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We have defined and studied the weighted Nakano sequence spaces of fuzzy functions. We have constructed the ideal generated
by extended s-fuzzy functions and the sequence spaces of fuzzy functions. We present some topological and geometric structures
of this class of ideal and multiplication mappings acting on this sequence space of fuzzy functions. Moreover, the existence of
Caristi’s fixed point is examined. To show how the work is done, some examples and applications to the existence of solutions
for a class of nonlinear summable and matrix equations are also talked about.

1. Introduction

The mathematical description of the hydrodynamics of non-
Newtonian fluids provided additional impetus to the learn-
ing about variable exponent Lebesgue spaces (see [1, 2]).
Electric rheological fluids have many applications, including
military technology, civil engineering, and orthopedics. In
cybernetics, artificial intelligence, and fuzzy control, the con-
cept of fuzziness was widely embraced after Zadeh [3] intro-
duced fuzzy sets and fuzzy set operations. Javed et al. [4]
investigated the Banach contraction in R-fuzzy b-metric
spaces and discussed some related fixed point results to
ensure a fixed point’s existence and uniqueness. A nontrivial
example is given to illustrate the feasibility of the proposed
methods. They offered an application to solve the first kind
of Fredholm-type integral equation. In [5], Rehman and
Aydi proved some common fixed point theorems for map-
pings involving generalized rational-type fuzzy cone-
contraction conditions in fuzzy cone metric spaces. They
gave a common solution of two definite Fredholm integral
equations. The concept of orthogonal partial b-metric spaces
was pioneered by Javed et al. [6]. They presented a unique
fixed point for some orthogonal contractive-type mappings

with some examples and an application. Humaira et al. [7]
discussed the existence theorem for a unique solution to a
coupled system of impulsive fractional differential equations
in complex-valued fuzzy metric spaces and the fuzzy version
of some fixed point results by using the definition and pre-
sented some properties of a complex-valued fuzzy metric
space with some applications. In this study, Sarwar and
Rodríguez-López [8] looked into the concept of extended
fuzzy rectangular b-metric space. They explained that some
fixed point results in the literature could be generalized by
α-admittance in this space. They used this to show solutions
for a group of integral equations. Many researchers in
sequence spaces and summability theory were active in
studying fuzzy sequence spaces and their properties. Differ-
ent classes of sequences of fuzzy real numbers have been dis-
cussed by Nanda [9], Nuray and Savas [10], Matloka [11],
Altinok et al. [12], Colak et al. [13], Hazarika and Savas
[14], and many others. In [10], the Nakano sequences of
fuzzy integers were defined and analyzed. The mappings’
ideal theory is well regarded in functional analysis. Using s
-numbers is an essential technique. Pietsch [15–18] devel-
oped and studied the theory of s-numbers of linear bounded
mappings between Banach spaces. He offered and explained
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some topological and geometric structures of the quasi-
ideals of ℓp-type mappings. Then, Constantin [19] general-
ized the class of ℓp-type mappings to the class of cesp-type
mappings. Makarov and Faried [20] showed some inclusion
relations of ℓp-type mappings. As a generalization of ℓp-type
mappings, Stolz mappings and mappings’ ideal were exam-
ined by Tita [21, 22]. In [23], Maji and Srivastava studied

the class AðsÞ
p of s-type cesp mappings using s-number

sequence and Cesàro sequence spaces and they introduced

a new class AðsÞ
p,q of s-type cesðp, qÞ mappings by weighted

cesp with 1 < p<∞. In [24], the class of s-type Zðu, v ; ℓpÞ
mappings was defined and some of their properties were
explained. Yaying et al. [25] defined and studiedχη

r , withr
-Cesàro matrix inℓη, withr ∈ ð0, 1�and1 ≤ η≤∞. They
explained the quasi-Banach ideal of type χη

r , with r ∈ ð0, 1�
and 1 < η<∞. Komal et al. [26] explained the multiplication
mappings defined on cesp equipped with the Luxemburg
norm. The multiplication mappings acting on Cesàro
second-order function spaces discussed by Ilkhan et al.
[27]. Many fixed point theorems in a particular space work
by either expanding the self-mapping acting on it or expand-
ing the space itself. In this paper, we have introduced the
concept of premodular spaces of fuzzy numbers, which are
important extensions of the concept of modular spaces.
We also extended s-fuzzy numbers to build large spaces of
solutions to many nonlinear summable and matrix equa-
tions of fuzzy numbers. It is the first attempt to examine
Caristi’s fixed point in certain premodular vector spaces.
This work is aimed at introducing the particular space of
sequences of fuzzy numbers, in short (pssf), under a partic-
ular function to be pre-quasi (pssf). We have defined and
analyzed weighted Nakano sequence spaces of fuzzy func-
tions. Extended s-fuzzy functions and weighted Nakano
sequence spaces of fuzzy functions have been used to create
the mappings’ ideal. The topological and geometric charac-
teristics of mappings’ ideal and multiplication mappings act-
ing on this sequence space of fuzzy functions are offered.
Caristi’s fixed point is also discussed in this paper. Some
supporting examples and applications to the existence of
solutions for a class of nonlinear summable and matrix
equations are also explored to provide a better understand-
ing of the work that has been done.

2. Definitions and Preliminaries

As a reminder, Matloka [11] presented the concept of ordi-
nary convergence of sequences of fuzzy numbers, where he
introduced bounded and convergent fuzzy numbers,
explored some of their features, and proved that any conver-
gent fuzzy number sequence is bounded. Nanda [9]
explained the sequences of fuzzy numbers and proved the
set of all convergent sequences of fuzzy numbers from a
complete metric space. Kumar et al. [28] investigated the
limit points and cluster points of sequences of fuzzy numbers.
Assume Ω is the set of all closed and bounded intervals on
the real-line R. Let f = ½ f1, f2� and g = ½g1, g2� in Ω; suppose

f ≤ g if and only if f1 ≤ g1 and f2 ≤ g2: ð1Þ

Define a metric ρ on Ω by

ρ f , gð Þ =max f1 − g1j j, f2 − g2j jf g: ð2Þ

Matloka [11] showed that ρ is a metric on Ω, ðΩ, ρÞ is a
complete metric space, and the relation ≤ is a partial order on
Ω.

Definition 1. A fuzzy number g is a mapping g : R⟶ ½0, 1�
which verifies the following four settings:

(a) g is fuzzy convex; i.e., for x, y ∈R and α ∈ ½0, 1�,
gðαx + ð1 − αÞyÞ ≥min fgðxÞ, gðyÞg

(b) g is normal; i.e., one has y0 ∈R such that gðy0Þ = 1

(c) gis upper semicontinuous; i.e., for allα > 0, g−1ð½0, x
+ αÞÞand for allx ∈ ½0, 1�, which is open in the usual
topology ofR

(d) The closure of g0 ≔ fy ∈R : gðyÞ > 0g is compact

The β-level set of g, 0 < β < 1 indicated by gβ is defined
as

gβ = y ∈R : g yð Þ ≥ βf g: ð3Þ

The set of every upper semicontinuous, normal, convex
fuzzy number, and gβ is compact and is denoted by Rð½0, 1�Þ.
The set R can be embedded in Rð½0, 1�Þ, when we define k ∈
Rð½0, 1�Þ by

�k xð Þ =
1, x = k,

0, x ≠ k:

(
ð4Þ

�0 and �1 denote the additive identity and multiplicative
identity in R½0, 1� in R½0, 1�, respectively.

The arithmetic operations on R½0, 1� are defined as

f ⊕ gð Þ qð Þ = sup
q∈R

min f pð Þ, g q − pð Þf g,

f ⊖ gð Þ qð Þ = sup
q∈R

min f pð Þ, g p − qð Þf g,

f ⊗ gð Þ qð Þ = sup
q∈R

min f pð Þ, g q
p

� �� �
,

f
g

� �
qð Þ = sup min

q∈R
f pqð Þ, g pð Þf g,

pf qð Þ = f p−1q
� �

, p ≠ 0

0, p = 0:

(

ð5Þ
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The absolute value j f j of f ∈R½0, 1� is defined as

fj j qð Þ =
max f qð Þ, f −qð Þf g, if q ≥ 0,

0, if q < 0:

(
ð6Þ

Suppose f , g ∈R½0, 1� and the β-level sets are ½ f �β =
½ f β1 , f β2 � and ½g�β = ½gβ1 , gβ2 �, β ∈ ½0, 1�. A partial ordering for
any f , g ∈R½0, 1� as follows: f⪯g if and only if f β ≤ gβ, for
all β ∈ ½0, 1�. Hence, the above operations can be defined by
β-level sets as

f ⊕ g½ �β = f β1 + gβ
1 , f

β
2 + gβ2

h i
,

f ⊖ g½ �β = f β1 − gβ
2 , f

β
2 − gβ1

h i
,

f ⊗ g½ �β = min
j∈ 1,2f g

f βj g
β
j , max

j∈ 1,2f g
f βj g

β
j

� 	
,

f −1

 �β = f β2

� 
−1
, f β1
� 
−1� 	

, f βj > 0, for every β ∈ 0, 1ð �,

xf½ �β =
xf β1 , xf

β
2

h i
, x ≥ 0,

xf β2 , xf
β
1

h i
, x < 0:

8><
>:

ð7Þ

Assume �ρ : R½0, 1� ×R½0, 1�⟶R+ ∪ f0g is defined by
�ρð f , gÞ = sup0≤β≤1ρð f β, gβÞ:

Recall that

(1) ðR½0, 1�, �ρÞ is a complete metric space

(2) �ρð f + k, g + kÞ = �ρð f , gÞ for all f , g, k ∈R½0, 1�
(3) �ρð f + k, g + lÞ ≤ �ρð f , gÞ + �ρðk, lÞ
(4) �ρðξf , ξgÞ = jξj�ρð f , gÞ, for all ξ ∈R

Definition 2. A sequence of fuzzy numbers f = ð f jÞ is called

(a) bounded if there are two fuzzy numbers g, l such
that g ≤ f j ≤ l

(b) convergent to a fuzzy real number f0 if for all ε > 0,
one has n0 ∈N such that �ρð f j, f0Þ < ε, for all j ≥ j0

By ℓ∞ and ℓr , we denote the spaces of bounded and
r-absolutely summable sequences of R, respectively.

Lemma 3 (see [29]). Suppose τq > 0, K =max f1, supqτqg,
and Yq, Zq ∈R with q ∈N ; hence,

Yq + Zq

�� ��τq ≤ 2K−1 Yq

�� ��τq + Zq

�� ��τq� �
: ð8Þ

We will explain our main results.

3. Some Properties of ℓFτð:Þ
This section introduces the particular space of sequences of
fuzzy functions (pssf), under definite function to be pre-
quasi (pssf). We investigate sufficient setup of ℓFτð:Þ equipped
with definite function h to be pre-quasi closed and Banach
(pssf). We also present the Fatou property of various h
on ℓFτð:Þ.

Let ωðFÞ and ℓ∞ðFÞ mark the classes of all and bounded
sequence spaces of fuzzy functions, respectively. Suppose
τ = ðτqÞ ∈R+N , where R+N is the space of positive real
sequences. The variable exponent sequence space of fuzzy
functions is denoted by

ℓFτ :ð Þ = Z = Zq

� �
∈ ω Fð Þ: h rZð Þ<∞,for some r > 0

� �
, 

when h Zð Þ = 〠
∞

q=0

1
τq

�ρ Zq, �0
� �
 �τq :

ð9Þ

Theorem 4. If ðτqÞ ∈ ℓ∞, then

ℓFτ :ð Þ = Z = Zq

� �
∈ ω Fð Þ: h rZð Þ<∞,for any r > 0

� �
: ð10Þ

Proof.

ℓFτ :ð Þ = Z = Zq

� �
∈ ω Fð Þ: h rZð Þ<∞,for some r > 0

� �
= Z = Zq

� �
∈ ω Fð Þ: inf

q
rj jτq 〠

∞

q=0

1
τq

�ρ Zq, �0
� �
 �τq(

≤ 〠
∞

q=0

1
τq

�ρ rZq, �0
� �
 �τq<∞,for some r > 0

)

= Z = Zq

� �
∈ ω Fð Þ: 〠

∞

q=0

1
τq

�ρ Zq, �0
� �
 �τq<∞

( )

= Z = Zq

� �
∈ ω Fð Þ: h rZð Þ<∞,for any r > 0

� �
:

ð11Þ

By ½0,∞ÞU, we denote the space of all functions h : U
⟶ ½0,∞Þ. Nakano [30] introduced the concept of modular
vector spaces.

