

Therefore, & 7"‘< ), (A, A) C the closure of (A, A). Con-

trarily, one has a counter example as I, € & (eF((0,0,1,1,1,)))h(
A, A), but 5, >0 is not verified. O

Theorem 47. Suppose (T‘I)qe/lf et NI with 0< W< ?,

for all x € /V; hence,

Fop A, A)bx A NUZ (A A). (81
(¢ (), B DPE e (o), D EFE A B
Proof. Let Ze For (:1))) (A,A);  hence, (s.(2)) e
Ty "
(€F((r))),.. One gets
© 1 L © 1 o ril)
> = 1P (s.(2 <) —17 [P(5:(2),0)] " < o0,
x=0 Tx x=0Tx
(82)
then Z € R pr (2 ™ (A A). After, if we choose (5.(Z))iep
with p(s (Z),0) = ! >/(x +1), we have Z € Z(A, A) such
that
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(2), (1)

0o 0 (1> Ty Ty

1 o, o d® 1 (7
S b0 < 3 ()
x=0 Ty x=0Tx (84)
)(Cz)/ il) 1 & 1 T,((Z)/Til)
< Slip (T;(c1>) (T ! ) );) <m> < 00.
Then, Z ¢ Fer (), (A,A)and Z e 'i'(eF((ri”)))h(A’ A).

Clearly, Fer (22)) (A, A) cZL(A, A). Next, if we put
x h

(sx(Z))zO such that p(s (Z),0)= 7/ T§2>/(x+ 1), we have

Z€ g(A, A) such that Z ¢ %(CF((TS))));, (A, A) 0

Theorem 48. Assume (Tq)qm/ €8, NI with 7,> 0; hence,

F o | IS minimum.
€0),

Proof. Let "}TazF()(A, A)=Z(A, A); then, there is 17> 0 with

H(Z) <n)1Z]l, where H(Z) = %(Vr,)[p(a,(2).0)]" for
every Z € & (A, A). By using Dvoretzky’s theorem [37], with
r e N, we get quotient spaces A/Y, and subspaces M, of A
which can be mapped onto ¢} by isomorphisms V, and X,
with ||V, |[|V;']| <2 and || X,||||X; || < 2. If I, is the identity
map on £, T, is the quotient map from A onto A/Y, and J,
is the natural embedding map from M, into A. Assume m

q
is the Bernstein numbers [16]; then,

r r r
= Xy U V) [V < 151, 0, 1V [V,
= X 1. 1V, T [V 1 ey 0,1V, )V

L=m,(I,)=m (X, X' LV, V") < | X, |m,(X;'L,V,) ||V}

(85)
for 0 < x <r. Then, we have
< (I, )" p (e (X0, T,),0) " (86)

So, there are p > 1; we obtain

1 w17 - N7

Y —<plX [V Y — [p(a(1.x11,v,T,),0) |
Tq q:OTq

90

T
1
= Y — <p|X ||V [HOX LY, T,)
q=0 "q

r
1 _ _
= ZT_ SPrIHXr”HVrlHH]rXrlIrVrTrH
4=07q

r 1 B B
= Y <l V7 v
=0 Tq

= Pl XAV TNV < 4pm-
(87)

So there is a contradiction, if r — 0. Therefore, A and A
both cannot be infinite dimensional if &* ¢, (A, A)=Z(A, A).
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As with the previous theorem, we can easily prove the
next theorem.

"l:heorem 49. Suppose (Tq)qE/V €., NI with 7,> 0; hence,

%dep) is minimum.
(.

Lemma 50 (see [17]). If Be L(A, A) and B¢ Y (A, A), then
De Z(A) and M € Z(A) with MBDe,, = e, with be N

Theorem 51 (see [17]). In general, we have

F(A)PY (AL, (A)PL(A). (88)

Theorem 52. Let (Tq)qe,/V et NI with0< W< T,(C2>,f01’ all

x € N; hence,

2 (5002, B2 50 (), )
(M), @4, @)

Proof. Assu{ne Xe Q‘Z(»}'(ep((rii))))h(
and X ¢ Y(%(QF((T:(}))));, (A; A);:i"(el-'((r)(cl))))
Lemma 50, we have Y € g(%(eF((TiD)))h(

(89)

A A)sE g oy, (4 A))
(A, A)). By using

h

A, A)) and Z e Z(

%(eF((T(l)))>h(A,A)) so that ZXYI, =1,; hence, with be /),
one has
I S L (o1 0]
bl A) = L PGS Us)
(), ™ el P
®
< | ZXY |1 & < 2 P(s(Tp): 0) ]~
(), Zsm P00

(90)
) This fails Theorem 47. So XEY('%(eF((rf))))h(A’A)’
(i, (A A))- O
Corollary 53. Assume (Tq)qeﬂ/ et NI with o<t <12,

for all x € /V; hence,

# (), B # e ), @)
(K, B He ), )
(91)
Proof. Evidently, as Y ¢ &Z,. O

Definition 54 (see [17]). A Banach space A is called simple, if
there is only one nontrivial closed ideal in Z(A).
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Theorem 55. Let <Tq)qe/lf €, NI with T,> 0; hence, »i«(ep())

()

is simple.
Proof. Let X € Z (¥, (A A)) and X ¢ Y(»i«(zp()) (4, A)).
)
From Lemma 50, there ex1st Y, ZeZL(% e), (A A)) with
ZXYI, = I,,, which gives thatl,%(r an) €Z ( (A A)).
O

Then, g('i@}? ) (A, A)) :gc(_( ) (A A)) hence, 'i‘(eF )
() T(») h ()

is a simple Banach space. O

Notations 2.

(»%U)’l = { (%U)A(A, A); Aand A are Banach spaces},
where (Fy)" (4, A)

and [|X - p(A, (X

— (X e 28, A): (A (X)), €U
) 0)I|| is not invertible, with x € 4"}
(92)

Theorem 56. Assume (Tq)qu €€, NI with T,> 0; hence,

~ A

(%), ) (B2 =5 ) (44). (93)

Proof. Suppose X € (’i‘(eF()) )A(A, A); hence, (A1,(X))}, €
0

((’,F ), and [[X = p(A(X ),0)I|| =0, for all xe€.#/. We have

X= p(A( ),0)I, for all x € ./, so

p(s:(X),0) =p (SX(P(AX(-X)’ 0)I), 5) =p(A:(X),0), (94)

for every x € /. Therefore, (sx(X))x 0 € (EF ) hence, X €
Eer ), (A, A). Next, suppose Xe€ %(€2.>)h (A, A). Hence,
(s

( ))eco € (8()),- One gets 322 (1/7,)[p(s,(X), 0)] < 00
Then, limx_,oop(sx(X), 0) =0. Assume

1X = p(s, (X), 6)I|| exists, with xe€./.  Then,
1X = p(s,(X), f))I|| exists and is bounded, for all x €./

So, lim,__||X - p(s,(X),0 7)I||_1 |X||”" exists and is
bounded. As (¥ £, H) is a pre-quasi-mappings’ ideal, we

have

I=xx"! 6%(5 )h(A A)= (Sx(I))zZoeef(-) (95)
= lim p(s,(1),0) =0

This gives a contradiction, as lim, p(s.(I),0)=1.

Therefore, || X — p(s,(X), 0)I|| =0, with x € /. This explains
- A

XG (%(Ef(.))h) (A, A) D
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7. Applications

Consider the summable equations which are presented by
many authors [38-40]:

Y, =R + ZD(q, rym

r=0

(nY,), (96)

where D:/l/2—>9{,m:/V><9{[0,1]—>91[, 1],
R: ¥ —R[0,1], and assume V: (Qf())h (ek 0y
€, NI with 7,>1 and A(Y)=

, for every Y € ¢¥(t), defined by

where (Tq)qE/V

(252 (1) (p(Y 5 0)1)™

V(Yy) on = (R + ZD (g r)m( ,Y,)) . (97)
r=0 qeN

Example 15. The summable equation (96) has a solution in

(5, if

eS|
q=0 "q r=0
: oo

K

(1/1)( (R, + X720D(g, 1)m(r, Y,),0))