Definition 5. Suppose U is a vector space. A function h ∈
½0,∞�U is called modular if the next conditions hold:

(a) If Y ∈U, Y = �ϑ⇔ hðYÞ = 0 with hðYÞ ≥ 0, where �ϑ
= ð�0, �0, �0,⋯Þ

(b) hðηZÞ = hðZÞ holds, for all Z ∈U and jηj = 1

(c) The inequality hðαY + ð1 − αÞZÞ ≤ hðYÞ + hðZÞ sat-
isfies, for all Y , Z ∈U and α ∈ ½0, 1�
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Definition 6. The linear space U is said to be a particular
space of sequences of fuzzy functions (pssf), if

(a) f�bqgq∈N ⊆U, where �bq = f�0, �0,⋯, �1, �0, �0,⋯g, while
�1 displays at the qth place

(b) U is solid; i.e., suppose Y = ðYqÞ ∈ ωðFÞ, Z = ðZqÞ ∈
U and jYqj ≤ jZqj, for all q ∈N , then Y ∈U

(c) ðY ½q/2�Þ∞q=0 ∈U, where ½q/2� marks the integral part of

q/2, if ðYqÞ∞q=0 ∈U

Definition 7. A subclassUhofUis said to be a premodular
(pssf), if one hash ∈ ½0,∞ÞU which satisfies the next settings:

(i) If Y ∈U, Y = �ϑ⇔ hðYÞ = 0 with hðYÞ ≥ 0

(ii) There is Q ≥ 1; the inequality hðαYÞ ≤QjαjhðYÞ
holds, for every Y ∈U and α ∈R

(iii) There is P ≥ 1; the inequality hðY + ZÞ ≤ PðhðYÞ +
hðZÞÞ holds, for every Y , Z ∈U

(iv) If jYqj ≤ jZqj, for every q ∈N , one has hððYqÞÞ ≤ h
ððZqÞÞ

(v) The inequality hððYqÞÞ ≤ hððY ½q/2�ÞÞ ≤ P0hððYqÞÞ
holds, for some P0 ≥ 1

(vi) The closure of E =Uh, where E is the space of finite
sequences of fuzzy functions

(vii) There is σ > 0 with hð�α, �0, �0, �0,⋯Þ ≥ σjαjhð�1, �0, �0,
�0,⋯Þ, where

�α yð Þ =
1, y = α,

0, y ≠ α

(
ð12Þ

Clearly, the concept of premodular vector spaces is more
general than modular vector spaces. Some examples of pre-
modular vector spaces but not modular vector spaces are
shown.

Example 1. The function hðZÞ = ð∑∞
q=0ðð3q + 4Þ/ðq + 1ÞÞ

½�ρðZq, �0Þ�ðq+1Þ/ð3q+4ÞÞ4 is a premodular (not a modular) on

the vector space ℓFðððq + 1Þ/ð3q + 4ÞÞ∞q=0Þ. As for every Z, Y
∈ ℓFðððq + 1Þ/ð3q + 4ÞÞ∞q=0Þ, one has

h
Z + Y
2

� �
= 〠

∞

q=0

3q + 4
q + 1

�ρ
Zq + Yq

2
, �0

� �� 	 q+1ð Þ/ 3q+4ð Þ !4

≤ 4 h Zð Þ + h Yð Þð Þ:
ð13Þ

Example 2. The function hðZÞ =∑∞
q=0ððq + 4Þ/ð2q + 3ÞÞ

½�ρðZq, �0Þ�ð2q+3Þ/ðq+4Þ is a premodular (not a modular) on the

vector space ℓFððð2q + 3Þ/ðq + 4ÞÞ∞q=0Þ. As for every Z, Y ∈
ℓFððð2q + 3Þ/ðq + 4ÞÞ∞q=0Þ, one has

h
Z + Y
2

� �
= 〠

∞

q=0

q + 4
2q + 3

�ρ
Zq + Yq

2
, �0

� �� 	 2q+3ð Þ/ q+4ð Þ

≤
2ffiffiffi
84

p h Zð Þ + h Yð Þð Þ,
ð14Þ

an example of premodular vector space and modular vector
space.

Example 3. The function hðYÞ = inf fα > 0 : ∑∞
q=0ððq + 2Þ/

ð2q + 3ÞÞ½�ρðYq/α, �0Þ�ð2q+3Þ/ðq+2Þ ≤ 1g is a premodular (modu-

lar) on the vector space ℓFððð2q + 3Þ/ðq + 2ÞÞ∞q=0Þ.

Definition 8. Suppose U is a (pssf). The function h ∈ ½0,∞ÞU
is said to be a pre-quasi-norm on U, if the following setups
are verified:

(i) If Y ∈U, Y = �ϑ⇔ hðYÞ = 0 with hðYÞ ≥ 0, where
�ϑ = ð�0, �0, �0,Þ

(ii) There is Q ≥ 1; the inequality hðαYÞ ≤QjαjhðYÞ
satisfies, for every Y ∈U and α ∈R

(iii) There is P ≥ 1; the inequality hðY + ZÞ ≤ PðhðYÞ +
hðZÞÞ holds, for each Y , Z ∈U.

Clearly, from the last two definitions, we conclude the
following two theorems.

Theorem 9. Every premodular (pssf) is a pre-quasi-normed
(pssf).

Theorem 10. Every quasi-normed (pssf) is a pre-quasi-
normed (pssf).

Definition 11.

(a) The function h on ℓFτð:Þ is named h-convex, if

h αY + 1 − αð ÞZð Þ ≤ αh Yð Þ + 1 − αð Þh Zð Þ, ð15Þ

for every α ∈ ½0, 1� and Y , Z ∈ ℓFτð:Þ.

(b) Whenlimq⟶∞hðYq − YÞ = 0,we calledfYqgq∈N ⊆

ðℓFτð:ÞÞhh-convergent toY ∈ ðℓFτð:ÞÞh
(c) fYqgq∈N ⊆ ðℓFτð:ÞÞh is h-Cauchy, if limq,r⟶∞hðYq −

YrÞ = 0

(d) Γ ⊂ ðℓFτð:ÞÞh is h-closed, when for all h-converges

fYqgq∈N ⊂ Γ to Y , then Y ∈ Γ
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(e) Γ ⊂ ðℓFτð:ÞÞh is h-bounded, if δhðΓÞ = sup fhðY − ZÞ:
Y , Z ∈ Γg<∞

(f) A pre-quasi-norm h on ℓFτð:Þ verifies the Fatou prop-

erty, when for all fZqg ⊆ ðℓFτð:ÞÞh under limq⟶∞hð
Zq − ZÞ = 0 and Y ∈ ðℓFτð:ÞÞh, one has hðY − ZÞ ≤
supr inf q≥rhðY − ZqÞ

Theorem 12. ðℓFτð:ÞÞh, where hðYÞ = ½∑∞
q=0ð1/τqÞ ½�ρðYq, �0Þ�τq �1/K ,

for all Y ∈ ℓFτð:Þ, is a premodular (pssf), when ðτqÞq∈N ∈ ℓ∞ ∩ I

with τ0 > 0, where I is the space of every increasing sequences
of reals.

Proof.

(i) Evidently, hðYÞ ≥ 0 and hðYÞ = 0⇔ Y = �ϑ.

(1-i) Let Y , Z ∈ ℓFτð:Þ. One has

h Y + Zð Þ = 〠
∞

q=0

1
τq

�ρ Yq + Zq, �0
� �
 �τq" #1/K

≤ 〠
∞

q=0

1
τq

�ρ Yq, �0
� �
 �τq" #1/K

+ 〠
∞

q=0

1
τq

�ρ Zq, �0
� �
 �τq" #1/K

= h Yð Þ + h Zð Þ <∞,

ð16Þ

then Y + Z ∈ ℓFτð:Þ

(ii) One gets P ≥ 1 with hðY + ZÞ ≤ PðhðYÞ + hðZÞÞ, for
all Y , Z ∈ ℓFτð:Þ.

(1-ii) Assuming α ∈R and Y ∈ ℓFτð:Þ, we obtain

h αYð Þ = 〠
∞

q=0

1
τq

�ρ αYq, �0
� �
 �τq" #1/K

≤ sup
q

αj jτq/K 〠
∞

q=0

1
τq

�ρ Yq, �0
� �
 �τq" #1/K

≤Q αj jh vð Þ <∞

ð17Þ

As αY ∈ ℓFτð:Þ, hence, from setups (1-i) and (1-ii), we get

ℓFτð:Þ is linear. Also, �bp ∈ ℓFτð:Þ, for all p ∈N , since hð�bpÞ =
½∑∞

q=0ð1/τqÞ½�ρð�bp, �0Þ�τq �
1/K = 1/τb:

(iii) There is Q =max f1, supqjαjðτq/KÞ−1g ≥ 1 with hðαYÞ
≤QjαjhðYÞ, for all Y ∈ ℓFτð:Þ and α ∈R

(1) Assume jYqj ≤ jZqj, for all q ∈N and Z ∈ ℓFτð:Þ. One
finds

h Yð Þ = 〠
∞

q=0

1
τq

�ρ Yq, �0
� �
 �τq" #1/K

≤ 〠
∞

q=0

1
τq

�ρ Zq, �0
� �
 �τq" #1/K

= h Zð Þ <∞,
ð18Þ

then Y ∈ ℓFτð:Þ

(iv) Obviously, from (2)

(1) Let ðYqÞ ∈ ℓFτð:Þ; we get

h Y q/2½ �
� 
� 


= 〠
∞

q=0

1
τq

�ρ Y q/2½ �, �0
� 
h iτq" #1/K

= 〠
∞

q=0

1
τ2q

�ρ Yq, �0
� �
 �τ2q + 〠

∞

q=0

1
τ2q+1

�ρ Yq, �0
� �
 �τ2q+1" #1/K

≤ 21
K 〠

∞

q=0

1
τq

�ρ Yq, �0
� �
 �τq" #1/K

= 21/Kh Yq

� �� �
,

ð19Þ

then ðY ½q/2�Þ ∈ ℓFτð:Þ

(v) From (3), we obtain P0 = 21/K ≥ 1

(vi) Evidently, the closure of E = ℓFτð:Þ

(vii) There is 0 < σ ≤ jαjðτ0/KÞ−1, for α ≠ 0 or σ > 0, for
α = 0 with

h �α, �0, �0, �0,⋯ð Þ ≥ σ αj jh �1, �0, �0, �0,⋯ð Þ ð20Þ

Example 4. For ðτqÞ ∈ ½1,∞ÞN , the function hðYÞ = inf fα
> 0 : ∑q∈N ð1/τqÞ½�ρðYq/α, �0Þ�τq ≤ 1g is a norm on ℓFτð:Þ.

Example 5. The function hðYÞ =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑q∈N ððq + 1Þ/ð3q + 2ÞÞ½�ρðYq, �0Þ�ð3q+2Þ/ðq+1Þ3

q
is a pre-quasi-

norm (not a norm) on ℓFððð3q + 2Þ/ðq + 1ÞÞ∞q=0Þ.

Example 6. The function hðYÞ =∑q∈N ððq + 1Þ/ð3q + 2ÞÞ
½�ρðYq, �0Þ�ð3q+2Þ/ðq+1Þ is a pre-quasi=norm (not a quasinorm)

on ℓFððð3q + 2Þ/ðq + 1ÞÞ∞q=0Þ.

Example 7. The function hðYÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑q∈N ð1/dÞ½�ρðYq, �0Þ�dd

q
is a

pre-quasi-norm, quasinorm, and not a norm on ℓFd , with 0
< d < 1.
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Theorem 13. If ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 0, then ðℓFτð:ÞÞh is

a pre-quasi-Banach (pssf), where hðYÞ = ½∑∞
q=0ð1/τqÞ

½�ρðYq, �0Þ�τq �1/K , for every Y ∈ ℓFτð:Þ.

Proof. By Theorem 9 and Theorem 12, one obtainsðℓFτð:ÞÞh
which is a pre-quasi-normed (pssf). If Yl = ðYl

qÞ
∞
q=0

is a Cau-
chy sequence in ðℓFτð:ÞÞh. Then, for every ε ∈ ð0, 1Þ, one has

l0 ∈N such that for all l,m ≥ l0, one gets

h Yl − Ym
� 


= 〠
∞

q=0

1
τq

�ρ Yl
q − Ym

q , �0
� 
h iτq" #1/K

< ε: ð21Þ

This implies �ρðYl
q − Ym

q , �0Þ < ε:AsðR½0, 1�, �ρÞis a com-
plete metric space, thenðYm

q Þis a Cauchy sequence in R½0, 1�,
for fixed q ∈N . Then, limm⟶∞Ym

q = Y0
q, for constant q ∈N .

Hence, hðYl − Y0Þ < ε, for every l ≥ l0. Since hðY0Þ = hðY0 −
Yl + YlÞ ≤ hðYl − Y0Þ + hðYlÞ<∞, so Y0 ∈ ℓFτð:Þ.

Theorem 14. Suppose ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 0; then,

ðℓFτð:ÞÞh is a pre-quasi-closed (pssf), where hðYÞ =
½∑∞

q=0ð1/τqÞ½�ρðYq, �0Þ�τq �1/K , for every Y ∈ ℓFτð:Þ.

Proof. In view of Theorem 12 and Theorem 9, the space
ðℓFτð:ÞÞh is a pre-quasi-normed (pssf). Assume Yl = ðYl

qÞ
∞
q=0

∈ ðℓFτð:ÞÞh and liml⟶∞hðYl − Y0Þ = 0; then, for all ε ∈ ð0, 1Þ,
there is l0 ∈N such that for all l ≥ l0, we obtain

ε > h Yl − Y0
� 


= 〠
∞

q=0

1
τq

�ρ Yl
q − Y0

q, �0
� 
h iτq" #1/K

: ð22Þ

This implies �ρðYl
q − Y0

q, �0Þ < ε: As ðR½0, 1�, �ρÞis a com-

plete metric space, therefore,ðYl
qÞis a convergent sequence

in R½0, 1�, for fixedq ∈N . So, liml⟶∞Yl
q = Y0

q, for fixed q

∈N . Since hðY0Þ = hðY0 − Yl + YlÞ ≤ hðYl − Y0Þ + hðYlÞ<
∞, one has Y0 ∈ ℓFτð:Þ.