= () (P (Y >>

Evidently, we have

1/K

(99)

By Theorem 20, one gets a solution of equation (96) in
(€5)),.
) h

Example 16. The summable equation (96) has a solution in

(€)),» if

[i% <p <Rq -Y,+ iD(q, rym(r, Y,),O))

q=0 "q r=0

<[Sreoar| - 5L (p(re Bownmerio)) |
q=0 "q

40 Tq

4 1/K
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Clearly, we have

h(VY - Y)

I
g
2
=
<
~
=
|
~
=
=
=

IN
D18
= ‘ —
—
el
—~
~
=
SN—
—_
=

(101)

By Theorem 20, one gets a solution of equation (96) in
(&),

We conclude the following two applications in view of
Theorem 22.

Example 17. The summable equation (96) has a solution in
(ef('))h, where h(Y) = Y% (1/7,)[p(Y,, 0)]", for all Y €e”

(1), if

(1) W(V*IG - V!G) <! In h(V(G))/h(G),
(€5,

(2) V is h-sequentially continuous at Z € (Ef('))h

with Ge

(3) there is Y e (€f<_))h with {V'Y} which has {V/Y}
converging to Z

Then, Z € (Ef(‘))h is a fixed point of V.

Example 18. The summable equation (96) has a solution in
(Ef(.))h, where h(Y) =32 (1/7,)[p(Y,, 0)]™, for all Y eef
(1), if
(1) (V¥IG-VIG) <o
F
(ET())h

(2) V is h-sequentially continuous at Z € (Ef('))h

(h(G) - h(V(G))), with Ge

(3) there is Y € (€] )), with {V'Y} which has {Viv}
converging to Z

Then, Z € ({’,TF(‘))h is a fixed point of V.

In this part, we search for a solution to nonlinear matrix
equations (102) at M€ »i(ep(>) (A, A), where A and A are
0

Banach spaces, (Tq)qE/V €., NI with 7,>0, and H(G) =

3% (1/7,) (p(s,(G). 0)) )™,

sider the summable equations

forall G e %(eiﬂh(A’ A). Con-
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(102)

S ZD (g, r)m(r,s )),

where D : /' — R,m : N x R[0, 1] — R[0, 1], and sup-
pose V : %(efk.>>h(A’ A) —> »i«“f())h (A, A) defined by

(103)

We conclude the following two applications in view of
Theorem 45.

Example 19. If

(i) there 1s oce [0,1) so that H(Vl“G VIG) <ol In

(ii) V is H-sequentially continuous at an element M €
%(erp(-)>h (A) A)

(iii) thereare G € 'i‘(eF( ) (A, A) such that the sequence of
() p
iterates {V'G} has a {V'»G} converging to M

Then, M € ’*‘(eF ), (A, A) is a fixed point of V.

Example 20. Suppose

(i) there is a€[0,1) so that H(V*'G- V!G) <ol(H
(G)—H(V(G))), with Gesgr ) (A, A)

(ii) V is H-sequentially continuous at an element M €
For ) (A A
%(e:(‘) ) h ( )

(iii) thereare G € »i«@p( ) (4, A) such that the sequence of
()
iterates {V'G} has a {V'»G} converging to M

Then, M € é«(ep ) (4, A) is a fixed point of V.

()’
8. Conclusion

We proposed in this paper the notions of premodular spaces
of fuzzy numbers and extended s-fuzzy numbers to con-
struct large spaces of solutions to many nonlinear summable
and matrix equations of fuzzy numbers. We discuss some
topological and geometric structures of (€ ( ) , of the multi-

plication mappings defined on (Bf(.))h, of the class %(ep()) ,
0

and of the class (% ), )}. Moreover, the existence of Caris-

ti’s fixed point in (ET< )) is investigated. We also presented

some examples and illustrated the implication of the new
results in the study of the existence of solutions for a class
of nonlinear summable and matrix equations.
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