Theorem 15. The function hðYÞ = ½∑∞
q=0ð1/τqÞ½�ρðYq, �0Þ�τq �1/K

holds the Fatou property, if ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 0, for

all Y ∈ ℓFτð:Þ.

Proof. Let fZrg ⊆ ðℓFτð:ÞÞh such that limr⟶∞hðZr − ZÞ = 0:
Since ðℓFτð:ÞÞh is a pre-quasi-closed space, one has Z ∈

ðℓFτð:ÞÞh. For all Y ∈ ðℓFτð:ÞÞh, one gets

h Y − Zð Þ = 〠
∞

q=0

1
τq

�ρ Yq − Zq, �0
� �
 �τq" #1/K

≤ 〠
∞

q=0

1
τq

�ρ Yq − Zr
q, �0

� 
h iτq" #1/K

+ 〠
∞

q=0

1
τq

�ρ Zr
q − Zq, �0

� 
h iτq" #1/K
≤ sup

m
inf
r≥m

h Y − Zrð Þ:

ð23Þ

Theorem 16. The function hðYÞ =∑∞
q=0ð1/τqÞ½�ρðYq, �0Þ�τq

does not hold the Fatou property, for all Y ∈ ℓFτð:Þ, when ðτqÞ
∈ ℓ∞ and τq > 1 with q ∈N .

Proof. Let fZrg ⊆ ðℓFτð:ÞÞh so that limr⟶∞hðZr − ZÞ = 0:
Since ðℓFτð:ÞÞh is a pre-quasi-closed space, one gets Z ∈
ðℓFτð:ÞÞh. For every Z ∈ ðℓFτð:ÞÞh, we obtain

h Y − Zð Þ = 〠
∞

q=0

1
τq

�ρ Yq − Zq, �0
� �
 �τq ≤ 2

sup
q

τq−1

� 〠
∞

q=0

1
τq

�ρ Yq − Zr
q, �0

� 
h iτq + 〠
∞

q=0

1
τq

�ρ Zr
q − Zq, �0

� 
h iτq !

≤ 2
sup
q

τq−1

sup
m

inf
r≥m

h Y − Zrð Þ:

ð24Þ

4. Caristi’s Fixed Point Theorem in ðℓFτð:ÞÞh
In this section, the existence of Caristi’s fixed point in ðℓFτð:ÞÞh
is presented according to Farkas [31], where hðYÞ =
½∑∞

q=0ð1/τqÞ½�ρðYq, �0Þ�τq �1/K , for all Y ∈ ℓFτð:Þ.

Definition 17. The function Ψ1 : ðℓFτð:ÞÞh ⟶ ð−∞,∞� is said
to be lower semicontinuous at Gð0Þ ∈ ðℓFτð:ÞÞh if

lim infG⟶Gð0ÞΨ1ðGÞ =Ψ1ðGð0ÞÞ, where lim infG⟶Gð0ÞΨ1ðGÞ
= supV∈V ðGð0ÞÞ infG∈VΨ1ðGÞ, where V ðGð0ÞÞ is a neighbor-

hood system of Gð0Þ.

Definition 18. The function Ψ1 : ðℓFτð:ÞÞh ⟶ ð−∞,∞� is

called proper, when

D Ψ1ð Þ = G ∈ ℓFτ :ð Þ
� 


h
: Ψ1 Gð Þ<∞

n o
≠∅: ð25Þ

Theorem 19. Assume Ξ ≠∅ and Ξ is a h-closed subset of
ðℓFτð:ÞÞh and Ψ1 : Ξ⟶ ð−∞,∞� is a proper, h -lower semi-

continuous function with infG∈ΞΨ1ðGÞ > −∞: Suppose γ > 0,
fϖqg ⊂ ð0,∞Þ, and Gð0Þ ∈ Ξ with Ψ1ðGð0ÞÞ ≤ infG∈ΞΨ1ðGÞ +
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γ: Therefore, one has fGðqÞg ∈ Ξ which h-converges to some
GðγÞ, and

(i) hðGðγÞ − GðqÞÞ ≤ γ/2qϖ0, with q ∈N

(ii) Ψ1ðGðγÞÞ +∑∞
q=0ϖqhðGðγÞ −GðqÞÞ ≤Ψ1ðGð0ÞÞ

(iii) when G ≠GðγÞ, we have

Ψ1 G γð Þ
� 


+ 〠
∞

q=0
ϖqh G γð Þ −G qð Þ
� 


<Ψ1 Gð Þ + 〠
∞

q=0
ϖqh G −G qð Þ
� 


ð26Þ

Proof. Let SðGð0ÞÞ = fG ∈ Ξ : Ψ1ðGÞ + ϖ0hðG −Gð0ÞÞ ≤Ψ1ð
Gð0ÞÞg: As Gð0Þ ∈ SðGð0ÞÞ, hence, SðGð0ÞÞ ≠∅: Since Ψ1 is h
-lower semicontinuous, h verifies the Fatou property, and
Ξ is h-closed, one has SðGð0ÞÞ which is h-closed. Choose
Gð1Þ ∈ SðGð0ÞÞ and

Ψ1 G 1ð Þ
� 


+ ϖ0h G 1ð Þ − G 0ð Þ
� 


≤ inf
G∈S G 0ð Þð Þ

Ψ1 Gð Þ + ϖ0h G − G 0ð Þ
� 
n o

+
γϖ1
2ϖ0

:
ð27Þ

Take

S G 1ð Þ
� 


= G ∈ S G 0ð Þ
� 


: Ψ1 Gð Þ + 〠
1

j=0
ϖjh G −G jð Þ
� 
(

≤Ψ1 G 1ð Þ
� 


+ ϖ0h G 1ð Þ − G 0ð Þ
� 
o

:

ð28Þ

As SðGð0ÞÞ, we get SðGð1ÞÞ ≠∅ and h-closed. Assume that
one has built fGð0Þ,Gð1Þ,Gð2Þ; ;GðqÞg and fSðGð0ÞÞ, SðGð1ÞÞ, S
ðGð2ÞÞ,⋯, SðGðqÞÞg. Next, choose Gðq+1Þ ∈ SðGðqÞÞ and

Ψ1 G q+1ð Þ
� 


+ 〠
q

j=0
ϖjh G q+1ð Þ − G jð Þ
� 


≤ inf
G∈S G qð Þð Þ

Ψ1 Gð Þ + 〠
q

j=0
ϖjh G − G jð Þ
� 
( )

+
γϖq

2qϖ0
:

ð29Þ

Let

S G q+1ð Þ
� 


≔ G ∈ S G qð Þ
� 


: Ψ1 Gð Þ + 〠
q+1

j=0
ϖjh G −G jð Þ
� 
(

≤Ψ1 G q+1ð Þ
� 


+ 〠
q

j=0
ϖjh G q+1ð Þ −G jð Þ
� 
)

:

ð30Þ

Hence, we form by induction the sequences fGðqÞg and

fSðGðqÞÞg. Fix q ∈N . Suppose W ∈ SðGðqÞÞ. One obtains

Ψ1 Wð Þ + 〠
q

j=0
ϖjh W −G jð Þ
� 


≤Ψ1 G qð Þ
� 


+ 〠
q−1

j=0
ϖjh G qð Þ −G jð Þ
� 


:

ð31Þ

Hence,

ϖqh W −G qð Þ
� 


≤Ψ1 G qð Þ
� 


+ 〠
q−1

j=0
ϖjh G qð Þ −G jð Þ
� 


− Ψ1 Wð Þ + 〠
q−1

j=0
ϖjh W −G jð Þ
� 
" #

≤Ψ1 G qð Þ
� 


+ 〠
q−1

j=0
ϖjh G qð Þ −G jð Þ
� 


− inf
G∈S G q−1ð Þð Þ

Ψ1 Gð Þ + 〠
q−1

j=0
ϖjh G − G jð Þ
� 
" #

≤
γϖq

2qϖ0
:

ð32Þ

As fSðGðqÞÞg is decreasing with GðqÞ ∈ SðGðqÞÞ, for every
q ∈N , we obtain

h G q+pð Þ − G qð Þ
� 


≤
γ

2qϖ0
, ð33Þ

with q, p ∈N . This implies fGðqÞg is h-Cauchy. Since ðℓFτð:ÞÞh
is a h-Banach space, hence, fGðqÞg has h-limits GðγÞ andT

q∈N SðGðqÞÞ = fGðγÞg. Since Gðq+1Þ ∈ SðGðqÞÞ, we can see

Ψ1 G q+1ð Þ
� 


+ 〠
q

j=0
ϖjh G q+1ð Þ −G jð Þ
� 


≤Ψ1 G qð Þ
� 


+ 〠
q−1

j=0
ϖjh G qð Þ − G jð Þ
� 


:

ð34Þ

Hence, fΨ1ðGðqÞÞ +∑q−1
j=0ϖjhðGðqÞ −GðjÞÞg is decreasing.

After, let G ≠GðγÞ. One gets m ∈N with G ∉ SðGðqÞÞ, with q
≥m, i.e.,

Ψ1 G qð Þ
� 


+ 〠
q−1

j=0
ϖjh G qð Þ −G jð Þ
� 


<Ψ1 Gð Þ + 〠
q

j=0
ϖjh G −G jð Þ
� 


:

ð35Þ

Since GðγÞ ∈ SðGðqÞÞ, with q ≥m, we get

Ψ1 G γð Þ
� 


+ 〠
q

j=0
ϖjh G γð Þ −G jð Þ
� 


≤Ψ1 G qð Þ
� 


+ 〠
q−1

j=0
ϖjh G qð Þ − G jð Þ
� 


≤Ψ1 G mð Þ
� 


+ 〠
m−1

j=0
ϖjh G mð Þ −G jð Þ
� 


:

ð36Þ
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Putting q⟶∞ in the previous inequality, one can see

Ψ1 G γð Þ
� 


+ 〠
∞

j=0
ϖjh G γð Þ − G jð Þ
� 


≤Ψ1 xmð Þ

+ 〠
m−1

j=0
ϖjh G mð Þ −G jð Þ
� 


<Ψ1 Gð Þ + 〠
m

j=0
ϖjh G − G jð Þ
� 


≤Ψ1 Gð Þ + 〠
∞

j=0
ϖjh G − G jð Þ
� 


:

ð37Þ

This gives

Ψ1 G γð Þ
� 


+ 〠
∞

q=0
ϖqh G γð Þ −G qð Þ
� 


<Ψ1 Gð Þ + 〠
∞

q=0
ϖqh G −G qð Þ
� 


:

ð38Þ

Example 8. Suppose Ξ = fY ∈ ðℓFððð2q + 3Þ/ðq + 2ÞÞ∞q=0ÞÞh
: Y0 = �0g and hðYÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑q∈N ððq + 2Þ/ð2q + 3ÞÞð�ρðYq, �0ÞÞð2q+3Þ/ðq+2Þ

q
,

for every Y ∈ ðℓFððð2q + 3Þ/ðq + 2ÞÞ∞q=0ÞÞh. Suppose γ > 0, f
ϖqg ⊂ ð0,∞Þ, and Gð0Þ ∈ Ξ with supG∈Ξ ln hðGÞ ≤ ln hðGð0ÞÞ
+ γ:SinceΨ1 : Ξ⟶ð−∞,∞�, whereΨ1ðGÞ = − ln ðhðGÞÞ,
clearly,Ξ ≠∅andΞis ah-closed subset ofðℓFτð:ÞÞh, andΨ1is a

proper,h-lower semicontinuous function
withinfG∈ΞΨ1ðGÞ>−∞: From Theorem 19, one has fGðqÞg ∈
Ξ which h-converges to some GðγÞ, and

(i) hðGðγÞ − GðqÞÞ ≤ γ/2qϖ0, with q ∈N

(ii) ln ðhðGð0ÞÞÞ +∑∞
q=0ϖqhðGðγÞ −GðqÞÞ ≤ ln ðhðGðγÞÞÞ

(iii) when G ≠GðγÞ, we have

ln h Gð Þð Þ + 〠
∞

q=0
ϖqh G γð Þ −G qð Þ
� 


< ln h G γð Þ
� 
� 


+ 〠
∞

q=0
ϖqh G − G qð Þ
� 
 ð39Þ

Example 9. Suppose Ξ = fY ∈ ðℓFðððq + 1Þ/ð3q + 4ÞÞ∞q=0ÞÞh
: Y0 = �0g and hðYÞ =∑q∈N ðð3q + 4Þ/ðq + 1ÞÞð�ρðYq, �0ÞÞðq+1Þ/ð3q+4Þ,
for every Y ∈ ðℓFðððq + 1Þ/ð3q + 4ÞÞ∞q=0ÞÞh. Suppose γ > 0, fϖqg
⊂ ð0,∞Þ, and Gð0Þ ∈ Ξ with hðGð0ÞÞ ≤ γ: Since Ψ1 : Ξ⟶ð−
∞,∞�, where Ψ1ðGÞ = hðGÞ, clearly, Ξ ≠∅ and Ξ is a h
-closed subset of ðℓFτð:ÞÞh, and Ψ1 is a proper, h-lower semi-

continuous function with infG∈ΞΨ1ðGÞ>−∞: From Theo-
rem 19, one has fGðqÞg ∈ Ξ which h-converges to some
GðγÞ, and

(i) hðGðγÞ − GðqÞÞ ≤ γ/2qϖ0, with q ∈N

(ii) hðGðγÞÞ +∑∞
q=0ϖqhðGðγÞ −GðqÞÞ ≤ hðGð0ÞÞ

(iii) when G ≠ GðγÞ, we have

h G γð Þ
� 


+ 〠
∞

q=0
ϖqh G γð Þ −G qð Þ
� 


< h Gð Þ + 〠
∞

q=0
ϖqh G −G qð Þ
� 


ð40Þ

Theorem 20. If Ξ ≠∅ and Ξ is a h-closed subset of ðℓFτð:ÞÞh,
by choosing γ > 0 and fϖng and 0 < ω =∑∞

n=0ϖn <∞, sup-
pose H : Ξ⟶ Ξ is a mapping and there is a function Ψ1
: Ξ⟶ ð−∞,∞� that holds a proper andh-lower semicontin-
uous with infG∈ΞΨ1ðGÞ > −∞ and

(1) hðHðGÞ − YÞ − hðG − YÞ ≤ hðHðGÞ − GÞ, for any G,
Y ∈ Ξ

(2) hðHðGÞ −GÞ ≤Ψ1ðGÞ −Ψ1ðHðGÞÞ, with G ∈ Ξ

Hence, H has a fixed point in Ξ.

Proof. Since 0 < ω =∑∞
n=0ϖn <∞, we get Ψ2 ≔ ωΨ1 which is

also proper, h-lower semicontinuous, and bounded from
below. If G ∈ Ξ, one gets

ωh H Gð Þ −Gð Þ ≤Ψ2 Gð Þ −Ψ2 H Gð Þð Þ: ð41Þ

As infG∈ΞΨ2ðGÞ > −∞, one obtains Gð0Þ ∈ Ξ with Ψ2
ðGð0ÞÞ < infG∈ΞΨ2ðGÞ + γ: From Theorem 19, there is fGðqÞg
which h-converges to some GðγÞ ∈ Ξ, and

Ψ2 G γð Þ
� 


+ 〠
∞

q=0
ϖqh G γð Þ −G qð Þ
� 


<Ψ2 Gð Þ + 〠
∞

q=0
ϖqh G − G qð Þ
� 


,

ð42Þ

for every G ≠GðγÞ: Assume that HðGðγÞÞ ≠GðγÞ; we have

Ψ2 G γð Þ
� 


+ 〠
∞

q=0
ϖqh G γð Þ −G qð Þ
� 


<Ψ2 H G γð Þ
� 
� 


+ 〠
∞

q=0
ϖqh H G γð Þ

� 

− G qð Þ

� 

:

ð43Þ

Then,

Ψ2 G γð Þ
� 


−Ψ2 H G γð Þ
� 
� 


< 〠
∞

q=0
ϖqh H G γð Þ

� 

−G qð Þ

� 


− 〠
∞

q=0
ϖqh G γð Þ −G qð Þ
� 


= 〠
∞

q=0
ϖq h H G γð Þ

� 

− G qð Þ

� 
�

− h G γð Þ − G qð Þ
� 



:

ð44Þ
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From condition (41), one can see

Ψ2 G γð Þ
� 


−Ψ2 H G γð Þ
� 
� 


< 〠
∞

q=0
ϖqh H G γð Þ

� 

−G γð Þ

� 


= ωh H G γð Þ
� 


− G γð Þ
� 


:

ð45Þ

The inequality (1) implies that

ωh H G γð Þ
� 


− G γð Þ
� 


≤Ψ2 G γð Þ
� 


−Ψ2 H G γð Þ
� 
� 


< ωh H G γð Þ
� 


−G γð Þ
� 


:
ð46Þ

This is a disagreement. Therefore, HðGðγÞÞ = GðγÞ.

Example 10. Suppose Ξ = fY ∈ ðℓFððð2q + 3Þ/ðq + 2ÞÞ∞q=0ÞÞh
: Y0 = �0g and hðYÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑q∈N ððq + 2Þ/ð2q + 3ÞÞð�ρðYq, �0ÞÞð2q+3Þ/ðq+2Þ

q
,

for every Y ∈ ðℓFððð2q + 3Þ/ðq + 2ÞÞ∞q=0ÞÞh. Suppose H : Ξ

⟶ Ξ is a mapping and hðHðGÞ −GÞ ≤ ln hðHðGÞÞ − ln h
ðGÞ, with G ∈ Ξ: From Theorem 20, H has a fixed point
in Ξ.

Example 11. Suppose Ξ = fY ∈ ðℓFðððq + 1Þ/ð3q + 4ÞÞ∞q=0ÞÞh
: Y0 = �0g and hðYÞ =∑q∈N ðð3q + 4Þ/ðq + 1ÞÞð�ρðYq, �0ÞÞðq+1Þ/ð3q+4Þ,
for every Y ∈ ðℓFðððq + 1Þ/ð3q + 4ÞÞ∞q=0ÞÞh. Suppose H : Ξ

⟶ Ξ is a mapping and hðHðGÞ −GÞ ≤ hðGÞ − hðHðGÞÞ,
with G ∈ Ξ: From Theorem 20, H has a fixed point in Ξ.

Definition 21. Pick upUhas a pre-quasi-normed (pssf
),V : Uh ⟶UhandZ ∈Uh: The operator V is called h
-sequentially continuous at Z, if and only if, when
limq⟶∞hðYq − ZÞ = 0, then limq⟶∞hðVYq −VZÞ = 0.

Example 12. Suppose V : ðℓFðððq + 1Þ/ð2q + 4ÞÞ∞q=0ÞÞh ⟶
ðℓFðððq + 1Þ/ð2q + 4ÞÞ∞q=0ÞÞh, where hðZÞ = ½∑∞

q=0ðð2q + 4Þ/
ðq + 1ÞÞð�ρðZq, �0ÞÞðq+1Þ/ð2q+4Þ�4, for every Z ∈ ℓFð
ððq + 1Þ/ð2q + 4ÞÞ∞q=0Þ and

V Zð Þ =

1
18

�b0 + Z
� �

, Z0 yð Þ ∈ 0,
1
17

� �
,

1
17

�b0, Z0 yð Þ = 1
17

,

1
18

�b0, Z0 yð Þ ∈ 1
17

, 1
� 	

:

8>>>>>>>><
>>>>>>>>:

ð47Þ

V is clearly both h-sequentially continuous and discontin-
uous at ð1/17Þ�b0 ∈ ðℓFðððq + 1Þ/ð2q + 4ÞÞ∞q=0ÞÞh.

Example 13. Assume V : ðℓFððð2q + 3Þ/ðq + 2ÞÞ∞q=0ÞÞh ⟶
ðℓFððð2q + 3Þ/ðq + 2ÞÞ∞q=0ÞÞh, where hðgÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑∞

q=0ððq + 2Þ/ð2q + 3ÞÞð�ρðgq, �0ÞÞð2q+3Þ/ðq+2Þ
q

, for every g ∈
ℓFððð2q + 3Þ/ðq + 2ÞÞ∞q=0Þ and

V gð Þ =
g
4
, h gð Þ ∈ 0, 1½ Þ,

g
5
, h gð Þ ∈ 1,∞½ Þ:

8><
>: ð48Þ

Suppose fZðnÞg ⊆ ðℓFððð2q + 3Þ/ðq + 2ÞÞ∞q=0ÞÞh is such

that limn⟶∞hðZðnÞ − Zð0ÞÞ = 0, where Zð0Þ ∈ ðℓFððð2q + 3Þ/
ðq + 2ÞÞ∞q=0ÞÞh with hðZð0ÞÞ = 1.

As the pre-quasi-norm h is continuous, we have

lim
n⟶∞

h VZ nð Þ − VZ 0ð Þ
� 


= lim
n⟶∞

h
Z nð Þ

4
−
Z 0ð Þ

5

 !
= h

Z 0ð Þ

20

 !
> 0:

ð49Þ

Therefore, V is not h-sequentially continuous at Zð0Þ.

Theorem 22. If ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1 and V

: ðℓFτð:ÞÞh ⟶ ðℓFτð:ÞÞh, where hðYÞ =∑∞
q=0ð1/τqÞ½�ρðYq, �0Þ�τq ,

for all Y ∈ ℓFðτÞ, suppose

(1) V : ðℓFτð:ÞÞh ⟶ ðℓFτð:ÞÞh is a mapping, and there is a

function Ψ1 : ðℓFτð:ÞÞh ⟶ ð−∞,∞� that holds a

proper and h-lower semicontinuous with infG∈ðℓF
τð:ÞÞh

Ψ1ðGÞ > −∞, and there is α ∈ ½0, 1Þ so that hðVl+1G
− VlGÞ ≤ αlðΨ1ðGÞ −Ψ1ðVðGÞÞÞ, with G ∈ ðℓFτð:ÞÞh

(2) V is h-sequentially continuous at Z ∈ ðℓFτð:ÞÞh
(3) there is Y ∈ ðℓFτð:ÞÞh with fVlYg which has fVljYg

converging to Z

Then, Z ∈ ðℓFτð:ÞÞh is a fixed point of V .

Proof. Assume Z is not a fixed point of V ; one has VZ ≠ Z.
From parts (2) and (3), we get

lim
l j⟶∞

h VljY − Z
� 


= 0,

lim
l j⟶∞

h Vlj+1Y −VZ
� 


= 0:
ð50Þ

From part (1), one obtains

0 < h VZ − Zð Þ = h VZ −Vlj+1Y
� 


+ VljY − Z
� 


+ Vlj+1Y −VljY
� 
� 


≤ 2
2 sup

i
τi−2

h Vlj+1Y − VZ
� 


+ 2
2 sup

i
τi−2

h VljY − Z
� 


+ 2
sup
i

τi−1
αl j Ψ1 Yð Þ −Ψ1 VYð Þð Þ:

ð51Þ
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As l j ⟶∞, one has a contradiction. Then, Z is a fixed
point of V .

5. Multiplication Mappings on ℓFτð:Þ
In this section, we examine the sufficient conditions on
ðℓFτð:ÞÞh such that the multiplication mapping defined on it

is bounded, isometry, approximable, compact, closed range,
invertible, and Fredholm, where hðYÞ = ½∑∞

q=0ð1/τqÞ
½�ρðYq, �0Þ�τq �1/K , for every Y ∈ ℓFτð:Þ.

The space of approximable and compact bounded linear
mappings from a Banach space Δ into a Banach space Λ will
be marked by YðΔ,ΛÞ and LcðΔ,ΛÞ, and if Δ =Λ, we mark
YðΔÞ and LcðΔÞ, respectively.

Definition 23. Let κ ∈ℂN ∩ ℓ∞ and Uh be a pre-quasi-
normed (pssf). A mapping Vκ : Uh ⟶Uh is called multi-
plication mapping if VκY = κY = ðκrYrÞ∞r=0 ∈U, with Y ∈U.
When Vκ ∈LðUÞ, we call it a multiplication mapping
generated by κ.

Theorem 24. Suppose κ ∈ℂN and ðτqÞq∈N ∈ ℓ∞ ∩ I with

τ0 > 0; then, κ ∈ ℓ∞, if and only if Vκ ∈LððℓFτð:ÞÞhÞ.

Proof. Let the conditions be satisfied. Assume κ ∈ ℓ∞; hence,
one gets ε > 0 with jκrj ≤ ε, with r ∈N . If x ∈ ðℓFτð:ÞÞh, since
ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 0, then

h VκYð Þ = h κYð Þ = h κrYrð Þ∞r=0
� �

= 〠
∞

r=0

1
τr

�ρ κrYr , �0ð Þ½ �τr
" #1/K

≤ sup
r
ετr/K 〠

∞

r=0

1
τr

�ρ Yr , �0ð Þ½ �τr
" #1/K

= sup
r
ετr/K h Yð Þ:

ð52Þ

One has Vκ ∈LððℓFτð:ÞÞhÞ. Conversely, assume that Vκ

∈LððℓFτð:ÞÞhÞ. Suppose κ ∉ ℓ∞, then, for each j ∈N , there is

ij ∈N such that κi j > j. Since ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 0,
we have

h Vκ
�bi j

� 

= h κ�bi j

� 

= h κr �bi j

� 

r

� 
∞
r=0

� �

= 〠
∞

r=0

1
τr

�ρ κr �bi j

� 

r
, �0

� 
h iτr" #1/K
=

1
τi j

κi j

��� ���τi j
" #1/K

>
1
τi j

jτi j

" #1/K
h �bi j

� 

:

ð53Þ

This shows that Vκ ∉LððℓFτð:ÞÞhÞ. Therefore, κ ∈ ℓ∞.

Theorem 25. Pick upκ ∈ℂN andðℓFτð:ÞÞhas a pre-quasi-

normed (pssf). Then, jκqj = 1, for every q ∈N , if and only if
Vκ is an isometry.

Proof. If jκrj = 1, for all r ∈N , one gets

h VκYð Þ = h κYð Þ = h κrYrð Þ∞r=0
� �

= 〠
∞

r=0

1
τr

�ρ κrYr , �0ð Þ½ �τr
" #1/K

= 〠
∞

r=0

1
τr

�ρ Yr , �0ð Þ½ �τr
" #1/K

= h Yð Þ,

ð54Þ

for all Y ∈ ðℓFτð:ÞÞh. Therefore, Vκ is an isometry. Conversely,

Assume that ∣κi ∣ <1 for some i = i0. We obtain

h Vκ
�bi0

� �
= h κ�bi0
� �

= h κr �bi0
� �

r

� 
∞
r=0

� 


= 〠
∞

r=0

1
τr

�ρ κr ei0
� �

r
, �0

� 
h iτr" #1/K

< 〠
∞

r=0

1
τr

�ρ ei0
� �

r
, �0

� 
h iτr" #1/K
= h �bi0
� �

:

ð55Þ

When jκi0 j > 1, we can prove that hðVκ
�bi0Þ > hð�bi0Þ. One

gets a contradiction. So, jκrj = 1, with r ∈N .
By card ðAÞ, we indicate the cardinality of the set A.

Theorem 26. Suppose κ ∈ℂN and ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0

> 0. Then, Vκ ∈ YððℓFτð:ÞÞhÞ if and only if ðκrÞ∞r=0 ∈ c0.

Proof. Assume that Vκ ∈ YððℓFτð:ÞÞhÞ. One gets Vκ ∈Lcð
ðℓFτð:ÞÞhÞ. To showðκrÞ∞r=0belongs toc0, supposeðκrÞ∞r=0 ∉ c0.
One gets ν > 0 such that Λν = fr ∈N : jκrj ≥ νg verifies card
ðΛνÞ =∞. If zi ∈Λν, with i ∈N , then f�bzi : zi ∈Λνg is an

infinite bounded in ðℓFτð:ÞÞh. Let

h Vκ
�bzi −Vκ

�bz j

� 

= h κ�bzi − κ�bz j

� 

= h κr �bzi

� �
r
− �bz j

� 

r

� 
� 
∞
r=0

� �

= 〠
∞

r=0

1
τr

�ρ κr �bzi
� �

r
− �bz j

� 

r

� 

, �0

� 
h iτr" #1/K

≥ inf
r
ντr/K h �bzi −

�bz j

� 

,

ð56Þ

for all zi, zj ∈Λν. One obtains f�bzi : zi ∈Λνg ∈ ℓ∞ðFÞ which
cannot have a convergent subsequence under Vκ, which
gives Vκ ∉LcððℓFτð:ÞÞhÞ. Then, Vκ ∉ YððℓFτð:ÞÞhÞ; this gives a

contradiction. Then, limi⟶∞κi = 0. On the other hand, if
limi⟶∞κi = 0, hence, for each ν > 0, the set Λν = fi ∈N : j
κij ≥ νg holds card ðΛνÞ <∞. So, for all ν > 0, the space
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ððℓFτð:ÞÞhÞΛν

= fY = ðYiÞ ∈ℂΛνg is finite dimensional. Then,

Vκ∣ððℓFτð:ÞÞhÞΛν

is a finite rank mapping. For every i ∈N ,

define κi ∈ℂN by

κið Þj =
κj, j ∈Λ1/i,

0, otherwise:

(
ð57Þ

Obviously, Vκi
has rankðVκi

Þ <∞ as dim ððℓFτð:ÞÞhÞΛ1/i

<∞, with i ∈N ; hence, as ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 0, we
get

h Vκ −Vκi

� �
Y

� �
= h κ j − κið Þj

� 

Y j

� 
∞
j=0

� �

= 〠
∞

j=0

1
τj

�ρ κj − κið Þj
� 


Y j, �0
� 
h iτ j" #1/K

= 〠
∞

j=0,j∈Λ1/i

1
τj

�ρ κj − κið Þj
� 


Y j, �0
� 
h iτ j"

+ 〠
∞

j=0,j∉Λ1/i

1
τj

�ρ κj − κið Þj
� 


Y j, �0
� 
h iτ j#1/K

= 〠
∞

j=0,j∉Λ1/i

1
τj

�ρ κjY j, �0
� �
 �τ j" #1/K

≤ sup
j

1
i

� �τ j/K
〠
∞

j=0,j∉Λ1/i

1
τj

�ρ Y j, �0
� �
 �τ j" #1/K

<
1
i

� �τ0/K
h Yð Þ:

ð58Þ

This implies that kVκ − Vκi
k ≤ ð1/iÞτ0/K ; hence, Vκ is an

approximable mapping.

Theorem 27. If κ ∈ℂN and ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 0,

then, Vκ ∈LcððℓFτð:ÞÞhÞ, if and only if ðκiÞ∞i=0 ∈ c0.

Proof. Easy.

Corollary 28. Assume κ ∈ℂN and ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0

> 0; then, LcððℓFτð:ÞÞhÞÞLððℓFτð:ÞÞhÞ:

Proof. As I is a multiplication mapping on ðℓFτð:ÞÞh generated
by κ = ð1, 1,⋯Þ, therefore, I ∉LcððℓFτð:ÞÞhÞ and I ∈Lð
ðℓFτð:ÞÞhÞ.

Definition 29 (see [32]). A mapping D ∈LðVÞ is called
Fredholm if it satisfies that dim ðker DÞ <∞, dim ðRðDÞÞc
<∞ and D has closed range, where ðRðDÞÞc denotes the
complement of the range D.

Theorem 30. If κ ∈ℂN and ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 0,

then κ is bounded away from zero on ðker ðκÞÞc, if and only
if RðVκÞ is closed., where Vκ ∈LððℓFτð:ÞÞhÞ.

Proof. Let the sufficient condition be satisfied. Therefore,
there is ε > 0 with jκij ≥ ε, for all i ∈ ðker ðκÞÞc. To
explainRðVκÞis closed, assumeZis a limit point ofRðVκÞ.
One has VκXi in ðℓFτð:ÞÞh, with i ∈N such that limi⟶∞Vκ

Xi = Z. Clearly, ðVκXiÞ is a Cauchy sequence. Since
ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 0, one has

h VκXi −VκXj

� �
= 〠

∞

q=0

1
τq

�ρ κq Xið Þq − κq X j

� �
q
, �0

� 
h iτq" #1/K

= 〠
∞

q=0,q∈ ker κð Þð Þc
1
τq

�ρ κq Xið Þq − κq X j

� �
q
, �0

� 
h iτq"

+ 〠
∞

q=0,q∉ ker κð Þð Þc
1
τq

�ρ κq Xið Þq − κq X j

� �
q
, �0

� 
h iτq#1/K

≥ 〠
∞

q=0,q∈ ker κð Þð Þc
1
τq

�ρ κq Xið Þq − κq X j

� �
q, �0

� 
h iτq" #1/K

= 〠
∞

q=0

1
τq

�ρ κq Yið Þq − κq Y j

� �
q
, �0

� 
h iτq" #1/K

> inf
q
ε
τq
K 〠

∞

q=0

1
τq

�ρ Yið Þq − Y j

� �
q
, �0

� 
h iτq" #1/K
,

ð59Þ

where

Yið Þq =
Xið Þq, q ∈ ker κð Þð Þc,
0, q ∉ ker κð Þð Þc:

(
ð60Þ

So ðYiÞ is a Cauchy sequence in ðℓFτð:ÞÞh. Since ðℓ
F
τð:ÞÞh is

complete, one has X ∈ ðℓFτð:ÞÞh such that limi⟶∞Yi = X.

Since Vκ is continuous, limi⟶∞VκYi =VκX. But limi⟶∞
VκXi = limi⟶∞VκYi = Z; hence, VκX = Z. So, Z ∈ RðVκÞ.
One obtainsRðVκÞwhich is closed. On the other hand,
assume RðVκÞ is closed; hence, Vκ is bounded away from
zero on ððℓFτð:ÞÞhÞðker ðκÞÞc . One gets ε > 0 such that hðVκXÞ
≥ εhðXÞ, with X ∈ ððℓFτð:ÞÞhÞðker ðκÞÞc .

Assume Λ = fq ∈ ðker ðκÞÞc : ∣κq∣<εg. If Λ ≠ ϕ, then for
i0 ∈Λ, we obtain

h Vκ
�bi0

� �
= h κq �bi0

� �
q

� 
∞
q=0

� �
= 〠

∞

q=0

1
τq

�ρ κq �bn0
� �

q
, �0

� 
h iτq" #1/K

< 〠
∞

q=0

1
τq

�ρ ε �bn0
� �

q
, �0

� 
h iτq" #1/K
≤ sup

q
ετq/K h �bn0

� �
:

ð61Þ
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One gets a contradiction. Then, Λ = ϕ with ∣κq ∣ ≥ε, and
q ∈ ðker ðκÞÞc.

Theorem 31. If κ ∈ℂN and and ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 0,

one has d > 0 and D > 0 with d < jκqj <D, and q ∈N , if and

only if Vκ ∈LððℓFτð:ÞÞhÞ is invertible.

Proof. Let the conditions be verified. Define γ ∈ℂN by γq
= 1/κq. From Theorem 7.5, we have Vκ, Vγ ∈LððℓFτð:ÞÞhÞ
and Vκ:Vγ = Vγ:Vκ = I; hence, Vγ is the inverse of Vκ. On

the other side, assume Vκ is invertible. Hence, RðVκÞ =
ððℓFτð:ÞÞhÞN . One gets, RðVκÞ which is closed. By Theorem

30, we have d > 0 with jκqj ≥ d, and q ∈ ðker ðκÞÞc. We have
ker ðκÞ = ϕ, if κq0 = 0; for several q0 ∈N , one has eq0 ∈ ker
ðVκÞ, which is a contradiction, as ker ðVκÞ is trivial.
Therefore, jκqj ≥ d, for all q ∈N . As Vκ is bounded, by
Theorem 7.5, one gets D > 0 such that jκqj ≤D, for all q
∈N .

Theorem 32. If κ ∈ℂN and ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 0,

then Vκ ∈LððℓFτð:ÞÞhÞ is Fredholm mapping, if and only if

(a) cardðker ðκÞÞ <∞ and (b) jκqj ≥ ε, with q ∈ ðker ðκÞÞc.

Proof. Assume Vκ is Fredholm. When cardðker ðκÞÞ =∞,
one has �bn ∈ ker ðVκÞ, with n ∈ ker ðκÞ. As �bn’s are linearly
independent, one obtains cardðker ðVκÞ =∞, which implies
a contradiction. Hence, cardðker ðκÞÞ <∞. In view of Theo-
rem 30, the condition (b) is confirmed. After, when the nec-
essary conditions hold, prove thatVκis Fredholm. According
to Theorem 30, the condition (b) proves that RðVκÞ is
closed. The condition (a) gives that dim ðker ðVκÞÞ <∞
and dim ððRðVκÞÞcÞ <∞. So, Vκ is Fredholm.

6. Mappings’ Ideal

The structure of the mappings’ ideal by ðℓFτð:ÞÞh, where hðgÞ
= ½∑∞

m=0ð1/τmÞð�ρðgm, �0ÞÞτm �1/K , for every g ∈ ℓFτð:Þ, and
extended s-fuzzy functions has been explained. We study
the enough setups on ðℓFτð:ÞÞh such that the class �✠ðℓF

τð:ÞÞh
is

complete and closed. We investigate the enough setups
(not necessary) on ðℓFτð:ÞÞh such that the closure of F=
�
✠
α
ðℓF

τð:ÞÞh
. This gives a negative answer of Rhoades [33] open

problem about the linearity of s-type ðℓFτð:ÞÞh spaces. We

explain the enough setups on ðℓFτð:ÞÞh such that �✠ðℓF
τð:ÞÞh

is

strictly contained for different powers, �
✠
α
ðℓF

τð:ÞÞh
is minimum,

the class �✠ðℓF
τð:ÞÞh

is simple, and the space of every bounded

linear mappings in which the sequence of eigenvalues
inðℓFτð:ÞÞhequals�✠ðℓF

τð:ÞÞh
.

We indicate the space of all bounded, finite rank linear
mappings from an infinite dimensional Banach space Δ into

an infinite dimensional Banach space Λ by LðΔ,ΛÞ and F

ðΔ,ΛÞ, and when Δ =Λ, we inscribe LðΔÞ and FðΔÞ.

Definition 33. (see [34]). Ans-number function
iss : LðΔ,ΛÞ⟶R+Nwhich sorts everyV ∈LðΔ,ΛÞ
andðsdðVÞÞ∞d=0which verifies the following settings:

(a) kVk = s0ðVÞ ≥ s1ðVÞ ≥ s2ðVÞ≥⋯≥0, for all V ∈L
ðΔ,ΛÞ

(b) sl+d−1ðV1 +V2Þ ≤ slðV1Þ + sdðV2Þ, for all V1, V2 ∈L
ðΔ,ΛÞ and l, d ∈N

(c) sdðVYWÞ ≤ kVksdðYÞkWk, for all W ∈LðΔ0, ΔÞ,
Y ∈LðΔ,ΛÞ and V ∈LðΛ,Λ0Þ, where Δ0 and Λ0
are arbitrary Banach spaces

(d) When V ∈LðΔ,ΛÞ and γ ∈R, then sdðγVÞ = ∣γ∣sd
ðVÞ

(e) Suppose rank ðVÞ ≤ d; then, sdðVÞ = 0, for each V
∈LðΔ,ΛÞ

(f) sl≥qðIqÞ = 0 or sl<qðIqÞ = 1, where Iq denotes the unit
map on the q-dimensional Hilbert space ℓq2

We mention here some examples of s-numbers:

(1) The qth Kolmogorov number, described by dqðXÞ, is
marked by

dq Xð Þ = infdim J≤q sup fk k≤1 infg∈J Xf − gk k ð62Þ

(2) The qth approximation number, described by αqðXÞ,
is marked by

αq Xð Þ = inf

X − Yk k: Y ∈L Δ,Λð Þ, rank Yð Þ ≤ qf g
ð63Þ

Definition 34 (see [17]). Assume L is the class of all
bounded linear mappings within any two arbitrary Banach
spaces. A subclass U of L is said to be a mappings’ ideal, if
all UðΔ,ΛÞ =U ∩LðΔ,ΛÞ verifies the following conditions:

(i) IΓ ∈U, where Γ marks the Banach space of one
dimension

(ii) The space UðΔ,ΛÞ is linear over R
(iii) If W ∈LðΔ0, ΔÞ, X ∈UðΔ,ΛÞ and Y ∈LðΛ,Λ0Þ

then, YXW ∈UðΔ0,Λ0Þ

Notations 1.

�✠U ≔ �✠U Δ,Λð Þf g, where �✠U Δ,Λð Þ≔ V ∈L Δ,Λð Þ: �sj Vð Þ� �∞
j=0

�
∈U

n o
,

�
✠
α
U ≔ �

✠
α
U Δ,Λð Þ� �

, where �
✠
α
U Δ,Λð Þ≔ V ∈L Δ,Λð Þ: �αj Vð Þ� �∞

j=0

�
∈U

n o
,

�
✠
d
U ≔ �

✠
d
U Δ,Λð Þ

n o
, where �

✠
d
U Δ,Λð Þ≔ V ∈L Δ,Λð Þ: �dj Vð Þ� �∞

j=0

�
∈U

n o
,

ð64Þ
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where

�sj Vð Þ xð Þ =
1, x = sj Vð Þ,
0, x ≠ sj Vð Þ:

(
ð65Þ

Theorem 35. Suppose U is a (pssf); then, �✠U is a mappings’
ideal.

Proof.

(i) Assume V ∈FðΔ,ΛÞ and rank ðVÞ = n with n ∈N ,
as �bi ∈U for all i ∈N and U is a linear space, one
has-
ð �siðVÞÞ

∞
i=0 = ð �s0ðVÞ, �s1ðVÞ,⋯, �sn1ðVÞ, �0, �0, �0,⋯Þ =

∑n−1
i=0

�siðVÞ�bi ∈U, forV ∈ �✠UðΔ,ΛÞ,
thenFðΔ,ΛÞ ⊆ �✠EðΔ,ΛÞ

(ii) Suppose V1, V2 ∈ �✠UðΔ,ΛÞ and β1, β2 ∈R; then, by
Definition 6 condition (78), one has ð �s½i/2�ðV1ÞÞ

∞
i=0

∈U and ð �s½i/2�ðV1ÞÞ
∞
i=0 ∈U, as i ≥ 2½i/2� ; by the defi-

nition ofs-numbers andsiðPÞwhich is a decreasing
sequence, we
have-

�siðβ1V1 + β2V2Þ ≤ �s2½i/2�ðβ1V1 + β2V2Þ ≤
�s½i/2�ðβ1V1Þ + s½i/2�ðβ2V2Þ = jβ1j �s½i/2�ðV1Þ + jβ2j

�s½i/2�ðV2Þ for each i ∈N . In view of Definition 6 con-
dition (77) and U whcih is a linear space, one
obtains ð �siðβ1V1 + β2V2ÞÞ

∞
i=0 ∈U; hence, β1V1 + β2

V2 ∈ �✠UðΔ,ΛÞ
(iii) Suppose P ∈LðΔ0, ΔÞ, T ∈ �✠UðΔ,ΛÞ, and R ∈LðΛ

,Λ0Þ; one has ð �siðTÞÞ
∞
i=0 ∈U and as �siðRTPÞ ≤ ∥R∥

�siðTÞ∥P∥; by Definition 6 conditions (41) and (77),
one gets ð �siðRTPÞÞ

∞
i=0 ∈U, then RTP ∈ �✠UðΔ0,Λ0Þ

According to Theorem 12 and Theorem 35, one con-
cludes the next theorem.

Theorem 36. LetðτqÞq∈N ∈ ℓ∞ ∩ Iwithτ0 > 0; one has�✠ðℓF
τð:ÞÞh

which is a mappings’ ideal.

Definition 37 (see [35]). A function H ∈ ½0,∞ÞU is called a
pre-quasi-norm on the ideal U if the next conditions hold:

(1) Let V ∈UðΔ,ΛÞ, HðVÞ ≥ 0 and HðVÞ = 0, if and
only if V = 0

(2) We have Q ≥ 1 so as to HðαVÞ ≤DjαjHðVÞ, for
every V ∈UðΔ,ΛÞ and α ∈R

(3) We have P ≥ 1 so that HðV1 + V2Þ ≤ P½HðV1Þ +H
ðV2Þ�, for each V1, V2 ∈UðΔ,ΛÞ

(4) We have σ ≥ 1, when V ∈LðΔ0, ΔÞ, X ∈UðΔ,ΛÞ
and Y ∈LðΛ,Λ0Þ then HðYXVÞ ≤ σkYkHðXÞkVk

Theorem 38 (see [36]). Every quasinorm on the ideal U is a
pre-quasi-norm on the same ideal.

Theorem 39. If ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 0, then H is a pre-

quasi-norm on �✠ðℓF
τð:ÞÞh

, with HðZÞ = hð �sqðZÞÞ
∞
q=0, for all Z ∈

�✠ðℓF
τð:ÞÞh

ðΔ,ΛÞ.

Proof.

(1) When X ∈ �✠ðℓF
τð:ÞÞh

ðΔ,ΛÞ, HðXÞ = hð �sqðXÞÞ
∞
q=0 ≥ 0 and

HðXÞ = hð �sqðXÞÞ
∞
q=0 = 0, if and only if �sqðXÞ = �0, for

all q ∈N , if and only if X = 0

(2) There is Q ≥ 1 with HðαXÞ = hð �sqðαXÞÞ
∞
q=0 ≤QjαjH

ðXÞ, for all X ∈ �✠ðℓF
τð:ÞÞh

ðΔ,ΛÞ and α ∈R

(3) One has PP0 ≥ 1 so that for X1, X2 ∈ �✠ðℓF
τð:ÞÞh

ðΔ,ΛÞ,
one can see

H X1 + X2ð Þ = h �sq X1 + X2ð Þ� �∞
q=0

≤ P h �s q/2½ � X1ð Þ
� 
∞

q=0
+ h �s q/2½ � X2ð Þ
� 
∞

q=0

� �

≤ PP0 h �sq X1ð Þ� �∞
q=0 + h �sq X2ð Þ� �∞

q=0

� 
 ð66Þ

(4) We have ρ ≥ 1; if X ∈LðΔ0, ΔÞ, Y ∈ �✠ðℓF
τð:ÞÞh

ðΔ,ΛÞ,
and Z ∈LðΛ,Λ0Þ, then HðZYXÞ = hð �sqðZYXÞÞ

∞
q=0

≤ hðkXkkZk �sqðYÞÞ
∞
q=0 ≤ ρkXkHðYÞkZk.

In the next theorems, we will use the notation ð�✠ðℓF
τð:ÞÞh

,

HÞ, where HðVÞ = hðð �sqðVÞÞ
∞
q=0Þ, for all V ∈ �✠ðℓF

τð:ÞÞh
.

Theorem 40. Suppose ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 0; one has

ð�✠ðℓF
τð:ÞÞh

,HÞ which is a pre-quasi-Banach ideal.

Proof. Suppose ðVaÞa∈N is a Cauchy sequence in �✠ðℓF
τð:ÞÞh

ðΔ,
ΛÞ. Since LðΔ,ΛÞ ⊇ SðℓF

τð:ÞÞh
ðΔ,ΛÞ, one has

H Vr −Vað Þ = h �sq VrVað Þ� �∞
q=0

� 

≥ h �s0 VrVað Þ, �0, �0, �0,⋯� �

=
1
τ0

Vr −Vak kτ0 :

ð67Þ

Hence, ðVaÞa∈N is a Cauchy sequence in LðΔ,ΛÞ. As L
ðΔ,ΛÞ is a Banach space, so there exists V ∈LðΔ,ΛÞ so that
lima⟶∞kVa −Vk = 0and sinceð �sqðVaÞÞ

∞
q=0 ∈ ðℓFτð:ÞÞh, for all

a ∈N , and ðℓFτð:ÞÞhis a premodular (pssf); hence, one can see
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H Vð Þ = h �sq V∞ð Þ� �∞
q=0

� 

≤ h �s q/2½ � VVað Þ

� 
∞
q=0

� �

+ h �s q/2½ � Vað Þ∞q=0
� 
� 


≤ h Va − Vk k�1ð Þ∞q=0
� 


+ 2ð Þ1/Kh �sq Vað Þ� �∞
q=0

� 

< ε:

ð68Þ

We obtain ð �sqðVÞÞ
∞
q=0 ∈ ðℓFτð:ÞÞh; hence, V ∈ �✠ðℓF

τð:ÞÞh
ðΔ,ΛÞ.

Theorem 41. If ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 0, one has ð
�✠ðℓF

τð:ÞÞh
,HÞ which is a pre-quasi-closed ideal.

Proof. Suppose Va ∈ �✠ðℓF
τð:ÞÞh

ðΔ,ΛÞ, for all a ∈N and

lima⟶∞HðVa −VÞ = 0. Therefore, there is ς > 0 and as
LðΔ,ΛÞ ⊇ SðℓF

τð:ÞÞh
ðΔ,ΛÞ, one has

H Va − Vð Þ = h �sq VaVð Þ� �∞
q=0

� 

≥ h �s0 VaVð Þ, �0, �0, �0,⋯� �

=
1
τ0

Vr −Vak kτ0 :

ð69Þ

So ðVaÞa∈N is convergent in LðΔ,ΛÞ, i.e., lima⟶∞k
Va −Vk = 0, and since ð �sqðVaÞÞ

∞
q=0 ∈ ðℓFτð:ÞÞh, for all q ∈N ,

and ðℓFτð:ÞÞh is a premodular (pssf), hence, one can see

H Vð Þ = h �sq Vð Þ� �∞
q=0

� 

≤ h �s q/2½ � VVað Þ

� 
∞
q=0

� �

+ h �s q/2½ � Vað Þ∞
q=0

� 
� 

≤ h Va −Vk k�1ð Þ∞q=0
� 


+ 2ð Þ1/Kh �sq Vað Þ� �∞
q=0

� 

< ε:

ð70Þ

We obtain ð �sqðVÞÞ
∞
q=0 ∈ ðℓFτð:ÞÞh; hence, V ∈ �✠ðℓF

τð:ÞÞh
ðΔ,ΛÞ

.

Definition 42. A pre-quasi-norm H on the ideal �✠Uh
verifies

the Fatou property if for every fTqgq∈N ⊆ �✠Uh
ðΔ,ΛÞ so that

limq⟶∞HðTq − TÞ = 0 and M ∈ �✠Uh
ðΔ,ΛÞ, one gets

H M − Tð Þ ≤ sup
q

inf
j≥q

H M − T j

� �
: ð71Þ

Theorem 43. Suppose ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 0; then,

ð�✠ðℓF
τð:ÞÞh

,HÞ does not satisfy the Fatou property.

Proof. If fTqgq∈N ⊆ �✠ðℓF
τð:ÞÞh

ðΔ,ΛÞ with limq⟶∞HðTq − TÞ
= 0, since �✠ðℓF

τð:ÞÞh
is a pre-quasi-closed ideal, hence, T ∈

�✠ðℓF
τð:ÞÞh

ðΔ,ΛÞ. So with M ∈ �✠ðℓF
τð:ÞÞh

ðΔ,ΛÞ, one has

H M − Tð Þ = 〠
∞

q=0

1
τq

�ρ �sq MTð Þ, �0� �� �τq" #1/K

≤ 〠
∞

q=0

1
τq

�ρ �s q/2½ � MTið Þ, �0
� 
� 
τq" #1/K

+ 〠
∞

q=0

1
τq

�ρ �s q/2½ � TiTð Þ, �0
� 
� 
τq" #1/K

≤ 2ð Þ1
K sup

r
inf
j≥r

〠
∞

q=0

1
τq

�ρ �sq MT j

� �
, �0

� 
� 
τq" #1/K
:

ð72Þ

Definition 44. An operator V : �✠Uh
ðΔ,ΛÞ⟶ �✠Uh

ðΔ,ΛÞ is
said to be H-sequentially continuous at M, where M ∈
�✠Uh

ðΔ,ΛÞ, if and only if limr⟶∞HðTr −MÞ = 0⇒
limr⟶∞HðVTr −VMÞ = 0.

Example 14. If V : �✠ðℓFððð2q+3Þ/ðq+2ÞÞ∞q=0ÞÞhðΔ,ΛÞ⟶
�✠ðℓFððð2q+3Þ/ðq+2ÞÞ∞q=0ÞÞhðΔ,ΛÞ, where HðTÞ =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑∞

q=0ððq + 2Þ/ð2q + 3ÞÞð�ρð �sqðTÞ, �0ÞÞð
2q+3Þ/ðq+2Þ

q
, for every T

∈ �✠ðℓFððð2q+3Þ/ðq+2ÞÞ∞q=0ÞÞhðΔ,ΛÞ and

V Tð Þ =
T
6
, H Tð Þ ∈ 0, 1½ Þ,

T
7
, H Tð Þ ∈ 1,∞½ Þ,

8>><
>>: ð73Þ

evidently, V is H-sequentially continuous at the zero
operator Θ ∈ �✠ðℓFððð2q+3Þ/ðq+2ÞÞ∞q=0ÞÞh . Let fTðjÞg ⊆
�✠ðℓFððð2q+3Þ/ðq+2ÞÞ∞q=0ÞÞh be such that limj⟶∞HðTðjÞ − Tð0ÞÞ = 0,
where Tð0Þ ∈ �✠ðℓFððð2q+3Þ/ðq+2ÞÞ∞q=0ÞÞh with HðTð0ÞÞ = 1. Since the
pre-quasi-norm H is continuous, one gets

lim
j⟶∞

H VT jð Þ −VT 0ð Þ
� 


= lim
j⟶∞

H
T 0ð Þ

6
−
T 0ð Þ

7

 !

=H
T 0ð Þ

42

 !
> 0:

ð74Þ

Therefore, V is not H-sequentially continuous at Tð0Þ.

Theorem 45. Pick up ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 0 and V

: �✠ðℓF
τð:ÞÞh

ðΔ,ΛÞ⟶ �✠ðℓF
τð:ÞÞh

ðΔ,ΛÞ. Assume

(i) there is a function Ψ1 : �✠ðℓF
τð:ÞÞh

ðΔ,ΛÞ⟶ ð−∞,∞�
that holds a proper and h-lower semicontinuous with
infG∈ �✠ðℓF

τð:ÞÞh
ðΔ,ΛÞΨ1ðGÞ > −∞ and there is α ∈ ½0, 1Þ so
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that HðVl+1G − VlGÞ ≤ αlðΨ1ðGÞ −Ψ1ðVðGÞÞÞ,
with G ∈ �✠ðℓF

τð:ÞÞh
ðΔ,ΛÞ

(ii) V is H-sequentially continuous at an element M ∈
�✠ðℓF

τð:ÞÞh
ðΔ,ΛÞ

(iii) there are G ∈ �✠ðℓF
τð:ÞÞh

ðΔ,ΛÞ such that the sequence of

iterates fVrGg has a fVrmGg converging to M

Then, M ∈ �✠ðℓF
τð:ÞÞh

ðΔ,ΛÞ is a fixed point of V .

Proof. Let M be not a fixed point of V ; hence, VM ≠M. By
using parts (ii) and (iii), we get

lim
rm⟶∞

H VrmG −Mð Þ = 0 and lim
rm⟶∞

H Vrm+1G −VM
� �

= 0:

ð75Þ

By using part (i), one obtains

0 <H VM −Mð Þ =H VM −Vrm+1G
� �

+ VrmG −Mð Þ�
+ Vrm+1G −VrmG
� ��

≤ 2ð Þ1/KH Vrm+1G −VM
� �

+ 2ð Þ2/KH VrmG −Mð Þ + 2ð Þ2/Kαrm Ψ1 Gð Þ −Ψ1 VGð Þð Þ:
ð76Þ

As rm ⟶∞, there is a contradiction. Hence, M is a
fixed point of V .

Theorem 46. �
✠
α
ðℓF

τð:ÞÞh
ðΔ,ΛÞ = the closure of FðΔ,ΛÞ, if

ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 0. But the converse is not necessar-

ily true.

Proof. As �bx ∈ ðℓFτð:ÞÞh, for every x ∈N , and ðℓFτð:ÞÞh is a linear
space, suppose Z ∈FðΔ,ΛÞ; one has ð �αxðZÞÞ

∞
x=0 ∈ E. There-

fore, the closure of FðΔ,ΛÞ ⊆ �
✠
α
ðℓF

τð:ÞÞh
ðΔ,ΛÞ. Assume Z ∈

�
✠
α
ðℓF

τð:ÞÞh
ðΔ,ΛÞ; we have ð �αxðZÞÞ

∞
x=0 ∈ ðℓFτð:ÞÞh. As hð �αxðZÞÞ

∞
x=0

<∞, assume ρ ∈ ð0, 1Þ; then, there is x0 ∈N − f0g with
hðð �αxðZÞÞ

∞
x=x0Þ < ρ/4. Since ð �αxðZÞÞ

∞
x=0 is decreasing, we

have

〠
2x0

x=x0+1

1
τx

�ρ �α2x0 Zð Þ, �0� �
 �τx ≤ 〠
2x0

x=x0+1

1
τx

�ρ �αx Zð Þ, �0� �
 �τx
≤ 〠

∞

x=x0

1
τx

�ρ �αx Zð Þ, �0� �
 �τx < ρ

4
:

ð77Þ

Hence, there is Y ∈F2x0ðΔ,ΛÞ so that rankðYÞ ≤ 2x0
and

〠
3x0

x=2x0+1

1
τx

�ρ �∥ZY∥, �0
� �
 �τx ≤ 〠

2x0

x=x0+1

1
τx

�ρ �ZYk k, �0� �
 �τx < ρ

4
:

ð78Þ

Since ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 0, we can choose

〠
x0

x=0

1
τx

�ρ �ZYk k, �0� �
 �τx < ρ

4
: ð79Þ

In view of inequalities (2)-(4), one has

d Z, Yð Þ = h �αx ZYð Þ� �∞
x=0 = 〠

3x0−1

x=0

1
τx

�ρ �αx ZYð Þ, �0� �
 �τx
+ 〠

∞

x=3x0

1
τx

�ρ �αx ZYð Þ, �0� �
 �τx ≤ 〠
3x0

x=0

1
τx

�ρ �ZYk k, �0� �
 �τx
+ 〠

∞

x=x0

1
τx+2x0

�ρ �αx+2x0 ZYð Þ, �0� �
 �τx+2x0
≤ 〠

3x0

x=0

1
τx

�ρ �ZYk k, �0� �
 �τx + 〠
∞

x=x0

1
τx

�ρ �αx Zð Þ, �0� �
 �τx
≤ 3〠

x0

x=0

1
τx

�ρ �ZYk k, �0� �
 �τx + 〠
∞

x=x0

1
τx

�ρ �αx Zð Þ, �0� �
 �τx < ρ:

ð80Þ

Therefore, �
✠
α
ðℓF

τð:ÞÞh
ðΔ,ΛÞ ⊆ the closure of FðΔ,ΛÞ. Con-

trarily, one has a counter example as I6 ∈ �
✠
α
ðℓFðð0,0,1,1,1,ÞÞÞhð

Δ,ΛÞ, but η0 > 0 is not verified.

Theorem 47. Suppose ðτqÞq∈N ∈ ℓ∞ ∩ I with 0 < τð1Þx < τð2Þx ,

for all x ∈N ; hence,

�✠
ℓF τ

1ð Þ
x

� �� �� �
h

Δ,Λð ÞÞ�✠ ℓF τ
2ð Þ
x

� �� �� �
h

Δ,Λð ÞUL Δ,Λð Þ: ð81Þ

Proof. Let Z ∈ �✠ðℓFððτð1Þx ÞÞÞhðΔ,ΛÞ; hence, ð �sxðZÞÞ ∈
ðℓFððτð1Þx ÞÞÞh. One gets

〠
∞

x=0

1
τ

2ð Þ
x

�ρ �sx Zð Þ, �0� �
 �τ 2ð Þ
x < 〠

∞

x=0

1
τ

1ð Þ
x

�ρ �sx Zð Þ, �0� �
 �τ 1ð Þ
x <∞,

ð82Þ

then Z ∈ �✠ðℓFððτð2Þx ÞÞÞhðΔ,ΛÞ. After, if we choose ð �sxðZÞÞ
∞
x=0

with �ρð �sxðZÞ, �0Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τð1Þx /ðx + 1Þτx1

q
, we have Z ∈LðΔ,ΛÞ such

that

〠
∞

x=0

1
τ

1ð Þ
x

�ρ �sx Zð Þ, �0� �
 �τ 1ð Þ
x = 〠

∞

x=0

1
x + 1

=∞, ð83Þ
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〠
∞

x=0

1
τ

2ð Þ
x

�ρ �sx Zð Þ, �0� �
 �τ 2ð Þ
x ≤ 〠

∞

x=0

1
τ

1ð Þ
x

τ
1ð Þ
x

x + 1

 !τ
2ð Þ
x /τ 1ð Þ

x

≤ sup
x

τ 1ð Þ
x

� 
 τ
2ð Þ
x /τ 1ð Þ

x

� �
−1

〠
∞

x=0

1
x + 1

� �τ
2ð Þ
x /τ 1ð Þ

x

<∞:

ð84Þ

Then, Z ∉ �✠ðℓFððτð1Þx ÞÞÞhðΔ,ΛÞ and Z ∈ �✠ðℓFððτð2Þx ÞÞÞhðΔ,ΛÞ.
Clearly, �✠ðℓFððτð2Þx ÞÞÞhðΔ,ΛÞ ⊂LðΔ,ΛÞ. Next, if we put

ð �sxðZÞÞ
∞
x=0 such that �ρð �sxðZÞ, �0Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τð2Þx /ðx + 1Þτx2

q
, we have

Z ∈LðΔ,ΛÞ such that Z ∉ �✠ðℓFððτð2Þx ÞÞÞhðΔ,ΛÞ.

Theorem 48. Assume ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 0; hence,
�
✠
α
ðℓF

τð:ÞÞh
is minimum.

Proof. Let �
✠
α
ℓF
τð:Þ
ðΔ,ΛÞ =LðΔ,ΛÞ; then, there is η > 0 with

HðZÞ ≤ ηkZk, where HðZÞ =∑∞
q=0ð1/τqÞ½�ρð �αqðZÞ, �0Þ�

τq , for
every Z ∈LðΔ,ΛÞ. By using Dvoretzky’s theorem [37], with
r ∈N , we get quotient spaces Δ/Yr and subspaces Mr of Λ
which can be mapped onto ℓr2 by isomorphisms Vr and Xr
with kVrkkV−1

r k ≤ 2 and kXrkkX−1
r k ≤ 2. If Ir is the identity

map on ℓr2, Tr is the quotient map from Δ onto Δ/Yr and Jr
is the natural embedding map from Mr into Λ. Assume mq

is the Bernstein numbers [16]; then,

1 =mq Irð Þ =mq XrX
−1
r IrVrV

−1
r

� �
≤ Xrk kmq X−1

r IrVr

� �
V−1

r

�� ��
= Xrk kmq JrX

−1
r IrVr

� �
V−1

r

�� �� ≤ Xrk kdq JrX
−1
r IrVr

� �
V−1

r

�� ��
= Xrk kdq JrX

−1
r IrVrTr

� �
V−1

r

�� �� ≤ Xrk kαq JrX
−1
r IrVrTr

� �
V−1

r

�� ��,
ð85Þ

for 0 ≤ x ≤ r. Then, we have

1 ≤ Xrk k V−1
r

�� ��� �τq�ρ �αq JrX
1
r IrVrTr

� �
, �0

� 
τq
: ð86Þ

So, there are ρ ≥ 1; we obtain

〠
r

q=0

1
τq

≤ ρ Xrk k V−1
r

�� ��〠r
q=0

1
τq

�ρ �αq JrX
1
r IrVrTr

� �
, �0

� 
h iτq

⇒ 〠
r

q=0

1
τq

≤ ρ Xrk k V−1
r

�� ��H JrX
−1
r IrVrTr

� �

⇒ 〠
r

q=0

1
τq

≤ ρη Xrk k V−1
r

�� �� JrX
−1
r IrVrTr

�� ��
⇒ 〠

r

q=0

1
τq

≤ ρη Xrk k V−1
r

�� �� JrX
−1
r

�� �� Irk k VrTrk k

= ρη Xrk k V−1
r

�� �� X−1
r

�� �� Irk k Vrk k ≤ 4ρη:
ð87Þ

So there is a contradiction, if r⟶∞. Therefore, Δ andΛ
both cannot be infinite dimensional if �✠α

ℓF
τð:Þ
ðΔ,ΛÞ =LðΔ,ΛÞ.

As with the previous theorem, we can easily prove the
next theorem.

Theorem 49. Suppose ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 0; hence,
�
✠
d
ℓF
τð:Þ

is minimum.

Lemma 50 (see [17]). If B ∈LðΔ,ΛÞ and B ∉ YðΔ,ΛÞ, then
D ∈LðΔÞ and M ∈LðΛÞ with MBDeb = eb, with b ∈N .

Theorem 51 (see [17]). In general, we have

F Δð ÞÞY Δð ÞÞLc Δð ÞÞL Δð Þ: ð88Þ

Theorem 52. Let ðτqÞq∈N ∈ ℓ∞ ∩ I with 0 < τð1Þx < τð2Þx , for all

x ∈N ; hence,

L �✠
ℓF τ

2ð Þ
x

� �� �� �
h

Δ,Λð Þ, �✠ ℓF τ
1ð Þ
x

� �� �� �
h

Δ,Λð Þ
� �

= Y �✠
ℓF τ

2ð Þ
x

� �� �� �
h

Δ,Λð Þ, �✠ ℓF τ
1ð Þ
x

� �� �� �
h

Δ,Λð Þ
� �

:

ð89Þ

Proof. Assume X ∈Lð�✠ðℓFððτð2Þx ÞÞÞhðΔ,ΛÞ, �✠ðℓFððτð1Þx ÞÞÞhðΔ,ΛÞÞ
and X ∉ Yð�✠ðℓFððτð2Þx ÞÞÞhðΔ,ΛÞ, �✠ðℓFððτð1Þx ÞÞÞhðΔ,ΛÞÞ. By using

Lemma 50, we have Y ∈Lð�✠ðℓFððτð2Þx ÞÞÞhðΔ,ΛÞÞ and Z ∈Lð
�✠ðℓFððτð1Þx ÞÞÞhðΔ,ΛÞÞ so that ZXYIb = Ib; hence, with b ∈N ,

one has

Ibk k �✠
ℓF τ

1ð Þ
x

� �� �� �
h

Δ,Λð Þ = 〠
∞

x=0

1
τ

1ð Þ
x

�ρ �sx Ibð Þ, �0� �
 �τ 1ð Þ
x

≤ ZXYk k Ibk k �✠
ℓF τ

2ð Þ
x

� �� �� �
h

Δ,Λð Þ ≤ 〠
∞

x=0

1
τ

2ð Þ
x

�ρ �sx Ibð Þ, �0� �
 �τ 2ð Þ
x :

ð90Þ

This fails Theorem 47. So X ∈ Yð�✠ðℓFððτð2Þx ÞÞÞhðΔ,ΛÞ,
�✠ðℓFððτð1Þx ÞÞÞhðΔ,ΛÞÞ.

Corollary 53. Assume ðτqÞq∈N ∈ ℓ∞ ∩ I with 0 < τð1Þx < τð2Þx ,

for all x ∈N ; hence,

L �✠
ℓF τ

2ð Þ
x

� �� �� �
h

Δ,Λð Þ, �✠ ℓF τ
1ð Þ
x

� �� �� �
h

Δ,Λð Þ
� �

=Lc �✠
ℓF τ

2ð Þ
x

� �� �� �
h

Δ,Λð Þ, �✠
ℓF τ

1ð Þ
x

� �� �� �
h

Δ,Λð Þ
� �

:

ð91Þ

Proof. Evidently, as Y ⊂Lc.

Definition 54 (see [17]). A Banach space Δ is called simple, if
there is only one nontrivial closed ideal in LðΔÞ.
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Theorem 55. Let ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 0; hence, �✠ðℓF
τð:ÞÞh

is simple.

Proof. Let X ∈Lcð�✠ðℓF
τð:ÞÞh

ðΔ,ΛÞÞ and X ∉ Yð�✠ðℓF
τð:ÞÞh

ðΔ,ΛÞÞ.
From Lemma 50, there exist Y , Z ∈Lð�✠ðℓF

τð:ÞÞh
ðΔ,ΛÞÞ with

ZXYIb = Ib, which gives that I �✠ðℓF
τð:ÞÞh

ðΔ,ΛÞ ∈Lcð�✠ðℓF
τð:ÞÞh

ðΔ,ΛÞÞ.
Then, Lð�✠ðℓF

τð:ÞÞh
ðΔ,ΛÞÞ =Lcð�✠ðℓF

τð:ÞÞh
ðΔ,ΛÞÞ; hence, �✠ðℓF

τð:ÞÞh
is a simple Banach space.

Notations 2.

�✠Uð Þλ ≔ �✠Uð Þλ Δ,Λð Þ ; Δ andΛ are Banach spaces
n o

,

where �✠Uð Þλ Δ,Λð Þ≔ X ∈L Δ,Λð Þ: λx Xð Þð Þ∞x=0
�

∈U
�

and X − �ρ λx Xð Þ, �0ð ÞI�� �� is not invertible, with x ∈N �:
ð92Þ

Theorem 56. Assume ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 0; hence,

�✠ ℓFτ :ð Þð Þ
h

� 
λ
Δ,Λð Þ = �✠ ℓFτ :ð Þð Þ

h

Δ,Λð Þ: ð93Þ

Proof. Suppose X ∈ ð�✠ðℓF
τð:ÞÞh

ÞλðΔ,ΛÞ; hence, ðλxðXÞÞ∞x=0 ∈
ðℓFτð:ÞÞh and kX − �ρðλxðXÞ, �0ÞIk = 0, for all x ∈N . We have

X = �ρðλxðXÞ, �0ÞI, for all x ∈N , so

�ρ �sx Xð Þ, �0� �
= �ρ

�
sx �ρ λx Xð Þ, �0ð ÞIð Þ

¯
, �0

 !
= �ρ λx Xð Þ, �0ð Þ, ð94Þ

for every x ∈N . Therefore, ð �sxðXÞÞ
∞
x=0 ∈ ðℓFτð:ÞÞh; hence, X ∈

�✠ðℓF
τð:ÞÞh

ðΔ,ΛÞ. Next, suppose X ∈ �✠ðℓF
τð:ÞÞh

ðΔ,ΛÞ. Hence,

ð �sxðXÞÞ
∞
x=0 ∈ ðℓFτð:ÞÞh. One gets ∑

∞
x=0ð1/τxÞ½�ρð �sxðXÞ, �0Þ�

τx <∞
: Then, limx⟶∞�ρð �sxðXÞ, �0Þ = 0: Assume

kX − �ρð �sxðXÞ, �0ÞIk
−1

exists, with x ∈N . Then,

kX − �ρð �sxðXÞ, �0ÞIk
−1

exists and is bounded, for all x ∈N .

So, limx⟶∞kX − �ρð �sxðXÞ, �0ÞIk
−1 = kXk−1 exists and is

bounded. As ð�✠ðℓF
τð:ÞÞh

,HÞ is a pre-quasi-mappings’ ideal, we

have

I = XX−1 ∈ �✠ ℓFτ :ð Þð Þ
h

Δ,Λð Þ⇒ �sx Ið Þ� �∞
x=0 ∈ ℓ

F
τ :ð Þ

⇒ lim
x⟶∞

�ρ �sx Ið Þ, �0� �
= 0:

ð95Þ

This gives a contradiction, as limx⟶∞�ρð �sxðIÞ, �0Þ = 1.
Therefore, kX − �ρð �sxðXÞ, �0ÞIk = 0, with x ∈N . This explains
X ∈ ð�✠ðℓF

τð:ÞÞh
ÞλðΔ,ΛÞ.

7. Applications

Consider the summable equations which are presented by
many authors [38–40]:

Yq = Rq + 〠
∞

r=0
D q, rð Þm r, Yrð Þ, ð96Þ

where D : N 2 ⟶R,m : N ×R½0, 1�⟶R½0, 1�,
R : N ⟶R½0, 1�, and assume V : ðℓFτð:ÞÞh ⟶ ðℓFτð:ÞÞh,
where ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1 and hðYÞ =
½∑∞

j=0ð1/τjÞð�ρðY j, �0ÞÞτ j �1/K , for every Y ∈ ℓFðτÞ, defined by

V Yq

� �
q∈N

= Rq + 〠
∞

r=0
D q, rð Þm r, Yrð Þ

 !
q∈N

: ð97Þ

Example 15. The summable equation (96) has a solution in
ðℓFτð:ÞÞh, if

K 〠
∞

q=0

1
τq

�ρ Rq − Yq + 〠
∞

r=0
D q, rð Þm r, Yrð Þ, �0

 ! !τq
" #1/K

≤ ln
∑∞

q=0 1/τq
� �

�ρ Rq +∑∞
r=0D q, rð Þm r, Yrð Þ, �0� �� �τq

∑∞
q=0 1/τq
� �

�ρ Yq, �0
� �� �τq :

ð98Þ

Evidently, we have

h VY − Yð Þ = 〠
q∈N

1
τq

�ρ VYq − Yq, �0
� �� �τq" #1/K

= 〠
∞

q=0

1
τq

�ρ Rq − Yq + 〠
∞

r=0
D q, rð Þm r, Yrð Þ, �0

 ! !τq
" #1/K

≤
1
K

ln
∑∞

q=0 1/τq
� �

�ρ Rq +∑∞
r=0D q, rð Þm r, Yrð Þ, �0� �� �τq

∑∞
q=0 1/τq
� �

�ρ Yq, �0
� �� �τq

= ln h VYð Þð Þ − ln h Yð Þð Þ:
ð99Þ

By Theorem 20, one gets a solution of equation (96) in
ðℓFτð:ÞÞh:

Example 16. The summable equation (96) has a solution in
ðℓFτð:ÞÞh, if

〠
∞

q=0

1
τq

�ρ Rq − Yq + 〠
∞

r=0
D q, rð Þm r, Yrð Þ, �0

 ! !τq
" #1/K

≤ 〠
∞

q=0

1
τq

�ρ Yq, �0
� �� �τq" #1/K

− 〠
∞

q=0

1
τq

�ρ Rq + 〠
∞

r=0
D q, rð Þm r, Yrð Þ, �0

 ! !τq
" #1/K

:

ð100Þ
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Clearly, we have

h VY − Yð Þ = 〠
q∈N

1
τq

�ρ VYq − Yq, �0
� �� �τq" #1/K

= 〠
∞

q=0

1
τq

�ρ Rq − Yq + 〠
∞

r=0
D q, rð Þm r, Yrð Þ, �0

 ! !τq
" #1/K

≤ 〠
∞

q=0

1
τq

�ρ Yq, �0
� �� �τq" #1/K

− 〠
∞

q=0

1
τq

�ρ Rq + 〠
∞

r=0
D q, rð Þm r, Yrð Þ, �0

 ! !τq
" #1/K

= h Yð Þ − h VYð Þ:
ð101Þ

By Theorem 20, one gets a solution of equation (96) in
ðℓFτð:ÞÞh:

We conclude the following two applications in view of
Theorem 22.

Example 17. The summable equation (96) has a solution in
ðℓFτð:ÞÞh, where hðYÞ =∑∞

q=0ð1/τqÞ½�ρðYq, �0Þ�τq , for all Y ∈ ℓF

ðτÞ, if

(1) hðVl+1G −VlGÞ ≤ αl ln hðVðGÞÞ/hðGÞ, with G ∈
ðℓFτð:ÞÞh

(2) V is h-sequentially continuous at Z ∈ ðℓFτð:ÞÞh
(3) there is Y ∈ ðℓFτð:ÞÞh with fVlYg which has fVljYg

converging to Z

Then, Z ∈ ðℓFτð:ÞÞh is a fixed point of V .

Example 18. The summable equation (96) has a solution in
ðℓFτð:ÞÞh, where hðYÞ =∑∞

q=0ð1/τqÞ½�ρðYq, �0Þ�τq , for all Y ∈ ℓF

ðτÞ, if

(1) hðVl+1G −VlGÞ ≤ αlðhðGÞ − hðVðGÞÞÞ, with G ∈
ðℓFτð:ÞÞh

(2) V is h-sequentially continuous at Z ∈ ðℓFτð:ÞÞh
(3) there is Y ∈ ðℓFτð:ÞÞh with fVlYg which has fVljYg

converging to Z

Then, Z ∈ ðℓFτð:ÞÞh is a fixed point of V .

In this part, we search for a solution to nonlinear matrix
equations (102) at M ∈ �✠ðℓF

τð:ÞÞh
ðΔ,ΛÞ, where Δ and Λ are

Banach spaces, ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 0, and HðGÞ =
½∑∞

q=0ð1/τqÞð�ρð �sqðGÞ, �0ÞÞ
τq �1/K , for all G ∈ �✠ðℓF

τð:ÞÞh
ðΔ,ΛÞ. Con-

sider the summable equations

�sq Gð Þ = �sq Pð Þ + 〠
∞

r=0
D q, rð Þm r, �sr Gð Þ� �

, ð102Þ

where D : N 2 ⟶R,m : N ×R½0, 1�⟶R½0, 1�, and sup-
pose V : �✠ðℓF

τð:ÞÞh
ðΔ,ΛÞ⟶ �✠ðℓF

τð:ÞÞh
ðΔ,ΛÞ defined by

H V Gð Þð Þ = 〠
∞

q=0

1
τq

�ρ �sq Pð Þ + 〠
∞

r=0
D q, rð Þm r, �sr Gð Þ� �

, �0
 ! !τq

" #1/K
:

ð103Þ

We conclude the following two applications in view of
Theorem 45.

Example 19. If

(i) there is α ∈ ½0, 1Þ so that HðVl+1G − VlGÞ ≤ αl ln
ðHðVðGÞÞ/HðGÞÞ, with G ∈ �✠ðℓF

τð:ÞÞh
ðΔ,ΛÞ

(ii) V is H-sequentially continuous at an element M ∈
�✠ðℓF

τð:ÞÞh
ðΔ,ΛÞ

(iii) there are G ∈ �✠ðℓF
τð:ÞÞh

ðΔ,ΛÞ such that the sequence of

iterates fVrGg has a fVrmGg converging to M

Then, M ∈ �✠ðℓF
τð:ÞÞh

ðΔ,ΛÞ is a fixed point of V .

Example 20. Suppose

(i) there is α ∈ ½0, 1Þ so that HðVl+1G −VlGÞ ≤ αlðH
ðGÞ −HðVðGÞÞÞ, with G ∈ �✠ðℓF

τð:ÞÞh
ðΔ,ΛÞ

(ii) V is H-sequentially continuous at an element M ∈
�✠ðℓF

τð:ÞÞh
ðΔ,ΛÞ

(iii) there are G ∈ �✠ðℓF
τð:ÞÞh

ðΔ,ΛÞ such that the sequence of

iterates fVrGg has a fVrmGg converging to M

Then, M ∈ �✠ðℓF
τð:ÞÞh

ðΔ,ΛÞ is a fixed point of V .

8. Conclusion

We proposed in this paper the notions of premodular spaces
of fuzzy numbers and extended s-fuzzy numbers to con-
struct large spaces of solutions to many nonlinear summable
and matrix equations of fuzzy numbers. We discuss some
topological and geometric structures of ðℓFτð:ÞÞh, of the multi-

plication mappings defined on ðℓFτð:ÞÞh, of the class �✠ðℓF
τð:ÞÞh

,

and of the class ð�✠ðℓF
τð:ÞÞh

Þλ. Moreover, the existence of Caris-

ti’s fixed point in ðℓFτð:ÞÞh is investigated. We also presented

some examples and illustrated the implication of the new
results in the study of the existence of solutions for a class
of nonlinear summable and matrix equations.
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